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Abstract. In [2], Stanislav Bulygin presents a chosen-ciphertext attack against
certain instances of noncommutative polly cracker-type cryptosystems which
were proposed in [7] and [9]. In this article, we present generalized versions
of this attack, which can be used against virtually all polly cracker-type cryp-
tosystems. We then present a simple but effective techique to counter these
attacks. We also present a technique to counter an adaptive chosen-ciphertext
attack which was first described by Neil Koblitz in [8].

1. Preliminaries

1.1. Noncommutative Gröbner bases. We begin with some background on the
theory of noncommutative Gröbner bases, on which noncommutative polly cracker-
type cryptosystems are based. Most of the theory is analagous to commutative
Gröbner basis theory. However one significant difference is that unlike the com-
mutative case, most ideals of noncommutative algebras do not have finite Gröbner
bases. We refer the reader to [6] for details.

Let K be a finite field, and let K
〈

x1, x2, . . . , xn

〉

be the free associative algebra in
n non-commuting variables. By a monomial, we mean a (finite) noncommutative
word in the alphabet {x1, x2, . . . , xn}. We use the letter B to denote the set of
monomials, and note that if f ∈ K

〈

x1, x2, . . . , xn

〉

, then f can be represented as
f =

∑

i αibi, where αi ∈ K with only finitely many αi 6= 0, and bi ∈ B. If the
coefficient of bi in f =

∑

γjbj is not zero, then bi is said to occur in f .
Next, we define multiplication in B by concatenation, and note that B is a

multiplicative K-basis of R. i.e. B is a K-basis of R and b, b′ ∈ B implies that
b · b′ ∈ B. We say that an ideal I in K

〈

x1, x2, . . . , xn

〉

is a monomial ideal, if it can
be generated by elements of B.

A well-order > on B is said to be admissible if it satisfies the following conditions
for all p, q, r, s ∈ B:

1. if p < q then pr < qr
2. if p < q then sp < sq and
3. if p = qr then p ≥ q and p ≥ r.

If > be an admissible order on the monomials and f ∈ K
〈

x1, x2, . . . , xn

〉

,
we say that bi is the tip of f , denoted tip(f), if bi occurs in f and bi ≥ bj

for all bj occurring in f . We denote the coefficient of tip(f) by Ctip(f). Fur-
thermore, if X ⊆ K

〈

x1, x2, . . . , xn

〉

, then we write Tip(X) = {b ∈ B : b =
tip(f) for some nonzero f ∈ X} and NonTip(X) = B − Tip(X).
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Definition 1.1. If > be an admissible order on K
〈

x1, x2, . . . , xn

〉

, and I is a two-

sided ideal of K
〈

x1, x2, . . . , xn

〉

. We say that G ⊂ I is a Gröbner basis for I with

respect to > if
〈

Tip(G)
〉

=
〈

Tip(I)
〉

. Equivalently, G ⊂ I is a Gröbner basis of I if
for every b ∈ Tip(I), there is some g ∈ G such that tip(g) divides b i.e. for every
f ∈ I, there exists g ∈ G, and p, q ∈ B such that p · tip(g) · q = tip(f).

We note that for any ideal I, K
〈

x1, x2, . . . , xn

〉

= I⊕Span(NonTip(I)), as vector

spaces. In particular, every nonzero r ∈ K
〈

x1, x2, . . . , xn

〉

can be written uniquely
as r = ir + NI(r), where ir ∈ I and NI(r) ∈ Span(NonTip(I)). NI(r) is called the
normal form of r with respect to I.

Next, we define the concept of reduced (noncommutative) Gröbner bases. In
order to do this, we note that if I is a monomial ideal of K

〈

x1, x2, . . . , xn

〉

, then I
has a minimal monomial generating set. That is, there is a unique set of generators
of I, none of which can be omitted and still generate I. We note, however, that
this minimal monomial generating set need not be finite. This differs from the
commutative case, in which Dickson’s lemma [5] proves that every monomial ideal
of a commutative ring can be generated by a finite number of monomials. We are
now ready to give the following:

Definition 1.2. Let I be an ideal in K
〈

x1, x2, . . . , xn

〉

, let IMON be the ideal
generated by Tip(I), and let T be the unique minimal monomial generating set of
IMON . Then the reduced Gröbner basis for I, is G = {t − N(t) : t ∈ T }.

