
Batch Verification of Validity of Bids in

Homomorphic E-auction

Kun Peng, Colin Boyd and Ed Dawson

Level 7, 126 Margaret St, Brisbane QLD4000, Information Security Institute,
Queensland University of Technology, Australia

Abstract

Bid opening in e-auction is efficient when a homomorphic secret sharing function
is employed to seal the bids and homomorphic secret reconstruction is employed to
open the bids. However, this high efficiency is based on an assumption: the bids are
valid (e.g. within a special range). An undetected invalid bid can compromise cor-
rectness and fairness of the auction. Unfortunately, validity verification of the bids
is ignored in the auction schemes employing homomorphic secret sharing (called
homomorphic auction in this paper). In this paper, an attack against the homo-
morphic auction in the absence of bid validity check is presented and a necessary
bid validity check mechanism is proposed. Then a batch cryptographic technique is
introduced and applied to improve the efficiency of bid validity check.

Key words: homomorphic e-auction, bid validity check, batch verification,
oblivious transfer

1 Introduction

In a sealed-bid auction scheme, each bidder chooses his evaluation from a
number of biddable prices and submits it to some auctioneers, who then open
the bids and determine the winning price and winner(s) according to a pre-
defined auction rule. The commonly applied auction rules include first bid
auction (the bidder with the highest bid wins and pays the highest bid), Vick-
rey auction (the bidder with the highest bid wins and pays the second highest
bid) and the ρth bid auction (the bidders with the ρ− 1 highest bids win, pay
the ρth highest bid and each get an identical item). The first-bid auction and
Vickrey auction can be regarded as special cases of the ρth bid auction, which
is a general solution. An auction must be correct, namely the auction result is
strictly determined according to the auction rule. Fairness is necessary in any
auction such that no bidder can take advantage over other bidders. Usually,

Preprint submitted to Elsevier Science 10 May 2005

bid privacy must be kept in an auction scheme, which means in the course of
bid opening no losing bid is revealed.

When bid privacy must be kept in a non-interactive auction 1 , an efficient bid
opening function is homomorphic secret reconstruction [8,10,9,15]. To adopt
this bid opening function, one-selection-per-price principle and homomorphic
bid sharing mechanism must be employed. Each bidder has to submit a bid-
ding selection at every biddable price to indicate whether he is willing to pay
that price (“YES” or “NO”). Every selection is sealed with a homomorphic
secret sharing function, so that the auctioneers can use a homomorphic secret
reconstruction function to determine whether the number of bidders willing
to pay a price is over ρ without revealing any bidding selection. When this
homomorphic bid opening mechanism is applied together with binary search
strategy, the winning bid can be determined very efficiently.

In homomorphic e-auction, each bidding selection must be in some special
range (certain values standing for “YES” or “NO”) to guarantee correctness
and fairness of the auction. So validity of the bids must be proved by the
bidders and verified publicly. However, all the existing homomorphic auction
schemes [8,10,9,15] ignore bid validity check. An attack to compromise cor-
rectness and fairness in the absence of bid validity check is presented in this
paper to demonstrate necessity of bid validity check. Then implementation of
bid validity check in homomorphic auction is proposed. As proof and verifi-
cation of bid validity is highly inefficient, a batch cryptographic technique is
proposed and applied to improve the efficiency of bid validity check. With the
help of a new 1-out-of-w oblivious transfer technique, validity of bids can be
efficiently proved and verified.

2 Symbols and Parameters

The following symbols and parameters will be used in this paper.

• w represent the number of biddable prices in auction.
• E() denotes encryption.
• D() denotes decryption.
• 〈x〉: the bit length of integer x.
• ExpCost(x) denotes the number of multiplications needed to calculate an

exponentiation with an x-bit exponent. ExpCosty(x) denotes the number
of multiplications needed to calculate the product of y exponentiations with
x-bit exponents.

