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Abstract

A group signature is a basic privacy mechanism. The group joining operation is a critical
component of such a scheme. To date all secure group signature schemes either employed a trusted-
party aided join operation or a complex joining protocol requiring many interactions between the
prospective user and the Group Manager (GM). In addition no efficient scheme employed a join
protocol proven secure against adversaries that have the capability to dynamically initiate multiple
concurrent join sessions during an attack.

This work presents the first efficient group signature scheme with a simple Joining protocol that
is based on a “single message and signature response” interaction between the prospective user and
the GM. This single-message and signature-response registration paradigm where no other actions
are taken, is the most efficient possible join interaction and was originally alluded to in 1997 by
Camenisch and Stadler, but its efficient instantiation remained open till now.

The fact that joining has two short communication flows and does not require secure channels is
highly advantageous: for example, it allows users to easily join by a proxy (i.e., a security officer of
a company can send a file with all registration requests in his company and get back their certificates
for distribution back to members of the company). It further allows an easy and non-interactive
global system re-keying operation as well as straightforward treatment of multi-group signatures.
We present a strong security model for group signatures (the first explicitly taking into account
concurrent join attacks) and an efficient scheme with a single-message and signature-response join
protocol.

The present manuscript is a full version containing proofs, minor corrections as well as a more
flexible and efficient protocol construction compared to the proceedings version [28].
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1 Introduction

Group signaturess a useful anonymous non-repudiable multi-use credential primitive that was in-
troduced by Chaum and Van Heyst [18]. It involves a group of users, each holding a membership
certificate that allows a user to issue a publicly verifiable signature while hiding the identity of the
actual signer within the group. The public-verification procedure employs only the public-key of the
group. Furthermore, in the case of any dispute or abuse, it is possible for the group manager (GM) to
“open” an individual signature and reveal the identity of its originator.

Constructing an efficient group signature has been a research target for many years, see e.g., [19,
17,14,15,10, 29,4, 2,12, 26,9, 3, 11, 13]. A scalable scheme that provides constant signature size and
has resistance to attacks by coalitions of users was given in [2]. Earlier constructions were designed
without a formal model and definition of security of such schemes, and thus with partial security proofs
at the best case (while many were actually broken).

A central issue in group signatures has been the way by which users join the group. Recently, [6]
gave the first formal model of a somewhat “relaxed” group signature primitive where a trusted party
generates and hands out all users’ keys. They also produced a generic solution thus demonstrating
the polynomial-time plausibility of their notion of trusted-party aided join group signatures. This is in
contrast with users who dynamically join the system and get their individual keys by interacting with
the group manager (as in the protocol of [2]). Dynamic joins that allow users to register sequentially
were studied formally in [25, 27] where efficient constructions were given and in [6, 7] where a generic
plausibility proof was provided.

The most efficient and conceptually simple joining procedure for a group signature scheme (what
we will call the “single-message and signature-response paradigm”) was illustrated by Camenisch and
Stadler [17] who sketched a generic solution (which was followed in careful details in [6, 7]). In this
type of joining protocol, the prospective user has an appropriately distributed searet it computes
a one way functionf on it to obtainx = f(z’). The user sends to the GM who, in turn, signs
x and returns the signatureto the user using an appropriate signing algorithm. This completes the
interaction of the join protocol. The possession of the signatwe x = f(2’) enables a user to sign
anonymously a messageby simply encryptinge probabilistically intoy (under the GM’s public key
or whatever entity is supposed to execute the opening algorithm) and by providing a zero-knowledge
proof of (i) the fact that the) is an encryption of some known to the prover, (ii) the fact that the
prover knowsr’ a preimage of that underf, (iii) the fact that the prover knows a signature issued by
the GM on thatz.

While the Camenisch-Stadler approach is elegant and advantageous (as we argue below), its in-
stantiation by an efficient scheme turned out to be elusive, since the many schemes that have been
suggested in the last eight years approximated it but none really employed it. In fact, all the efficient
schemes in the non-trusted-party-aided joining setting that were not broken used additional communi-
cations during the join protocol usually to assure that certain constraints and certain knowledge of the
joining user is present, i.e., the prospective user had to engage in an interactive zero-knowledge proof
with the GM. It was not at all apparent whether the single-message and signature-response join would
actually be instantiable in agfficientmanner in gorovably secure schem®loreover the employment
of such proofs of knowledge has the usual shortcomings with respect to adversaries operating in the
concurrent setting (namely, rewinding cannot be employed and a “straight-line” approach needs to be
followed that makes the joining protocols even more involved).

To conclude the motivation for our result, we summarize the advantages of a group signature em-
ploying a single-message and signature-response joining protocol:

1. Concurrency:Joining of users can be done concurrently where a batch of users join at the same
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time. This enables group managers over the Internet (where servers are multi-thread machines).

2. Proxy Join: Users can be joined by a proxy collecting all their requests and then collecting
the responses from the group manager; this is a very effective way to enroll companies and
organizations by delegating collection and distribution to security officers. It is highly effective
in enrolling to an identity escrow scheme without the need for random oracle proofs.

3. Multi-Group Scenario: There may be a number of groups; since single-message and signature-
response joins require essentially no interaction between the GM and the prospective user, users
may accumulate many GM membership signatures on the savakie non-interactively thus
easily becoming members of multiple-groups.

1.1 Ourresult

In this work we implement the first group signature scheme with a single-message and signature-
response join protocol to be exploited for concurrent joins and other advantages as above, thus im-
plementing efficiently the Camenisch-Stadler approach for the firsttime

We start by presenting the first model of “group signature with concurrent joins” which builds
on the recent formal models and consists of a set of attacks. We note that in a privacy primitive
interacting users may be conducting simultaneous attacks against each other and these need to be
captured formally. We call our attacks: misidentification attack, framing attack and anonymity attack
and is an extension of our sequential-join formal model for group signatures in [27]. We then implement
a scheme based on specific assumptions and prove its security. The scheme allows adversarial opening
of signatures and its signature size is only about twice the size of the scheme of [2] (that did not allow
for adversarial opening or concurrent join attacks).

From a technical viewpoint we employ a number of complex primitives including the digital sig-
nature scheme of Boneh and Boyen [8] (hence referred to as the BB signature) as well as verifiable
encryption for discrete-logarithms that are based on the Paillier encryption function [31, 21, 16, 24].

A novelty of our technical approach (and perhaps a partial explanation why we manage to achieve
an efficient single-message and signature-response join) is that we deviate from most of recent group
signature literature by instantiating the one-way function employed by the prospective user during the
join with multiplication instead of exponentiation. Our general design approach is outlined in figure
1. users sample an RSA modulus and then obtain a short chain of BB certificates on it (numbering
from one to five signatures). This modest interaction (which is simply a PKI registration in a domain
employing RSA moduli with a BB signature for certification) allows users to sign as group members.

Our security proofs follow a modular approach: in a nutshell, a misidentification adversary is turned
into a BB-forger, a framing adversary is turned into a factoring algorithm and an anonymity attacker
is turned into a CCA2 adversary against the encryption algorithm we employ. The group signature
itself is based on the Fiat-Shamir paradigm, by essentially turning an identity escrow (anonymous
identification) system into a signature and employing a random oracle. We note that the interactive
version of our group signature yields an identity escrow scheme in a straightforward manner that can
also have concurrent group signing by employing general transformation techniquegfotocols,

e.g. [23].

In some recent schemes of group signatures and related primitives based on dynamic accumulators [33, 20], a simple
two message join was implemented; nevertheless this was to be followed by local modifications ofddegxisfing users
we do not consider such a protocol efficient. In our solution, keys of other users are unaffected when new members are
introduced to the group.
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Figure 1: Overview of our general group signature design. The BB signature can be substituted by
potentially other signatures that are suitable for algebraic encryption with efficient validity proof.

The present manuscript is a full version containing proofs, minor corrections as well as a more
flexible and efficient protocol construction compared to the proceedings version [28].

2 Preliminaries

Interactive Turing Machines and Concurrent Executions. A two-party protocol is a pair of proba-
bilistic polynomial-time bounded Interactive Turing machif@sB). Each ofA, B has a private input
tape, work-tapes, a (joint) communication tape and a private output tape. An execution of a protocol
(A, B) on inputsz, y for the two players will be denoted b (x), B(y)]. For an execution of a protocol
we will consider the following random variables: {iyans[A(z), B(y)] is the contents of the commu-
nication tape after the two parties terminate. Qita[A(z), B(y)] is the contents of the private output
tape of playerA after termination. (ii)Outg[A(z), B(y)] is the contents of the private output tape of
playerB after termination.

Now suppose thapP = <A B) is a protocol. An “interface oracle” for concurrent simulation of
playerB, denoted byZ[P._g(,)], is an oracle that accepts the following queries:

Q1. Start — Session: The interface oracl€[P_gp )] initiates a session for the protocf: it
selects a session identifigland if B is the player that goes first in the protod?) the interface
simulates the first move & on inputy; the interface returns as answer to $tart — Session
query the session identifierand the output of the simulation of playBis first move (if any).
The interface keeps a database with the state of playler the session identifies; the state
includes all coin tosses &, and the contents of all tapes including the communication tape.

