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Abstract

A group signature is a basic privacy mechanism. The group joining operation is a critical
component of such a scheme. To date all secure group signature schemes either employed a trusted-
party aided join operation or a complex joining protocol requiring many interactions between the
prospective user and the Group Manager (GM). In addition no efficient scheme employed a join
protocol proven secure against adversaries that have the capability to dynamically initiate multiple
concurrent join sessions during an attack.

This work presents the first efficient group signature scheme with a simple Joining protocol that
is based on a “single message and signature response” interaction between the prospective user and
the GM. This single-message and signature-response registration paradigm where no other actions
are taken, is the most efficient possible join interaction and was originally alluded to in 1997 by
Camenisch and Stadler, but its efficient instantiation remained open till now.

The fact that joining has two short communication flows and does not require secure channels is
highly advantageous: for example, it allows users to easily join by a proxy (i.e., a security officer of
a company can send a file with all registration requests in his company and get back their certificates
for distribution back to members of the company). It further allows an easy and non-interactive
global system re-keying operation as well as straightforward treatment of multi-group signatures.
We present a strong security model for group signatures (the first explicitly taking into account
concurrent join attacks) and an efficient scheme with a single-message and signature-response join
protocol.

The present manuscript is a full version containing proofs, minor corrections as well as a more
flexible and efficient protocol construction compared to the proceedings version [28].
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1 Introduction

Group signaturesis a useful anonymous non-repudiable multi-use credential primitive that was in-
troduced by Chaum and Van Heyst [18]. It involves a group of users, each holding a membership
certificate that allows a user to issue a publicly verifiable signature while hiding the identity of the
actual signer within the group. The public-verification procedure employs only the public-key of the
group. Furthermore, in the case of any dispute or abuse, it is possible for the group manager (GM) to
“open” an individual signature and reveal the identity of its originator.

Constructing an efficient group signature has been a research target for many years, see e.g., [19,
17, 14, 15, 10, 29, 4, 2, 12, 26, 9, 3, 11, 13]. A scalable scheme that provides constant signature size and
has resistance to attacks by coalitions of users was given in [2]. Earlier constructions were designed
without a formal model and definition of security of such schemes, and thus with partial security proofs
at the best case (while many were actually broken).

A central issue in group signatures has been the way by which users join the group. Recently, [6]
gave the first formal model of a somewhat “relaxed” group signature primitive where a trusted party
generates and hands out all users’ keys. They also produced a generic solution thus demonstrating
the polynomial-time plausibility of their notion of trusted-party aided join group signatures. This is in
contrast with users who dynamically join the system and get their individual keys by interacting with
the group manager (as in the protocol of [2]). Dynamic joins that allow users to register sequentially
were studied formally in [25, 27] where efficient constructions were given and in [6, 7] where a generic
plausibility proof was provided.

The most efficient and conceptually simple joining procedure for a group signature scheme (what
we will call the “single-message and signature-response paradigm”) was illustrated by Camenisch and
Stadler [17] who sketched a generic solution (which was followed in careful details in [6, 7]). In this
type of joining protocol, the prospective user has an appropriately distributed secretx′ and it computes
a one way functionf on it to obtainx = f(x′). The user sendsx to the GM who, in turn, signs
x and returns the signatureσ to the user using an appropriate signing algorithm. This completes the
interaction of the join protocol. The possession of the signatureσ onx = f(x′) enables a user to sign
anonymously a messagem by simply encryptingx probabilistically intoψ (under the GM’s public key
or whatever entity is supposed to execute the opening algorithm) and by providing a zero-knowledge
proof of (i) the fact that theψ is an encryption of somex known to the prover, (ii) the fact that the
prover knowsx′ a preimage of thatx underf , (iii) the fact that the prover knows a signature issued by
the GM on thatx.

While the Camenisch-Stadler approach is elegant and advantageous (as we argue below), its in-
stantiation by an efficient scheme turned out to be elusive, since the many schemes that have been
suggested in the last eight years approximated it but none really employed it. In fact, all the efficient
schemes in the non-trusted-party-aided joining setting that were not broken used additional communi-
cations during the join protocol usually to assure that certain constraints and certain knowledge of the
joining user is present, i.e., the prospective user had to engage in an interactive zero-knowledge proof
with the GM. It was not at all apparent whether the single-message and signature-response join would
actually be instantiable in anefficientmanner in aprovably secure scheme. Moreover the employment
of such proofs of knowledge has the usual shortcomings with respect to adversaries operating in the
concurrent setting (namely, rewinding cannot be employed and a “straight-line” approach needs to be
followed that makes the joining protocols even more involved).

To conclude the motivation for our result, we summarize the advantages of a group signature em-
ploying a single-message and signature-response joining protocol:

1. Concurrency:Joining of users can be done concurrently where a batch of users join at the same
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time. This enables group managers over the Internet (where servers are multi-thread machines).

2. Proxy Join: Users can be joined by a proxy collecting all their requests and then collecting
the responses from the group manager; this is a very effective way to enroll companies and
organizations by delegating collection and distribution to security officers. It is highly effective
in enrolling to an identity escrow scheme without the need for random oracle proofs.

3. Multi-Group Scenario: There may be a number of groups; since single-message and signature-
response joins require essentially no interaction between the GM and the prospective user, users
may accumulate many GM membership signatures on the samex value non-interactively thus
easily becoming members of multiple-groups.

1.1 Our result

In this work we implement the first group signature scheme with a single-message and signature-
response join protocol to be exploited for concurrent joins and other advantages as above, thus im-
plementing efficiently the Camenisch-Stadler approach for the first time1.

We start by presenting the first model of “group signature with concurrent joins” which builds
on the recent formal models and consists of a set of attacks. We note that in a privacy primitive
interacting users may be conducting simultaneous attacks against each other and these need to be
captured formally. We call our attacks: misidentification attack, framing attack and anonymity attack
and is an extension of our sequential-join formal model for group signatures in [27]. We then implement
a scheme based on specific assumptions and prove its security. The scheme allows adversarial opening
of signatures and its signature size is only about twice the size of the scheme of [2] (that did not allow
for adversarial opening or concurrent join attacks).

From a technical viewpoint we employ a number of complex primitives including the digital sig-
nature scheme of Boneh and Boyen [8] (hence referred to as the BB signature) as well as verifiable
encryption for discrete-logarithms that are based on the Paillier encryption function [31, 21, 16, 24].

A novelty of our technical approach (and perhaps a partial explanation why we manage to achieve
an efficient single-message and signature-response join) is that we deviate from most of recent group
signature literature by instantiating the one-way function employed by the prospective user during the
join with multiplication instead of exponentiation. Our general design approach is outlined in figure
1: users sample an RSA modulus and then obtain a short chain of BB certificates on it (numbering
from one to five signatures). This modest interaction (which is simply a PKI registration in a domain
employing RSA moduli with a BB signature for certification) allows users to sign as group members.

Our security proofs follow a modular approach: in a nutshell, a misidentification adversary is turned
into a BB-forger, a framing adversary is turned into a factoring algorithm and an anonymity attacker
is turned into a CCA2 adversary against the encryption algorithm we employ. The group signature
itself is based on the Fiat-Shamir paradigm, by essentially turning an identity escrow (anonymous
identification) system into a signature and employing a random oracle. We note that the interactive
version of our group signature yields an identity escrow scheme in a straightforward manner that can
also have concurrent group signing by employing general transformation techniques forΣ-protocols,
e.g. [23].

1In some recent schemes of group signatures and related primitives based on dynamic accumulators [33, 20], a simple
two message join was implemented; nevertheless this was to be followed by local modifications of keys ofall existing users;
we do not consider such a protocol efficient. In our solution, keys of other users are unaffected when new members are
introduced to the group.

4



User Join 
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Figure 1: Overview of our general group signature design. The BB signature can be substituted by
potentially other signatures that are suitable for algebraic encryption with efficient validity proof.

The present manuscript is a full version containing proofs, minor corrections as well as a more
flexible and efficient protocol construction compared to the proceedings version [28].

2 Preliminaries

Interactive Turing Machines and Concurrent Executions. A two-party protocol is a pair of proba-
bilistic polynomial-time bounded Interactive Turing machines〈A,B〉. Each ofA,B has a private input
tape, work-tapes, a (joint) communication tape and a private output tape. An execution of a protocol
〈A,B〉 on inputsx, y for the two players will be denoted by[A(x),B(y)]. For an execution of a protocol
we will consider the following random variables: (i)Trans[A(x),B(y)] is the contents of the commu-
nication tape after the two parties terminate. (ii)OutA[A(x),B(y)] is the contents of the private output
tape of playerA after termination. (iii)OutB[A(x),B(y)] is the contents of the private output tape of
playerB after termination.

Now suppose thatP = 〈A,B〉 is a protocol. An “interface oracle” for concurrent simulation of
playerB, denoted byI[P↔B(y)], is an oracle that accepts the following queries:

Q1. Start− Session: The interface oracleI[P↔B(y)] initiates a session for the protocolP: it
selects a session identifiers and if B is the player that goes first in the protocolP, the interface
simulates the first move ofB on inputy; the interface returns as answer to theStart− Session
query the session identifiers and the output of the simulation of playerB’s first move (if any).
The interface keeps a database with the state of playerB for the session identifiers; the state
includes all coin tosses ofB, and the contents of all tapes including the communication tape.

Q2. Advance− Session(s,msg) The interface oracle looks up the table of sessions and recovers
the state of playerB for the session with identifiers (if there is no such session the interface
returns⊥ as answer to the oracle query). If sessions exists the interface appendsmsg to the
communication tape of the session and continues the simulation of playerB (as ifmsg is the
message that is written to the communication tape of playerB by playerA).

We will use the notationMI[P↔B(·)] to denote any probabilistic Turing machineM that has access to
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an interface oracle as defined above. Note that the interface oracleI[P↔A(x)] (for concurrent executions
of player A in the protocolP) can be defined in the same fashion as above. Frequently protocol
executions are stateful, e.g. there is a database, or stateSt in general that an instantiation of the
protocolP may consult. This stateSt will be maintained by the interface oracleI. In this case we
will write ISt[P↔B(·)]. In the case that a TMM has access to a stateful interface oracleI we will

write MISt[P↔B(·)]. Depending on the case,I may modify the stateSt or even allow read and write
access toSt by M . In such cases we will writeMISt[P↔B(·),READSt,MODIFYSt], whereREADSt is an
oracle interfaced toM throughI that given a fixed input returns the contents of theSt and similarly
MODIFYSt is an oracle that allowsM to modify the contents ofSt using some standard encoding and
addressing scheme.