The following properties of a reduced Gröbner basis are easy to see:

(1) G is a Gröbner basis for I.
(2) If g ∈ G then the coefficient of tip(g) is 1.
(3) If gi, gj ∈ G with gi 6= gj, and bi is any monomial that occurs in gi, then

tip (gj) does not divide bi.
(4) g ∈ G then g − tip(g) ∈ Span(NonTip(I)).
(5) Tip(G) is the minimal monomial generating set for IMON .

We also emphasize that in this setting, the reduced Gröbner basis of an ideal
may not be finite – a fact that is used in the construction of noncommutative polly
cracker-type cryptosystems.

Before presenting the system, we need the notion of reduction (division) of a
polynomial, g by a set of polynomials, which may be defined as follows:

Given an ordered subset, F = {f1, f2, . . . , fk} of K
〈

x1, x2, . . . , xn

〉

, and g ∈

K
〈

x1, x2, . . . , xn

〉

, reducing (dividing) g by F means finding non-negative integers
t1, t2, . . . , tk and elements uij , vij , r ∈ R, for 1 ≤ i ≤ k and 1 ≤ j ≤ ti such that:

1. g =
∑k

i=1

∑ti

j=1
uijfivij + r

2. tip(g) ≥ tip(uijfivij) for all i and j.
3. tip(fi) does not divide any monomial that occurs in r, for 1 ≤ i ≤ k.

If r 6= 0, then tip(r) ≤ tip(g), and r is the remainder of the division.

As in the commutative case, the order on the set F = {f1, f2, . . . , fk} affects
the outcome of the division algorithm. However, if G is a Gröbner basis, then the
remainder, r, of the division of f by G, is independent of the order of g1, g2, . . . , gk

in G.

1.2. Noncommutative polly cracker-type cryptosystems. In [7] and [9] we
presented a class of cryptosystems whose security is based on the intractability of
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the ideal membership problem for a noncommutative free algebra over a finite field.
In this section, we summarize the generic version of these cryptosystems, which
form a noncommutative analogue of M. Fellows’ and N. Koblitz’s polly cracker
cryptosystem [4]. We also summarize some of the techniques for determining private
keys, which were originally presented in [7] and [9].

Let K be a finite field, and K
〈

x1, x2, ..., xn

〉

be the noncommutative free algebra

in n variables over K. Let I be a two-sided ideal of K
〈

x1, x2, ..., xn

〉

, and suppose
G = {g1, g2, . . . , gt} is a finite Gröbner basis for I. Then G is used as the private
key.

The public key, Q = {q1, q2, . . . , qs}, is a finite set of polynomials in I, which
are constructed as follows: Given G = {g1, g2, . . . , gt}, fix r ∈ {1, 2, . . . , s}. For
each i, 1 ≤ i ≤ t, suppose dir ∈ N. For each i, r, j, 1 ≤ i ≤ t, 1 ≤ j ≤ dir,

choose frij , hrij ∈ K
〈

X
〉

, and set qr =
∑t

i=1

∑dir

j=1
frijgihrij . In addition, Q is

constructed so thatJ =
〈

Q
〉

does not have a finite Gröbner basis. In this context,
we have the following cryptosystem:
Private Key: A Gröbner basis, G = {g1, g2, . . . , gt} for a two-sided ideal, I, of a
noncommutative algebra K

〈

x1, x2, ..., xn

〉

over a finite field, K.

Public Key: A set, Q =
{

qr : qr =
∑t

i=1

∑

j = 1dirfrijgihrij

}s

r=1

⊂ I, chosen so

that
〈

Q
〉

does not have a finite Gröbner basis.
Message Space: M = NonTip(I) or a subset of NonTip(I).

Encryption: c = p+m, where m ∈ M is a message and p =
∑s

i=1

∑kir

j=1
FrijqiHrij

is a polynomial in J =
〈

Q
〉

⊂ I. Here the Frij and the Hrij are randomly chosen.
Decryption: Reduction of c modulo G yields the message, m.

