
Identity-Based Key Agreement with Unilateral

Identity Privacy Using Pairings

Zhaohui Cheng1, Liqun Chen2, Richard Comley1, and Qiang Tang3

1 School of Computing Science, Middlesex University
The Burroughs Hendon, London NW4 4BT, UK

{m.z.cheng,r.comley}@mdx.ac.uk
2 Hewlett-Packard Laboratories, Bristol, UK

liqun.chen@hp.com
3 Information Security Group

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

qiang.tang@rhul.ac.uk

Abstract. In most of the existing identity-based key agreement schemes,
it is usually assumed that either the communicated parties know each
other’s identifier before the protocol starts or their identifiers are trans-
ferred along with the protocol messages. However, these schemes are not
suitable for use in many real-world applications aimed to achieve unilat-
eral identity privacy, which means that one communicating party does
not want to expose his identifier to an outsider while his partner can-
not know his identifier in advance. In this paper, we propose an efficient
identity-based two-party key agreement scheme with unilateral identity
privacy using pairing, and formally analyze its security in a modified
Bellare-Rogaway key agreement security model.

1 Introduction

Two-party key agreement has been well investigated since the Diffie-Hellman
(DH) key exchange was proposed [20]. Because the key agreement schemes are
usually supposed to be used in open networks, where the communication is fully
controlled by adversaries, most of the research efforts have been devoted to the
authenticated key agreement schemes. An authenticated key agreement (AK for
short) scheme can establish a secret between (among) the involved parties and
guarantee no other party aside from the intended one can gain access to the
established session secret key. Moreover, an authenticated key agreement with
key confirmation (AKC for short) [27] further guarantees that if the protocol
successfully ends then every party can be assured that the others actually possess
the same session key. Besides the basis security properties required by AK and
AKC, the following general security properties (some of them are discussed in
[11, 25]) might also be required depending on the deployment environment.

– Known session key security (KnSK). The compromise of one session key
should not compromise the keys established in other sessions.

2

– Forward secrecy (FwS). If one party’s private key is compromised, the secrecy
of session keys previously established by the party should not be affected.
Perfect forward secrecy (PFS) requires that the session key is still secure
even when both parties’ private keys are compromised. In identity-based
schemes, there is a master key which could be compromised as well. The
master-key forward secrecy requires that the session keys generated before
are still secure even when the master key is compromised.

– Key-compromise impersonation resilience (KCI). The compromise of party
A’s long-term private key should not enable the adversary to impersonate
other parties to A.

– Unknown key-share resilience (UknKSh). Party A should not be able to be
coerced into sharing a key with party C when in fact A thinks that he is
sharing the key with some party B.

– Key control (KContl). One single party should not be able to decide the
formation of the session key.

Apart from these general security properties, other special security properties
might also be required in certain environment. In this paper we are especially
interested in preserving one user’s identity privacy (IP) during every (key agree-
ment) protocol execution, which means that no outsider adversary can determine
the user’s identity. User identity privacy is very important in some environments
such as the mobile networks. In particular, the privacy of user identity over the
air interface of mobile networks is essential to guarantee the user’s location pri-
vacy and prevent an adversary from associating a user with his activities [6,
22]. Even in general network environments, some key agreement protocols such
as the Internet Key Exchange protocol [21], identity privacy is also a desirable
property.

Authenticated key agreement protocols can be built based on both symmetric
cryptography and asymmetric cryptography. If symmetric cryptography is used
then either a symmetric key or a password should be distributed before the
key agreement protocol is executed. If traditional (certificate-based) asymmetric
cryptography is used, normally a public key infrastructure (PKI) will be required
to be deployed. Shamir proposed the concept of identity-based cryptosystem [32]
in which each party’s public key is the party’s identity which can be an arbitrary
string. Hence, in the identity-based systems no certificate is required so that
the management of public keys is greatly simplified. Following Shamir’s work
many identity-based two-party key agreement schemes using pairings have been
proposed (e.g., [35, 34, 15, 31, 19, 26, 38, 36]).

More or less, these protocols also consider the general security properties of
key agreement protocols. Based on the assumption that two participants know
each other’s identity in advance, some of these schemes also achieve user identity
privacy. However, such assumption that two parties know each other’s identity
in advance might not hold in many practical environments. For example, in
the mobile networks of infrastructure mode, a mobile station could know the
identifier of an access point (or a base station in the telecommunication networks)
by some means, such as through a broadcast message from the access point, but

3

the access point cannot know the mobile station’s identifier a prior. Similarly in
the remote log-in services, a server cannot know a log-in user’s identifier before
hand.

Achieving identity privacy in a key establishment protocol is not a new chal-
lenge. A lot of research has been done to address this issue, especially in the
mobile networks, e.g., [6, 1, 22]. However, these solutions rely on either the sym-
metric cryptography or traditional asymmetric cryptography so that it might
cause problems when practically deployed. In this paper we mainly focus on
the identity-based (using pairings) two-party key agreement schemes aimed to
achieve user identity privacy.

In the literature of identity-based schemes, some identity-based encryption
schemes, such as the signcryption schemes [2, 16] and the authenticated encryp-
tion scheme [12], are closely related to one-pass authenticated key establishment
schemes. These schemes in [2, 16, 12] achieve the basic ciphertext unforgeability
property, i.e. without both the sender and the recipient private key, the ad-
versary cannot forge a ciphertext which can be accepted by the recipient, and
message confidentiality property, i.e. the adversary cannot decrypt a ciphertext
even if it has compromised the sender’s private key. Moreover, these schemes
achieve ciphertext anonymity, i.e. the ciphertext hides both the sender and re-
cipient identifiers to any outsider. However, it is clear that these schemes ([2,
16, 12]) cannot be directly used as an AK or AKC protocol and those in [2,
16] will have high computation complexity if they are adjusted and used as key
establishment protocols. Some other pairing-based cryptographic primitives also
consider the identity privacy, such as the secret-handshaking scheme [7] and the
ad-hoc anonymous identification scheme [28]. However, these primitives do not
fit the requirement of authenticated key agreement either.

The rest of the paper is organised as follows. In Section 2 we briefly introduce
pairings, the related assumptions, and some other necessary primitives. In Sec-
tion 3 we describe the security model used to evaluate a two-party key agreement
protocol with identity privacy. In Section 4 we propose an efficient authenticated
key agreement with unilateral user identity privacy, investigate its security, and
compare its security attributes and computation complexity with some existing
protocols. Finally, we conclude this paper.

2 Preliminary

2.1 Bilinear Pairings and Assumptions

In this subsection we briefly introduce some background knowledge of the pair-
ings.

Definition 1 [4] A pairing is a bilinear map ê : G1 × G1 → G2 with two cyclic
groups G1 and G2 of prime order q, which has the following properties:

1. Bilinear: ê(sP, tR) = ê(P,R)st for all P,R ∈ G1 and s, t ∈ Zq.
2. Non-degenerate: ê(P, P) 6= 1G2

for P ∈ G
∗

1.

4

3. Computable: ê(P,Q) for any P,Q ∈ G1 is polynomial-time computable.

In the literature the security of many the identity-based schemes are based
on the following assumptions.

Assumption 1 (Bilinear Diffie-Hellman (BDH) [4]) For x, y, z ∈R Z
∗

q ,
P ∈ G

∗

1, ê : G1 ×G1 → G2, given 〈P, xP, yP, zP 〉, computing ê(P, P)xyz is hard.

Assumption 2 (Decisional Bilinear Diffie-Hellman (DBDH)) For x, y, z,
r ∈R Z

∗

q , P ∈ G
∗

1, ê : G1 × G1 → G2, distinguishing between the distributions
〈P , xP , yP , zP , ê(P, P)xyz〉 and 〈P , xP , yP , zP , ê(P, P)r〉 is hard.

Assumption 3 (Gap Bilinear Diffie-Hellman (GBDH) [30]) With the
help of an oracle to solve the DBDH problem, solving the BDH problem is still
hard.

2.2 Some Primitives

In order to hide one user’s identity, we need to employ an one-time symmetric-
key encryption scheme specified below.

Definition 2 [18] An one-time symmetric-key encryption E consists of two de-
terministic polynomial-time algorithms:

– Encrypt E(EK,m): Given a secret key EK ∈ K (the secret key space) and
a message m from message space M, the algorithm outputs the ciphertext c.