Bilinear Maps. Let G1,G2 two groups of prime orderp so that (i)G1 = 〈g1〉 andG2 = 〈g2〉; (ii)
τ : G2 → G1 is an isomorphism withτ(g2) = g1 and (iii) e : G1 × G2 → GT is a bilinear map. We
remark that in many cases it can be thatG1 = G2 (and in this caseψ would be the identity mapping).
Let G1 = 〈g1〉,G2 = 〈g2〉 groups as above with|G1| = |G2| = p; a bilinear map is a mape s.t. for all
(u, v) ∈ G1 ×G2 it holds thate(ux, vy) = e(u, v)xy ande(g1, g2) 6= 1.

Intractability Assumptions. We will employ the following intractability assumptions:
TheStrong Diffie Hellman Assumption(SDH) was put forth by Boneh and Boyen [8]. Theq-SDH

problem over two groupsG1,G2 is defined as follows: given a(q + 2)-tuple〈g1, g2, gγ2 , . . . , g
(γ)q

2 〉 as

input, output a pair(g
1

γ+x

1 , x) wherex ∈ Z∗
p. Theq-SDH assumption suggests that any probabilistic

polynomial-time (PPT) algorithm solving theq-SDH problem has negligible success probability. When
q is any polynomial-time function on the security parameter we will write simply SDH.

The Strong-RSAproblem [5] is as follows: givenn, z ∈ QR(n), whereQR(n) is the group of
quadratic residues ofZ∗

n asks for two integersu, e > 1 so thatue ≡n z. The Strong-RSA assumption
suggests that any PPT algorithm solving the Strong-RSA problem has negligible success probability.

TheDecisional Composite Residuosity(DCR) assumption [31] is defined as follows: it is compu-
tationally hard to distinguish between the distributions of tuples of the form(N,uN mod N2) where
N is an RSA safe composite modulus andu←R Z∗

N2 and the distribution of tuples of the form(N, v)
whereN is an RSA safe composite modulus andv ←R Z∗

N .

3 Group Signatures with Concurrent Join : Modeling

In this section we give the formal definition of group signatures with concurrent join. First we start
with the syntax of the signature. The parties that are involved in the scheme include the Group Manager
(GM), the Users and the Verifiers.

3.1 Syntax

Definition 3.1 A group signature scheme with concurrent joins is a digital signature scheme that is
comprised of the following five procedures:

SETUP: it is a probabilistic algorithm that on input a security parameter1ν , it outputs the group
public keyY (including all system parameters) and the secret keyS for the GM.SETUP ini-
tializes a public state stringSt = (Stusers, Stjoin−trans) with two componentsStusers = ε
andStjoin−trans = ε. The public state stringSt will hold the user identity database and the
database of the Join protocol transcripts. This information will be publicly available and will
grow as more users are introduced into the system.
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JOIN: A protocolbetween the GM and a user that results in the user becoming a new group member.
The user’s output is amembership certificateand amembership secret. We will denote thei-th
user’s membership certificate bycerti and the corresponding membership secret byseci.

SinceJOIN is a two-party protocol, its specification includes the description of two interactive
Turing Machines (ITM)Juser, JGM. OnlyJuser will have a private output.

According to the notations of section 2 an execution of the protocol is denoted as[Juser(St,Y)↔
JGM(St,Y,S)] and has two “output” components:

1. the user private output,〈i, certi, seci〉 ← User[Juser(St,Y)↔ JGM(St,Y,S)], and

2. the public transcript,transcripti ← Trans[ Juser(St,Y)↔ JGM(St,Y,S)].

After a successful execution ofJOIN the following updates are made:Stusers = Stusers||〈i〉 and
Stjoin−trans = Stjoin−trans|| 〈i, transcripti〉. The identity-tagi will be selected from a space of
possible identity tags denoted byID.

SIGN: A probabilistic algorithm that given the group’s public-key, a membership certificate, a mem-
bership secret and a messagem, it outputs a group signature for the messagem. We write
SIGN(Y, certi, seci,m) to denote the application of the signing algorithm on the messagem.

VERIFY: An algorithm for establishing the validity of an alleged group signature on a message with re-
spect to a group public-key. Ifσ is a signature on a messagem, then we haveVERIFY(Y,m, σ) ∈
{>,⊥}.

OPEN: An algorithm that, given a message, a valid group signature on it, a group public-key, the
GM’s secret-key and the public-state it determines the identity of the signer. In particular
OPEN(m,σ, St,Y,S) ∈ Stusers ∪ {⊥}.

Notation. Below we will introduce a helpful notation for describing the relationship between transcripts
and membership certificates and secrets. Given〈Y,S〉 ← SETUP(1ν) we define the following relations
over strings based onY and some public stateSt,

〈i, cert, sec〉�(Y,St) transcript if there exist coin tossesρ for JGM andJUser so that

〈i, cert, sec〉 = User[JUser(St,Y)↔ JGM(St,Y,S)](ρ)

and
transcript = Trans[JUser(St,Y)↔ JGM(St,Y,S)](ρ)

Similarly we will definecert �Y sec, if there exist coin tossesρ for JGM andJUser and a stateSt so
that

〈i, cert, sec〉 = User[JUser(St,Y)↔ JGM(St,Y,S)](ρ)

Finally we define the set of all valid public statesValid as follows:St0 ∈ Valid if there exists a PPT
Turing machineM and〈Y,S〉 ← SETUP(1ν) so that whenMISt[JOIN↔GM(St,Y,S),READSt] terminates
it holds thatSt = St0 and the interface oracleI given toM initializesSt = (ε, ε) and allowsM to
have read access toSt throughREAD queries. IfISt initializesSt to someSt0 ∈ Valid that is not(ε, ε)
then this defines the set of allvalid extensionsof the public-stateSt0 that will be denoted byValidSt0 .
ObviouslyValid = Valid(ε,ε).
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3.2 Correctness

Below we define the correctness of a group signature scheme that satisfies the above syntax. Note that
a group signature is a tuple〈SETUP, JOIN, SIGN, VERIFY, OPEN〉 with JOIN = 〈JUser, JGM〉.

Definition 3.2 A group signature with concurrent join is correct if the following are true:

C1. (users are assigned unique names) For anySt ∈ Valid it holds thatStusers contains no multiply
defined identity-tags, i.e., ifStusers = 〈i1〉|| . . . ||〈iK〉 it holds thatj 6= j′ ⇒ ij 6= ij′ .

C2. (signing is correct) For any〈Y,S〉 ← SETUP(1ν), any stringscert �Y sec and anym ∈ {0, 1}∗,
it holds thatVERIFY(Y,m, SIGN(Y, cert, sec,m)) = >.

C3. (open is correct) For any〈Y,S〉 ← SETUP(1ν), anySt ∈ Valid, anym ∈ {0, 1}∗, and any
〈i, cert, sec〉 �(Y,St) transcript it holds thatOPEN(m, SIGN(Y, cert, sec, m), St′′,Y,S) = i,
whereSt′′ ∈ ValidSt′ andSt′ is defined as follows:St′users = Stusers||〈i〉 andSt′join−trans =
Stjoin−trans||〈i, transcript〉.

PropertyC1 requires that theJOIN protocol assigns a different identity tag to all users. Property
C2 ensures the correctness of the underlying signing and verification for any valid signing key (that
includes a membership secret and a membership certificate). Finally, propertyC3ensures that theOPEN
algorithm correctly identifies all signers: in particular it says that if a user is introduced at some moment
in the system’s operation and the public-stateSt is updated with the user’s identity tag resulting to state
St′ then it holds that whenever this user issues a group signature the user will be correctly identified for
every public stateSt′′ that succeeds the public-stateSt′ of the system. We note that it may be viable to
collapseC1andC3but, given the intuitiveness of the formulation, we keep them as separate properties.

3.3 Security

Security against group signatures with concurrent join, will be broken into three basic properties fol-
lowing the model designs of [25, 27]. The properties are formalized as games between the adversary
and an entity called the interface, denoted byI that represents theuncorrupted aspect of the systemin
each attack.

Misidentification. In a misidentification attack, the adversary joins the system through possibly many
concurrent sessions of theJOIN protocol and it attempts to produce a signature that cannot be opened
to any of the users that are adversarially controlled. We note that without loss of generality we will
assume thatall users introduced in the system are adversarially controlled; this means that the goal of
the adversary is to simply make theOPEN algorithm to fail. We remark that adversaries that make the
OPEN algorithm to point to an innocent user will be handled in the framing attack (next paragraph).

Below,ISt[JOIN↔GM ] will denote the interface oracle for concurrent simulation of theGM party in
the protocolJOIN (refer to section 2 for the definition). Note that the interfaceI has access to the public
state stringSt and it updates it accordingly whenever a new user (the adversary that is) successfully
completes theJOIN dialog. Also, an oracleREADSt is provided to the adversary that allows him to read
the contents of the public state database that contains the identification transcripts and user identity
tags. Finally, an oracleOPEN is provided to the adversary that allows him to submit signatures and
obtain the output of the opening algorithm.

The Misidentification-Attack GameGA
mis (denoted byGA

mis(1
ν)):

1. 〈Y,S〉 ← SETUP(1ν); St = (Stusers, Stjoin−trans) = (ε, ε);
2. 〈m,σ〉 ← AISt[JOIN↔GM(St,Y,S),READSt,OPEN](Y);
3. If (VERIFY(Y,m, σ) = >) ∧ (OPEN(m,σ,Y,S, St) = ⊥) then return> else return⊥;
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We will say that a group signature is secure against misidentification attacks with concurrent join
provided that for allA it holds thatProb[GA

mis(1
ν) = >] = 1− negl(ν).

Framing. In a framing attack the adversary plays the role of the system where the interface represents
a handful of innocent users. A framing attack is meant to capture any adversarial behavior that allows
the adversary to make the open algorithm point to an innocent user. We remark that this captures the
notion of exculpability as well as any other adversarial behavior that frames an innocent user. In the
concurrent setting, we allow the adversary to initiate many concurrent executions of theJOIN dialog
playing the role of a malicious GM. The goal of the adversary now is to produce a signature that opens
to one of the innocent users.