1 An auction is non-interactive if no communication between the bidders and the
auctioneers is needed after the bids are submitted.

2

• Two large primes p and q are chosen, such that p = 2q + 1 and w < q.
Integer g0 is a generator of Z∗

p . Integers g and h are generators of G, the
subgroup with order q of Z∗

p , such that logg h is unknown.
• Definition 1 | | is the absolute-value function from Z∗

p to G defined by

|σ| =

σ if σ ∈ G

gq
0σ if σ ∈ Z∗

p \ G

• RSA encryption: N = p′q′ where p′ and q′ are large primes. The public key
is e where e ∈ Z∗

N . The private key is d, such that ed = 1 mod φ(N).
• KN(x) denotes knowledge of x; KN(x|Cond) denotes knowledge of x sat-

isfying condition Cond.

3 Related Work

Homomorphic auction and two related cryptographic tools, batch verifica-
tion and oblivious transfer are recalled in this section. The two tools will be
improved and then employed later in this paper to optimize homomorphic
auction.

3.1 Bid Sharing

Let p1, p2, . . . , pw stand for the biddable prices in an auction. A bid in a homo-
morphic auction [8,10,9,15] is a vector m = (m1, m2, . . . , mw). Each component
in m is either “YES” or “NO”, respectively represented by a non-zero integer
and zero. Bid m is shared among the auctioneers. A threshold secret sharing
function with a threshold t is employed to share the bid, such that the bid can
be recovered if t shares are available. Due to additive homomorphism of the
secret sharing algorithm, bid opening at any price can be implemented using
homomorphic secret reconstruction without revealing any selection. The bid
sharing must be verifiable, so it can be verified that the shares can be used to
recover a unique secret bid. In the usual sharing verification mechanism, the
secret holder hides the secret in a commitment, so that each share holder can
verify that his share can be used to recover the secret hidden in the commit-
ment. The commitment function must be hiding (the secret is not revealed)
and binding (the secret cannot be changed). In a bid sharing, the commitment
function must be information-theoretically hiding as each bidding selection can
only be chosen from two values standing for “YES” and “NO” respectively.
So general purpose VSS schemes, such as [4] and [13] are not suitable as they
do not employ information-theoretically hiding commitment. As suggested in

3

[15], a VSS scheme with information-theoretically hiding commitment like [14]
must be employed. In [15], the most advanced homomorphic auction scheme,
every mj is shared as follows where 1 ≤ j ≤ w.

(1) A polynomial fj(x) = mj +
∑t

k=1 aj,kx
k mod q is chosen and aj,k for k =

1, 2, . . . , t are random integers.
(2) A random integer uj is chosen.
(3) A polynomial hj(x) = uj +

∑t
k=1 bj,kx

k mod q is chosen where bj,k for
k = 1, 2, . . . , t are random integers.

(4) Share sj,l = (mj,l, uj,l) = (fj(l), hj(l)) is encrypted and sent to auctioneer
Al for l = 1, 2, . . . , M .

(5) As the secret sharing is homomorphic, homomorphic secret reconstruction
(see [15,14] for details) can be performed at any price to recover the sum
of selections at that price in the bid opening phase.

(6) The bidder publishes commitments ej,k = gaj,khbj,k mod p for k = 1, 2, . . . , t
and ej,0 = gmjhuj mod p.

(7) Correctness of the sharing can be verified against the commitments. sj,l

is a correct share to recover the secret bid committed in ej,0 if and only

if gmj,lhuj,l =
∏t

k=0 ejk

j,k. See [14] for correctness and soundness of this
sharing verification.

3.2 Batch Verification Techniques

Suppose it is required to verify yj = gxj mod p where xj ∈ zq, yj ∈ z∗p , for
j ∈ 1, 2, . . . , w. The easiest solution is to calculate gxj for j = 1, 2, . . . , w and
compare the results with yj for j = 1, 2, . . . , w, the computation cost of which
is w × ExpCost(log2q). An intuitive idea to batch verify the w equations

is to test
∏w

j=1 yj = g
∑w

j=1
xj . Harn [6] used this idea to construct a batch

verification for DSA. However this method is not reliable since it is easy to
pass the verification with incorrect pairs yj 6= gxj as pointed out by Bellare et
al [2].