Some simple examples of cryptosystems of this type that we presented in [7] and
[9] include:

Example 1.3. Let K be a finite field, K
〈

x1, x2, . . . , x6

〉

be the free algebra over K

in six non-commuting variables. Let Z =
∏6

i=1
xi and c0, c1, . . . , c6 ∈ K−{0} be ar-

bitrary constants. Set g = Z+
∑6

i=1
cixi+c0 ∈ K

〈

x1, x2, . . . , x6

〉

as the private key.
The public key, B = {q1, q2}, consists of the polynomials q1 = fgh+hg, q2 = hgf +

gh, where f = X +
∑6

i=1
aixi + a0, h = Y +

∑6

i=1
bixi + b0 ∈ K

〈

x1, x2, . . . , x6

〉

,

X = x1 ·
∏5

i=2
ρ(xi) ·x6, Y = x1 ·

∏5

i=2
σ(xi) ·x6, where ρ, σ are distinct, nontrivial

permutations of {x2, x3, x4, x5}, and a0, a1, . . . , a6, b0, b1, . . . , b6 ∈ K are nonzero
constants. In this setting, the message space, M ⊆ NonTip(

〈

g
〉

) could consist of

linear polynomials in K
〈

x1, x2, . . . , x6

〉

. Alternatively, fix D ∈ N. Then M could
consist of homogeneous polynomials of degree ≤ D in one of the variables.

Example 1.4. Let K be a finite field, K
〈

x, y
〉

the noncommutative free algebra in
two variables (over K). Let α, β, γ, δ ∈ K, and set g = αxy + βx + γy + δ as the
private key. Since the public key has no direct effect on the attack that we consider
in this article, we omit its description here, and refer the reader to [7] or [9] for
the same. As in the previous example, the message space, M ⊆ NonTip

(〈

g
〉)

could
consist of linear polynomials. Alternatively, fix D ∈ N. Then M could consist of
homogeneous polynomials of degree ≤ D in one of the variables.
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2. The Attack

In [2], Stanislav Bulygin describes a chosen ciphertext attack against polly
cracker-type cryptosystems, which reveals the private key, thus completely com-
promising the security of the system. He goes on to assert that the attack could
also be used against any polly cracker-type cryptosystem, in which the private key
is a reduced Gröbner basis. In this section we summarize the attack given in [2]
and present some of our comments on it. We need the following:

Definition 2.1. Let f ∈ K
〈

x1, x2, . . . , xn

〉

. We define the tail of f by tail(f) =
f − Ctip(f) · tip(f).

We begin by summarizing a simplified version of the attack, which is used to
cryptanalyze the cryptosystems described in examples 1.3 and 1.4:

Attack 2.2.

Assumptions:

(1) Alice’s private key consists of a single polynomial, g, and tip(g) is publicly
known, or can be easily determined from her public key.

(2) The cryptanalyst, Catherine, has temporary access to Alice’s decryption
black box i.e. Catherine is able to decrypt at least one ciphertext message
that she sends, without actually knowing Alice’s private key.

Method:
Catherine creates a fake ciphertext message, by encrypting tip(g). i.e. she

constructs a ciphertext polynomial, C =
∑s

i=1

∑kir

j=1
FrijqiHrij + tip(g), where

Q = {q1, q2, . . . qs} is Alice’s public key, and Frij , Hrij are arbitrary polynomials.
She then uses her temporary access to Alice’s decryption black box to “decrypt” this

pseudo ciphertext. Since
∑s

i=1

∑kir

j=1
FrijqiHrij ∈

〈

g
〉

, it vanishes, when reduced

modulo g, and the output of the decryption algorithm (reduction of C modulo

g) yields f = tip(g) − [Ctip(g)]
−1 · g = − [Ctip(g)]

−1 · tail(g). Next, Catherine

constructs g′ = tip(g) + [Ctip(g)]−1 · tail(g). Since Ctip(g) · g′ = Ctip(g) · tip(g) +
tail(g) = g, it follows that

〈

g
〉

=
〈

g′
〉

, and that g′ is a Gröbner basis for
〈

g
〉

. Hence,
Catherine can decrypt all of Alice’s messages by using g′. i.e. knowing g′ has the
same effect as knowing Alice’s private key.

Bulygin [2] describes a somewhat more complicated version of this attack, in
which he suggests encrypting a disguised version of tip(g), presumably to prevent
the decryption algorithm from recognizing the fact that tip(g) occurs in the cipher-
text polynomial C. To do this he suggests finding polynomials, t, s ∈ K

〈

x1, x2, ..., xn

〉

such that no monomial of t · tip(g) · s is divisible by tip(g). The ciphertext poly-

nomial, C, is then constructed as C =
∑kir

j=1
FrijqiHrij + t · tip(g) · s. Bulygin [2]

asserts that finding polynomials s, t which satisfy the desired property is fairly easy.
We note, however, that this is not the case, and in fact, that no such polynomials
exist, since by its very construction, every monomial of t · tip(g) · s is divisible by
tip(g). However, this appears to have no bearing on the attack, since the version
described above appears to be legitimate in the sense that it would work under the
very reasonable assumptions that are required to execute it.