– Decrypt D(EK, c): Given a secret key EK ∈ K and a cipertext c, the
algorithm outputs the plaintext m.

which satisfy D(EK, E(EK,m)) = m.
A one-time symmetric-key encryption secure against passive attacks requires

that for any passive adversary who possesses a pair of PPT algorithms (A1, A2),
the following function ǫ(k) is negligible.

ǫ(k) = Pr[b = b′ |
((m1,m2), σ) ← A1(1

k); b ← {0, 1}; EK ← K;
c∗ ← E(EK,mb); b′ ← A2(1

k, σ, c∗)
]

Note that, m1 and m2 could be with equal length of any polynomial of k from the
message space M. A passive secure one-time symmetric-key encryption achieves
the ciphertext indistinguishability property with no encryption or decryption
oracle access for the adversary (i.e. the IND-P0-C0 security [29]). As suggested
in [18], this type of encryption scheme can be built from standard encryption
techniques, such as using a pseudo-random bit generator (PRG) to extend EK
and then employing “one-time pad” operation. In this paper, we specifically use
such “one-time pad” with pseudorandom bit stream scheme.

To provide key confirmation for AKC, we shall use a secure message authen-
tication code (MAC) specified as follows.

5

Definition 3 [3] A message authentication code (MAC) is a pair of polynomial
algorithms (G,M):

– On input 1k, algorithm G uniformly chooses a bit string s from its range.
– For every s in the range of G(1k) and for every m ∈ {0, 1}∗, the deterministic

algorithm M computes α = M(s,m). α is called the tag of message m under
M(s, ·). We shorthand M(s, ·) as Ms(·).

For a probabilistic oracle machine FMs , which has the access to the MAC
oracle Ms, we denote by QMs

F (x) the set of the queries made by FMs . A MAC
scheme is secure if for every probabilistic polynomial oracle machine FM(·) , the
function ǫ(k) defined by:

ǫ(k) = Pr[Ms(m) = α ∧ m /∈ QMs

F (1k) | s ← G(1k) and (m,α) ← FMs(1k)]

is negligible, where the probability is taken over the coin tosses of algorithms G
and FM(·) .

3 Security Model of Key Agreement with Identity

Privacy

In this paper we use a modified Blake-Wilson et al.’s security model [11] which
extends the Bellare-Rogaway model [10] (referred to as the BR model) to the
public key setting.

In the BR model [10], each party involved in a session is treated as an oracle,
and an adversary can access the oracle by issuing some specified queries (defined
below).An oracle Πs

i,j denotes the s-th instance of party i involved with a partner
party j in a session (note that an oracle Πs

i,j can be uniquely identified by i
and s). The oracle Πs

i,[j] executes the prescribed protocol Π and produces the

output as Π(1k, i, [j], Si, Pi, [Pj], convs
i,[j], rs

i,[j], x)= (m, δs
i,[j], σ

s
i,j , [j]) where x is

the input message; m is the outgoing message; Si and Pi are the private/public
key pair of party i; δs

i,[j] is the decision of the oracle (accept or reject the session

or no decision yet); σs
i,j is the generated session key and Pj is the public key

of the intended partner j (see [10, 11] for more details). After the response is
generated, the conversation transcript convs

i,[j] is updated as convs
i,[j].x.m (where

“a.b” denotes the result of the concatenation of two strings, a and b).
There are some differences between the protocol formulation described here

and those in [10, 11] because we need to consider the identity privacy property.
An oracle may not know its partner identity during some stage of the protocol so
that the partner’s identifer and its public key are presented as an optional input
(denoted by [z]) to the protocol’s algorithm Π. If an oracle does not know its
partner’s identifier, it cannot use this information when generating the response,
but at the end of the protocol it should be able to output the intended partner’s
identifier, if it accepts the session.

There is an obstacle in the BR model to simulate the situation that an ad-
versary only passively eavesdrops the conversation between two parties when

6

the protocol has identity privacy, because in the BR model, the adversary fully
controls the network and schedules the messages among the parties. Without
knowing the identity of oracles, the adversary cannot dispatch the messages.
In [14], Canetti et al. introduced an extra identifier “destination address” to
simulate the “post-specified peer setting” which is a related notion to identity
privacy. In the model of [14], a session is activated by the adversary using (i, t, d)
where i is the party identifier, t is the session identifier, and d is the destination
address. However, although using destination address d can simulate the situa-
tion that the party sends out a message to an unknown party, such activation
still allows the adversary to know the source identifier of the message.

Instead of introducing further complexity into the model, we consider iden-
tity privacy only when simulating the behavior of an honest party (who strictly
follows the protocol specification and is modeled as an oracle) and allow the ad-
versary to know the (source and possibly destination) identifiers of each message
generated by the honest party (we can think that in the attack the honest par-
ties reveal to the adversary the hidden identifiers in messages). While, it is not
required that the adversary knows the identifiers of a message faked by itself.
Hence the adversary’s ability is not restricted, but the model is only used to
test the common security attributes, such as mutual authentication and session
key security. Identity privacy has to be scrutinized separately. This is also the
strategy used in [14].

The security of a protocol is tested by a game with two phases. In the first
phase, an adversary E is allowed to issue the following queries in any order.

1. Send a message with knowing partner: Send(Πs
i,j , x). Oracle Πs

i,j executes

Π(1k, i, j, Si, Pi, Pj , convs
i,j , rs

i,j , x) and responds with m and δs
i,j . If the or-

acle Πs
i,j does not exist, it will be created. Message x can be λ in the query

which causes an oracle to be generated as an initiator, otherwise as a re-
sponder. This is a normal query formalized in [10, 11]. We note that even in
a protocol with identity privacy, one party may know its intended partner
before receiving any message.

2. Send a message without knowing partner: Send(Πs
i,∗, x). Oracle Πs

i,∗ who

does not know its partner so far, follows the protocol Π(1k, i, Si, Pi, convs
i,∗, r

s
i,∗,

x) to generate response. If the oracle recovers a partner identifier j through
some algorithm F : j = F(1k, i, Si, Pi, convs

i,∗, r
s
i,∗, x), it replaces the un-

known partner identifier ∗ with j and retrieves j’s public key Pj . This is a
new query in the model, but a similar formulation has been used in [14].

3. Reveal a session’s agreed session key: Reveal(Πs
i,∗). If the oracle has not

accepted, it returns ⊥; otherwise, it must have known its partner j, and then
Πs

i,j reveals the session’s private output σs
i,j . Note that the adversary may

not know an oracle’s partner. Here, the oracle is not required to disclose
the partner’s identity even if it has accepted the session. The adversary’s
capacity can be further strengthened by obtaining the partner’s identifier
information of an oracle when issuing the query.

7

4. Corrupt a party: Corrupt(i). The party i responds with the private key Si.
Here, the adversary is not allowed to replace a party’s private key because
the attack is impossible in the identity-based schemes.

Once the adversary decides that the first phase is over, it starts the second
phase by choosing a fresh oracle Πs

i,∗ and issuing a Test(Πs
i,∗) query, where the

fresh oracle Πs
i,∗ and Test(Πs

i,∗) query are defined as follows.

Definition 4 (fresh oracle) An oracle Πs
i,∗ is fresh if (1) Πs

i,∗ has accepted
(hence it knows the partner j); (2) Πs

i,j is unopened (not being issued the Reveal
query); (3) j is not corrupted (not being issued the Corrupt query); (4) there is
no opened oracle Πt

j,i , which has had a matching conversation to Πs
i,j .

It should be noted that this concept of fresh oracle is particularly defined
to address the key-compromise impersonation resilience property [17] since it
implies that the user i could have been issued a Corrupt query.

5. Test(Πs
i,∗). Oracle Πs

i,∗ which is fresh, so knows its partner j, as a challenger,
randomly chooses b ∈ {0, 1} and responds with σs

i,j , if b = 0; otherwise
it returns a random sample generated according to the distribution of the
session secret σs

i,j .

If the adversary guesses the correct b, we say that it wins. the adversary’s
advantage is defined as

AdvantageE(k) = max{0,Pr[E wins] − 1
2}.

We use the session ID, which can be the concatenation of the messages in
a session (see [9]), to define matching conversations, i.e. two oracles Πs

i,j and
Πt

j,i have the matching conversations if they derive the same session ID from
their own conversation transcripts.

A secure authenticated key (AK) agreement protocol is defined as follows.