Naturally in modeling such an attack we cannot allow to the adversary to do all the bookkeeping
for the user database himself (otherwise anOPEN operation would be without meaning). Every time the
adversary successfully terminates aJOIN dialog with an innocent user that is controlled by the interface
I, the interface will add the user identity into theStusers and will append the whole communication
transcript toStjoin−trans. Moreover it will keep a private database containing the secrets of the inno-
cent users that will have the format〈i, seci〉 (these will not be accessible to the adversary). In addition
to the above, we will allow the adversary to submit queries to aSIGN oracle that will be handled by
the interfaceI and will accept the identity of one of the innocent users and a message and will return a
signature of this message with the signing mechanism of the named user.

We allow the adversary to have appropriately restricted modify access to the public-stateSt; this
access will be handled byI in the form of theMODIFYSt oracle query. As mentioned already we
will not give to the adversary full write capability to the public stateSt since if he is allowed to this,
opening any signature correctly would be meaningless (e.g., if the adversary erases the database of
JOIN transcripts it is straightforward that the opening capability is cancelled). The restrictions are as
follows: MODIFYSt will not permit the adversary to insert a join transcript that reuses an identity tag
(this restriction is essential to maintain the semantics of theOPEN unambiguous) and will not allow
the adversary to modify any of the identity tags or join transcripts of the innocent users (to these the
adversary will have read-only access). Any other modification of the public-state will be allowed byI
(in particular the adversary is allowed to introduce users to the public-state as well as erase them — for
this reason there is no need for a “corrupt” oracle).

We will use the notationStIusers to denote all innocent users in the system that are introduced by
the execution of the concurrentJOIN oracle and are managed by the interface oracleI.

The Framing-Attack GameGA
fra (denoted byGA

fra(1
ν)):

1. 〈Y,S〉 ← SETUP(1ν); St = (Stusers, Stjoin−trans) = (ε, ε);
2. 〈m,σ〉 ← AI[JOIN↔User(Y),SIGN,READSt,MODIFYSt](Y,S)
3. i = OPEN(m,σ, St,Y,S);
4. If (VERIFY(Y,m, σ) = >) ∧ (i ∈ StIusers) then return> else return⊥;

We say that a group signature satisfies security against framing attacks with concurrent join pro-
vided that for allA it holds thatProb[GA

fra(1
ν) = >] = 1− negl(ν).

Anonymity. Finally, anonymity is modeled as a sort of CCA2 attack against the identity encryption
embedding mechanism of the group signature.
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The Anonymity-attack GameGA
anon (denoted byGA

anon(1
ν)):

1. 〈Y,S〉 ← SETUP(1ν); St = (Stusers, Stjoin−trans) = (ε, ε);
2. 〈aux,m, cert1, sec1, cert2, sec2, 〉 ← AI[JOIN↔GM(St,Y,S),READSt,OPEN](play,Y)
3. if ¬((cert1 �Y sec1) ∧ (cert2 �Y sec2)) or cert1 = cert2 then terminate; return⊥;
4. Chooseb←R {1, 2};
5. ψ ← SIGN(Y, certb, secb,m);
6. b∗ ← AI[JOIN↔GM(St,Y,S),READSt,OPEN

¬ψ ](guess, aux);
7. if b = b∗ return> else return⊥;

We note that theOPEN¬ψ oracle operates as theOPEN oracle with the usual restriction that it should
return⊥ if the adversary submitsψ as the signature to be opened.

A group signature is said to be secure against anonymity attacks with concurrent join provided that
for all A it holds that2Prob[GA

anon(1
ν) = >]− 1 = negl(ν).

Based on all the above we will say that a group signature with concurrent join issecureprovided
that it is secure against misidentification, framing and anonymity attacks.

4 Group Signatures with Efficient Concurrent Join : Construction

In this section we describe our efficient group signature construction. Our construction below is an
optimized and more flexible variant of the scheme presented in the proceedings version of this work,
[28]. A number of primitives proved to be instrumental in our construction including: Integer commit-
ments [22], BB signatures [8] and a CCA2 variant of Pailier encryption [31, 24, 16]. We first begin by
describing the public-parameters our system will employ.

Public-parameters.The public parameters of the scheme are as follows:

p1 A (small) integer parameterv (1 ≤ v ≤ 5) andv pairs of groups of orderpt wherept is a`p-bit
prime,pt > 2`p−1, denoted byG1,t = 〈g1,t〉 andG2,t = 〈g2,t〉, so that there is a mappinget
and a groupGt andet : G1,t × G2,t → Gt is a bilinear map. Note thatt ranges in{1, . . . , v}.
It is assumed that allp1, . . . , pv are distinct. These groups will be assumed to satisfy the Strong
Diffie Hellman assumption.

p2 an RSA-modulusn, of `n bits;n is selected so that Strong-RSA will be infeasible overQR(n).

p3 Four integer rangesS, S′, Sf , S′f over the parameters̀, `p, v, k, k′; note that̀ is an integer pa-
rameter suitable for the selection of RSA moduli. IntuitivelyS′ will be a range of integers from
which RSA moduli will be chosen andS′f will be a range of integers from which the factors of
such moduli will be chosen; the rangesS, Sf will be extensions of these two ranges that will be
used in the construction.

The integer rangerS is defined asS =df S(2`−1, 2v(`p−1)−1); we recall that the notation
S(a, b) =df {a − b, . . . , a + b} (we call this an integer sphere centered ata). Observe that
if x, y ∈ S andx ≡pt y for all t = 1, . . . , v then it holds thatx = y; indeed, the given con-
dition implies thatx ≡p1...pv y (cf. Chinese remaindering). But sincep1 . . . pv > 2v(`p−1) =
2 · 2v(`p−1)−1, which is the length of the sphereS, it follows thatx = y.

Now for two parametersk, k′ ∈ Z we select the rangeS′ as follows: S′ =df S(2`
′
, 2µ

′
) =

S(2`−1, 2v(`p−1)−1−k−k′). Moreover we select the rangeSf =df S(2`f , 2µf ) = S(2`/2−1,

2`/2−1+k+k′) andS′f = S(2`
′
f , 2µ

′
f ) = S(2`/2−1, 2`/2−1).
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Note that all rangesS, S′, Sf , S′f are assumed subsets of{1, . . . , φ(n)}. Moreover note that

S′f = S(2`/2−1, 2`/2−1) = {0, . . . , 2`/2} contains all̀ /2-bit numbers; as a result, any`-bit RSA
modulus that belongs to the rangeS and splits to two equal size factors of`/2 bits will have its
factors insideS′f .

p4 a safe RSA-modulusN of `N bits withN = PQ andP = 2P ′ + 1, Q = 2Q′ + 1, so that in
the groupZ∗

N2 it holds that the DCR assumption is hard, and the valueG = (G0)2N (modN2)
is selected withG0 ←R Z∗

N2 . Note that with overwhelming probability〈G〉 is the subgroup of
quadratic residues moduloN2 that are simultaneouslyN -th residues; note that#〈G〉 = P ′Q′.
It will be assumed thatZN contains the rangeS.

SETUP. The procedure first generates the public-parametersp1 andp2 andp3 as described above.
Then, it executes the following steps:

It selectsv pairs of valuesγt, δt ←R Zp and setswt = gγt2,t andvt = gδt2,t for t = 1, . . . , v; this is the
setup for BB signatures, cf. [8].

It selectsg, f1, f2, f3, f4 ←R QR(n). These values will be used for integer commitments.

(Opening functionality) the public parametersN,G according top4 are selected as well asH1,H2,H3 ∈
〈G〉withHi = Gai , ai ←R ZbN/4c for i = 1, 2, 3 and a hash-keyhk for a universal one-way hash
function familyUOHF. We remark that this step can be entirely separated from the GM’s setup
phase and executed by an opening authority. Nevertheless for convenience and simplification of
the presentation we do not make further distinction in the present version of the paper.

The public-keyY is set to

〈g1,t, g2,t, wt, vt,desc(G1,t||G2,t||Gt)||et〉vt=1||〈UOHF, g, f1, f2, f3, f4, n,N,G,H1,H2,H3, hk〉

and the secret keyS is set to to〈γt, δt〉vt=1||〈a1, a2, a3〉. Note that the factorization ofn is not needed
and thus it can be discarded.

JOIN. In the join protocol execution, the user will obtain av-long chain of BB signatures on an RSA
modulus that he selects. A user’s membership certificate is the signature-chain together with the RSA
modulus; a user’s membership secret on the other hand is the factorization of the modulus. The join
procedure between a prospective user and the GM is described in detail below:

• (User→GM) The user initiates the procedure and selectsx ∈ S′ to be aǹ -bit RSA modulus with
x1, x2 its two `/2-bit long prime divisors, so thatx 6∈ Sf andx1, x2 ∈ S′f . The User transmitsx
to the GM.

• (GM→User) The GM checks whetherx ∈ S′ − {0, 1} and whetherx is unique in the system
(i.e., it was not submitted by another user in a previous or concurrentJOIN instantiation); if
either check fails the GM terminates theJOIN protocol; otherwise (i) it reads the public-state
St, selectsi ∈ ID so thati 6∈ Stusers and in such a manner thati is distinct from any other
concurrent executions that he may be involved simultaneously and writes to its communication
tape the values〈i, σ1, . . . σv, r〉 wherer ←R Zp1...pv andσt = g

1/(γt+x+δtr)
1,t for t = 1, . . . , v;

finally it updatesStjoin−trans by appending to it the tuple〈i, σ1, . . . , σv, r〉 and setsStusers =
Stusers||〈i〉.
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T3 = gθy′fθz1 T θx3 = gθxy′fθxz1 T θr3 = gθry′fθrz1

T2 = gθyf
θx1
1 T

θx2
2 = gθyx2fθx1

T4 = gθy′′fθx1 f
θx2
2 fθr3 fθd4

et(T1,t, wt)e(T1,t, g2,t)θxet(T1,t, vt)θret(g1,t, g2,t)−θxzet(g1,t, vt)−θrzet(g1,t, wt)−θz = et(g1,t, g2,t)
C0 = Gθd C1 = Hθd

1 (1 +N)θx (C2)2 = (H2H
H(hk,C0,C1)
3 )2θd

θx ∈ S θx1 ∈ Sf θx2 ∈ Sf

Figure 2: The relations defining the signature of knowledge. Note that the parametert is running from
1, . . . v.

• The user verifies thatet(σt, wtgx2,tv
r
t ) = et(g1,t, g2,t) for t = 1, . . . , v and thati 6∈ Stusers;

if a test fails the user fails theJOIN dialog. Otherwise, it terminates successfully by setting
his membership certificate tocert = 〈x, σ1, . . . , σv, r〉vt=1 and his membership secret tosec =
〈x1, x2〉.