Moreover, we believe that there is no real need to disguise the fact that tip(g)
occurs in the ciphertext polynomial C, since it could in fact occur even in a legit-
imate ciphertext polynomial. For example, if Alice’s private key, g, is of the form
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used in example 1.3, then tip(g) = x1x2x3x4x5x6, and all linear terms occur in
the polynomials in the public key. So if the monomial x2x3x4x5x6 occurs in any
of the polynomials, Hrij used in encryption, tip(g) would occur in the ciphertext
polynomial, C. In fact, this is only one of many ways in which tip(g) could occuur
in a legitimate ciphertext polynomial. Similarly, if Alice’s private key, g, is of the
form g = αxy + βx + γy + δ, as in example 1.4, then tip(g) = xy. Once again,
all linear terms occur in the public key, and tip(g) would occur in a legitimate
ciphertext polynomial, if x occurred in one of the encrypting polynomials Frij , or
if y occurred in one of the encrypting polynomials, Hrij .

Bulygin [2] also asserts that this this attack could work against any polly cracker-
type cryptosystem (commutative or noncommutative), in which the private key is
a reduced Gröbner basis, consisting of more than one polynomial. We now describe
how such an attack might work:

Attack 2.3.

Assumptions:

(1) Alice’s private key consists of a reduced Gröbner basis, G = {g1, g2, . . . gm}.
(2) tip(gα) is publicly known for all α = 1, 2, . . .m, or can be easily determined

from Alice’s public key.
(3) The cryptanalyst, Catherine, has temporary access to Alice’s decryption

black box i.e. Catherine is able to decrypt a limited number of ciphertext
messages that she sends, without actually knowing Alice’s private key.

Method:
As in attack 2.2, Catherine begins by constructing a “ciphertext” polynomial,

C1 =
∑s

i=1

∑kir

j=1
FrijqiHrij + tip(g1), which encrypts the fake plaintext, tip (g1).

She then uses her temporary access to Alice’s decryption black box to “decrypt” this

pseudo ciphertext. Once again, the enciphering polynomial,
∑s

i=1

∑kir

j=1
FrijqiHrij ∈

〈

G
〉

vanishes, when reduced modulo G. Morover, since G is a reduced Gröbner ba-
sis, tip (gα) does not divide any monomial that occurs in tail (g1) for any gα =
2, 3, . . .m. So the output of the decryption algorithm (reduction of C modulo G)

yields f1 = tip(g1) − [Ctip(g1)]
−1 · g1 = − [Ctip(g1)]

−1 · tail(g1). Next, Cather-

ine constructs g′1 = tip(g1) + [Ctip(g1)]
−1 · tail(g1). She repeats this process

for each α = 1, 2, . . .m, and obtains a set, G′ = {g′1, g
′

2, . . . g
′

m}, where g′α =

tip(gα) + [Ctip(gα)]
−1 · tail(gα) ∀α = 1, 2, . . .m. Since Ctip(gα) · g′α = Ctip(gα) ·

tip(gα) + tail(gα) = gα ∀α = 1, 2, . . .m, it follows that
〈

G
〉

=
〈

G′
〉

, and that G′ is

a Gröbner basis for
〈

G
〉

. Hence, Catherine can decrypt all of Alice’s messages by
using G′. i.e. knowing G′ has the same effect as knowing Alice’s private key.

We note that unlike the situation with attack 2.2, it might actually be possible
to disguise the fake plaintext, tip (gα), by using a modification of the technique that
fails to do the same for attack 2.2. This could work as follows:

Given tip(gα) ∈ Tip(G), Catherine chooses polynomials tα and sα, such that
tip (gβ) does not divide any monomial that occurs in tα · tip (gα) · sα, for any gβ ∈

G − {gα}. She then creates the pseudo-ciphertext, Cα =
∑s

i=1

∑kir

j=1
FrijqiHrij +

tα · tip (gα) · sα. Proceeding, as above, she uses her temporary access to Alice’s
decryption black box to “decrypt” the fake ciphertext, and obtains the plaintext f =
− [Ctip(gα)]−1 tα ·tail (gα)·sα. She then uses linear algebra, and her knowledge of tα
and sα to deduce − [Ctip(gα)]