Definition 5 [11] Protocol Π is a secure AK if:

1. In the presence of the benign adversary, which faithfully conveys messages,
on Πs

i,j and Πt
j,i , both oracles always accept holding the same session key σ,

and this key is distributed uniformly at random on {0,1}k;

and if for every adversary E:

2. If two oracles Πs
i,j and Πt

j,i with matching conversations have accepted 4 and
both i and j are uncorrupted, then both hold the same session key σ;

4 In [11], this condition is not required. Instead, it is required that two oracles with
matching conversation should both accept. While in a protocol with identity privacy,
a party may only know its partner when it has accepted the session. We note that
only when the partner is determined, a meaningful matching conversation can be
defined. In [14], it is defined that an unfinished oracle has a matching conversation
to any other oracle.

8

3. AdvantageE(k) is negligible.

As demonstrated in [11, 17] that if a protocol is secure regarding the above
formulation, it achieves the session key authentication and the general security
properties: known session key security, key-compromise impersonation resilience
and unknown key-share resilience. As in principle, there is no public-key based
DH style key agreement without signature that can achieve PFS, in this paper
we adopt a weaker definition of PFS [17].

Definition 6 An AK protocol is said to be forward secure if the adversary wins
the game with negligible advantage when it chooses as the challenger (i.e. in place
of the fresh oracle) an unopened oracle Πs

i,j which has a matching conversation
to an unopened oracle Πt

j,i and both oracles accepted. If both i and j can be
corrupted then the protocol achieves perfect forward secrecy.

Apart from the requirements in Definition 5, an AKC additionally requires
that the following No-Matching event can only happen with a negligible proba-
bility.

Definition 7 No-matchingE(k) is the event that there exist i, j, s such that an
oracle Πs

i,j accepted and there is no accepted oracle Πt
j,i which has engaged in a

matching conversation to Πs
i,j and party j is uncorrupted.

4 A Key Agreement Protocol with Identity Privacy

In this section we propose an efficient identity-based two-party key agreement
protocol with client identity privacy for use in the client-server environment,
and discuss its security properties. It should be noted that it can also be used
in other environments with the same security requirements.

4.1 Description of the Scheme

In the system there is a Key Generation Center (KGC) which with the given
security parameter k generates the system parameters as follows:

1. Generate two cyclic groups G1 and G2 of prime order q and a bilinear pairing
map ê : G1 × G1 → G2. Pick a random generator P ∈ G

∗

1.
2. Pick a random s ∈ Z

∗

q as the master key and compute Ppub = sP .
3. Pick six cryptographic hash functions H1 : {0, 1}∗ → G1, H2 : G1×G1 → Z

∗

q ,

H3 : G2 → {0, 1}n, H4 : G2 → {0, 1}l, H5 : {0, 1}∗×{0, 1}∗×G1×G1×G2 →
{0, 1}w, and H6 : G2 → {0, 1}w for some integers n,w, l > 0. In the practice,
we can set n = 128, l = 160 and w = 128 for instance.

The KGC keeps the master key as a secret and publishes other parameters.
For any user with an identity ID ∈ {0, 1}∗, the KGC computes QID = H1(ID),
dID = sQID and passes dID as the private key to this party via some secure
channel.

9

We suppose that the client possesses the identity A and the server possesses
the identity B. Without loss of generality, we assume that there is always an
association procedure (such as a TCP connection procedure or a physical con-
nection establishment phase) between the client and the server before starting
the key agreement protocol.

Once the association has been established, A and B proceed as follows (this
process is also depicted in Fig. 1. The operations included by [] are specified for
the AKC version.).

1. The server B randomly chooses rB ∈ Z
∗

q and sends (B, rBQB) to the client,
where QB = H1(B). It should be noted that the server B does not know the
identity of the client.

2. The client A responds as follows. 1) randomly choose rA ∈ Z
∗

q ; 2) compute
h = H2(rAQA, rBQB); 3) compute the agreed secret K = ê(dA, rBQB +
hQB)rA ; 4) generate an encryption key EK = H3(K); 5) use a (passively)
secure symmetric-key encryption E , specifically the “one-time pad” with
pseudorandom bit stream scheme defined in Section 2.2, to encrypt mes-
sage m = (rA, A) with EK as {m}EK ; 6) send rAQA and the ciphertext
{m}EK to the server B.

(Client)A B(Server)

B,rBQB←−−−−−−−−−−− rB ∈R Z
∗

q .

rA ∈R Z
∗

q ; rAQA, {m}EK ,

h = H2(rAQA, rBQB);
[MAC1]

−−−−−−−−−−−→
K = ê(dA, rBQB + hQB)rA ; h = H2(rAQA, rBQB);

EK = H3(K); m = rA, A; K = ê(rAQA, dB)rB+h;
[MK = H4(K); MAC1 = EK = H3(K); m′ = rC , IDC ;

MACMK(A, B, rAQA, rBQB)]. [MK = H4(K); check MAC1;]

rCH1(IDC)
?
= rAQA.

[check MAC2.]
[MAC2]

←−−−−−−−−−−− [MAC2 =
MACMK(B, A, rBQB , rAQA).]

SK = H5(A, B, rAQA, rBQB , K) SK = H5(A, B, rAQA, rBQB , K)
[SK′ = H6(K)] [SK′ = H6(K)]

Fig. 1. Protocol 1

3. The server B processes the incoming message as follows. 1) compute h =
H2(rAQA, rBQB); 2) compute the agreed secret K = ê(rAQA, dB)rB+h; 3)
generate a decryption key EK = H3(K); 4) decrypt {m}EK with EK to
recover (rC , IDC); 5) check if the equation rCH1(IDC) = rAQA holds. If
the equation does not hold, B aborts the protocol.

10

4. On completion of the AK protocol, both parties compute the session key SK
as specified in Fig. 1.

5. To provide key confirmation, we can extend the protocol using the standard
MAC methodology by using a secure MAC scheme defined in Definition 3.
In the second flow, the client A computes a MAC key MK = H4(K) and
generates a tag of message (A,B, rAQA, rBQB) using MK as the secret. The
tag is sent to the server as the third component of the message. Once the
server B receives the message, it proceeds as in step 3 of AK, but verifies

the MAC tag before checking the equation rCH1(IDC)
?
= rAQA (this would

slightly help the server against the deny-of-service attack). If both checks
succeed, the server B sends the third message including a MAC tag generated
as in Fig. 1 to the client A. The client A then has to verify the validity of
the third message (the tag MAC2). If the check succeeds, the session key is
generated as SK ′ in Fig. 1.

In this work, we assume that at least one input of the used pairing should
be checked in the specified group in general, otherwise the computation of the
pairing should fail. Such check is important because the behavior of a pairing is
not defined when an input is not from the specified group, and the output could
be with much smaller order. Only one input needs to be checked in the pairing
for the proposed protocol, because the other is either from the specified group
or checked in the protocol explicitly.

For the specified protocol in Fig. 1, the second input should be checked in the
specified group in the pairing (rAQA is checked in the protocol mandatorily).
While we can simply exchange the inputs of the pairing, if the check on the first
input is available. Such check may be trivial for some pairing instances, such as
the Tate pairing, because the Tate pairing allows the second input to be any
point on the curve.

4.2 Security Analysis

In the proposed protocol, the agreed secret K and EK are dynamically generated
in every session, furthermore, there is no decryption oracle for any fixed EK to
help the adversary in the running of the protocol. Hence, we only require the
one-time symmetric-key encryption scheme to be passively secure as defined in
Definition 2. While, for the simplicity of security analysis, we specifically require
that E is the “one time pad” with pseudorandom bit stream scheme, which is
an efficient and passively secure one-time encryption scheme [18].

In addition, there is another feature we should stress before the formal anal-
ysis. In the second flow of the protocol, we organise the plaintext m by concate-
nating random rA and identifier A, because field rA has fixed length. This could
simplify the implementation. While, in the security model, we assume that the
identifier A should be reviewed to the adversary, hence we require that when
employing the encryption scheme (the “one-time pad” with pseudo-random bit
stream) the message should be encrypted in the reverse order, i.e. the last bit of

11

the plaintext should be encrypted first. As a result, we can directly make use of
the next bit unpredictability property of a PRG [5].

Next, we firstly investigate the security of AK version of the proposed pro-
tocol.