Observe that the userdoes not provethatx was selected appropriately; Perhaps surprisingly, we
show that this is still sufficient for security in the concurrent setting. Naturally if the user choosesx
inappropriately two things may happen: (i) the user may not be able to issue group signatures, e.g., this
may happen whenx is a prime; this naturally is of no concern to the GM, (ii) the user selectsx as an
integer that is easy to factor; while this is of concern there is nothing that can be done about it: this
case is conceptually the same as the case that the user just leaks its secret-key; while this possibility is
annoying there is little that can be done to prevent this in any group signature scheme (and it is beyond
the scope of the present paper at any rate).

SIGN. We present the signing algorithm. The user possesses the following: a membership certificate
〈x, σ1, . . . , σv, r〉 and the corresponding membership secretx1, x2. The signing algorithm will be
obtained by applying the Fiat-Shamir Heuristic on an appropriately designed proof of knowledge. First,
the signer computes the following values:

T1,t = gz1,tσt, t = 1, . . . , v z ←R Zp1...pv in G1,1, . . . ,G1,v

T2 = gyfx1
1 y ←R S(1, 2`n−2) in QR(n)

T3 = gy
′
fz1 y′ ←R S(1, 2`n−2) in QR(n)

T4 = gy
′′
fx1 f

x2
2 f r3f

d
4 y′′ ←R S(1, 2`n−2) in QR(n)

C0 = Gd d←R S(1, 2`N−2) in Z∗
N2

C1 = Hd
1 (1 +N)x in Z∗

N2

C2 = ||(H2H
H(hk,C0,C1)
3 )d|| in Z∗

N2

Note that||x|| = x if x ≤ N2/2 and ||x|| = N2 − x otherwise. Also recall thatS(a, b) =df

{a − b, . . . , a + b}. Subsequently the signer will construct the signature “of knowledge” on the given
messagem by providing a proof of knowledge for the relations given in figure 2 that involve the
fourteen witnessesθz, θx, θxz, θr, θrz, θx1 , θx2 , θy, θy′ , θy′′ , θxy′′ , θry′ , θyx2 , θd.

Given the coin tosses of the signer for the selection ofT1,1, . . . , T1,v, T2, T3, T4, C0, C1, the wit-
nesses needed in figure 2 are selected as follows:θz = z, θx = x, θxz = x ·z, θr = r, θrz = r ·z, θx1 =
x1, θx2 = x2, θy = y, θy′ = y′, θy′′ = y′′, θxy′ = x · y′, θry′ = r · y′, θyx2 = y · x2, θd = d. Now, given
a messagem, the signature will be constructed as follows:
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1. (choose blindings) the valuesρz ←R ±{0, 1}v`p+k+k
′
, ρx ←R ±{0, 1}µ

′+k+k′ , ρxz ←R ±{0, 1}v`p+µ
′+k+k′ ,

ρr ←R ±{0, 1}v`p+k+k
′
, ρrz ←R ±{0, 1}2v`p+k+k

′
ρx1 ←R ±{0, 1}µ

′
f+k+k′ , ρx2 ←R ±{0, 1}µ

′
f+k+k′ ,

ρy, ρy′ , ρy′′ ←R ±{0, 1}`n−2+k+k′ , ρxy′ ←R ±{0, 1}`n−2+µ′+k+k′ ρry′ ←R ±{0, 1}`n−2+v`p+k+k′

ρyx2 ←R ±{0, 1}`n−2+µ′f+k+k′ ρt ←R ±{0, 1}`N−2+k+k′ are selected. Using these values the fol-
lowing are computed (wheret runs1, . . . , v):

R1 = gρy′fρz1 R2 = T−ρx3 gρxy′fρxz1 R3 = T−ρr3 gρry′fρrz1

R4 = gρyf
ρx1
1 R5 = T

−ρx2
2 gρyx2fρx1

R6 = gρy′′fρx1 f
ρx2
2 fρr3 fρd4

R7,t = et(T1,t, g2,t)ρxet(T1,t, vt)ρret(g1,t, g2,t)−ρxzet(g1,t, vt)−ρrzet(g1,t, wt)−ρz

R8 = Gρd R9 = Hρd
1 (1 +N)ρx R10 = (H2H

H(hk,C0,C1)
3 )2ρd

2. (calculate challenge) using a hash function denoted byHASH the value

c← HASH(m||T1|| . . . ||T4||R1|| . . . ||R9, R10)

is computed. The range ofHASH is considered to be{0, 1}k.
3. (calculate response) Subsequently the following values are computed:

sz = ρz − cz in Z sx = ρx − c(x− 2`
′
) in Z

sxz = ρxz − cxz in Z sr = ρr − cr in Z
srz = ρrz − crz in Z sx1 = ρx1 − c(x1 − 2`

′′
) in Z

sx2 = ρx2 − c(x2 − 2`/2−1) in Z sy = ρy − cy in Z
sy′ = ρy′ − cy′ in Z sy′′ = ρy′′ − cy′′ in Z
sxy′ = ρxy′ − cx · y′ in Z sry′ = ρry′ − cr · y′ in Z
syx2 = ρyx2 − cy · x2 in Z sd = ρd − cd in Z

The output of the signing algorithm is the tuple:〈T1,1, . . . , T1,v, T2, T3, T4, C0, C1, C2, c, sz, sx, sxz, sr,
srz, sx1 , sx2 , sy, sy′ , sy′′ , sxy′ , sry′ , syx2 , sd〉.

VERIFY. Signature verification is achieved by the following tests:

sx
?
∈ ±{0, 1}µ′+k+k′+1 ∧ sx1 , sx1

?
∈ ±{0, 1}µ

′
f+k+k′+1 ∧ C0, C1, C2

?
∈ Z∗

N2 ∧ C2

?
≤ N2/2

c
?= HASH

(
m ||T1,1 || . . . ||T1,v ||T2 ||T3 ||T4 ||

|| gsy′fsz1 T c3 ||T
−sx+c2`

′

3 gsxy′fsxz1 ||T
−sr
3 gsry′fsrz1

||gsyfsx1−c2
`′′

1 T c2 ||T
−sx2+c2`/2−1

2 gsyx2fsx−c2
`′

1

||gsy′′fsx−c2
`′

1 f
sx2−c2

`/2−1

2 fsr3 fsd4 T c4

||t=1,...,v et(T1,t, g2,t)sx−c2
`′
et(T1,t, vt)sret(g1,t, g2,t)−sxz

et(g1,t, vt)−srzet(g1,t, wt)−szet(g1,t, g2,t)cet(T1,t, wt)−c

||Cc0Gsd ||Cc1H
sd
1 (1 +N)sx−c2

`′ ||Cc2(H2
2H

2H(hk,C0,C1)
3 )sd

)
OPEN. Given a signature as described above: first the signature is verified as well as the relation
(C2)2 = C

2(a2+θH(hk,C0,C1)
0 is checked. If any check failsOPEN returns⊥. Otherwise,OPEN com-

putesm̃ = C2
1C

−2a1
0 ; due to the properties enforced by the proof of knowledge (cf. figure 2) it holds
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thatx = (m̃2−1 mod N − 1)/N . Then, theOPEN algorithm searchesStjoin−trans for transcripts of
the form〈j, xj , σj,1, . . . , σj,v, rj〉 with xj = x; the identityj of the signer is thus recovered. If no such
xj is found,OPEN returns⊥.

Length of the signature. It is easy to verify based on the above description that the length of the
signature (in bits) is approximately11 · v · `p + 9 · `n + 6 · `N + 12k + 11k′ + `. We note that
several optimizations can be applied potentially to decrease the above size Still at this present form, the
protocol, is clearly within practical limits (cf. next paragraph as well).
Parameter Selection.The parameters employed in the construction above are as follows: (i)v, the
length of the BB signature chain, (ii)̀p : the size of the elliptic curve groupsG1,t that are employed
in the BB signatures, (iii)̀n : an RSA modulus size that is used for commitments. (iv)` : the RSA
modulus size that is selected by users. (v)k′ andk′: parameters affecting the soundness and zero-
knowlege properties of the non-interactive proof of knowledge that is employed in the scheme. (vi)
`N : an RSA modulus suitable for the Paillier-like encryption employed in the construction.

A possible choice of the parameters will then be as follows:`p = 236, `n = 1024, ` = 1000,
k = k′ = 80, `N = 1024 and v = 5. With this selection, a chain of 5 BB signatures will be
employed over elliptic curve groups of 201-bit prime order and each user will be selecting RSA moduli
from S′ = S(2999, 2999) (i.e., arbitrary1000-bit RSA moduli) so that the two factors should belong
to S′f = S(2499, 2499). Based on these parameters the total signature length is about 32 Kb. In fact
one can choose much more efficient parameters if RSA moduli of some specific form are selected; for
example, a much more tight parameter choice would be as follows:`p = 195, `n = 1024, ` = 1000,
k = k′ = 50, `N = 1024, v = 3. In this case, there will be only three BB signatures over elliptic
curves of size 181 bits and users will select RSA moduli fromS′ = S(2999, 2481). Note that this will
result to RSA moduli of the special form2999 ± t, something that according to [30] does not appear to
give an advantage to known factoring methods (nevertheless such tighter parameter selections should
be used with caution). In this setting the total signature size drops to 24 Kb.

We note that the the parameter selection of`p in [28] (who usedv = 1) was incorrect due to an
oversight that resulted in weak keys. A possible parameter selection forv = 1 (that employs special
RSA keys as above) is̀p = 483, `n = 1024, ` = 1000, k = k′ = 50 and`N = 1024; nevertheless,
increasingv as suggested here, allows one to use smaller curves something that in turn allows for faster
operations.

5 Proof of Security

The proof of security is described here, it relies on the random oracle model (we prove the group
signature rather than the interactive identity escrow variant of the scheme).

Proposition 5.1 Suppose that one possesses the witnessesθz, θx, θxz, θr, θrz, θx1 , θx2 , θy, θy′ , θy′′ , θxy′ ,
θry′ , θyx2 , θd for the relations of figure 2 regarding the valuesT1,1, . . . , T1,v, T2, T3, T4, C0, C1, C2 as
well as it holdsC2 ≤ N2/2. Then the following hold true: (i) Each of thev pairs(T1,tg

−θz
1,t , θr mod pt)

for t = 1, . . . , v is a BB signature onθx under the public-keyg1,t, g2,t, wt, vt, et : G1,t × G2,t → Gt.
(ii) 〈C0, C1, C2〉 is a valid ciphertext encryptingθx.