Q2. Advance — Session(s, msg) The interface oracle looks up the table of sessions and recovers
the state of playeB for the session with identifies (if there is no such session the interface
returns_L as answer to the oracle query). If sessioexists the interface appendssg to the
communication tape of the session and continues the simulation of @agaes if msg is the
message that is written to the communication tape of plByey playerA).

We will use the notatiod/Z(P~&)! to denote any probabilistic Turing machinéthat has accessto
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an interface oracle as defined above. Note that the interface @faley,,] (for concurrent executions

of player A in the protocolP) can be defined in the same fashion as above. Frequently protocol
executions are stateful, e.g. there is a database, or State general that an instantiation of the
protocolP may consult. This stat8t will be maintained by the interface oracle In this case we

will write Zs;[P_,g(.y]. In the case that a TM/ has access to a stateful interface oraCiee will

write MZs:P-s()], Depending on the cas& may modify the statet or even allow read and write
access ta5t by M. In such cases we will writd/Zst[P~&(),READs:,MODIFYs:] '\yhereREADg;, is an
oracle interfaced td/ throughZ that given a fixed input returns the contents of #teand similarly
MODIFY g; is an oracle that allows/ to modify the contents ot using some standard encoding and
addressing scheme.

Bilinear Maps. Let G;, G2 two groups of prime ordep so that ()G; = (¢g1) andGy = (g2); (ii)

7 : Go — Gy is an isomorphism with(g2) = g1 and (i) e : G; x Ga — Gr is a bilinear map. We
remark that in many cases it can be that= G- (and in this case> would be the identity mapping).
Let Gy = (g1), Ga2 = (g2) groups as above witliz;| = |G| = p; a bilinear map is a maps.t. for all
(u,v) € Gy x Gq it holds thate(u®, v¥) = e(u,v)* ande(g1, g2) # 1.

Intractability Assumptions. We will employ the following intractability assumptions:
The Strong Diffie Hellman Assumpti¢®DH) was put forth by Boneh and Boyen [8]. Ti#SDH

problem over two group&1, G is defined as follows: given @ + 2)-tuple (g1, 92, g3 , - - - ,gé”)q> as
1

input, output a pai(gF,x) wherez € Z;. The¢-SDH assumption suggests that any probabilistic
polynomial-time (PPT) algorithm solving tleSDH problem has negligible success probability. When
q is any polynomial-time function on the security parameter we will write simply SDH.

The Strong-RSAroblem [5] is as follows: givem, z € QR(n), whereQR(n) is the group of
quadratic residues &}, asks for two integers, e > 1 so thatu® =,, z. The Strong-RSA assumption
suggests that any PPT algorithm solving the Strong-RSA problem has negligible success probability.

The Decisional Composite Residuos{iyCR) assumption [31] is defined as follows: it is compu-
tationally hard to distinguish between the distributions of tuples of the faviu”¥ mod N?) where
N is an RSA safe composite modulus ane-r Z},, and the distribution of tuples of the for(wv, v)
whereN is an RSA safe composite modulus ane-r Z.

3 Group Signatures with Concurrent Join : Modeling

In this section we give the formal definition of group signatures with concurrent join. First we start
with the syntax of the signature. The parties that are involved in the scheme include the Group Manager
(GM), the Users and the Verifiers.

3.1 Syntax

Definition 3.1 A group signature scheme with concurrent joins is a digital signature scheme that is
comprised of the following five procedures:

SETUP: it is a probabilistic algorithm that on input a security parametgt, it outputs the group
public key) (including all system parameters) and the secret Kefpr the GM. SETUP ini-
tializes a public state stringt = (Stusers, Stjoin—trans) With two components§t, se.s = €
and Stjoim—trans = €. The public state stringt will hold the user identity database and the
database of the Join protocol transcripts. This information will be publicly available and will
grow as more users are introduced into the system.
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JOIN: A protocolbetween the GM and a user that results in the user becoming a new group member.
The user’s output is amembership certificatand amembership secreiWe will denote the-th
user's membership certificate byrt; and the corresponding membership secretday.

SinceJOIN is a two-party protocol, its specification includes the description of two interactive
Turing Machines (ITMY ser, Jom- Only Juser Will have a private output.

According to the notations of section 2 an execution of the protocol is denotéda&St, V) <
Jem(St, Y, S)] and has two “output” components:

1. the user private outputy, cert;, sec;) «— User[Jyser(St, V) < Jem(St, )V, S)], and
2. the public transcripttranscript; < Trans[ Jyser(St,Y) < Jom(St, YV, S)].

After a successful executionIfIN the following updates are madét,sers = Stusers||(7) and
Stivin—trans = Stjoin—trans|| (i, transcript;). The identity-tag will be selected from a space of
possible identity tags denoted LY.

SIGN: A probabilistic algorithm that given the group’s public-key, a membership certificate, a mem-
bership secret and a message it outputs a group signature for the message We write
SIGN(), cert;, sec;, m) to denote the application of the signing algorithm on the message

VERIFY: An algorithm for establishing the validity of an alleged group signature on a message with re-
spect to a group public-key. dfis a signature on a message then we hav®ERIFY (), m, o) €
{T, L1}

OPEN: An algorithm that, given a message, a valid group signature on it, a group public-key, the
GM'’s secret-key and the public-state it determines the identity of the signer. In particular
OPEN(m, 0, St,),S) € Stysers U {L}.

Notation Below we will introduce a helpful notation for describing the relationship between transcripts
and membership certificates and secrets. G{y&rs) < SETUP(1”) we define the following relations
over strings based g¥i and some public statgt,

(i, cert, sec) =y g transcript if there exist coin tossgsfor Jom andJyser SO that
(i, cert,sec) = User[Juser(St,Y) < Jem(St, Y, S)](p)

and
transcript = Trans[Jyser(St,Y) < Jom(St, YV, S)](p)

Similarly we will definecert =y sec, if there exist coin tossesfor Jom andJyser and a statest so
that
(1, cert,sec) = User[Juser(St,Y) < Jam(St, Y, S)](p)

Finally we define the set of all valid public statéslid as follows: Sty € Valid if there exists a PPT
Turing machineM and (), S) «— SETUP(1¥) so that whenl/Zst00N-cu(st.v.5)READs:] terminates
it holds thatSt = St and the interface oraclg given to M initializes St = (¢, ¢) and allows)M to
have read access & throughREAD queries. IfZg, initializes St to someSt, € Valid that is not(e, ¢)
then this defines the set of athlid extensionsf the public-stateSt, that will be denoted byalidg;, .
ObviouslyValid = Valid, ).



3.2 Correctness

Below we define the correctness of a group signature scheme that satisfies the above syntax. Note that
a group signature is a tup{8ETUP, JOIN, SIGN, VERIFY, OPEN) with JOIN = (Jyser, Jom)-

Definition 3.2 A group signature with concurrent join is correct if the following are true:

CL1. (users are assigned unique names) For &fye Valid it holds thatSt,.-s contains no multiply
defined identity-tags, i.e., Htysers = (11)]] ... ||(ix) it holds thatj # 5’ = i; # ;.

C2. (signing is correct) For any)’, S) « SETUP(1"), any stringscert =y sec and anym < {0,1}*,
it holds thatVERIFY(Y, m, SIGN()/, cert,sec,m)) = T.

C3. (open is correct) For any),S) « SETUP(1), any St € Valid, anym e {0,1}*, and any
(i,cert, sec) =y gy transcript it holds thatOPEN(m, SIGN(Y, cert,sec, m), St", V,S) = i,
whereSt” € Valids, and St' is defined as followsSt;,.,, = Stusers||(i) and St} 4.ans =
Stjoin—trans|| (i, transcript).

PropertyC1 requires that theg0IN protocol assigns a different identity tag to all users. Property
C2 ensures the correctness of the underlying signing and verification for any valid signing key (that
includes a membership secret and a membership certificate). Finally, prG@amgures that thePEN
algorithm correctly identifies all signers: in particular it says that if a user is introduced at some moment
in the system'’s operation and the public-stéités updated with the user’s identity tag resulting to state
St' then it holds that whenever this user issues a group signature the user will be correctly identified for
every public state&St” that succeeds the public-stat€ of the system. We note that it may be viable to
collapseC1andC3but, given the intuitiveness of the formulation, we keep them as separate properties.

3.3 Security

Security against group signatures with concurrent join, will be broken into three basic properties fol-
lowing the model designs of [25, 27]. The properties are formalized as games between the adversary
and an entity called the interface, denotedilthat represents thencorrupted aspect of the systém

each attack.

Misidentification. In a misidentification attack, the adversary joins the system through possibly many
concurrent sessions of tH@IN protocol and it attempts to produce a signature that cannot be opened
to any of the users that are adversarially controlled. We note that without loss of generality we will
assume thall users introduced in the system are adversarially controlled; this means that the goal of
the adversary is to simply make tbeeN algorithm to fail. We remark that adversaries that make the
OPEN algorithm to point to an innocent user will be handled in the framing attack (next paragraph).
Below,Zs;[JOIN., /] wWill denote the interface oracle for concurrent simulation ofGheparty in
the protocolJ0IN (refer to section 2 for the definition). Note that the interféadeas access to the public
state stringSt and it updates it accordingly whenever a new user (the adversary that is) successfully
completes thg0IN dialog. Also, an oracl@EADg; is provided to the adversary that allows him to read
the contents of the public state database that contains the identification transcripts and user identity
tags. Finally, an oracl@PEN is provided to the adversary that allows him to submit signatures and
obtain the output of the opening algorithm.