As defined in Definition 4, for a chosen fresh oracle Πs
i,j in the game, party i

can be corrupted (this is particularly used to address the known-key imperson-
ation resilience property). Because the protocol differentiates the role of parties
(some are clients and others are servers. This can be done by requiring that the
client and the server identifers are in two separate sets, say (IDC , IDS)), we
consider the security of the AK protocol in the following two cases:

(1) Server authentication. We consider the known-(client)-key attack that the
adversary tries to impersonate a server to a client whose private key is known
to the adversary, i.e. the chosen fresh oracle Πs

i,j is with i ∈ IDC and j ∈ IDS .

Theorem 1 The protocol is secure against the known-client-key attack, provided
the BDH assumption is sound, the hash functions are modelled as random ora-
cles.

Proof is presented in Appendix.

(2) Client authentication. Now we consider the known-(server)-key attack
that the adversary tries to impersonate a client to a server whose private key
is known to the adversary, i.e. the chosen fresh oracle Πs

i,j is with i ∈ IDS and

j ∈ IDC .

Theorem 2 The protocol is secure against the known-server-key attack, pro-
vided the GBDH assumption is sound, the hash functions are modelled as random
oracles.

Proof is presented in Appendix.

Theorem 1, 2 show that the AK protocol possesses the following security
property: session key authentication, known session key security, key-compromise
impersonation resilience and unknown key-share resilience. Based on these re-
sults and the fact that the BDH assumption implies the corresponding GBDH
assumption, it is straightforward that the following theorem holds.

Theorem 3 The protocol is a secure AK, provided the GBDH assumption is
sound and the hash functions are modelled as random oracles.

Now let’s look at the the forward secrecy (note that a protocol satisfies Def-
inition 5 does not necessary achieve the forward secrecy). The AK protocol in
Fig. 1 achieves PFS.

Theorem 4 The AK protocol has PFS regarding Definition 6, provided that
the GBDH assumption is sound and the hash functions are modelled as random
oracles.

12

The proof is sketched in Appendix.

It is clear that, if the adversary knows the master key s then it can compute
K, so that the scheme does not achieve master-key forward secrecy. However, this
property may not be a defect since provides an possible way for legal interception
which is also important in the mobile communications.

User identity privacy is achieved for the following reasons. (1) We note that
rA is randomly sampled from Z

∗

q , hence rAQA is evenly distributed in message
space G

∗

1 which could be sampled by any other client with the same distribution.
So, rAQA for client A is indistinguishable from rXQX for any other client X.
(2) The client’s identity is hidden by the symmetric-key encryption applied in
the second flow. The used key is the output from a hash function on the agreed
secret so that it is evenly distributed in the key space of the used encryption
if we assume the hash function can be modeled as a random oracle. Hence,
the ciphertext of one plaintext should be indistinguishable from those of other
plaintexts because the used E possesses the indistinguishability security property.

The AKC version of the protocol employs the standard mechanism (MAC) to
provide key confirmation. The security can be proved using the similar methods
as in Theorem 1, 2.

4.3 A Strengthened Variant with Master-key Forward Secrecy

As analysed in the previous subsection, the protocol does not achieve master-key
forward secrecy. There are two possible implications of this “weakness”. (1) Any-
one who records the execution of the protocol and then compromises the KGC’s
master key can recover any session key. (2) The “curious” KGC can recover any
session key and detect the client identity by merely eavesdropping on a session
of the protocol. Below we show a method to strengthen the protocol with rea-
sonable cost to remove this weakness. The strengthened protocol (Protocol 2)
proceeds as follows:

1. Identical with step 1 of Protocol 1
2. Apart from the operations of step 2 in Protocol 1, the client A also chooses

another r′A ∈ Z
∗

q and computes K ′ = r′ArBQB and r′AQB . But this time,
EK is computed as EK = H ′

3(K,K ′) where H ′

3 is a hash function with
H ′

3 : G2 ×G1 → {0, 1}n. A sends the message (rAQA, r′AQB , {m}EK) to the
server.

3. The server works as in Protocol 1, but also computes K ′ = rBr′AQB , and so
EK is computed as the above step.

4. The session key of the AK protocol is computed by SK = H ′

5(A,B, rAQA,
rBQB ,K,K ′) where we use a hash function H ′

5 : {0, 1}∗ × {0, 1}∗ × G1 ×
G1 × G2 × G1 → {0, 1}w.

5. The AKC protocol still uses the MAC mechanism to provide key confir-
mation. MK is computed as MK = H ′

4(K,K ′) where we employ a hash
function H ′

4 : G2 ×G1 → {0, 1}l, and the extra component r′AQB is given as
part of the authenticated message. The session key is generated as SK ′ =
H ′

6(K,K ′) with a hash function H ′

6 : G2 × G1 → {0, 1}w.

13

It is straightforward to show that the security proofs for Protocol 1 can be
easily adapted for Protocol 2. While, as the formation of EK and SK (SK ′)
uses r′ArBQB as part of the contribution. Without r′A or rB , EK and SK (SK ′)
cannot be recovered if the DH problem is hard in G1 which is implied by the
BDH assumption. Hence, Protocol 2 has the master-key forward secrecy and
hides the client identity to the KGC as well.

4.4 Evaluation of Security and Complexity

Here we summarise the security properties and computation complexity of the
proposed protocol and some other schemes in the literature in Table 1 (we only
count the heavy operations: Pairing, Scalar and Exponentiation). From the table,
we can find that the proposed protocols have strong security with good compu-
tation efficiency. Moreover, the proposed protocol can work in both modes with
and without user identity privacy.

KnSK FwS UknKSh KCI IP KContl Comp Complexity

Proposal 1 X X
∗1

X X X A and B 1P+2S+1E

Proposal 2 X X
∗2

X X X A and B 1P+4S+1E∗3

Smart Protocol[34] X X
∗4

X X χ A and B 2P+3S

CK Protocol[15] X X
∗1

X X χ A and B 1P+2S

∗1: PFS is achieved.
∗2: The master-key forward secrecy is achieved.
∗3: The server has less computation complexity with 1P+3S+1E.
∗4: By using the key derivation function proposed in [15], the maser-key forward se-

crecy is achieved.

Table 1. Computation Complexity and Security Property

5 Conclusion

User identity privacy is an important security property for protocols used in
several environments such as mobile networks. In this paper we investigate the
user identity privacy in the protocols employing identity-based primitives from
pairings. By considering both security strength and computation efficiency, we
present an identity-based protocols using pairing which preserves both user iden-
tity privacy and high efficiency.

6 Acknowledgement

We would like to thank Steven Galbraith for helpful discussions on pairings and
Kim-Kwang Raymond Choo for comments on the draft of the paper.

14

References

1. M. Abadi. Private Authentication. Privacy Enhancing Technologies 2002, LNCS
2482, pp. 27-40.

2. X. Boyen. Multipurpose Identity-Based Signcryption: A Swiss Army Knife for
Identity-Based Cryptography. Advances in Cryptology - Crypto 2003, LNCS 2729,
Springer-Verlag (2003), pp. 382-398.

3. M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for message au-
thentication. Advances in Cryptology - Crypto 96, LNCS 1109, 1996.

4. D. Boneh and M. Franklin. Identity Based Encryption from The Weil Pairing.
Advances in Cryptology - Crypto 2001, LNCS 2139, 2001.

5. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Computing, 13(4):850-863, November 1984.

6. C. Boyd and A. Mathuria. Key Establishment Protocols for Secure Mobile Com-
munications: A Selective Survey. ACISP’98, LNCS 1438, pp. 344-355.

7. D. Balfanz, G. Durfee, N. Shankar, D.K. Smetters, J. Staddon and H.C. Wong.
Secret Handshakes from Pairing-Based Key Agreements. IEEE Symposium on Se-
curity and Privacy (Proceedings), pp. 180-196, 2003.

8. C. Boyd, W. Mao and K. Paterson. Key agreement using statically keyed authen-
ticators. Applied Cryptography and Network Security – ACNS’2004, LNCS 3089,
Springer-Verlag (2004).

9. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Proceedings of Advances in Cryptology - Eurocrypt
2000, LNCS 1807, Springer-Verlag, 2000.

10. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of Advances in Cryptology - Crypto ’93, LNCS 773, pp. 232-249, Springer-
Verlag, 1993.