Proof. For notational simplicity setθξ = ξ for all possibleξ and we drop the subscriptst for t =
1, . . . , v. Let us consider now the relation that enforces the signature validity from figure 2. We have
that

e(T1, w)e(T1, g2)xe(T1, v)re(g1, g2)−xze(g1, v)−rze(g1, w)−z =
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= e(T1, wg
x
2v

r)e(g−z1 , wgx2v
r) = e(T1g

−z
1 , wgx2v

r)

by employing the properties of the bilinear map. Then we have that if we callσ = T1g
−z
1 it holds

thate(σ,wgx2v
r) = e(g1, g2), i.e.,σ, ris a valid BB signature onx.

Finally, observe that(C0)2 = (G2)t mod N2, (C1)2 = (H2
1 )t(1 + N)2x, so clearly it holds that

C2
1C

−2a1
0 = (1 + N)2x and as a result the decryption will be eitherx or ⊥. Moreover observe that

(C2)2 = (H2H
H(hk,C0,C1)
3 )2d. The ciphertextC0, C1, C2 would be a valid ciphertext provided that

C2 = ||C2|| as well asC2
0 = C

2(a2+a3H(hk,C0,C1))
0 . Now it holds thatC2

2 = (H2H
H(hk,C0,C1)
3 )2t =

G2da2+2da3H(hk,C0,C1) = C
2(a2+a3H(hk,C0,C1))
0 . �

Theorem 5.2 The signature of knowledge that specifies theSIGN algorithm satisfies: completeness,
special soundness under the Strong-RSA assumption and statistical honest verifier zero-knowledge.

Proof.Consider two accepting conversations as folows:

〈T1,1, . . . , T1,v, T2, T3, T4, C0, C1, C2, c, sz, sx, sxz, sr, srz, sx1 , sx2 , sy, sy′ , sy′′ , sxy′ , sry′ , syx2 , sd〉

and

〈T1,1, . . . , T1,v, T2, T3, T4, C0, C1, C2, c
∗, s∗z, s

∗
x, s

∗
xz, s

∗
r , s

∗
rz, s

∗
x1
, s∗x2

, s∗y, s
∗
y′ , s

∗
y′′ , s

∗
xy′ , s

∗
ry′ , s

∗
yx2
, s∗d〉

We will show how to recover the corresponding witnesses for the relation of figure 2. First observe
that,

gsy′fsz1 T c3 = g
s∗
y′f

s∗z
1 T c

∗
3 (1)

from which we obtain that
T c−c

∗

3 = g
s∗
y′−sy′f

s∗z−sz
1 (2)

Using lemma 5.9 we obtain that based on the Strong-RSA assumption,c − c∗ should divide both

s∗y′ − sy′ ands∗z − sz. As a resultT c−c
∗

3 = (g
s∗
y′−sy′
c−c∗ f

s∗z−sz
c∗−c

1 )c−c
∗
; now given that (i) the order ofT3

dividesλ(n), (ii) n is a safe RSA modulus, (iii)c, c∗ is a2k numbers wherek is smaller thanblog2 nc,

we have thatT 2
3 = (g

s∗
y′−sy′
c−c∗ f

s∗z−sz
c−c∗

1 )2 which is easily seen to imply that

T3 = ±g
s∗
y′−sy′
c−c∗ f

s∗z−sz
c−c∗

1 (3)

(otherwise we can turn the prover into a factorization algorithm). Using the above we setθz = s∗z−sz
c−c∗

andθy′ =
s∗
y′−sy′
c−c∗ .

Next we consider the following equation:

gsy′′fsx−c2
`′

1 f
sx2−c2

`/2−1

2 fsr3 fsd4 T c4 = g
s∗
y′′f

s∗x−c2`
′

1 f
s∗x2−c2

`/2−1

2 f
s∗r
3 f

s∗d
4 T c

∗
4

which implies that,

T c
∗−c

4 = g
s∗
y′′−sy′′f

s∗x−sx+(c−c∗)2`′

1 f
s∗x2−sx2+(c−c∗)2`/2−1

2 f
s∗r−sr
3 f

s∗d−sd
4

Using similar reasoning as in equation 2 we obtain that
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T4 = ±g
s∗
y′′−sy′′
c−c∗ f

s∗x−sx
c−c∗ +2`

′

1 f

s∗x2−sx2
c−c∗ +2`/2−1

2 f
s∗r−sr
c−c∗

3 f
s∗d−sd
c−c∗

4

We setθy′′ =
s∗
y′′−sy′′
c−c∗ , θx = s∗x−sx

c−c∗ + 2`
′
, θx2 =

s∗x2−sx2
c−c∗ + 2`/2−1, θr = s∗r−sr

c−c∗ , θd = s∗d−sd
c−c∗ .

Observe that based on the fact thats∗x, sx ∈ ±{0, 1}µ
′+k+k′+1 it will hold that with overwhelming

probability,θx ∈ S(2`
′
, 2µ

′+k+k′) = S. In a similar fashion it can be shown thatθx2 ∈ Sf .
Next we have that,

T−sx+c2
`′

3 gsxy′fsxz1 = T
−s∗x+c∗2`

′

3 g
s∗
xy′f

s∗xz
1

which implies that,

T
s∗x−sx+(c−c∗)2`′

3 = g
s∗
xy′−sxy′f

s∗xz−sxz
1

and conditioning on the steps we have executed so far, it holds that

(T θx3 )c−c
∗

= g
s∗
xy′−sxy′f

s∗xz−sxz
1

Using again lemma 5.9 we obtain thatc− c∗ dividess∗xy′ − sxy′ ands∗xz − sxz simultaneously and as
a result,

T θx3 = ±g
s∗
xy′−sxy′
c−c∗ f

s∗xz−sxz
c−c∗

1 (4)

We setθxy′ =
s∗
xy′−sxy′
c−c∗ andθxz = s∗xz−sxz

c−c∗ and based on the fact thatT3 is already specified, using
eqations 3 and 4 we can obtain the following relation :

(gθy′fθz1 )θx = gθxy′fθxz1 =⇒ gθxθy′fθxθz1 = gθxy′fθxz1

something that can be easily seen to imply thatθxy′ = θxθy′ andθxz = θxθz.
We proceed now to the next relation,

T−sr3 gsry′fsrz1 = T
−s∗r
3 g

s∗
ry′f

s∗rz
1

proceeding in identical fashion as above we obtain thatθry′ = θrθy′ andθrz = θrθz.
We proceed now to the next relation; we have that:

gsyf
sx1−c2

`′′

1 T c2 = gs
∗
yf

s∗x1−c2
`′′

1 T c
∗

2 (5)

which implies that

T c−c
∗

2 = gs
∗
y−syf

s∗x1−sx1+(c−c∗)2`′′

1 (6)

Using similar reasoning as in equation 2 we obtain that

T2 = ±g
s∗y−sy
c−c∗ f

s∗x1−sx1
c−c∗ +2`

′′

1

We set the witnessesθy = s∗y−sy
c−c∗ andθx1 =

s∗x1−sx1
c−c∗ + 2`

′′
. Observe that due to the condition

sx1 , s
∗
x1
∈ ±{0, 1}µ

′
f+k+k′+1 it follows that with overwhelming probabilityθx1 ∈ Sf .

We proceed to the next relation:
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T
−sx2+c2`/2−1

2 gsyx2fsx−c2
`′

1 = T
−s∗x2+c∗2`/2−1

2 gs
∗
yx2f

s∗x−c2`
′

1 =

This implies that

T
s∗x2−sx2+(c−c∗)2`/2−1

2 = gs
∗
yx2

−syx2f
s∗x−sx+(c−c∗)2`′

1

conditioning on the already reconstructed values we have that the above is written as :

T
θx2 (c−c∗)
2 = gs

∗
yx2

−syx2f
θx(c−c∗)
1

and using similar arguments as in equation 2

T
θx2
2 = ±gθyx2fθx1

Using the fact thatT2 = ±gθyfθx11 (as shown above) we can easily derive that it must be the case
thatθyx2 = θyθx2 andθx = θx1θx2 .

Next we consider thev relations over the elliptic curves. Observe that all witnesses for these
relations have been reconstructed already over the integers and there are no witnesses dependent on the
parametert = 1, . . . , v. For convenience and readability we drop the subscriptst and we have that

e(T1, g2)sx−c2
`′
e(T1, v)sre(g1, g2)−sxze(g1, v)−srze(g1, w)−sze(g1, g2)ce(T1, w)−c

= e(T1, g2)s
∗
x−c∗2`

′
e(T1, v)s

∗
re(g1, g2)−s

∗
xze(g1, v)−s

∗
rze(g1, w)−s

∗
ze(g1, g2)c

∗
e(T1, w)−c

∗

which implies:

e(T1, g2)s
∗
x−sx+(c−c∗)2`′e(T1, v)s

∗
r−sre(T1, w)c−c

∗

= e(g1, g2)c−c
∗
e(g1, g2)s

∗
xz−sxze(g1, v)s

∗
rz−srze(g1, w)s

∗
z−sz

conditional on all the above witness reconstructions we have that:

e(T1, g2)θxe(T1, v)θre(T1, w) = e(g1, g2)e(g1, g2)θxθze(g1, v)θrθze(g1, w)θz

which implies that

e(T1, wg
θx
2 v

θr)e(g1, g2) = e(gθz1 , wg
θx
2 v

θr) =⇒ e(T1g
−θz
1 , wgθx2 v

θr) = e(g1, g2)

This implies thatT1g
−θz mod p
1 , r( mod p) would be a valid signature for the underlying BB-signature

scheme.
Finally, we turn to the relations regarding the public-key encryption. First we have that

C2c
0 G

2sd = C2c∗
0 G2s∗d

which implies,

(G2)s
∗
d−sd = (C2

0 )c−c
∗

Since we have already reconstructedθd = s∗d−sd
c−c∗ we can rewrite the above as:

(G2)θd(c−c
∗) = (C2

0 )c−c
∗
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Note thatG generates the subgroup of squares withinZ∗
N2 that are simultaneouslyN -th residues.