−1 · tail (gα) from fα, and constructs the polynomial,
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g′α = tip(gα) + [Ctip(gα)]
−1 · tail(gα). She proceeds with the rest of the attack, as

above.
We note that the conditions on tα and sα are necessary to ensure that the fake

ciphertext, Cα, decrypts to − [Ctip(gα)]
−1

tα · tail (gα) · sα, and that none of its
terms vanish during the decryption proocess. We note also that polynomials which
satisy this condition could exist in theory. This is due to the fact that G is a
reduced Gröbner basis. So tip (gβ) does not divide tip (gα), for any gβ ∈ G−{gα}.
Furthermore, since Tip(G), does not contain any monomials that are in the message
space, M , the polynomials, tα and sα could be made up of monomials in M . This
does not guarantee that the polynomials will satisfy the required condition, since
it does not preclude the possibility that there exists some β 6= α such that tip (gβ)
divides tα · tip (gα) or tip (gα) · sα. However, in the absence of concrete examples,
this is a good starting point, if Catherine wishes to diguise the fake ciphertext. On
the other hand, as we pointed out earlier, an element of Tip(G) could always occur
in a legitimate ciphertext polynomial, and any technique used to diguise the fact
that tip (gα) is part of the message may be redundant.

We also note that the lunchtime attacks of [3] are a version of attack 2.3, as
applied to a private key consisting of linear polynomials.

3. Generalizing the attack

In view of the attacks presented in the previous section, one might be tempted to
achieve security against chosen-ciphertext attacks, by designing a polly cracker-type
cryptosystem, whose private key is a Gröbner basis which contains more than one
polynomial, and which is not reduced. However, in this section, we show how the
attack presented in section 2 can be used against a polly cracker-type cryptosystem,
even if the private key is not a reduced Gröbner basis. First, we do this under the
assumption that the tip set of the private key is publicly known, or that it can
be easily determined from publicly known information. In a second version of this
attack, we also show how it can be used without knowledge of the tip set of the
private key, if the admissible order used by Alice’s decryption algorithm is known.

Attack 3.1.

Assumptions:

(1) Alice’s private key consists of a finite Gröbner basis, G = {g1, g2, . . . gm}.
(2) tip(gα) is publicly known for all α = 1, 2, . . .m, or can be easily determined

from Alice’s public key.
(3) The cryptanalyst, Catherine, has temporary access to Alice’s decryption

black box i.e. Catherine is able to decrypt a limited number of ciphertext
messages that she sends, without actually knowing Alice’s private key.

Method:
As in the previous attacks 2.2 and 2.3, Catherine begins by constructing a “ci-

phertext” polynomial, C1 =
∑s

i=1

∑kir

j=1
FrijqiHrij + tip(g1), which encrypts the

fake plaintext, tip (g1). She then uses her temporary access to Alice’s decryption
black box to “decrypt” this pseudo ciphertext. Once again, the enciphering poly-

nomial,
∑s

i=1

∑kir

j=1
FrijqiHrij ∈

〈

G
〉

vanishes, when reduced modulo G, and so

does tip (g1). In fact, the output of the decryption algorithm is the same as the
reduction of g1 modulo G. In other words, the output of the decryption algo-
rithm yields NG (tip (g1)). Next, Catherine constructs g′1 = tip(g1)−NG (tip (g1)).
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As noted in the remarks preceding definition 1.2, if I is an ideal and r 6= 0,
then ir = r − NI(r) ∈ I. In particular, for r = tip(g1) and I =

〈

G
〉

, we have

g′1 = tip(g1) − NG (tip (g1)) ∈
〈

G
〉

.
She repeats this process for each α = 1, 2, . . .m, and obtains a set, G′ =

{g′1, g
′

2, . . . g
′

m}, where g′α = tip(gα) − NG (tip (gα)) ∀α = 1, 2, . . .m. By using
the same argument as in the case of g′1, we see that g′α ∈

〈

G
〉

∀α = 1, 2, . . .m. i.e.
〈

G′
〉

⊂
〈

G
〉

. Furthermore, Tip (G′) = Tip (G). It follows that
〈

G
〉

=
〈

G′
〉

, and that

G′ is a Gröbner basis for
〈

G
〉

. Hence, Catherine can decrypt all of Alice’s messages
by using G′. i.e. knowing G′ has the same effect as knowing Alice’s private key.