11. S. Blake-Wilson, D. Johnson and A. Menezes. Key agreement protocols and their
security analysis. In Proceedings of the Sixth IMA International Conference on
Cryptography and Coding, Springer-Verlag, 1997.

12. Z. Cheng and R. Comley. Efficient Certificateless Public Key Encryption. Cryp-
tology ePrint Archive, Report 2005/012.

13. Z. Cheng and L. Chen. On Security Proof of McCullagh-Barreto’s Key Agreement
Protocol and its Variants. Cryptology ePrint Archive, Report 2005/201.

14. R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-based Key-
Exchange Protocol. Advances in Cryptology - Crypto 2002.

15. L. Chen and C. Kudla. Identity Based Authenticated Key Agreement from Pair-
ings. In Proceedings of the 16th IEEE Computer Security Foundations Workshop,
pp. 219-233, June 2003. See also Cryptology ePrint Archive, Report 2002/184.

16. L. Chen and J. Malone-Lee. Improved Identity-Based Signcryption. In Proceed-
ings of Public Key Cryptography - PKC 2005. LNCS 3386, pp. 362-379. See also
Cryptology ePrint Archive, Report 2004/114.

17. Z. Cheng, M. Nistazakis, R. Comley and L. Vasiu. On The Indistinguishability-
Based Security Model of Key Agreement Protocols-Simple Cases. In Proc. of ACNS
2004. Full version avaible on Cryptology ePrint Archive, Report 2005/129.

18. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting, 33, 167C226, 2003.

19. R. Dupont and A. Enge. Practical Non-Interactive Key Distribution Based on Pair-
ings. In Proceedings of the International Workshop on Coding and Cryptography
(WCC), Versailles, 2003. See also Cryptology ePrint Archive, Report 2002/136.

15

20. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22 (6), pp. 644-654,1976

21. D. Harkins and D. Carrel. The Internet Key Exchange Protocol (IKE). IETF RFC
2409, Nov. 1998.

22. G. Horn, K. Martin and C. Mitchell. Authentication Protocols for Mobile Network
Environment Value-added Serivices. IEEE Transactions on Vehicular Technology,
51(2):383-392, 2002.

23. M. Jakobsson and D. Pointcheval. Mutal authentication for low power mobile de-
vices. Financial Cryptography, LNCS 2339, pp. 178-195, 2001.

24. V. Miller. Short Programs for Functions on Curves. unpublished manuscript, 1986.

25. L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone. An Efficient Protocol for
Authenticated Key Agreement. Designs, Codes and Cryptography, 28, pp. 119-134,
2003.

26. N. McCullagh and P.S.L.M. Barreto. A New Two-Party Identity-Based Authen-
ticated Key Agreement. CT-RSA 2005, LNCS 3376. See also Cryptology ePrint
Archive, Report 2004/122.

27. A. Menezes, P. van Oorschot and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

28. L. Nguyen. Accumulators from bilinear pairings and applications. CT-RSA 2005,
LNCS 3376, pp. 275-292.

29. J. Katz and M. Yung. Characterization of Security Notions for Probabilistic
Private-Key Encryption. To appear in Journal of Cryptology.

30. T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for
the security of cryptographic schemes. In Proceedings of Public Key Cryptography
- PKC 2001, LNCS 1992, PP. 104-118, Springer-Verlag, 2001.

31. M. Scott. Authenticated ID-based Key Exchange and remote log-in with insecure
token and PIN number. Cryptology ePrint Archive, Report 2002/164.

32. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. Advances in
Cryptology-Crypto ’84, LNCS 196, 1984.

33. J. Silverman. The Arithmetic of Elliptic Curve. Springer-Verlag, 1986.

34. N.P. Smart. An Identity Based Authenticated Key Agreement Protocol Based on
the Weil Pairing. Electronics Letters 38, pp. 630-632, 2002.

35. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems Based on Pairing. The 2000
Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

36. Y. Wang. Efficient Identity-Based and Authenticated Key Agreement Protocol.
Cryptology ePrint Archive, Report 2005/108.

37. D. Wong and A. Chan. Efficient and mutally authenticated key exchange for low
power computing devices. Advances in Cryptology - Asiacrypt 2001, LNCS 2248,
pp. 272-289, 2001.

38. G. Xie. An ID-Based Key Agreement Scheme from pairing. Cryptology ePrint
Archive, Report 2005/093.

39. F. Zhang and X. Chen. Cryptanalysis and improvement of an ID-based ad-hoc
anonymous identification scheme at CT-RSA 05. Cryptology ePrint Archive, Re-
port 2005/103.

Appendix

Before we prove the theorems, we describe a game which eases the proving.

16

Interactive game with a BDH challenger. An adversary A with a pair
of probabilistic polynomial-time (PPT) algorithms (A1(r1; · · ·), A2(r2; · · ·))
where ri is used by Ai as the random tape, engages with a challenger in the
following game:

Interactive BDH game
(P, aP, bP, cP, ê, G1, G2, q) ← G(1k);
(X,σ) ← A1(r1; P, aP, bP, cP, ê, G1, G2, q);
h ← Z

∗

q ;
K ← A2(r2; h, σ).

where G randomly chooses a, b, c ∈ Z
∗

q , P ∈ G
∗

1; σ is the state information passed
from A1 to A2. We say that A wins the game if it computes K = ê(aP,X+hbP)c.
Define the advantage of the adversary as the function of k as

AdvA(k) = Pr[A wins].

Theorem 5 If the BDH assumption is sound, any adversary participating the
interactive BDH game can only have negligible advantage.

Proof: Given a BDH instance (P, aP, bP, cP, ê, G1, G2, q), we construct an algo-
rithm in the following way:

(X,σ) ← A1(r1; P, aP, bP, cP, ê, G1, G2, q);
h ← Z

∗

q ;
K1 ← A2(r2; h, σ);

⊲1

K2 ← A2(r2; h − 1, σ);
⊲2

output K1/K2.

Claim 1 For any adversary with PPT algorithms (A1, A2) with advantage ǫ(k)
to win the interactive BDH game, the above algorithm outputs ê(P, P)abc with
probability ǫ2(k).

Proof: Obviously, at point ⊲1, the algorithm computes correct K1 = ê(aP,X +
hbP)c with probability ǫ(k). Because h is chosen independently from X and
σ, two execution of A2 should have the same probability to output the correct
answer. Hence at point ⊲2, the event that K1 = ê(aP,X + hbP)c and at the
same time K2 = ê(aP,X + (h − 1)bP)c happens with probability ǫ2(k). The
claim follows.

The theorem follows from the claim. ¤

Proof of Theorem 1

Proof: We define the session ID as the concatenation of rBQB‖rAQA. Obviously
this session ID can uniquely identify a session between party A and B because

17

ri in the protocol should be a random integer varying on each session. The first
two conditions are trivial to prove. Now we prove that the protocol meets the
third condition.

We prove the theorem by constructing an algorithm A using the adversary
B against the protocol as a subroutine to win the interactive BDH game with
non-negligible advantage. The game proceeds in the following way. After G out-
puts the challenge (P, sP, bP, aP, ê, G1, G2, q), A simulates the system setup to
adversary B as follow. The system parameters are set as (P, sP, ê, G1, G2, q,H1,
H2,H3,H5, E) where Ppub = sP (i.e. the master key is s which A does not
known); H1,H2,H3,H5 are random oracles controlled by A.

Assume that adversary B queries q1 server identifiers on H1 and creates qC

client oracles. Recall that in the protocol, it is required that the client and server
identifers are in two separate sets (IDC , IDS), which is the way to differentiate
the roles of parties. In this proof, we use two types of Send query to reflect the
behavior of the protocol.

– SendS(Πt
i,∗, M): This query is sending a message to a server oracle (the

t-th instance of server party i). Message M is in the form of (X, {m}EK) or
λ. If M = λ, a server oracle will be created. We use ∗ to represent the sender
because the receiver of M does not know the sender before it decrypts the
message in the real world. In the simulation, A cannot make use of knowledge
of its partner’s identifier before it decrypts the incoming message.

– SendC(Πt
i,∗, M): This query is sending a message to a client oracle. Message

M is in the form of (j,X). This query will trigger the creation of a client
oracle. While in this proof, we slightly abuse the notation. We use Πt

i,∗ to
denote the t-th client oracle among all the client oracles created in the game,
instead of the t-th instance of party i. This abuse will not affect the strength
of the model, because originally t is only used to uniquely identify an instance
of a party.