MoreoverC2
0 is of course a square insideZ∗

N2 . Given thatP,Q, P ′, Q′ > 2k we have thatc−c∗ cancels
in the above equation and thus it holds thatC2

0 = G2θd mod N2.
In a similar fashion we have that

C2c
1 H

2sd
1 (1 +N)2(sx−c2`

′
) = C2c∗

1 H
2s∗d
1 (1 +N)2(s

∗
x−c∗2`

′
)

From which we obtain that,

(C2
1 )c−c

∗
= (H2

1 )s
∗
d−sd((1 +N)2)s

∗
x−sx+2`

′
(c−c∗)

and using the already reconstructed witnesses we obtain that,

(C2
1 )c−c

∗
= (H2

1 )(c−c
∗)θd((1 +N)2)θx(c−c

∗)

Similarly as before we obtain that
C2

1 = H2θd
1 (1 +N)2θx

Finally, we have that

C2c
2 (H2

2H
2H(hk,C0,C1)
3 )sd = C2c∗

2 (H2
2H

2H(hk,C0,C1)
3 )s

∗
d

which implies that,
(C2

2 )c−c
∗

= (H2
2H

2H(hk,C0,C1)
3 )s

∗
d−sd

given that we have thats∗d − sd = (c− c∗)θd we rewrite the above equation as,

(C2
2 )c−c

∗
= (H2

2H
2H(hk,C0,C1)
3 )θd(c−c

∗)

from which we obtain that
(C2)2 = (H2

2H
2H(hk,C0,C1)
3 )θd

It is easy to see that the ciphertext(C0, C1, C2) with the above structure in conjunction to the relation
C2 ≤ N2/2 will decrypt to the valueθx. This completes the soundness proof.

Regarding the statistical honest verifier zero-knowledge consider the following simulator for any
randomly selectedT1,1, . . . , T1,v, T2, T3, T4, C0, C1, C2 from the respective groups and then form an
accepting conversation as follows:

〈T1,1, . . . , T1,v, T2, T3, T4, C0, C1, C2, c, sz, sx, sxz, sr, srz, sx1 , sx2 , sy, sy′ , sy′′ , sxy′ , sry′ , syx2 , sd〉

wherec←R {0, 1}k, andsz ←R ±{0, 1}v`p+k+k
′
, sx ←R ±{0, 1}µ

′+k+k′ , sxz ←R ±{0, 1}v`pµ
′+k+k′ ,

sr ←R ±{0, 1}v`p+k+k
′
, srz ←R ±{0, 1}2v`p+k+k

′
sx1 ←R ±{0, 1}µ

′
f+k+k′ , sx2 ←R ±{0, 1}`/2−1+k+k′ ,

sy, ρy′ , ρy′′ ←R ±{0, 1}`n−2+k+k′ , sxy′ ←R ±{0, 1}`n−2+µ′+k+k′ sry′ ←R ±{0, 1}`n−2+v`p+k+k′

syx2 ←R ±{0, 1}`n−2+`/2−1+k+k′ st ←R ±{0, 1}`N−2+k+k′ are selected.
and the valuesR1, . . . , R10 will be defined as they are determined inside theHASH application in the

verification algorithm of the group signature. Applying lemma 5.10 on thes-values above we obtain
the fact that the simulator is statistically close to real conversations. �
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Figure 3: Overview of the reduction in the proof of security for the misidentification attack.

5.1 Misidentification

Theorem 5.3 Any misidentification attacker in the random oracle model against our group signature
can be transformed to an adaptive chosen message attacker in the standard model against the BB
signature assuming the Strong-RSA assumption.

Proof. — see figure 3 for an overview of the transformation performed in this proof. In this proof we
will assume thatv = 1; the case wherev > 1 is identical (in this case, the adversary would break at
least one of the underlying BB-signature instantiations).

LetA be a misidentification adversary as specified in the misidentification attack game that also has
access to a random oracleH. We will reduce this adversary to an adaptive chosen message adversary
for the BB digital signature.

Let us describe now an adversaryB for the Boneh-Boyen digital signature. First the adversary is
given the public-key of the signature which includes the description of the groupsG1,G2,GT as well as
the description of the bilinear mape : G1×G2 → GT and the valuesg1, g2 andw, v ∈ G2. The forger
B using this information samples all remaining public parameters for the group signature including the
parameters for the CCA2 encryptionp4, i.e., the valuesN,G. B now forms the public-key of the group
signature scheme:

Y = 〈g1, g2, w, v, desc(G1,G2,G||e)||〈UOHF, g, f, n,N,G,H1,H2,H3, hk〉

note thatB knows the secret-key of the GM in the group signature with the exception of the signing
key for the BB signature, i.e.,B does not knowγ = logg2 w andδ = logg2 v.

Prior to beginning the simulation ofA theB initializes a tableH for the simulation of the random
oracle that is employed byA. The public-stateSt is initialized as described in the attack game (empty).

Now,B starts the simulation of the adversaryA; B has the following queries to answer:
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Random Oracle queries: these are simulated using the tableH as usual: if the query is already on the
tableB returns the corresponding value; if not,B samples a random element of{0, 1}k, it places
it to the table and returns it.

READSt: B returns the whole contents of theSt strings.

JOIN↔GM ; Start− Session queries:B receives the start session command from the adversary. As
the GM does not goes first in theJOIN protocol,B simply selects a session id and returns is to
the adversary.

JOIN↔GM ; Advance− Session queries:B takes a message〈s, x〉 from the adversary. Recall that
theJOIN protocol has only two communication flows.B returns fail in the following cases: (i)s
is not a valid session identifier, (ii)s is a valid session identifier butx is not an integer in the range
S′; in this case the sessions is marked byB as invalid and is terminated. Now ifx is an integer
in the rangeS′, B submitsx to his signing oracle for the BB signature, and obtains through it
a signature(σ, r) such thate(σ,wgx2v

r) = e(g1, g2). B returns to the adversary〈i, σ, r〉 where
i = maxStusers + 1 and updatesStusers andStjoin−trans accordingly.

OPEN: B knows the secret-keys for the encryption thus opening queries are also straightforward to
answer.

Continuing as above the adversary terminates by producing a messagem and a valid group signa-
ture〈m,σ〉 where,σ is equal to

〈T1,1, T2, T3, T4, C0, C1, C2, c, sz, sx, sxz, sr, srz, sx1 , sx2 , sy, sy′ , sy′′ , sxy′ , sry′ , syx2 , sd〉

Assume now that the above passes the verification test and moreover it satisfiesOPEN(m,σ,Y,S, St) =
⊥ (i.e., the adversary wins the misidentification attack game); note thatOPEN employs only the encryp-
tion secret-key and as a result it can be applied byB. Now using rewinding and the forking lemma of
Pointcheval and Stern [32], we can obtain with non-negligible probability aσ∗ on the same message
m, such thatσ∗ is equal to

〈T1,1, T2, T3, T4, C0, C1, C2, c
∗, s∗z, s

∗
x, s

∗
xz, s

∗
r , s

∗
rz, s

∗
x1
, s∗x2

, s∗y, s
∗
y′ , s

∗
y′′ , s

∗
xy′ , s

∗
ry′ , s

∗
yx2
, s∗d〉

so that the above is also a valid signature of knowledge. Now based on theorem 5.2 we can reconstruct
the witnesses (this is where the Strong-RSA assumption is needed) and based on proposition 5.1 we
have that〈T1,1g

−θz
1,1 , θr〉 is a valid BB signature onθx. Now observe thatOPEN(m,σ,Y,S, St) = ⊥;

due to proposition 5.1, the ciphertextC0, C1, C2 must be valid and decrypts to the valueθx; since
OPEN(m,σ,Y,S, St) = ⊥ this means thatθx is not among thex-values that were submitted by the
adversary in the concurrent protocolJOIN dialogs with the interface. As a resultB never queried the
valueθx to its signing oracle.B terminates by returning〈θx;T1,1g

−θz
1,1 , θr〉 as a forgery against the BB

signature scheme. Note that due to the fact that the integer rangeS is selected appropriately (see the
parameter selectionp3) it cannot be the case that the adversary submitted some valuen0 to the signing
oracle for which it holdsθx ≡p1 n0 but θx 6= n0 as integers (with Chinese remaindering this carries to
the casev > 1.

From the above it follows thatB outputs a forged signature and thus it is an adaptive chosen message
attacker against the BB signature. �
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Figure 4: Overview of the reduction in the proof of security for the framing attack.

5.2 Framing

Theorem 5.4 Any framing attacker in the random oracle model against our group signature can be
transformed to a factoring algorithm in the standard model assuming the Strong-RSA assumption.

Proof. — consult figure 4 for an overview of the transformation.
Let A be a framing adversary as specified in the framing attack game that also has access to a

random oracleH. We will transform this adversary to a factoring algorithmB (that will work for RSA
moduli according to the specifications of the selection ofx in step 1 of theJOIN dialog, i.e.,x ∈ S′−Sf
such thatx1, x2 ∈ S′f ). Again without loss of generality we assume thatv = 1.

We describe below howB operates given an integern0 ∈ S′. B will sample the public-keyY and
the secret-keyS of the system exactly as it is specified in theSETUP algorithm.

Y = 〈g1, g2, w, v, desc(G1,G2,G||e)||〈UOHF, g, f, n,N,G,H1,H2,H3, hk〉

Prior to beginning the simulation ofA, B will initialize a tableH for the simulation of the random
oracle that is employed byA. The public-stateSt is initialized as described in the attack game (empty).

Now, B starts the simulation of the adversaryA; suppose that the adversaryA makesq0 JOIN
dialog initiations.B selectsj0 ←R {1, . . . , q0}. Then, in the simulation ofA, B has the following
queries to answer:

Random Oracle queries: these are simulated using the tableH as usual: if the query is already on the
tableB returns the corresponding value; if not,B samples a random element of{0, 1}k, it places
it to the table and returns it.

READSt: B returns the whole contents of theSt strings.

MODIFYSt: B allowsA to modify join transcripts and identity tags to theStusers andStjoin−trans
according to the stated restrictions. Note thatA is not allowed to reuse existing identity tags or
modify the tags or transcripts of any of the innocent users.
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JOIN↔User; Start− Session queries:B receives the start session command from the adversary.
Suppose this is thej-th time that the adversary issued aStart− Session query. As the user
does go first inJOIN protocol,B selectsxj an RSA modulus inS′, unless it is the case that
j = j0 whereB selectsxj = n0 (the challenge RSA modulus).B also selects a session id and
returns the id andxj to the adversary.