The Misidentification-Attack Gamé'z.. (denoted byG:t (1V)):
1. <y78> — SETUP(lV); St = (StuseT37 Stjoin—trcms) = (57 6);
2. (m,o) — AZst[30IN . Gar(se,v,s) READs: OPEN] );

3. If (VERIFY(Y, m,0) = T) A (OPEN(m, 0, Y, S, St) = L) then returnT else returnL;
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We will say that a group signature is secure against misidentification attacks with concurrent join
provided that for allA it holds thatProb[G4._(1¥) = T] = 1 — negl(v).

mis
Framing. In aframing attack the adversary plays the role of the system where the interface represents
a handful of innocent users. A framing attack is meant to capture any adversarial behavior that allows
the adversary to make the open algorithm point to an innocent user. We remark that this captures the
notion of exculpability as well as any other adversarial behavior that frames an innocent user. In the
concurrent setting, we allow the adversary to initiate many concurrent executions IifTihelialog
playing the role of a malicious GM. The goal of the adversary now is to produce a signature that opens
to one of the innocent users.

Naturally in modeling such an attack we cannot allow to the adversary to do all the bookkeeping
for the user database himself (otherwiseéd2BN operation would be without meaning). Every time the
adversary successfully terminate3N dialog with an innocent user that is controlled by the interface
Z, the interface will add the user identity into t&,..s and will append the whole communication
transcript toSt joim—trans- Moreover it will keep a private database containing the secrets of the inno-
cent users that will have the formgi sec;) (these will not be accessible to the adversary). In addition
to the above, we will allow the adversary to submit queries $aGN oracle that will be handled by
the interfaceZ and will accept the identity of one of the innocent users and a message and will return a
signature of this message with the signing mechanism of the named user.

We allow the adversary to have appropriately restricted modify access to the publi&istities
access will be handled by in the form of theMODIFYg; oracle query. As mentioned already we
will not give to the adversary full write capability to the public statesince if he is allowed to this,
opening any signature correctly would be meaningless (e.g., if the adversary erases the database of
JOIN transcripts it is straightforward that the opening capability is cancelled). The restrictions are as
follows: MODIFYg; will not permit the adversary to insert a join transcript that reuses an identity tag
(this restriction is essential to maintain the semantics ofo#®N unambiguous) and will not allow
the adversary to modify any of the identity tags or join transcripts of the innocent users (to these the
adversary will have read-only access). Any other modification of the public-state will be allow&d by
(in particular the adversary is allowed to introduce users to the public-state as well as erase them — for
this reason there is no need for a “corrupt” oracle).

We will use the notatiorstZ,_.. to denote all innocent users in the system that are introduced by

users

the execution of the concurredIN oracle and are managed by the interface orécle

The Framing-Attack Gamé', (denoted byG#. (1V)):
1. <y,8> — SETUP(ly); St = (Stusem, Stjoin—trans) = (6, 6);
2. <m,a> - AI[JOINHUSG,,.O,),SIGN,READSt,MDDIFYSt](y78)
3. i =0PEN(m,0o,St,Y,S);
4. If (VERIFY(Y,m,0) = T) A (i € StL,,.) then returnT else returnL;
We say that a group signature satisfies security against framing attacks with concurrent join pro-
vided that for all4 it holds thatProb[G#, (1¥) = T] = 1 — negl(v).

Anonymity. Finally, anonymity is modeled as a sort of CCA2 attack against the identity encryption
embedding mechanism of the group signature.




The Anonymity-attack Gamé@'y\ ., (denoted byG2 . (1¥)):

<y78> — SETUP(lV); St = (Stuser87 Stjoin—trans) = (67 6);

(aux, m, certy, secy, certy, secy, ) — ATFIOINoGr(s1,.5) READSH.0PEN] ()4, )

if =((cert; =y secy) A (certa =y secy)) Or cert; = certy then terminate; returd ;
Choose —p {1,2};

1 «— SIGN(), certy, secy, m);

b AI[JOINHGth’y’S),READSt,OPENﬁw}(guess,aux);

if b = b* returnT else returnL;

No akwbde

We note that th@PEN ¥ oracle operates as tileEN oracle with the usual restriction that it should
return_L if the adversary submits as the signature to be opened.

A group signature is said to be secure against anonymity attacks with concurrent join provided that
for all A it holds tha2Prob[G4,, (1Y) = T] — 1 = negl(v).

Based on all the above we will say that a group signature with concurrent jegtigeprovided
that it is secure against misidentification, framing and anonymity attacks.

4 Group Signatures with Efficient Concurrent Join : Construction

In this section we describe our efficient group signature construction. Our construction below is an
optimized and more flexible variant of the scheme presented in the proceedings version of this work,
[28]. A number of primitives proved to be instrumental in our construction including: Integer commit-
ments [22], BB signatures [8] and a CCA2 variant of Pailier encryption [31, 24, 16]. We first begin by
describing the public-parameters our system will employ.

Public-parametersThe public parameters of the scheme are as follows:

pl A (small) integer parameter (1 < v < 5) andv pairs of groups of ordey; wherep; is a/,-bit
prime,p; > 2%~1, denoted byG1; = (g1+) andGa; = (g2), SO that there is a mapping
and a groufz; ande; : G x Go; — Gy is a bilinear map. Note thatranges in{1,...,v}.
It is assumed that alh, . . . , py are distinct. These groups will be assumed to satisfy the Strong
Diffie Hellman assumption.

p2 an RSA-modulus, of 4, bits;n is selected so that Strong-RSA will be infeasible adt(n).

p3 Four integer ranges, S’, Sy, S} over the parameters ¢, v, k, k’; note that/ is an integer pa-
rameter suitable for the selection of RSA moduli. Intuitivéfywill be a range of integers from
which RSA moduli will be chosen anﬂ} will be a range of integers from which the factors of
such moduli will be chosen; the rang€sS will be extensions of these two ranges that will be
used in the construction.

The integer rangesS is defined asS =4 S(2/~1,2"%~D-1): we recall that the notation
S(a,b) =4¢ {a —b,...,a + b} (we call this an integer sphere centeredzpat Observe that
if z,y € Sandx =), yforallt =1,...,v then it holds thatr = y; indeed, the given con-
dition implies thatr =, ,. ¥ (cf. Chinese remaindering). But sinpg...p, > 2V~ =
2. 2v(t=1)=1 which is the length of the sphe# it follows thatz = y.

Now for two parameters, k' € Z we select the rangé’ as follows: S’ =4 S(2¢,2%) =
S(20-1, 2vle=1)=1=k=k") = Moreover we select the ranggy =qr S(2¢7,217) = S(2¢/271,
2¢/2-1+k+k") andS} — S(zf’f’ 2u’f) = §(2¢/2-1 9t/2-1y,
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Note that all ranges, S/,Sf,S} are assumed subsets @f,...,¢(n)}. Moreover note that
Sy = §(21/271 24271) = {0, ..., 2%/2} contains all/2-bit numbers; as a result, arisbit RSA
modulus that belongs to the ran§eand splits to two equal size factors ©f2 bits will have its
factors insideS}.

p4 a safe RSA-modulu®/ of /y bits with N = PQ andP = 2P’ +1,Q = 2Q’ + 1, so that in
the groupZy,. it holds that the DCR assumption is hard, and the vélue (Go)*M (mod N?)
is selected withGy < Z},.. Note that with overwhelming probability) is the subgroup of
quadratic residues moduly? that are simultaneousliy-th residues; note that(G) = P'Q’.
It will be assumed thaf 5 contains the rang§.

SETUP. The procedure first generates the public-paramegtirand p2 and p3 as described above.
Then, it executes the following steps:

It selectsv pairs of valuesy;, &; «r Z, and setsv; = g, andv, = ggft fort =1,...,v, thisis the
setup for BB signatures, cf. [8].

It selectsy, f1, f2, f3, f1 < r QR(n). These values will be used for integer commitments.

(Opening functionality) the public parametéy¥sG according tqp4 are selected as well &5, , Hy, Hs €
(G)with H; = G%, a; < Z|ny4) fori = 1,2, 3 and a hash-kelyk for a universal one-way hash
function family UOHF. We remark that this step can be entirely separated from the GM’s setup
phase and executed by an opening authority. Nevertheless for convenience and simplification of
the presentation we do not make further distinction in the present version of the paper.

The public-key) is set to
<gl,t7 g?,ta W, V¢, deSC(G17t|’G27t|’Gt)|’€t>¥:1”<UOHF, 9, flu f27 f37 f4) n, Na G7 Hlv HQ) H3a hk>

and the secret ke§ is set to to(~y, d:);_, || (a1, a2, a3). Note that the factorization of is not needed
and thus it can be discarded.