Although this attack works under the assumptions required to execute it, we
note that in the absence of concrete examples of noncommutative polly cracker-
type cryptosystems, whose private keys consist of more than one polynomial, it
is not clear whether the assumption that Tip(G) can be easily determined from
publicly known information is a reasonable one.

In the next version of this attack, however, we show that it is not necessary to
know Tip(G), if the monomial order used by Alice’s decryption algorithm is known.

Attack 3.2.

Assumptions:

(1) Alice’s private key consists of a finite Gröbner basis, G = {g1, g2, . . . gm}.
(2) The monomial order used in Alice’s decryption algorithm is publicly known.
(3) The cryptanalyst, Catherine, has temporary access to Alice’s decryption

black box i.e. Catherine is able to decrypt a limited number of ciphertext
messages that she sends, without actually knowing Alice’s private key.

Method:
Since Catherine does not know the tips that occur in Alice’s private key, she

needs to use a different approach this time. She does, however, know Alice’s
monomial order, and uses it to determine the largest tip, T , that occurs in Al-
ice’s public key. Since Alice’s public key, Q, is contained in the ideal, I =

〈

G
〉

,

generated by the private key, G, Catherine knows that T ∈
〈

Tip (G)
〉

, and that
if t ∈ Tip(G), then t ≤ T (in practice, t < T ). Catherine begins by constructing

a “ciphertext” polynomial, CT =
∑s

i=1

∑kir

j=1
FrijqiHrij + T , which encrypts the

fake plaintext, T . She then uses her temporary access to Alice’s decryption black
box to “decrypt” this pseudo ciphertext. Once again, the enciphering polynomial,
∑s

i=1

∑kir

j=1
FrijqiHrij ∈

〈

G
〉

vanishes, when reduced modulo G, and so does T .
In fact, the output of the decryption algorithm is the same as the reduction of T
modulo G. In other words, the output of the decryption algorithm yields NG (T ).
Next, Catherine constructs g′T = T − NG (T ). As noted earlier (in attack 3.1), we
have g′T = T − NG (T ) ∈

〈

G
〉

.
She repeats this process for each b ∈ BT , where BT is the set of monomials

which are ≤ T . i.e. for each, b ∈ BT , she constructs a ciphertext polynomial, Cb =
∑s

i=1

∑kir

j=1
FrijqiHrij+b, and uses her temporary access to Alice’s decryption black

box to “decrypt” the resulting pseudo ciphertext. Now, for each b ∈ BT , there are
two possible results of the decryption process: if b ∈

〈

Tip (G)
〉

, then the decryption

process yields NG (b) 6= b, and if b 6∈
〈

Tip (G)
〉

, then the decryption process returns

NG (b) = b. If b ∈
〈

Tip (G)
〉

, and the decryption process yields NG (b), Catherine

constructs g′b = b−NG (b), and if b 6∈
〈

Tip (G)
〉

, she discards b. Since there are only
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a finite number of monomials in BT , this process ends in a finite number of steps,
and she obtains the set G′ =

{

g′b = b − NG (b) : b ∈ BT ∩
〈

Tip (G)
〉}

. By using the

same argument as in the case of g′T , we see that g′b ∈
〈

G
〉

∀b ∈ BT ∩
〈

Tip (G)
〉

. i.e.
〈

G′
〉

⊂
〈

G
〉

. Furthermore, Tip (G) ⊂ Tip (G′). It follows that
〈

G
〉

=
〈

G′
〉

, and that

G′ is a Gröbner basis for
〈

G
〉

. Hence, Catherine can decrypt all of Alice’s messages
by using G′. i.e. knowing G′ has the same effect as knowing Alice’s private key.

We note, that, although these attacks (3.1 and 3.2) are presented here in the
notation and terminology of noncommutative Gröbner bases, they are equally valid
against the generic commutative polly cracker cryptosystem.

4. Countering the attack

In view of the attacks described above, especially the versions in section 3, it
would appear that the future of polly cracker-type cryptosystems is very bleak.
However, in this section, we present a very simple technique to counter these at-
tacks, by programming the decryption algorithm to recognize illegitimate cipher-
texts, such as those required to execute these attacks. We then show how a similar
technique can be used to counter an adaptive chosen-ciphertext attack that is due
to Koblitz [8].