Algorithm A randomly chooses 1 ≤ I ≤ q1 and 1 ≤ J ≤ qC and starts
simulating the real world where the adversary B launches the attack.

– H1(IDi): A maintains an initially empty list H list
1 with entries of the form

(IDi, Qi, xi). A responds to the query in the following way.

• If IDi already appears on H list
1 in a tuple (IDi, Qi, xi), then A responds

with H1(IDi) = Qi.
• If IDi is the I-th unique server identifier query, then A inserts (IDi, bP,⊥)

into the list and returns bP .
• Otherwise, A randomly chooses x ∈ Z

∗

q , inserts (IDi, xP, x) into the list
and returns xP .

– H2(Xi, Yi): A maintains an initially empty list H list
2 with entries of the form

(Xi, Yi, zi) indexed by (Xi, Yi). A responds to the query in the following way.

• If a tuple indexed by (Xi, Yi) is on the list, then A responds with zi.
• Otherwise, A randomly chooses z ∈ Z

∗

q , inserts (Xi, Yi, z) into the list
and returns z.

18

– H3(Ki): A maintains an initially empty list H list
3 with entries of the form

(Ki, ki) indexed by Ki. A responds to the query in the following way.
• If a tuple indexed by Ki is on the list, then A responds with ki.
• Otherwise, A randomly chooses k ∈ {0, 1}n, inserts (Ki, k) into the list

and returns k.
– H5(IDi, IDj , Qi, Qj ,Ki): A maintains an initially empty list H list

5 with en-
tries of the form (IDi, IDj , Qi, Qj ,Ki, ℓi) indexed by (IDi, IDj , Qi, Qj ,Ki).
A responds to the query in the following way.
• If a tuple indexed by (IDi, IDj , Qi, Qj ,Ki) is on the list, then A responds

with ℓi.
• Otherwise, A randomly chooses ℓ ∈ {0, 1}w, inserts (IDi, IDj , Qi, Qj ,Ki,

ℓ) into the list and returns ℓ.
– Corrupt(IDi): A looks through list H list

1 . If IDi is not on the list, A queries
H1(IDi). A checks the value of xi: if xi 6= ⊥, then A responds with xisP ;
otherwise, A aborts the game (Event 1).

– SendS(Πt
i,∗, M): A maintains a list Ω for every (client or server) oracle of

the form (Πt
i,j , r

t
i,j , trant

i,j , Kt
i,j , SKt

i,j) where rt
i,j is the random string used

to generate message; trant
i,j is the transcript of the oracle so far, and Kt

i,j

and SKt
i,j are set ⊥ initially. A proceeds in the following way:

• If M = λ, A randomly chooses r ∈ Z
∗

q and responds with (i, rQi) where

Qi is found from H list
1 with identifier i (i.e. rt

i,∗ = r).
• Otherwise (M = (X, {m}EK)), A proceeds in the following way:

∗ If xi on H list
1 corresponding to i is not ⊥, then compute K =

ê(X,xisP)rt
i,∗+z where z = H2(X, rt

i,∗Qi). Use EK = H3(K) to
decrypt {m}EK to recover (rC , IDC). If X = rCH1(IDC), then set
the partner of the oracle as IDC , Kt

i,IDC
= K, and SKt

i,IDC
=

H5(IDC , i,X, rt
i,IDC

Qi,K
t
i,IDC

). Otherwise, continue.

∗ (xi = ⊥) Try every kℓ = H3(Kℓ) on H list
3 as EK to decrypt {m}EK

to recover (rC , IDC) and test X = rCH1(IDC). If the equation
holds, store (rC , IDC) into an initially empty list L.

∗ If L is empty, reject the message. (Rejection 1)
∗ Otherwise, for any tuple (rC , IDC) in L, compute K = ê(xjsP, rt

i,∗Qi+

zQi)
rC = ê(X, sbP)rt

i,∗+z, where xj is from H list
1 for identifier IDC ,

and z = H2(X, rt
i,∗Qi). Note that there is only one K for the given

X, rt
i,∗ and all the pairs (rC , IDC) with rCH(IDC) = X.

∗ Use EK = H3(K) to decrypt {m}EK again to recover (r∗, ID∗) and
test if equation r∗H1(ID∗) = X holds.

∗ If the equation holds, set the partner of the oracle as ID∗, Kt
i,ID∗ =

K, and SKt
i,ID∗ = H5(ID∗, i,X, rt

i,ID∗Qi,K
t
i,ID∗).

∗ Otherwise, reject the message. (Rejection 2)

– SendC(Πt
i,∗, M): (Message M is in the form of (j,X)). A proceeds in the

following way:
• Set the partner of the oracle as j.
• If t = J and xj 6= ⊥ which is found from H list

1 with identifier j, A aborts
the game (Event 2).

19

• Otherwise, if t = J , A randomly chooses u ∈ Z
∗

q and checks if (uaP,X)

has been queried on H2, until one such pair is not found on H list
2 . Such

u can always be found, because A is a PPT algorithm of k. All the
instructions executed before this point belong to the algorithm A1 of A. A
dumps the content on all the maintained lists and system parameters to
the tape σ, and outputs (X,σ). The interactive BDH challenger returns
h ∈R Z

∗

q . After this point, all the instructions belong to algorithm A2 of
A. A reconstructs all the lists and system setup from σ and immediately
inserts (uaP,X, h) into H list

2 . Now A continues to respond to B’s queries.
A randomly chooses EK ∈ {0, 1}n, r ∈ Z

∗

q and generates {r, i}EK , and
then responds with (uaP, {r, i}EK). If B rejects the message (Event

3), A randomly chooses Kℓ from list H list
3 and returns K

1/u
ℓ to the

interactive BDH challenger.
• Otherwise, A randomly chooses r ∈ Z

∗

q and computes Kt
i,j = ê(xisP,X+

zQj)
r, where xi and Qj are found from H list

1 with identifier i and j;
z = H2(rQi,X). A computes SKt

i,j = H5(i, j, rQi,X,Kt
i,j) and responds

with (rQi, {r, i}EK) where EK = H3(K
t
i,j).

– Reveal(Πt
i,∗): The oracle must have accepted and so knows its partner j.

Otherwise ⊥ should be returned. If i ∈ IDC and t = J , or i ∈ IDS but Πt
i,j

has a matching conversation with ΠJ
u,v with u ∈ IDC , A aborts the game

(Event 4). Otherwise, A returns SKt
i,j .

– Test(Πt
i,∗): The oracle should be fresh, so must have accepted and knows its

partner j. If i /∈ IDC or t 6= J , A aborts the game (Event 5). Otherwise, A
randomly chooses a number ζ ∈ {0, 1}w and gives it to B as the response.
After B responds, A randomly chooses a tuple from H list

5 with the value Kℓ.

A computes K
1/u
ℓ and returns it to the interactive BDH challenger. Note

that if the game does not abort, for the challenge oracle Kt
i,j = ê(xisP,X +

hbP)ua/xi .

Let Event 6 be that, in the attack, adversary B indeed chose to impersonate
a server, whose identifier was queried on H1 as the I-th distinct server identifier
query, to the J-th client oracle. Then following the rules of the BR game, it’s
clear that Event 1, 2, 4, 5 would not happen, and so the game would not abort
before A can answer the interactive BDH challenge.

Claim 2 The Reveal query does not help the adversary to win the game.

Proof: Suppose the chosen fresh oracle ΠJ
i,j with i ∈ IDC had the session ID

rBQj‖rAQi when Event 6 happened. Then SKJ
i,j = H5(i, j, rAQi, rBQj ,K

J
i,j).

Because H5 is a random oracle, the adversary had to at least query the session
key of oracle Πv

i,j or Πu
j,i to find the possible same session key of ΠJ

i,j . However,
because of the way of defining session ID, the queried oracle Πu

j,i could not have
rBQj and rAQi in the exchanged message. Hence this query does not help the
adversary. To reveal the session key of Πv

i,j with v 6= J does not help either,

because the oracle would generate rAQi in the second message as oracle ΠJ
i,j

with only negligible probability. The claim follows.

20

Claim 3 Event 3 only happened with negligible probability if H3(ê(sP,X +
zbP)ua) where z = H2(uaP,X) was not queried when Event 6 happened.