JOIN. In the join protocol execution, the user will obtairvdong chain of BB signatures on an RSA
modulus that he selects. A user's membership certificate is the signature-chain together with the RSA
modulus; a user’s membership secret on the other hand is the factorization of the modulus. The join
procedure between a prospective user and the GM is described in detail below:

e (User—GM) The user initiates the procedure and selects S’ to be ard-bit RSA modulus with
x1, x2 its two £/2-bit long prime divisors, so that ¢ Sy andxy, zs € S}. The User transmits
to the GM.

e (GM—User) The GM checks whether € S’ — {0,1} and whether: is unique in the system
(i.e., it was not submitted by another user in a previous or concufi@t instantiation); if
either check fails the GM terminates theIN protocol; otherwise (i) it reads the public-state
St, selectsi € ID so thati € St,srs @nd in such a manner thats distinct from any other
concurrent executions that he may be involved simultaneously and writes to its communication
tape the value$i, oy, ... oy, ) Wherer «—p Z,, . ando, = g/ or ¢ = 1 v,
finally it updatesSt join—irans DY appending to it the tupl@, o1, o , Oy, 7) and setsStysers =
Stusers||<i>-
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Ts — QQy/ ffz Tgﬁx — ggﬂ“/ flea,z T30r _ gGTy/ flerz
Ty = geyfle T2912 _ gGyIQ ffx
Ty =" 17 1 £ £
et(Th e, we)e(Tig, go.0)7ee(Ti e, ve) 0 et (gres g2.6) ~%7 €1 (g1, ve) ~O= et (gre, we) ™% = er(g1,4, 9.t
Co = G C1= H{(1+ N (C2)? = (HyHy ™)
0, €S 0z €Sy 0z, €Sy

Figure 2: The relations defining the signature of knowledge. Note that the parargetenning from
1,...v.

e The user verifies thatt(at,wtggvtug) = et(g14,92¢) fort = 1,...,v and thati & Stysers;
if a test fails the user fails thé0IN dialog. Otherwise, it terminates successfully by setting
his membership certificate tert = (x,01,...,0y,7)/_; and his membership secretdec =
<$1, .CCQ).

Observe that the useloes not proveéhatz was selected appropriately; Perhaps surprisingly, we
show that this is still sufficient for security in the concurrent setting. Naturally if the user chooses
inappropriately two things may happen: (i) the user may not be able to issue group signatures, e.g., this
may happen when is a prime; this naturally is of no concern to the GM, (ii) the user seleets an
integer that is easy to factor; while this is of concern there is nothing that can be done about it: this
case is conceptually the same as the case that the user just leaks its secret-key; while this possibility is
annoying there is little that can be done to prevent this in any group signature scheme (and it is beyond
the scope of the present paper at any rate).

SIGN. We present the signing algorithm. The user possesses the following: a membership certificate
(x,01,...,0y,7) and the corresponding membership seargtz,. The signing algorithm will be
obtained by applying the Fiat-Shamir Heuristic on an appropriately designed proof of knowledge. First,
the signer computes the following values:

Tl,t :gito-ta t= 17"‘7V Z <R Zm---pv in GLl,...,GLV
T =g"fi y —r S(1,27%) inQR(n)

T3 = g¥' 7 y g S(1,272) inQR(n)

Ty =g¥ {152 151§ y" g S(1,272) inQR(n)

Co =G d—p S(1,2%72) inZi,

Cy = ||(HoHy ™0 yd)) in 7+,

Note that||z|| = = if = < N?/2 and||z|| = N? — x otherwise. Also recall tha$(a,b) =4t
{a—1b,...,a+ b}. Subsequently the signer will construct the signature “of knowledge” on the given
messagen by providing a proof of knowledge for the relations given in figure 2 that involve the
fourteen witnesse’,, 0, 0., 0y, 0,2, 02y, 02y, 0y, Oy, Ot Oyt Oy, Oy, 0.

Given the coin tosses of the signer for the selectiofi'of, . .., T4y, 1>, 15, T4, Cy, C1, the wit-
nesses needed in figure 2 are selected as folléws: 2,0, = x,0,, =x-2,0, =7r,0,, =71-2,0,, =
21,000 = 22,0y =y,0y =y, 0 =y, 0y =2y, 0,y =79 ,04, =y - 22,04 = d. Now, given
a messagen, the signature will be constructed as follows:

12



1. (choose blindings) the valugs « g {0, 1}V +F+E 5« p 3£0, 1} R g {0, 1}VotrHRHR
pr o O 1P s {0, P2 o {0, YT ) g {0, 1) TR
Pys Pyt Py R {0, 1}n=2H0FK g £{0, 1} 2FWFRHR g {0, 1 2V E Rtk
Pyzs —r £{0, 1} 2R p (0,1} 2R+ gre selected. Using these values the fol-
lowing are computed (whererunsi, ..., v):

Ry = g™ fi? Ry =Ty " gl f{ Ry =Ty " g fi

Ry =g fi™ Ry =Ty "2 gPves f*
R6 = gpy” fl"‘cf;xQ f3r fd

Ry =e(Tht, g2,0) " ee(T1, ve)mer(gues 92,6) P22 ee(g1e, ve) Pee(gre, we) P2

Rg = G4 Rg = HY*(1 + N)P= Ry = (HQHg"l(hk’CU’CI))?Pd
2. (calculate challenge) using a hash function denoteHAsy the value

¢ < HASH(m||T1|. .. ||T4]|R1]| .- .|| Re, R1o)

is computed. The range #ASH is considered to béo, 1}*.
3. (calculate response) Subsequently the following values are computed:

S, = p, —C2 inZ sx:px—c(az—%/) inZ
Sgz = Pgy — CTZ iNZ | s, =pr—cr inZ
Spy = Pry — CTZ iNZ | $g, = pay — (a1 — 22”) inZ
Suy = Puy — C(w2 = 2127Y) INZ | 8, =py —cy inZ
Sy = py — cy’ iNZ | syr = pyr —cy’ inZ
Sgy = pry —cx -y iNZ | spy =pry —cr-y inZ
Syzs = Pyxs — CY - T2 iNZ | sq = pqg—cd inZ

The output of the signing algorithm is the tupld 1, ..., T1 v, T2, 15,14, Co, C1,Ca, ¢, Sz, Sz, Szz, Sr,
Srzy Sz Szgy Sy, Sy’ Sy’ Sxy’» Sry’» Syxas 5d>-

VERIFY. Signature verification is achieved by the following tests:
? ’ / ? ’ ’ ? ?
sp € {0, P FRHRHL A g s € {0, 1 TR A € Oy, Gy € 2 A Cy < N?J2

?
¢ = HASH <m||T1,1|| AT N TRV T3 (| Ta ]
- 4 ! - / TZ
| g™ F=T5| [Ty g’ fy== || T3 g™ f

—c2t _ l/2—1 /
g 707 Ty P g e
gt g7 g gy ey

ot _
Ht:l,...,v et(Tl,th,t)sx <2 et(Tl,t7Ut)sret(gl,tath) Saz

ei(g1,e,ve) 2 e(gr,e, w) T2z er(91,e, g2, ) e (T, we) ¢
| CSGoCE (1 + N2 ||C5(HE RO C))

OPEN Given a signature as described above: first the signature is verified as well as the relation
(C9)? = Cg(“2+9H(hk’C°’Cl) is checked. If any check fail8PEN returns L. Otherwise,0PEN com-
putesm = 012(10‘2“1; due to the properties enforced by the proof of knowledge (cf. figure 2) it holds
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thatz = (m2~! mod N — 1)/N. Then, theOPEN algorithm searchestoin—trans for transcripts of
the form(j,z;,051,...,0;v,7;) With z; = z; the identity;j of the signer is thus recovered. If no such
x; is found,0PEN returns.L.

Length of the signature It is easy to verify based on the above description that the length of the
signature (in bits) is approximatelyl - v - ¢, +9 - ¢, + 6 - £y + 12k + 11k’ + ¢. We note that
several optimizations can be applied potentially to decrease the above size Still at this present form, the
protocol, is clearly within practical limits (cf. next paragraph as well).
Parameter Selection. The parameters employed in the construction above are as follows; tfip
length of the BB signature chain, (i), : the size of the elliptic curve groufs, ; that are employed
in the BB signatures, (iiiY,, : an RSA modulus size that is used for commitments. {ivihe RSA
modulus size that is selected by users. Vpnd k’: parameters affecting the soundness and zero-
knowlege properties of the non-interactive proof of knowledge that is employed in the scheme. (vi)
£x : an RSA modulus suitable for the Paillier-like encryption employed in the construction.

A possible choice of the parameters will then be as folloys= 236, ¢,, = 1024, ¢ = 1000,
k = k' = 80, /;y = 1024 andv = 5. With this selection, a chain of 5 BB signatures will be
employed over elliptic curve groups of 201-bit prime order and each user will be selecting RSA moduli
from S’ = §(2999,2999) (i.e., arbitrary1000-bit RSA moduli) so that the two factors should belong
to S} = S(2'%%,2'). Based on these parameters the total signature length is about 32 Kb. In fact
one can choose much more efficient parameters if RSA moduli of some specific form are selected; for
example, a much more tight parameter choice would be as follgys: 195, ¢,, = 1024, ¢ = 1000,
k =k = 50, {ny = 1024, v = 3. In this case, there will be only three BB signatures over elliptic
curves of size 181 bits and users will select RSA moduli figm= S(299, 2481). Note that this will
result to RSA moduli of the special forg??® + ¢, something that according to [30] does not appear to
give an advantage to known factoring methods (nevertheless such tighter parameter selections should
be used with caution). In this setting the total signature size drops to 24 Kb.