JOIN↔User; Advance− Session queries:B takes a message〈s,msg〉 from the adversary. Recall
that theJOIN protocol has only two communication flows.B returns fail in the following cases:
(i) s is not a valid session identifier, (ii)s is a valid session identifier butmsg is nota tuple of the
form 〈i, σ, r〉 with e(σ,wgxj2 v

r) = e(g1, g2) or it holds thati ∈ Stusers; in this case the session
s is marked byB as invalid and is terminated. OtherwiseB writes in the public-stateSt the user
i, i.e., it modifiesStusers = Stusers||〈i〉 andStjoin−trans = Stjoin−trans||〈i, xj , σ, r〉.
Note that we do not require from the adversary to follow the same numbering of users that the
GM performs during normal protocol executions.

Continuing as above the adversary terminates by producing a messagem and a valid group signa-
turem,σ whereσ is equal to:

〈T1,1, T2, T3, T4, C0, C1, C2, c, sz, sx, sxz, sr, srz, sx1 , sx2 , sy, sy′ , sy′′ , sxy′ , sry′ , syx2 , sd〉

that passes the verification test and moreover it satisfiesOPEN(m,σ,Y,S, St) ∈ StIusers; note
that OPEN employs only the public-key encryption secret-key and as a result it can be applied byB.
Now using rewinding and the forking lemma of Pointcheval and Stern [32], we can obtain with non-
negligible probability a signatureσ∗ on the same messagem, whereσ∗ is equal to

〈T1,1, T2, T3, T4, C0, C1, C2, c
∗, s∗z, s

∗
x, s

∗
xz, s

∗
r , s

∗
rz, s

∗
x1
, s∗x2

, s∗y, s
∗
y′ , s

∗
y′′ , s

∗
xy′ , s

∗
ry′ , s

∗
yx2
, s∗d〉

so that the above is also a valid signature of knowledge. Now based on theorem 5.2 we can re-
construct the witnesses (this is where the Strong-RSA assumption is needed); based on the properties
of the reconstruction we have thatθx1 , θx2 is a factorization ofθx so thatθx1 , θx2 ∈ Sf (this range
constraint is enforced by the proof).

Now recall thatOPEN(m,σ,Y,S, St) ∈ StIusers; this means thatθx is among thex-values that were
selected byB in the concurrent protocolJOIN dialogs and as a result with probability1/q0 it holds that
θx = n0. In this case,θx1 , θx2 is a non-trivial split ofn0 (due to the fact thatn0 6∈ Sf ) and thusB
terminates successfully by returningθx1 , θx2 . �

5.3 Anonymity

Theorem 5.5 Any anonymity adversary against our group signature in the random oracle model can
be transformed to a CCA2 attacker against the public-key encryption that is employed in our scheme;
this is conditional on the validity of (i) the assumption that the digital signature scheme employed (BB-
signature) satisfies strong existential unforgeability (which is true assuming the Strong Diffie Hellman
Assumption). (ii) the DLOG assumption over the subgroup of2N -th residues insideZ∗

N2 .

Proof. — consult figure 5 for an overview of the transformation described in this proof.
LetA be an anonymity adversary as specified in the anonymity attack gameGA

anon(1
ν). Note that

A has access to the random oracleH. We will transformA to a CCA2 adversaryB against the CCA2
public-key encryption that is employed for theOPEN algorithm. Without loss of generality we assume
thatv = 1. Below we describe the operation of this algorithmB:
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Figure 5: Overview of the reduction in the proof of security for the anonymity attack.

23



Initially, B is given the public-keyN,G,H1,H2,H3,desc(UOHF), hk for the encryption scheme.
B will use these values to form the public-key of the group signature scheme. In particular,B will
select

Y = 〈g1, g2, w, v, desc(G1,G2,G||e)||〈UOHF, g, f, n,N,G,H1,H2,H3, hk〉

as in theSETUP protocol with the exception of the public-key of the encryption. Moreover,B will
initialize St to empty and initializes tables for the random oracle simulation as usual.

The simulation ofA will proceed as follows: Theplay phase ofA will correspond to the plaintext
selection of the CCA2 adversaryB. B has to simulate the following oracle queries ofA:

Random Oracle queries: these are simulated using the tableH as usual: if the query is already on the
table,B returns the corresponding value; if not,B samples a random element of{0, 1}k, it places
it to the table and returns it.

READSt: B returns the whole contents of theSt strings.

JOIN↔GM ; Start− Session queries:B receives the start session command from the adversary. As
the GM does not go first in theJOIN protocol,B simply selects a session id and returns is to the
adversary.

JOIN↔GM ; Advance− Session queries:B takes a message〈s, x〉 from the adversary. Recall that
theJOIN protocol has only two communication flows.B returns fail in the following cases: (i)
s is not a valid session identifier, (ii)s is a valid session identifier butx is not an integer in the
rangeS′; in this case the sessions is marked byB as invalid and is terminated. Now ifx is
an integer in the rangeS′, B computes a BB signature forx (B is in possession of the signing
key); as a resultB obtains a signature(σ, r) such thate(σ,wgx2v

r) = e(g1, g2). B returns to the
adversary〈i, σ, r〉 wherei = maxStusers+1 and updatesStusers andStjoin−trans accordingly.

OPEN. A signature is given to be opened. FirstB verifies the signature; if verification fails,B returns
⊥. Then,B parses the signature for the valuesC0, C1, C2 and submits〈C0, C1, C2〉 to its open
oracle. If the open oracle returns⊥ thenB returns⊥ as well. Otherwise the oracle returns a
plaintextx. B searches intoStjoin−trans for a join transcript of the form〈i, x, σ, r〉 and if it is
found it returnsi; otherwise it returns⊥. Observe that this is indistinguishable operation from
the point of view of the adversary to the operation of the regular attack game.

The simulation of theplay terminates andB receives〈aux,m, cert1, sec1, cert2, sec2〉; if B receives
certi, seci that are not valid certificates and secrets it terminates with⊥.

Observe the following now: the certificates returned byA are of the form:cert1 = 〈x1, σ1, r1〉
andcert2 = 〈x2, σ2, r2〉. Moreover, it must be thatx1 6= x2. We note that if it is the casex1 = x2

but cert1 6= cert2 then this means that the adversary obtained two BB signatures on the same integer
x1 = x2. As the signing oracle would never provide such a signature (it keeps a record of what values,
users have submitted before) it must be the case that the adversary came up with two different signatures
on the same message. This violates the strong existential unforgeability (see [1]) of the BB signature
and thus it can be considered a negligible event.

The CCA2 adversaryB terminates its guess stage by outputingaux′ = aux||cert1||sec1||cert2||sec2

andx1, x2 as its choices for the two plaintexts for the CCA2 challenge.
Now B, given the challenge ciphertextC0, C1, C2, must build the group signatureψgs that will be

the challenge forA and should incorporateC0, C1, C2. TheSIGN operation at step 5 is simulated byB
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as follows:B selectsT1,1, T2, T3, T4 so thatT1,1 ←R G1, T2, T3, T4 ←R Z∗
n. Using these values and

by programming the random oracle appropriately,B forms the group signatureψgs.
It is easy to see that forming the challenge group signatureψgs in this fashion it is indistinguishable

from actual group signatures of the signer that is selected by the adversary (there will also be some
negligible statistical distance due to the commitmentsT2, T3, T4 and the honest verifier zero-knowledge
simulation of the signature). The challenge signature on the messagem would be as follows:

ψgs = 〈T1,1, T2, T3, T4, C0, C1, C2, c, sz, sx, sxz, sr, srz, sx1 , sx2 , sy, sy′ , sy′′ , sxy′ , sry′ , syx2 , sd〉

With this setupB proceeds with the simulation of theguess stage of the adversaryA. The operation
proceeds in the same fashion as above with the usual restrictions: theOPEN oracle supplied to the
adversary is restricted not to accept the same signature as the challenge signature. Suppose that the
adversary supplies the following signature on a messagem′ for opening:

ψ′ = 〈T ′1,1, T ′2, T ′3, T ′4, C ′
0, C

′
1, C

′
2, c

′, s′z, s
′
x, s

′
xz, s

′
r, s

′
rz, s

′
x1
, s′x2

, s′y, s
′
y′ , s

′
y′′ , s

′
xy′ , s

′
ry′ , s

′
yx2
, s′d〉

According to the restriction imposed to the adversary it holds that(m,ψgs) 6= (m′, ψ′). Now,
in the case thatψ′ is a valid signature, with a simulation soundness argument, the restriction that
(m,ψgs) 6= (m′, ψ′) implies that〈C0, C1, C2〉 6= 〈C ′

0, C
′
1, C

′
2〉 with overwhelming probability. Indeed

if A is capable of producing a pair(m′, ψ′) so thatψ′ is a valid signature onm andψ′ andψgs share
the same identification ciphertext〈C0, C1, C2〉 this means that we will be able to compute discrete-
logarithms over the subgroup of quadratic andN -th residues inZ∗

N2 .
Based on the above it holds that the signatureψ′ can be opened byB through his opening oracle.

Finally,B terminates by returning the output of the adversaryA. It is easy to verify thatB is a CCA2
adversary for the employed public-key encryption. �

The above three theorems culminate to the following theorem:

Theorem 5.6 Our group signature is correct and secure in the random oracle model under the as-
sumptions: SDH, Linear-DDH, Strong-RSA and DCR assumptions.

Proof. Security follows directly from theorems 5.3, 5.4 and 5.5 as well as the following known results:
the public-key encryption employed is CCA2 secure assuming the DCR assumption [16], the BB-digital
signature scheme is strongly existential unforgeable under the SDH assumption, [8]. Correctness as in
definition 3.2 is easier to show and is omitted. �
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Appendix: Auxiliary Lemmas

Lemma 5.7 Letn = pq with p = 2p′ + 1 andq = 2q′ + 1 with p, q, p′, q′ all prime numbers. Suppose
we knowy ∈ Z∗

n, z ∈ QR(n) andt,m ∈ Z such thatyt ≡n zm with gcd(t,m) < t and |t| > 1. Then
we can finde > 1 andu ∈ Z∗

n such thatz ≡n ue, or we can factorn.

Proof. (of lemma 5.7) First assume w.l.o.g. thatt is a positive integer (if not, sety ← y−1 mod n).
We consider three cases according toδ =df gcd(t,m).