Proof: When Event 6 happened, B could not know the decryption key EK if
H3(ê(sP,X + zbP)ua) was not queried, because H3 is a random oracle. On the
other hand, E has the indistinguishability security. Hence, B who simulated the
server oracle, could only with negligible probability differentiate the corrected
ciphertext from the faked one in the simulation without knowing EK.

Claim 4 If EK is not known by the adversary, then a message (X, {m}EK)
will be accepted by the server in the real world with only negligible probability.

Proof: The message will be accepted by the server, only if the recovered message
(rC , IDC) from {m}EK meets the equation X = rCH1(IDC). Define a relation
R = {(r, ID,X) | rH1(ID) = X, r ∈ Z

∗

q ,H1 is a hash function,H1(ID) ∈ G
∗

1}
If EK is not known by the adversary B, the situation can be described by the
following game.

(X, c) ← BH1(1k, R);
EK ← K;
(rC , IDC) = D(EK, c);
If (rC , IDC ,X) ∈ R, accept, else reject.

where E is the used encryption scheme.
If H1(IDC) has not been queried, then the equation holds with negligible

probability because H1 is modelled as a random oracle. Suppose, in the attack,
qC distinct client identifiers were queried on H1. Then for a chosen X there are at
most qC pairs could possibly meet the equation (i.e. ‖R‖ = qC in the real attack).
Suppose the length of message m = (r, ID) (resp. EK) is f (resp. n). Because
the used E is the “one-time pad” with pseudorandom bit stream scheme, we can
assume that the decryption of a given ciphertext c under a random decryption
key should have an even distribution among 2n possibilities randomly sampled
from 2f messages. Then the probability that for a given ciphertext c generated
before EK is randomly chosen, the decrypted message D(EK, c) is one of qC

pairs (i.e. (D(EK, c),X) ∈ R), is qC

2n . Note that in the game both qC and n are
polynomials of security parameter k. Hence the probability is negligible.

When the protocol proceeds without identity privacy, i.e. identifier A is sent
in the second flow with plaintext, instead of being encrypted with EK, the claim
follows from a similar argument as above, but the accept probability is 1/2n.

Claim 5 If A did not terminate the game, B cannot notice any inconsistence
between the simulation and the real world.

Proof: It is clear that if A did not terminate the game, then the responses to
queries including H1,H2,H3,H5, Corrupt, SendC , Reveal and Test, are consis-
tent with the one in the real world. Now let’s take a close look at the response to
query SendS(Πt

i,∗, M). Except for the two rejections, the response from other

21

part of A’s behavior honestly follows the protocol. Rejection 1 only happens
when B did not query EK = H3(ê(X, sbP)r+z). Hence B would not know EK,
because H3 is a random oracle. From Claim 4, in the real world, the server
accepts the message with only negligible probability. Rejection 2 happens if
{m}EK is not valid. This could happen in the attack by a naughty adversary
which generates X = rCH(IDC), but uses EK = H3(T) for some other T 6= K
to encrypt m = {rC , IDC}. If the server accepts the message, it will be quite
assured that it is in a simulation, instead of being in the real world.

Let H be the event that ê(sP,X +hbP)ua has been queried to H5 or H3. Let
F be the event that A did not abort the game. Let W be the event that A finds
the correct ê(sP,X + hbP)ua on the list H list

5 or H list
3 . Suppose H5 (resp. H3)

has been queried for q5 (resp. q3) times and B has the advantage ǫ(k) against
the protocol. We have

Pr[A wins] = Pr[F∧H∧W] = Pr[Event 6∧H∧W] ≥
1

q1 · qC
·ǫ(k) ·

1

max{q3, q5}
.

Combine Theorem 5, the theorem follows. ¤

Proof of Theorem 2

Proof: Define session ID as in the proof of Theorem 1.
Given a GBDH problem instance (P, sP, aP, bP, ê, G1, G2, q) and a DBDH

oracle ODBDH which given (xP, yP, zP, T) returns 1 if ê(P, P)xyz = T ; other-
wise returns 0, we construct an algorithm A using the adversary B against the
protocol to solve the GBDH problem.

A simulates the system setup to adversary B as follow. The system param-
eters are set as (P, sP, ê, G1, G2, q,H1,H2,H3,H5, E) where Ppub = sP (i.e. the
master key is s which A does not known); H1,H2,H3,H5 are random oracles
controlled by A.

As in Theorem 1, we use two types of Send query. While, this time we abuse
the notation of Πt

i,∗ used in SendS . We use Πt
i,∗ to denote the t-th server oracle

among all the server oracles created in the game.
Assume that adversary B queries q1 client identifiers on H1 and creates qS

server oracles. Algorithm A randomly chooses 1 ≤ I ≤ q1 and 1 ≤ J ≤ qS and
starts simulating the real world where the adversary B launches the attack.

– H1(IDi): A maintains an initially empty list H list
1 with entries of the form

(IDi, Qi, xi). A responds to the query in the following way.
• If IDi already appears on H list

1 in a tuple (IDi, Qi, xi), then A responds
with H1(IDi) = Qi.

• If IDi is the I-th unique client identifier query, then A inserts (IDi, aP,⊥)
into the list and returns aP .

• Otherwise, A randomly chooses x ∈ Z
∗

q , inserts (IDi, xP, x) into the list
and returns xP .

22

– H2(Xi, Yi): A maintains an initially empty list H list
2 with entries of the form

(Xi, Yi, zi) indexed by (Xi, Yi). A responds to the query in the following way.

• If a tuple indexed by (Xi, Yi) is on the list, then A responds with zi.
• Otherwise, A randomly chooses z ∈ Z

∗

q , inserts (Xi, Yi, z) into the list
and returns z.

– H3(Kℓ): A maintains an initially empty list H list
3 with entries of the form

(Ki, ki) indexed by Ki. A responds to the query in the following way.

• If a tuple indexed by Kℓ is on the list, then A responds with the corre-
sponding ki.

• Otherwise, for every tuple (Πt
i,j , uw, zw, xw,Xw, kw) on list L which is

maintained in the SendC routine,

∗ Compute K =
K

1/uw
ℓ

ê(aP,zwxwsP) .

∗ Access oracle ODBDH(sP, aP,Xw,K).
∗ If ODBDH returns 1, A removes the entry from L and sets Kt

i,j = Kℓ

and SKt
i,j = H5(i, j, uwaP , Xw,Kt

i,j). Then A inserts (Kℓ, kw) into

list H list
3 and responds with kw.

∗ Otherwise, continue.
• Otherwise, A randomly chooses k ∈ {0, 1}n, inserts (Kℓ, k) into the list

and returns k.

– H5(ID1, ID2, Q1, Q2,Kv): A maintains an initially empty list H list
5 with en-

tries of the form (IDi, IDj , Qi, Qj ,Ki, ℓi) indexed by (IDi, IDj , Qi, Qj ,Ki).
A responds to the query in the following way.

• If a tuple indexed by (ID1, ID2, Q1, Q2,Kv) is on the list, then A re-
sponds with the corresponding ℓi.

• Otherwise, for every tuple (Πt
i,j , uw, zw, xw,Xw, kw) on list L,

∗ Compute K =
K1/uw

v

ê(aP,zwxwsP) .

∗ Access oracle ODBDH(sP, aP,Xw,K).
∗ If ODBDH returns 1, A removes the entry from L and sets Kt

i,j = Kv

and SKt
i,j = H5(i, j, uwaP,Xw,Kt

i,j). A inserts (Kv, kw) into list

H list
3 . If ID1 = i, ID2 = j,Q1 = uwaP , and Q2 = Xw, then A

responds with SKt
i,j .

∗ Otherwise, continue.
• Otherwise, A randomly chooses ℓ ∈ {0, 1}w and inserts (ID1, ID2, Q1, Q2,

Kv, ℓ) into the list and returns ℓ.

– Corrupt(IDi): A looks through list H list
1 . If IDi is not on the list, A queries

H1(IDi). A checks the value of xi: if xi 6= ⊥, then A responds with xisP ;
otherwise, A aborts the game (Event 1).

– SendS(Πt
i,∗, M): A maintains a list Ω for every (client or server) oracle

of the form (Πt
i,j , trant

i,j , r
t
i,j , Kt

i,j , SKt
i,j) where trant

i,j is the transcript of
the oracle so far; rt

i,j is the random integer used by the oracle to generate
message, and Kt

i,j and SKt
i,j are set ⊥ initially. A proceeds in the following

way:

• If t = J ,
∗ If M = λ, A responds with (i, bP) and set rt

i,∗ = ⊥.