We note that the the parameter selectiorf,pin [28] (who usedv = 1) was incorrect due to an
oversight that resulted in weak keys. A possible parameter selection=oil (that employs special
RSA keys as above) i§, = 483, £, = 1024, ¢ = 1000, k = k' = 50 and/y = 1024; nevertheless,
increasingv as suggested here, allows one to use smaller curves something that in turn allows for faster
operations.

5 Proof of Security

The proof of security is described here, it relies on the random oracle model (we prove the group
signature rather than the interactive identity escrow variant of the scheme).

Proposition 5.1 Suppose that one possesses the witn@ssés, 0., 0, 0,2, 01, , 01,0y, 0y, Oyrr, Oy,
Ory, Oyas, 0q for the relations of figure 2 regarding the valués;, ..., T, 1>, 13,1y, Cy, C1, Co @s
well as it holdsCy < N?2/2. Then the following hold true: (i) Each of thepairs (TLtgifZ,HT mod py)
fort =1,...,vis a BB signature o, under the public-key ¢, g2+, we, v, er : Giyp X Goyp — Gy.
(i) (Cop, C1,Cy) is a valid ciphertext encrypting, .

Proof. For notational simplicity se: = £ for all possible$ and we drop the subscriptsfor ¢t =

1,...,v. Let us consider now the relation that enforces the signature validity from figure 2. We have
that

e(Tl, w)e(Tl, gg)‘re(Tl, v)re(gl, gg)fﬁze(gl, v)*me(gl, w)fz =
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= e(Th, wgzv")e(gy * wygsv") = e(Tig; *, wgsv")
by employing the properties of the bilinear map. Then we have that if wercalll’ g; * it holds
thate(o, wgdv") = e(g1, g2), i.e.,0,ris a valid BB signature om.
Finally, observe thatCy)? = (G?)! mod N2, (C1)? = (H?)!(1 + N)?*, so clearly it holds that
C?C; = (14 N)?* and as a result the decryption will be eitheor L. Moreover observe that
(C9)? = (HQH?(hk’CO’Cl))Qd. The ciphertextCy, C1, C, would be a valid ciphertext provided that

Cy = ||Cs]| as well asC} = ¢3RO Now it holds thatC3 = (HpHy' ™) —
GQda2+2da3H(hk,Co,C’1) _ Cg(az-i-a:;H(hk,CmCl)). [ |

Theorem 5.2 The signature of knowledge that specifies $i@N algorithm satisfies: completeness,
special soundness under the Strong-RSA assumption and statistical honest verifier zero-knowledge.

Proof Consider two accepting conversations as folows:

<T1,17 ce 7T1,v; T3,T3,T4,Co, C1,C2,¢, 52, 82, Szz, Sry Srzs Sz Sxgy Syy Sy’ Sy’ Sxy’ s Sry’y Syxas Sd)
and
* * * * * * * * * * * * * * *
(Tia,...,Thvy, T2, 15, T4, Cy, C1,Ca, c ,sz,sx,szz,sr,sm,sxl,sm,sy,sy/,syu,swl,sw,,sym,sd>

We will show how to recover the corresponding witnesses for the relation of figure 2. First observe
that, .
g [ TS = g™ [T (1)

from which we obtain that . .
Tg_c* _ gsy,—sy/ fisz—sz (2)

Using lemma 5.9 we obtain that based on the Strong-RSA assumption? should divide both

sy — sy ands? —s.. Asa resulﬂ“?f‘c* = (g = f157°)¢"; now given that (i) the order df}
divides\(n), (i) n is a safe RSA modulus, (iii), ¢* is a2* numbers wheré is smaller tharjlog, n|,

*
s, =51 s;—sz

we have that’? = (g o 157" )? which is easily seen to imply that

* *
s, =81 Sy —S8z

i c—c*
Ty=+g == [ 3
(otherwise we can turn the prover into a factorization algorithm). Using the above e sef%
andg,, — =%
Y c—c*

Next we consider the following equation:

/ —_cot/2—-1 * * o g% _e9t/2—1
S0 pSg—c2b pSzg—C2 Sp pSdrc 85y pSe—C2 Sz —C
gV h” 2 3 fi Ty =g " fa

which implies that,

SX 85 c*
fsm f4 Ty

Tet—c _ Sy =Syl fs;;fsz+(cfc*)2£/ f5;2—5r2+(c_0*)2£/271 sE—sp pSg—5d
4 =9 1 2 3 4

Using similar reasoning as in equation 2 we obtain that
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sy—syn sh—sz ¢ Sx z2 0/2—1 Sp=sr S3=Sd
y CT 42 2 +2/ T {

Ty==xg <= fi“ fo fgcic* f4cjc*
1) =Sl

s, _ si—5g VA _ Spo—Sz l/2—1 _ sr—sp _ sy—s8
Wesete”—c_ic*y,ex—%—i_2 ;0,7;2 _l§_7q2+2/ 197"_%10d_ g_c*d-
Observe that based on the fact thats, € +{0, 1}* TF+++1 it will hold that with overwhelming
probability,0, € S(2*, 2#'*F+k) = S. In a similar fashion it can be shown tiat, € S;.

Next we have that,

_ Vi X x0l! * *
T3 Sg+c2 gsmy/ fiszz _ T3 sy+c*2 gswy/ ffzz
which implies that,
s;—sz—l—(c—c*)ﬂ/ 8 o “Say’ r2—Swz
T, = v f]
and conditioning on the steps we have executed so far, it holds that
(Tg@gg)cfc* — gszy/*%y/ ffzzfszz

Using again lemma 5.9 we obtain that ¢* divides,s;y, — Sgy @nds} — s, simultaneously and as
aresult,

* *
Sl " Say! Spz—Sxz

Ty —oF
Té =+g == f ° 4)

We setd,,,, = M andd,., = sz2—%22 and pased on the fact th& is already specified, using

c—cC c—c*

eqations 3 and 4 we can obtain the following relation :

0,0 ¢0:\00 _ 01 Os- 050, 06020 _ 0, £6s.
(9% f12)0 = g i = g% f1=% = g% f]
something that can be easily seen to imply that = 0.0,, andf,. = 6.0..
We proceed now to the next relation,

TS—ST‘gSTy/ ffrz — T;s:gs:y/ ff:‘z

proceeding in identical fashion as above we obtain#hat= 6,.0,, andf,. = 0,.0..
We proceed now to the next relation; we have that:

ZH
Sgq— —e2t % Sx —C2 *

9% fi =gvfi™ 13 5)
which implies that

1
e *_ sk —8p,+(c—c*)2¢
TQC [ gsy syflzl z1 (6)

Using similar reasoning as in equation 2 we obtain that

s =5y Z1 ~Szy 22”

15 = igccfcc*

We set the witnesse, = Sy and&w1 = = 8”1 + 2% Observe that due to the condition

Spy 85, € £{0, 1} TRARF L it foIIows that with overwhelmlng probability,, € S;.
We proceed to the next relation:
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— /
—Spqyt+c2t/271 *5;2+C*2[/2 Lo st —c2t

712 gSZ’JIZ fiSE—CQZ — T2 gsy12 fl =
This implies that

—s c—c* 22/2*1 * _x\ol
@ +( ) _ gs;g@—syxz flsx set(c—c*)2

5%
conditioning on the already reconstructed values we have that the above is written as :

Oz (c—c*) 8% —8yz, phz(c—c*)
T2 2 = g ED) Y 2f1

and using similar arguments as in equation 2

0o
T2 2 = :l:geme flem

Using the fact thafl, = +¢% ff “1 (as shown above) we can easily derive that it must be the case
thatd,,, = 6,0,, andd, = 0,,0,,.

Next we consider the relations over the elliptic curves. Observe that all withesses for these
relations have been reconstructed already over the integers and there are no withesses dependent on the
parametet = 1, ..., v. For convenience and readability we drop the subsctiptel we have that

_ ot _ _ _ _
e(T1, g2)%* =% e(T1,v)* e(g1, g2) " **e(g1,v) *e(g1,w) **e(g1, g2)e(Th, w) ™ ©

*

* ok o * ok ok ¥ * —
= e(T1,92) %2 e(Th,v)*re(g1,g2) **=e(g1,v) *=e(g1,w) **e(g1,92)° e(Th,w)

which implies:

e(Ty, go) e H o2 (T, )= (T}, )~
s

= e(g1,92)° ¢ e(g1, g2)°= *=%e(g1,v) "= "= e(g1, w)*=

conditional on all the above witness reconstructions we have that:

€(T1,g2)916(T17U)9T€(T1, w) = 6(91792)6(91,92)91926(917 U)M‘ze(gh w)az

which implies that

e(T1, wgy v )e(g1, 92) = e(g*, wgy™v™) = e(Tigy ™, wgy ™) = e(g1, g2)

This implies thatl} g; % ™°4?, ( mod p) would be a valid signature for the underlying BB-signature

scheme.
Finally, we turn to the relations regarding the public-key encryption. First we have that

C026G2sd — 0020 GQsd

which implies,

(G = (G

Since we have already reconstructgd= sg:sd we can rewrite the above as:

c*

(GZ)Gd(cfc*) — (Cg)cfc*
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Note that: generates the subgroup of squares withfp, that are simultaneousliy-th residues.
Moreover(Jg is of course a square insidg,. Given thatP, Q, P, Q' > 2F we have that:— ¢* cancels
in the above equation and thus it holds thgt= G2% mod N2.