Case (i). δ = 1. In this case we can computeα, β ∈ Z such thatαt+ βm = 1. From this, in turn, we
obtain:

z = zαt+βm = (zα)t(zm)β = (zαyβ)t

and thus, we return as the solution to the challenge, the pair〈u, e〉 = 〈zαyβ , t〉.
Case (ii). suppose thatδ > 1 andgcd(δ, p′q′) = 1. It follows thatδ ≤ min{|t|, |m|} and if t′ = t

δ and
m′ = m

δ , it holds that(yt
′
)δ ≡n (zm

′
)δ.

Now observe that if2 6 | δ we will have immediately thatyt
′ ≡n zm

′
and becausegcd(t′,m′) = 1

andt′ > 1 (this is the case by the requirement of the statement of the theoremgcd(t,m) < t) we are
reduced to case (i).

Suppose instead thatδ = 2`v with ` > 1. We have that(yt
′
)2
`v ≡n (zm

′
)2
`v by assumption we

have thatgcd(v, p′q′) = 1 and we obtain from this that(yt
′
)2 ≡n (zm

′
)2. From this we have that

there existb1, b2 ∈ {0, 1} such thatzm
′
= (−1)b1χb2yt

′
whereχ is an element of order 2 insideZ∗

n
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so thatχ 6≡n −1. Now if t′ is odd, we have that(−1)b1χb2 ≡n ((−1)b1χb2)t
′

and as a result we have
zm

′
= ((−1)b1χb2y)t

′
and we reduce to case (i) as well. Now suppose thatt′ is even (something that

forcesm′ to be odd). But then,(yt
′
)2 ≡n (zm

′
)2 would imply immediately thatyt

′ ≡n zm
′
since both

yt
′
, zm

′ ∈ QR(n) and we are reduced again to case i.
Case (iii). Suppose thatgcd(δ, p′q′) > 1. It follows that δ is a multiple ofp′ (w.l.o.g.). Then we
can factorn as follows: choose a random integerw less thann; if gcd(w, n) > 1 then we are done;
otherwise,w ∈ Z∗

n and will happen thatw is a square modulop = 2p′ + 1 with high probability,
(since approximately half of the positive integers less thann are squares modulop). It follows that
wp

′
= (w

1
2 )2p

′
= (w

1
2 )p−1 ≡p 1. Now compute the integerU = wδ = wπp

′
(modn), whereδ = πp′

for someπ ∈ Z. Sincen | U − wπp′ it follows that p | U − wπp′ and as a result,U ≡p wπp
′ ≡p

(wp
′
)π ≡p 1. It follows that there exists anr ∈ Z such thatU − 1 = rp. Observe that it has to be that

r < q sinceU < n. From this we obtain thatgcd(U − 1, n) = p. �

Lemma 5.8 Let A,B be two integers withA > B andA = πB + v with 0 ≤ v < B and letX
be a random variable withX ←R [A]. If Y = X mod B it holds thatY ’s statistical distance from
the uniform inZB is at mostv/A. If Y ′ = bX/Bc, then the statistical distance of the uniform over
{0, . . . , π} andY ′ is at most1/(π + 1).

Lemma 5.9 LetB1, . . . , Bm ←R QR(n) and letA be aPPTalgorithm that on inputB1, . . . , Bm
with probabilityα, it outputs integerse1, . . . , em, t andy ∈ Z∗

n such that|t| > 1 and
∏m
i=1B

ei
i = yt

such that∃i : t 6 | ei. Then we can useA to solve the Strong-RSA problem with probability at leastα/3.

Proof. (of lemma 5.9) First observe we may assume without loss of generality thatt is positive since
we can always sety = y−1 as the output ofA.

The sample space over which the probabilityα is taken is identified to the coin tosses ofA and the
random choices ofB1, . . . , Bm fromQR(n).

Consider now the following experiment denoted byE . Let g be a fixed generator ofQR(n). Select
bi ←R [n2], and simulateA on inputgb1 , . . . , gbm . From lemma 5.8 it follows thatbi mod p′q′ is
statistically indistinguishable from the uniformZp′q′ and thus the elementsBi = gbi for i = 1, . . . ,m
are uniformly selected fromQR(n). It follows thatyt = ge1b1+...+embm . The output of the experiment
E is e1, . . . , em, y, t. Let δ = gcd(e1b1 + . . .+embm, t). The sample space for the eventE corresponds
to the choices forb1, . . . , bm as well as the coin tosses for the simulation ofA.

We can split the sample space ofE to the following events (i)Efail: the output ofA fails to meet the
specifications (either,t = 1, or

∑m
i=1 eibi 6≡p′q′ t). (ii) Ediv the output ofA meets the specifications

except that it holds that for alli = 1, . . . , n, t | ei. (iii) Eδ<t all the specifications are met andδ < t.
(iv) Eδ=t all the specifications are met andδ = t. Based on the assumption of the lemma we have that
Prob[Eδ<t] + Prob[Eδ=t] = α (for simplicity we omit the negligible statistical distance that exists
between the executions ofA and the experimentE).

Observe that if the eventEδ<t happens the result of the theorem will follow directly from lemma
5.7 (by plugging the Strong-RSA challenge in the place of the generatorg above and settingm =
e1b1 + . . .+ embm).

Next, let us consider the eventEδ=t. The eventEδ=t suggestst | e1b1 + . . .+ embm. Observe that
we can view the eventEδ=t as containing tuples of the form(π1, . . . , πm, ρ) whereπj = b bjp′q′ c and
ρ is a sequence of coin tosses that fixes the randomness ofA as well as the choice ofbj(modp′q′) for
j = 1, . . . ,m. Moreover, note that the output ofA depends only onρ and is independent of the choice
of π1, . . . , πm. Consider the subsetΩ of Eδ=t for which it holds(π1, . . . , πm, ρ) ∈ Ω iff there existsj
such that no tuple of the form(π1, . . . , πj−1, πj ± 1, πj+1, . . . , πm, ρ) belongs inEδ=t.
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Next we show that ifProb[Ω] ≥ ε thenProb[Et=δ] ≤ α−ε. Observe that the fact(π1, . . . , πm, ρ) ∈
Ω excludes at least one tuple of the form(π1, . . . , πj−1, πj±1, πj+1, . . . πm, ρ) to belong inEδ=t. Nev-
ertheless this tuple has the sameρ component to a tuple that belongs toEδ=t and thus it cannot belong
to eitherEfail orEdiv. It follows that the tuple(π1, . . . , πj−1, πj ± 1, πj+1, . . . πm, ρ) belongs toEδ<t
and thus ifProb[Ω] ≥ ε it holds thatProb[Eδ<t] ≥ ε and as a resultProb[Eδ=t] ≤ α− ε.

Now suppose that the eventEδ=t − Ω happens, we will show how to factorn. In this case we
will obtain e1, . . . , em andt such thatt | e1b1 + . . . + embm and∃i : t 6 | ei. Suppose without loss
of generality thati = 1. We know that the outcomee1, . . . , em, t of the execution ofA corresponds
to some tuple(π1, . . . , πm, ρ) of Eδ=t − Ω and we obtain thatt | e1(π1p

′q′ + b1 mod p′q′) + e2b2 +
. . . embm with t 6 | e1. Due to the fact that(π1, . . . , πm, ρ) ∈ Eδ=t −Ω it follows that some tuple of the
form (π1 ± 1, π2, . . . , πm, ρ) ∈ Eδ=t. Because the behavior ofA only depends onρ it follows that for
the samet, e1, . . . , em it will hold t | e1((π1±1)p′q′+b1 mod p′q′)+e2b2 + . . . embm. By combining
the above two divisibility relationships we obtain thatt | e1p′q′, and sincet 6 | e1 we have thatt | p′q′.
This implies that we can factorn as argued in the proof of lemma 5.7.

Suppose thatProb[Eδ<t] ≥ α/3. It follows that we can solve the Strong-RSA with probability
α/3. On the other hand ifProb[Eδ<t] < α/3 we have thatProb[Eδ=t] ≥ 2α/3. Moreover, it follows
thatProb[Ω] < α/3 and thusProb[Eδ=t − Ω] ≥ α/3. Since we can solve the Strong-RSA problem
when either of the eventsEδ<t or Eδ=t − Ω happen, it follows that we can solve the strong-RSA
problem with probability at leastα/3. �

Lemma 5.10 Consider a fixedx ∈ [L,R] withm = R−L and the random variablest ∈R ±[0, 2k+lm],
c ∈R {0, 1}k. The statistical distance of the random variableŝ = t−c(x−L) from the random variable
s ∈R ±[0, 2k+lm] is less than2−l−1.

Proof. We will denote byDa the distribution of the random variables and byDb the distribution of
ŝ = t− c(x− L). Assume that the support of the two random variables isZ.

• RegardingDa observe that a certains0 in ±[0, 2k+lm] has probability of being selected equal to
1

2k+l+1m+1
(uniform probability distribution). Anys0 6∈ ±[0, 2k+lm] has probability 0.

• RegardingDb observe that a certains0 has the following probabilities of being selected:

1. For s0 ∈ [−2k+lm, 2k+lm − (2k − 1)m] for each of the2k different c0 ∈ {0, 1}k we
can find at0 such thats0 = t0 − c0x, as a result the probability of obtaining the givens0
according toDb is 2k

2k(2k+l+1m+1)
= 1

2k+l+1m+1
.

2. Fors0 ∈ [−2k+lm− (2k − 1)m,−2k+lm− 1] or s0 ∈ [2k+lm− (2k − 1)m+ 1, 2k+lm]
the probability of obtainings0 according toDb is less than 1

2k+l+1m+1
.

3. For the remainings0 < −2k+lm− (2k − 1)m ands0 > 2k+lm the probability of selecting
them according toDb is equal to 0.

It is clear from the above that the absolute difference between the probability of a certains0 ac-
cording toDb andDa is 0 for the integer ranges of cases 1 and 3 above. The distributionsDa andDb

will accumulate some statistical distance though due to their different behavior fors0 that belong to
the integer range specified in item 2. In this case, for a specifics0, distributionDa assigns probabil-
ity either0 or 1

2k+l+1m+1
whereas distributionDb assigns probability that belongs in the real interval

[0, 1
2k+l+1m+1

). Clearly, in the worst case the absolute difference will be 1
2k+l+1m+1

The number of

elementss0 of case 2, are2 · (2k − 1)m thus it follows that the statistical distance of the distributions
Da andDb cannot be greater than(2k − 1)m/(2k+l+1m+ 1) < 2−l−1. This completes the proof.�
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