23

∗ Otherwise (i.e. M = (X, {m}EK)), A tries every kw on H list
3 as EK

to decrypt {m}EK to recover (rC , IDC) and tests X = rCH1(IDC).
If no pair meets the equation, or if for all the recovered messages
(rC , IDC) decrypted using some kw’s, x on H list

1 corresponding to
IDC is not ⊥, A aborts the game (Event 2). Otherwise (i.e. there is
at least a kw = H3(Kw) decrypting a valid IDC whose corresponding
x on H list

1 is ⊥), A proceeds in the following way. For all the valid
Kw,
· Compute K = (Kw

ê(rCaP,xisP)z)1/rC .

· Access oracle ODBDH(sP, aP, bP,K).
· If ODBDH returns 1, return K as the answer to the GBDH prob-

lem. Note that Kt
i,IDC

= ê(rCaP, xisP)rt
i,IDC

+z with rt
i,IDC

=
b/xi.

If for all Kw, the test fails, A aborts the game (Event 3).
• Otherwise,

∗ If M = λ, A randomly chooses rt
i,∗ ∈ Z

∗

q and responds with (i, rt
i,∗Qi)

where Qi is found from H list
1 with identifier i;

∗ Otherwise (M = (X, {m}EK)), A computes K = ê(X,xisP)rt
i,∗+z,

where xi is from H list
1 for identifier i; rt

i,∗ is from list Ω for or-
acle Πt

i,∗ and z = H2(X, rt
i,∗Qi). A decrypts {m}EK to recover

(rC , IDC) using EK = H3(K) and tests X = rCH1(IDC). If the
equation does not hold, A rejects the message; otherwise, A sets the
partner identifier as IDC , Kt

i,IDC
= K and computes SKt

i,IDC
=

H5(IDC , i,X, rt
i,IDC

Qi,K
t
i,IDC

).

– SendC(Πt
i,∗, M): (Message M is in the form of (j,X)). A maintains an

initially empty list L with entries of the form (Πw, uw, zw, xw,Xw, kw). A
proceeds in the following way:
• Set the partner of the oracle as j.
• If xi = ⊥ from H list

1 with identifier i, A proceeds in the following way.
∗ Randomly chooses u ∈ Z

∗

q and computes z = H2(uaP,X).

∗ Find xj from H list
1 with identifier j.

∗ For every (Kℓ, kℓ) on H list
3 ,

· Compute K =
K

1/u
ℓ

ê(aP,zxjsP) .

· Access oracle ODBDH(sP, aP,X,K).
· If ODBDH returns 1, A sets Kt

i,j = Kℓ and SKt
i,j = H5(i, j, uaP ,

X,Kt
i,j). Then A uses kℓ as EK to encrypt {u, i}EK and re-

sponds with (uaP, {u, i}EK).
· Otherwise, continue.

∗ For every (· · · ,Kv, ℓv) on H list
5 ,

· Compute K =
K1/u

v

ê(aP,zxjsP) .

· Access oracle ODBDH(sP, aP,X,K).
· If ODBDH returns 1, A sets Kt

i,j = Kv. Then A uses k =
H3(K

t
i,j) as EK to encrypt {u, i}EK and responds with (uaP, {u, i}EK).

· Otherwise, continue.

24

∗ It is highly unlikely that the above two searches can find proper re-
sponse, because Kt

i,j is depending on z and u which are just generated
randomly. So, the searches above can be omitted. Instead, A directly
randomly chooses k ∈ Z

∗

q and stores the tuple (Πt
i,j , u, z, x,X, k)

into list L. A uses k as EK to encrypt {u, i}EK and responds with
(uaP, {u, i}EK).

• Otherwise, A randomly chooses r ∈ Z
∗

q and computes Kt
i,j = ê(xisP,X+

zQj)
r, where xi and Qj are found from H list

1 with identifier i and j;
z = H2(rQi,X). A computes SKt

i,j = H5(i, j, rQi,X,Kt
i,j) and responds

with (rQi, {r, i}EK) where EK = H3(K
t
i,j).

– Reveal(Πt
i,∗): The oracle must have accepted and so knows its partner j.

Otherwise ⊥ should be returned. If i ∈ IDS and t = J , or i ∈ IDC but has a
matching conversation with ΠJ

u,v with u ∈ IDS , A aborts the game (Event
4). Otherwise, A returns SKt

i,j .
– Test(Πt

i,∗): The oracle should be fresh, so must have accepted and knows

its partner j. If i /∈ IDS or t 6= J , A aborts the game (Event 5). If B indeed
chose the J-th server oracle as the challenge, then the game stopped at the
SendS routine.

Claim 6 If A did not abort the game, B could not find inconsistence between
the simulation and the real world.

Proof: The response to queries are indistinguishable from the one in the real
world. In particular, to respond to queries on H3 and H5, A significantly uses
the access to ODBDH and the programmability of a random oracle to make sure
that the response is consistent with the one in SendC .

Let Event 6 be that, in the attack, adversary B indeed chose to impersonate
a client, whose identifier was queried on H1 as the I-th distinct client identifier
query, to the J-th server oracle. Then following the rules of the BR game, it’s
clear that Event 1, 4, 5 would not happen.

Claim 7 Event 2 happened with negligible probability if Event 6 happened

Proof: There are two possibilities that Event 2 could happen. 1) B imperson-
ated a client whose identifier ID∗ was not queried on H1 as the I-th one, to the
J-th server oracle. While this could not happen if Event 6 happened. 2) B did
not query EK = H3(ê(X, sP)b+z), and so did not know the used symmetric key
EK because H3 is a random oracle, but still was able to impersonate the targeted
client whose identifier ID∗ is the I-th distinct client identifier queried on H1.
In this case A should generate a valid ciphertext c for a message m = (r∗, ID∗)
with X = r∗H1(ID∗). However we show if the adversary can generate such
valid ciphertext to make the server accept the message, it can break the used E
scheme. In the one-time symmetric-key encryption game, B randomly chooses
another m′ with equal length of m and uses (m,m′) as the finding message pair.
Once it has received the challenge ciphertext c∗, B checks if c = c∗. Because the
encryption algorithm E in E is a deterministic algorithm, B can always win the
game.

25

Claim 8 Event 3 happened with negligible probability if Event 6 happened.

Proof: This event implies that EK = H3(ê(X, sP)b+z) was not queried on H3.
As proved in Claim 7, this event can only happen with negligible probability
when Event 6 happened.

Claim 9 The Reveal query does not help the adversary to win the game.

Proof: The proof is similar to Claim 2. Omitted.

So, let F be the event that A did not abort the game. We have,

Pr[F] = Pr[Event 6] ≥
1

q1 · qS
.

Let H be the event that ê(saP, bP + zxjsP)rC has been queried to H3 where
rC is recovered from {m}EK in the message to oracle ΠJ

i,j with i ∈ IDS and
z = H2(rCaP, bP). We have

Pr[A wins] = Pr[F ∧H] ≥
1

q1 · qS
· ǫ(k).

¤

Proof Sketch of Theorem 4

Proof (sketch): If the adversary B can win the game by choosing some ses-
sion between party I and J , given (aP, bP, sP) we construct an algorithm A
for the GBDH problem as follows. A sets dI = sxP and dJ = syP for some
x, y ∈ Z

∗

q . In the attacking session, the algorithm sets rIQI = aP and rJQJ = bP
(i.e. rI = a/x and rJ = b/y by noticing that QI = xP and QJ = yP .
Note that according to the rules of the game, the adversary should not tam-
per with the messages in the challenge session). Then the algorithm computes
T = ê(P, P)sab = ê(QI , QJ)srIrJ = K

ê(rIQI ,dJ)h , where K is the established secret

of the session which is computed by the adversary subroutine. Note that B has
to compute K to win the game with non-negligible advantage because H5 is a
random oracle. While in the proof, there is a pitfall: To simulate the challenge
session, A has to generate a ciphertext which it does not know both the full
plaintext m and the encryption key EK. This problem can be solved by making
use of the access to the DBDH oracle, the programmability of random oracles,
and the ciphertext indistinguishability of the used E . These strategies have been
used in proofs of Theorem 1, 2. ¤