In a similar fashion we have that

*
2s%

CRHP (1 + N2 = O3 1™ (1 4+ N2
From which we obtain that,

(CR)" = (HR)imsa((1 4 N)?)i et o)

and using the already reconstructed witnesses we obtain that,

(R = (1) Da((1 4 N)2)Pnleme)

Similarly as before we obtain that
C} = H?(1 4+ N)¥-

Finally, we have that

O%C(HgHgH(hKCOyCl))sd — 0226* (H22H§H(hk700701))52

which implies that,

(022>cfc* _ (H22H§H(hkyco,cl))szfsd

given that we have that; — s; = (c — ¢*)§,; we rewrite the above equation as,
(C3)°" = (H3HT MO faleme)

from which we obtain that
(Co)? = (HZHTHPCoC )

It is easy to see that the ciphertéxty, C, C) with the above structure in conjunction to the relation
Co < N2/2 will decrypt to the valug,.. This completes the soundness proof.

Regarding the statistical honest verifier zero-knowledge consider the following simulator for any
randomly selected’ 1,...,T1 v, 1>, 13,14, Cy, C1, Co from the respective groups and then form an
accepting conversation as follows:

<T1,17 ce 7T1,v; 15,13, T4, Co, C1,C2,¢, 52, 82, S22, Sry Srzs Sz Sxgy Syy Sy’ Sy’ Sxy’ s Sry’y Syxas Sd)

wherec —p {0,1}%, ands, —p {0, 1}V s p {0, 1} s p {0, 1}VoH HhHR
sy —pg £{0, 1}V TFHR g p £{0, 1}V 5 p 410, 1}#}+k+k” Spy R £{0, 1}4/2-1Fk+Hk
Sy Py Pyt —r {0, l}én—2+k+k/1 Sey —r £{0, 1}2n72+u’+k+k’ Sry R +{0, 1}Zn72+v€p+k+k’
Syzy —R £{0, 12271k o p 410 1}N—2HR+E gre selected.

and the valuefy, . .., R1o will be defined as they are determined insidelthsH application in the
verification algorithm of the group signature. Applying lemma 5.10 onsthralues above we obtain
the fact that the simulator is statistically close to real conversations. |
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Figure 3: Overview of the reduction in the proof of security for the misidentification attack.

5.1 Misidentification

Theorem 5.3 Any misidentification attacker in the random oracle model against our group signature
can be transformed to an adaptive chosen message attacker in the standard model against the BB
signature assuming the Strong-RSA assumption.

Proof. — see figure 3 for an overview of the transformation performed in this proof. In this proof we
will assume thatr = 1; the case where > 1 is identical (in this case, the adversary would break at
least one of the underlying BB-signature instantiations).

Let.A be a misidentification adversary as specified in the misidentification attack game that also has
access to a random oradté We will reduce this adversary to an adaptive chosen message adversary
for the BB digital signature.

Let us describe now an adversdsyfor the Boneh-Boyen digital signature. First the adversary is
given the public-key of the signature which includes the description of the gfeus,, Gr as well as
the description of the bilinear map: G; x Gy — G and the valueg,, go andw, v € Gs. The forger
B using this information samples all remaining public parameters for the group signature including the
parameters for the CCA2 encryptip4, i.e., the valuesV, G. B now forms the public-key of the group
signature scheme:

Y = (g1, g2, w,v,desc(G1, Ga, G||e)||(UOHF, g, f,n, N, G, Hy, Hy, H3, hk)

note thatB3 knows the secret-key of the GM in the group signature with the exception of the signing
key for the BB signature, i.e5 does not knowy = log,, w andé = log,, v.
Prior to beginning the simulation o4 the 5 initializes a tableH for the simulation of the random
oracle that is employed byt. The public-stat&t is initialized as described in the attack game (empty).
Now, B starts the simulation of the adversady B has the following queries to answer:
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Random Oracle queries: these are simulated using theXabkusual: if the query is already on the
table B returns the corresponding value; if ntsamples a random element{df, 1}*, it places
it to the table and returns it.

READg;: B returns the whole contents of ti% strings.

JOIN. g, Start — Session queries:B receives the start session command from the adversary. As
the GM does not goes first in tlI®IN protocol,5 simply selects a session id and returns is to
the adversary.

JOIN_gn; Advance — Session queries:B takes a message, «) from the adversary. Recall that
the JOIN protocol has only two communication flowS.returns fail in the following cases: (¥
is not a valid session identifier, (i§)is a valid session identifier butis not an integer in the range
S’; in this case the sessioris marked by as invalid and is terminated. Now:ifis an integer
in the rangeS’, B submitsz to his signing oracle for the BB signature, and obtains through it
a signaturgc, r) such thate(o, wgiv") = e(g1, g2). B returns to the adversary, o, r) where
i = max Stysers + 1 and updatest, se,s andSt;oin—trans accordingly.

OPEN: B knows the secret-keys for the encryption thus opening queries are also straightforward to
answer.

Continuing as above the adversary terminates by producing a measae a valid group signa-
ture (m, o) where,o is equal to

<T1,17 T27 T37 T47 C()v Cl; 027 Cy Sz, SxySxzs Sry Srzy Sxyy Sxay Sy, Sy’ Sy Sxy’ s Sry’s Syzas Sd>

Assume now that the above passes the verification test and moreover it saeEfies, 0, Y, S, St) =

L (i.e., the adversary wins the misidentification attack game); not@Heatemploys only the encryp-
tion secret-key and as a result it can be appliedbyNow using rewinding and the forking lemma of
Pointcheval and Stern [32], we can obtain with non-negligible probabili#y an the same message
m, such that™ is equal to

*

s yxr? S::kl>

x ok k% * % * * * % % * *
<T1,17T2; T37T47 COy Cla 0276 » 829829822951y Sray Spy Soo Sy7 Sy’7 Sy”? Sa;y’? ry’s S

so that the above is also a valid signature of knowledge. Now based on theorem 5.2 we can reconstruct
the witnesses (this is where the Strong-RSA assumption is heeded) and based on proposition 5.1 we
have that<T1’1gi?Z, 6,) is a valid BB signature ofi,. Now observe thadPEN(m, o,), S, St) = L;
due to proposition 5.1, the ciphertext,, C;, Cy must be valid and decrypts to the val@g since
OPEN(m,0,)Y,S,St) = L this means thaf, is not among thec-values that were submitted by the
adversary in the concurrent protoctilIN dialogs with the interface. As a resuitnever queried the
valued,, to its signing oracleB terminates by returningd.; Tl,lgl‘fé 6,) as a forgery against the BB
signature scheme. Note that due to the fact that the integer aigyselected appropriately (see the
parameter selectigp3) it cannot be the case that the adversary submitted somewgltoghe signing
oracle for which it hold¢9,, =,,, ng butf, # ng as integers (with Chinese remaindering this carries to
the caser > 1.

From the above it follows thd outputs a forged signature and thus itis an adaptive chosen message
attacker against the BB signature. |
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Figure 4: Overview of the reduction in the proof of security for the framing attack.

5.2 Framing

Theorem 5.4 Any framing attacker in the random oracle model against our group signature can be
transformed to a factoring algorithm in the standard model assuming the Strong-RSA assumption.

Proof. — consult figure 4 for an overview of the transformation.
Let A be a framing adversary as specified in the framing attack game that also has access to a
random oraclé{. We will transform this adversary to a factoring algoritifthfthat will work for RSA
moduli according to the specifications of the selection inf step 1 of theJOIN dialog, i.e..x € S-S
such thaty, o € S}). Again without loss of generality we assume that 1.
We describe below ho operates given an integep € S’. B will sample the public-key and
the secret-keys of the system exactly as it is specified in 88TUP algorithm.

y = <91792’w)v’deSC(G17GzﬂGHe)”<UOHF’gvfvna N) G> H17H27H37hk>

Prior to beginning the simulation of, B will initialize a tableH for the simulation of the random
oracle that is employed byt. The public-stat&t is initialized as described in the attack game (empty).
Now, B starts the simulation of the adversa#y suppose that the adversasy makesqgy JOIN
dialog initiations. B selectsj, «r {1,...,q0}. Then, in the simulation o, B has the following

gueries to answer:

Random Oracle queries: these are simulated using the*ahkusual: if the query is already on the
table returns the corresponding value; if ntsamples a random element{af, 1}*, it places
it to the table and returns it.

READg;: B returns the whole contents of ti% strings.

MODIFYg;: B allows A to modify join transcripts and identity tags to ts&,s..s and.St;oin—trans
according to the stated restrictions. Note tHais not allowed to reuse existing identity tags or
modify the tags or transcripts of any of the innocent users.
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JOIN yser; Start — Session queries: B receives the start session command from the adversary.
Suppose this is thg-th time that the adversary issuedtart — Session query. As the user
does go first inJOIN protocol, B selectsz; an RSA modulus inS’, unless it is the case that
J = jo wWhereB selectsz; = ny (the challenge RSA modulus] also selects a session id and
returns the id and; to the adversary.