Before doing this however, we note, once again, that in the absence of concrete
examples, it is not clear whether the assumptions required to execute these attacks
are reasonable. Specifically, in the case of attacks 2.3 and 3.1, it is not clear
whether it is reasonable to assume that it would be possible to use publicly known
information to easily determine Tip(G). Similarly, in the case of attack 3.2, it is not
clear whether the assumption that the admissible order used in Alice’s decryption
algorithm is publicly known is a reasonable one. This is due to the fact that there
are an uncountable number of admissible orders on any set of monomials. However,
in practice, only a few orders are considered practical, since reduction (division)
with respect to many block orders is very expensive.

Countermeasure 4.1.

(1) Restrict the message space, M , such that NonTip(G) − M 6= ∅.
(2) Ensure that at least one monomial, bi, occurs in each gi ∈ G, such that

bi ∈ NonTip(G) − M , and u · bi · v /∈ M , for all u, v ∈ B.
(3) Program the decryption algorithm to check whether any elements of NonTip(G)−

M occur in a the normal form of a ciphertext polynomial after it has been
reduced modulo the private key.

(4) If the decryption algorithm encounters an element of NonTip(G) − M in
the normal form of a ciphertext polynomial, program it to return an error
message (or the original ciphertext polynomial without reduction).

For example, if g = αxy + βx + γy + δ, as in example 1.2, the message space
could be restricted to linear polynomials in y. The decryption algorithm could be
programmed to recognize the fact that any ciphertext which reduces to a polynomial
containing x is not a legitimate ciphertext.

Similarly, if g = x1x2x3x4x5x6 +
∑6

i=1
cixi + c0 ∈ K

〈

x1, x2, . . . , x6

〉

, as in
example 1.1 the message space could be restricted to linear polynomials in only
some of the variables. For example, it could be restricted to linear polynomials in
x1, x2, x3, x4, x5, and exclude any polynomials that contain x6. In this case, the
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decryption algorithm could be programmed to recognize the fact that any cipher-
text which reduces to a polynomial that contains x6 is not a legitimate ciphertext,
and be programmed to return an error message, whenever it encounters such a
ciphetext.

We note that in the versions of the cryptosystems presented in examples 1.1 and
1.2, in which the message space, M , consists of homogeneous polynomials of degree
≤ D in one of the variables, where D ∈ N is fixed, countermeasure 4.1 could be
implemented without any modification of the message space.

It is clear that implementing countermeasure 4.1 in any polly cracker attack will
defeat all of the attacks described in sections 2 and 3. For, if Catherine encrypts
tip (g1), as in attacks 2.2, 2.3 and 3.1, then the first step of the decryption process

will yield f1 = tip (g1)−Ctip (g1)
−1

g1 = −Ctip (g1)
−1

tail (g1). Now, since there is
at least one monomial, b1 ∈ NonTip(G)−M , which occurs in g1, this monomial also
occurs in f1. Furthermore, since b1 ∈ NonTip(G), it is not affected by subsequent
steps in the reduction, and hence, it occurs in the NG (tip (g1)), which is the final
form of the polynomial after the reduction process in the decryption algorithm.
The decryption algorithm then detects b1 occurring in the reduced polynomial and
returns an error message or the original polynomial, without reducing it.

Similarly, if Catherine encrypts the tip, T , of a polynomial that occurs in Alice’s
public key, as in attack 3.2, then each step of the division algoritm introduces a
monomial of the form uα · bα · vα into the polynomial, fα, which is obtained as the
reduced form of the ciphertext polynomial at the end of the αth step. Since G is a
finite Gröbner basis, the division algorithm ends in a finite number of steps, yielding
NG (T ). Now, if gν ∈ G is the polynomial used in the final step of the division of
Catherine’s pseudo ciphertext polynomial by G, then it is clear that uνbνvν occurs
in NG (T ), and uνbνvν /∈ M . So the decryption algorithm detects this monomial in
NG (T ), and returns an error message or the original polynomial, without reducing
it.

Hence, any polly cracker-type cryptosystem, in which countermeasure 4.1 is im-
plemented is secure against the chosen-ciphertext attacks that are described in
sections 2 and 3. Moreover, it seems reasonable to believe that their ability to
recognize fake ciphertexts would make them secure against all chosen-ciphertext
attacks that use pseudo-ciphertext.