JOIN.pser; Advance — Session queries: B takes a message, msg) from the adversary. Recall
that theJOIN protocol has only two communication flow8.returns fail in the following cases:
(i) s is not a valid session identifier, (i$)is a valid session identifier butsg is nota tuple of the
form (i, o, ) with e(o, wgy’v") = e(g1, g2) Or it holds thati € St.,..; in this case the session
s is marked by as invalid and is terminated. OtherwiBewrites in the public-stat&t the user
i, 1.e., it modifiesSt,sers = Stusers|| () @aNAStjoin—trans = Stioin—trans|| (i, zj, o, 7).

Note that we do not require from the adversary to follow the same numbering of users that the
GM performs during normal protocol executions.

Continuing as above the adversary terminates by producing a message a valid group signa-
turem, o whereo is equal to:

<T1,1, 15,13, Ty, Co, C1,C2, ¢, 52, 82, S22, Sry Srz, Sz Sxoy Sy, Sy’ Sy’ Sxy’ s Sry’y Syxas 3d>

that passes the verification test and moreover it satisies(m,s,), S, St) € St . .; note
that OPEN employs only the public-key encryption secret-key and as a result it can be appligd by
Now using rewinding and the forking lemma of Pointcheval and Stern [32], we can obtain with non-

negligible probability a signature* on the same message wheres* is equal to

* * * * * * * * * * * * *
Sips Spzs 51y 8125 8315 Sas Sys Syts Syits Sayss Spays Sy S)

<T1,17T25 T37T4a 007 Cla C?)C*a s,

V2R R 72

so that the above is also a valid signature of knowledge. Now based on theorem 5.2 we can re-
construct the witnesses (this is where the Strong-RSA assumption is heeded); based on the properties
of the reconstruction we have thét,, 0., is a factorization o#), so thatd,, ,0,, € S; (this range
constraint is enforced by the proof).

Now recall thaOPEN(m, 0, ), S, St) € StZ..,.; this means that, is among ther-values that were
selected by5 in the concurrent protocdi0IN dialogs and as a result with probabilityq it holds that
0. = ng. In this casef,,, 0., is a non-trivial split ofny (due to the fact thatg ¢ S;) and thusB

terminates successfully by returniig, , 6..,. [

5.3 Anonymity

Theorem 5.5 Any anonymity adversary against our group signature in the random oracle model can
be transformed to a CCA2 attacker against the public-key encryption that is employed in our scheme;
this is conditional on the validity of (i) the assumption that the digital signature scheme employed (BB-
signature) satisfies strong existential unforgeability (which is true assuming the Strong Diffie Hellman
Assumption). (ii) the DLOG assumption over the subgroup\oith residues insidé. ..

Proof. — consult figure 5 for an overview of the transformation described in this proof.

Let A be an anonymity adversary as specified in the anonymity attack gatge(1”). Note that
A has access to the random orakle We will transform.A to a CCA2 adversar against the CCA2
public-key encryption that is employed for theEN algorithm. Without loss of generality we assume
thatv = 1. Below we describe the operation of this algoritifin
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Figure 5: Overview of the reduction in the proof of security for the anonymity attack.

23



Initially, B is given the public-keyV, G, Hy, Ha, Hs, desc(UOHF), hk for the encryption scheme.
B will use these values to form the public-key of the group signature scheme. In partiguial,
select

y = <917927w7va deSC(Gla G27 GH6)||<UOHF797 fana N7 G7H17 H27 H37 hk>

as in theSETUP protocol with the exception of the public-key of the encryption. MoreaBewl!
initialize St to empty and initializes tables for the random oracle simulation as usual.

The simulation of4 will proceed as follows: Thelay phase of4 will correspond to the plaintext
selection of the CCA2 adversaB; 5 has to simulate the following oracle queries4f

Random Oracle queries: these are simulated using theabkusual: if the query is already on the
table,3 returns the corresponding value; if nstsamples a random element{a¥, 1}*, it places
it to the table and returns it.

READg;: B returns the whole contents of ti% strings.

JOIN. M, Start — Session queries:3 receives the start session command from the adversary. As
the GM does not go first in th&0IN protocol,B simply selects a session id and returns is to the
adversary.

JOIN. g Advance — Session queries:B takes a message, «) from the adversary. Recall that
the JOIN protocol has only two communication flows. returns fail in the following cases: (i)
s is not a valid session identifier, (i§) is a valid session identifier butis not an integer in the
rangesS’; in this case the sessionis marked by as invalid and is terminated. Now if is
an integer in the rangé’, B computes a BB signature far (3 is in possession of the signing
key); as a resulB obtains a signaturér, ) such thake(o, wgiv") = e(g1, 92). B returns to the
adversary(i, o, ) wherei = max Stysers + 1 and updatest, se,s andSt joim—trans accordingly.

OPEN. A signature is given to be opened. Fisverifies the signature; if verification fail$ returns
L. Then,B parses the signature for the valugs, C1, C> and submitgCy, C1, C2) to its open
oracle. If the open oracle returnsthen B returns_ as well. Otherwise the oracle returns a
plaintextz. B searches int&tjoin—trans fOr a join transcript of the forn{i, z, o, ) and if it is
found it returnsi; otherwise it returnsL.. Observe that this is indistinguishable operation from
the point of view of the adversary to the operation of the regular attack game.

The simulation of thelay terminates and receivesaux, m, cert, secy, certg, seca); if B receives
cert;, sec; that are not valid certificates and secrets it terminates with

Observe the following now: the certificates returned.dyre of the form:cert; = (x1,01,71)
andcerty = (x9,09,72). Moreover, it must be that; # x,. We note that if it is the case; = o
but cert; # certy then this means that the adversary obtained two BB signatures on the same integer
x1 = x2. As the signing oracle would never provide such a signature (it keeps a record of what values,
users have submitted before) it must be the case that the adversary came up with two different signatures
on the same message. This violates the strong existential unforgeability (see [1]) of the BB signature
and thus it can be considered a negligible event.

The CCA2 adversarg terminates its guess stage by outputing’ = aux||cert; ||sec; ||certz||seco
andzxq, z- as its choices for the two plaintexts for the CCA2 challenge.

Now B, given the challenge cipherte&t), C1, C2, must build the group signatuig,, that will be
the challenge fod and should incorporat€, C1, C». TheSIGN operation at step 5 is simulated By
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as follows: B selectsI’ 1, T, 13,1y so thatly ; «—gr Gy, T2,13,Ty g Z;,. Using these values and
by programming the random oracle appropriat&8lyorms the group signaturg,,.

It is easy to see that forming the challenge group signatyén this fashion it is indistinguishable
from actual group signatures of the signer that is selected by the adversary (there will also be some
negligible statistical distance due to the commitméitsds, 7, and the honest verifier zero-knowledge
simulation of the signature). The challenge signature on the messagmild be as follows:

wgs = <T1,17 15,13,1y,Co,C1,Co, ¢, 82, 82,822, Sy Srzs Sx15 Sxay Sys Sy’ Sy’ Szy’ s Sry’» Syxas 5d>

With this setup3 proceeds with the simulation of tigaess stage of the adversary. The operation
proceeds in the same fashion as above with the usual restrictiongPENeoracle supplied to the
adversary is restricted not to accept the same signature as the challenge signature. Suppose that the
adversary supplies the following signature on a messader opening:

¢/ = <T{,17 TQ/’ Tév T;i, C(/]7 Ci? 057 C/v 5/27 S/mv S?pzﬂ S;, Sg"zv S?vl ’ 52527 8;7 3;’7 5;”7 Sf’cy’v S;y/, S?gacy Sil>
According to the restriction imposed to the adversary it holds that),s) # (m/,¢’). Now,
in the case that/’ is a valid signature, with a simulation soundness argument, the restriction that
(m,1gs) # (m/,¢") implies that(Cy, C1, Ca) # (C}), C1, Cy) with overwhelming probability. Indeed
if A is capable of producing a paim’, ) so thaty’ is a valid signature om andv’ and,, share
the same identification ciphertekt’y, C;, Cs) this means that we will be able to compute discrete-
logarithms over the subgroup of quadratic aieth residues it} ,.
Based on the above it holds that the signatifrean be opened b# through his opening oracle.
Finally, B terminates by returning the output of the adversdnit is easy to verify that3 is a CCA2
adversary for the employed public-key encryption. |

The above three theorems culminate to the following theorem:

Theorem 5.6 Our group signature is correct and secure in the random oracle model under the as-
sumptions: SDH, Linear-DDH, Strong-RSA and DCR assumptions.

Proof. Security follows directly from theorems 5.3, 5.4 and 5.5 as well as the following known results:
the public-key encryption employed is CCA2 secure assuming the DCR assumption [16], the BB-digital
signature scheme is strongly existential unforgeable under the SDH assumption, [8]. Correctness as in
definition 3.2 is easier to show and is omitted. |
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Appendix: Auxiliary Lemmas

Lemma 5.7 Letn = pg withp = 2p’ + 1 andq = 2¢’ + 1 with p, ¢, p’, ¢’ all prime numbers. Suppose
we knowy € Z%, z € QR(n) andt, m € Z such thaty’ =,, 2™ with ged(¢,m) < t and|t| > 1. Then
we can fince > 1 andu € Z;, such that: =,, u®, or we can factom.

Proof. (of lemma 5.7) First assume w.l.0.g. thas a positive integer (if not, set«— y~! mod n).
We consider three cases according tegs ged(t, m).

Case (i) 6 = 1. In this case we can compute € Z such thatut + fm = 1. From this, in turn, we
obtain:

5 — Lattfm _ (Za)t(zm)ﬁ _ (Zayﬁ)t
and thus, we return as the solution to the challenge, the{paih = (2%y°,t).
Case (i) suppose that > 1 andgcd(d,p'q’) = 1. It follows thatd < min{|¢|, |m|} and ift’ = £ and
m' =2, it holds that(y")° =, (2™)’.

Now observe that i J§ we will have immediately thay* =, »™ and becausgcd(t/,m’) = 1
andt’ > 1 (this is the case by the requirement of the statement of the thegréth m) < t) we are
reduced to case (i).

Suppose instead that= 2‘v with ¢ > 1. We have thaty")2” =, (z™)%" by assumption we

have thatged(v, p'q’) = 1 and we obtain from this that’ )? =, (2™)2. From this we have that
there exisy, by € {0,1} such that:™ = (—1)"1x%2y*" wherey is an element of order 2 insid&"
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so thaty #, —1. Now if ¢’ is odd, we have that—1)" x" =, ((—1)"x")" and as a result we have
2 = ((—1)"xb29)" and we reduce to case (i) as well. Now suppose tthiateven (something that
forcesm’ to be odd). But theny’)? =,, (2™')? would imply immediately thay" =,, 2" since both
y"', 2™ € QR(n) and we are reduced again to case i.

Case (iii) Suppose thaged(6,p'q’) > 1. It follows thatd is a multiple ofp’ (w.l.o.g.). Then we
can factorn as follows: choose a random integerless tham; if gcd(w,n) > 1 then we are done;
otherwise,w € Z! and will happen thatv is a square modulp = 2p’ + 1 with high probability,
(since approximately half of the positive integers less thare squares modulp). It follows that
w? = (w2)% = (w2)P~1 =, 1. Now compute the integdy = w® = w™ (modn), wheres = mp/
for somer € Z. Sincen | U — w™' it follows thatp | U — w™ and as a result) =, w™' =,
(w)™ =, 1. It follows that there exists an ¢ Z such that/ — 1 = rp. Observe that it has to be that
r < g sinceU < n. From this we obtain thatcd(U — 1,n) = p. [ |

Lemma 5.8 Let A, B be two integers wittA > BandA = 7B+ v with0 < v < B and letX

be a random variable witlX < [A]. If Y = X mod B it holds thatY"’s statistical distance from
the uniform inZp is at mostv/A. If Y/ = | X/B], then the statistical distance of the uniform over
{0,...,7}andY”’ is at mostl /(7 + 1).

Lemma5.9 Let By,...,B,, <—r QR(n) and let.A be aPPT algorithm that on inputBy, ..., B,,
with probability o, it outputs integersy, .. ., e, t andy € Z such thatt| > 1 and[[\2, B = '
suchthatdi : t Je;. Then we can usd to solve the Strong-RSA problem with probability at leaét.

Proof. (of lemma 5.9) First observe we may assume without loss of generality ihaiositive since
we can always set = y~! as the output ofd.

The sample space over which the probabilitis taken is identified to the coin tosses4find the
random choices 0By, ..., By, from QR(n).

Consider now the following experiment denotedéhyl et g be a fixed generator @) R(n). Select
b; «—r [n?], and simulated on inputg®, ..., ¢"*. From lemma 5.8 it follows thali; mod p'q’ is
statistically indistinguishable from the unifor),, and thus the elementfs; = gifori=1,...,m
are uniformly selected fror@ R(n). It follows thaty! = g¢101++embm  The output of the experiment
isel,...,em,y,t. Letd = ged(e1by + . . . + embm, t). The sample space for the evéntorresponds
to the choices foby, . . ., b,, as well as the coin tosses for the simulationdof

We can split the sample spaceHfo the following events (iFr,;: the output ofA fails to meet the
specifications (eithet, = 1, or Y ™" | e;b; #,/¢ t). (i) Eqjy the output ofA meets the specifications
except that it holds that for all=1,...,n, ¢ | ;. (iii) Es- all the specifications are met and t.

(iv) Es—. all the specifications are met and= ¢. Based on the assumption of the lemma we have that
Prob|E;s-:] + Prob[Es—;] = « (for simplicity we omit the negligible statistical distance that exists
between the executions gf and the experimers).

Observe that if the everfs., happens the result of the theorem will follow directly from lemma
5.7 (by plugging the Strong-RSA challenge in the place of the genegaétwove and setting: =
e1b1 + ...+ enbn).

Next, let us consider the eveR}_;. The eventts_; suggests | e1b1 + ... + e by, Observe that
we can view the evenks—; as containing tuples of the forfar, ..., 7, p) wherer; = L%j and
p is a sequence of coin tosses that fixes the randomnegsasfwell as the choice @f;(modp’q’) for
j=1,...,m. Moreover, note that the output gf depends only op and is independent of the choice
of w1,...,m,. Consider the subsét of Es_; for which it holds(my, ..., 7y, p) € Q iff there existsj
such that no tuple of the forfry, ..., 7—1,m; £ 1, 7j41,...,7m, p) belongs inEs_;.
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Next we show that iProb[(?] > ethenProb|E,_;] < a—e. Observe thatthe factry, ..., mn,, p) €
(2 excludes at least one tuple of the fofm, ..., 71, m;£1, mj41,... T, p) to belong inE;s—;. Nev-
ertheless this tuple has the sameomponent to a tuple that belongsig_; and thus it cannot belong
to eitherEx, or Egiy. It follows that the tupl€n, ..., mj_1,7; £ 1,741, ... 7T, p) belongs taFs,
and thus ifProb[(2] > ¢ it holds thatProb[Es.;] > € and as a resuProb[Es—;] < o — €.

Now suppose that the evefl;—; — 2 happens, we will show how to facter. In this case we
will obtain ey, ..., e, andt such that | e;b; + ... + enby, and3i : ¢ ) e;. Suppose without loss
of generality that = 1. We know that the outcome,, .. ., e, t of the execution of4 corresponds
to some tuplemy, ..., mn,, p) of Es—; — Q and we obtain that | e;(m1p'q’ + by mod p'q’) + exbs +
...embm With t Je;. Due to the fact thatry, . .., mm, p) € Es—; — Q it follows that some tuple of the
form (m; £ 1,7, ..., mm, p) € Es—:. Because the behavior gf only depends op it follows that for
the same, eq, ..., ey itwillhold ¢ | e;((m £1)p'¢’ + b1 mod p'q’) + eaba+. . . e by,. By combining
the above two divisibility relationships we obtain thdte;p'¢’, and since ) e; we have that | p'q’.
This implies that we can facter as argued in the proof of lemma 5.7.

Suppose thaProb[E;-;] > «/3. It follows that we can solve the Strong-RSA with probability
a/3. On the other hand Prob[Es-;] < a/3 we have thaProb|E;s_;] > 2«/3. Moreover, it follows
thatProb[(?] < «/3 and thusProb[E;—; — ] > «/3. Since we can solve the Strong-RSA problem
when either of the eventBs; or Es—; — €) happen, it follows that we can solve the strong-RSA
problem with probability at least/3. |

Lemma 5.10 Consider afixed € [L, R] withm = R—L and the random variablese r 40, 25m)],
c €r {0,1}*. The statistical distance of the random variable: ¢ —c(z— L) from the random variable
s €g £[0, 25! m] is less thare !~ 1,

Proof. We will denote byD, the distribution of the random variabkeand byD,, the distribution of
§=t— c(x — L). Assume that the support of the two random variablé&s is

e RegardingD, observe that a certaig in +[0, 2¥*!m] has probability of being selected equal to
s, (uniform probability distribution). Anyso ¢ +(0, 2¥!m] has probability O.

e RegardingDy,, observe that a certaify has the following probabilities of being selected:

1. Forsy € [—2F+m 28+l — (28 — 1)m] for each of the2® differentcy € {0,1}* we
can find atg such thatsy = to — cox, as a result the probability of obtaining the given

according tdDy, is S FTT) = S g

2. Forsg € [—2Flm — (2F — 1)m, —2Fm — 1] or sg € [2¥m — (2F — 1)m + 1,28 m]
the probability of obtainingq according taDy, is less thanm.

3. For the remainingy < —2*+'m — (2% — 1)m andsy > 2*+'m the probability of selecting
them according t®, is equal to 0.

It is clear from the above that the absolute difference between the probability of a cgren
cording toD,, andD, is 0 for the integer ranges of cases 1 and 3 above. The distribdipasd D),
will accumulate some statistical distance though due to their different behavieg fhat belong to
the integer range specified in item 2. In this case, for a spegifidistributionD, assigns probabil-
ity either0 or m whereas distributioD,, assigns probability that belongs in the real interval
[0, m). Clearly, in the worst case the absolute difference WiIIj@gflTJr1 The number of

elementss, of case 2, ar€ - (2% — 1)m thus it follows that the statistical distance of the distributions
D, andD,, cannot be greater thdd* — 1)m /(28T +1m 4 1) < 27=1. This completes the proof. B
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