In the rest of this secction, we consider an adaptive chosen-ciphertext attack,
which uses legitimate ciphertext in its modus operandi. We begin by describing the
attack, which first appeared in [8], chapter 5, section 3, exercise 11, page 110.

Attack 4.2. (Koblitz [8])
Suppose that two companies, Bob’s company, and Catherine’s company are com-
municating with Alice’s company, using Alice’s public key. On many questions,
Catherine is cooperating with Alice, but there is one extremely important customer
who is taking competing bids from a group of companies led by Alice and Bob, and
from a different consortium led by Catherine. Catherine knows that Bob has just
sent Alice the encrypted amount of their bid, and she desparately wants to know
what it is. Suppose that Bob’s message m is sent as ciphertext, c, and that Cather-
ine is able to see the ciphertext, c. Catherine creates ciphertext, c′ = p + c + m0,
where p =

∑s

i=1
Fiqi is an encrypting polynomial, and m′ is an arbitrary element

of the message space. She then sends c′ to Alice, supposedly part of the message
on an unrelated subject. She then informs Alice that she had a computer problem,
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lost her plaintext, ans thinks that an incomplete sequence of bits was encrypted for
Alice. Could Alice please send her the decrypted bits m′ that she obtained from
c′, so that Catherine can reconstruct the correct message and re-encrypt it? Since
p vanishes during the decryption process, and c decrypts to m, it follows that c′

decrypts to m′ = m + m0. So Catherine is able to use m′ to find m = m′ − m0.
Alice is willing to give Catherine m′, because she is unable to see any connection
between c′ and c or between m′ and m, and because Catherine’s request seems
reasonable when they are exchanging messages about a matter on which they are
cooperating.

We note that the ciphertext, c′ sent be Catherine in attack is a legitimate cipher-
text, thus making it difficult for Alice (or her decryption algorithm) to recognize it
as a security threat. However, the richness of the message spaces of the noncom-
mutative polly-cracker-type cryptosystems enables us to develop a technique that
is similar to countermeasure 4.1 to overcome this attack. We present this technique
next.

Countermeasure 4.3.

(1) Alice chooses a private key, G, and develops a public key such that the
message space, M , contains several monomials, and can be partitioned into
disjoint sets.

(2) She picks MBob ⊂ M and MCatherine ⊂ M , such that MBob∩MCatherine =
∅.

(3) She assigns MBob as Bob’s message space and MCatherine as Catherine’s
message space.

For example, suppose Alice chooses a private key based on example 1.3. i.e. sup-
pose her private key consists of a single polynomial of the form g = x1x2x3x4x5x6+
∑6

i=1
cixi + c0 ∈ K

〈

x1, x2, . . . , x6

〉

. She then implements countermeasure 4.1 by
leaving all monomials that contain x6 out of her message space, thus securing her
private key from attacks of the type described in sections 3 and 4. Next she assigns
the variable x1 to Bob and x2 to Catherine. i.e. Bob’s message space, MBob con-
sists of homogeneuous polynomials in x1 of degree ≤ D, and Bob’s message space,
MCatherine consists of homogeneuous polynomials in x2 of degree ≤ D where D ∈ N

is fixed.
Now, if Catherine sends Alice a ciphertext of the form c′ = p + c + m0, where

c is a ciphertext used to encrypt a message m ∈ MBob and m0 ∈ MCatherine, c′

would reduce to an element of NonTip(G), which is neither in MCatherine nor in
MBob, and would immediately draw Alice’s attention to the suspicious nature of
Catherine’s ciphertext.

Before ending this section, we note that countermeasure 4.3 introduces an el-
ement of secret key encryption into the cryptosystem. However, it differs from
traditional secret key schemes, in that there is no need for MBob or MCatherine to
be kept secret. Thus the scheme remains, in essence, a public key cryptosystem.

5. Conclusion

The chosen ciphertext attacks described in [2] and in this article are a matter of
concern and should be taken into consideration in the design of a noncommutative
polly cracker type cryptosystem. However, they do not appear to be a major
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threat to the security of the system, since they can be easily countered by a minor
modification to the decryption algorithm. Nor do they, as [2] suggests, render
insecure, the simple examples that were presented in [7] and [9]. Rather, these
attacks and the techniques to counter them, are small steps in an evolutionary
process leading towards the development of a secure cryptosystem.
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