Bellare et al [2] proposed three batch verification schemes for common base
exponentiation: RS (random subset) test, SE (small exponent) test and Bucket

test. In SE test, the batch verification equation is
∏w

j=1 y
sj

j = g
∑w

j=1
xjsj where

〈sj〉 = L for j = 1, 2, . . . , w and L is a security parameter. RS test is a special
case of SE test when = 1. Bucket test is a variant of SE test and more efficient
when the batch is of great size (all the pairs (xj , yj) for j ∈ 1, 2, . . . , w are
divided into 2T buckets and SE test is performed in each the bucket). In this
paper we focus on SE test.

Bellare et al proved that if yj ∈ G for j = 1, 2, . . . , w and q is a prime, SE test
costs w +L+wL/2+ExpCost(log2q) multiplications, while Bucket test costs

4

⌈ L
T−1

⌉(w + T + 2T−1(T + 2) + ExpCost(log2q)) multiplications. They use SE
test or Bucket test together with a slightly modified DSS scheme to achieve
efficient batch signature verification. Bellare proved that the probability that
an incorrect batch can pass the batch verification (SE test or bucket test)
is no more than 2−L. Although SE test and Bucket test are sound with an
overwhelmingly large probability, their soundness is based on an assumption:
yj ∈ G for j ∈ 1, 2, . . . , w. Otherwise incorrect pair ((xj , yj) with yj 6= gxj)
can pass the batch verification with a non-negligible probability. Bellare et al
seem to ignore the impact of this assumption.

Boyd et al [3] pointed out that the theorems in [2] are correct, but their ap-
plication to DSS verification is inappropriate because there is no efficient way
to verify yj ∈ G for j = 1, 2, . . . , w. If yj ∈ G is verified for j = 1, 2, . . . , w,
w exponentiations with full-length exponents are costed in the verification,
which compromise the efficiency improvement of the batch verification. When
yj /∈ G, the probability for an incorrect batch to pass the verification can be
much greater than 2−L (When yj = gq

0g
xj , the probability is 0.5). This observa-

tion greatly restricts the application of Bellare’s batch verification techniques.
However, it is illustrated in [1] that carefully-designed SE test is still useful in
some special applications.

3.3 Oblivious Transfer

Oblivious transfer is a function involving two parties: a sender and a chooser.
The sender possesses a few secrets. The chooser chooses one of the secrets and
gets it from the sender. The sender does not know which secret the chooser
gets and the chooser has no knowledge of any other secret.

When there are only two secrets to choose from in an oblivious transfer, it
is called 1-out-of-2 oblivious transfer [12]. When there are more than two se-
crets to choose from in an oblivious transfer, it is called 1-out-of-n oblivious
transfer [11,17]. Most oblivious transfer schemes are based on ElGamal en-
cryption. Juels and Szydlo proposed an 1-out-of-2 oblivious transfer based
on RSA encryption [7], which is more efficient than those based on ElGamal
encryption.

4 Necessity and Implementation of Bid Validity Check

Necessity and implementation of bid validity check in homomorphic auction
are discussed in this section.

5

4.1 Necessity of Bid Validity Check

Bid validity check is necessary in homomorphic auction although it is not
adopted in the existing homomorphic auction schemes [8,10,9,15]. In a Vickrey
auction or the ρth-bid auction, a constant non-zero integer must be chosen to
represent the “YES” selection, so validity of bid must be checked. Otherwise,
it is impossible to test whether the number of “YES” selections at a price
is at least 2 (in Vickrey auction) or ρ (in the ρth-bid auction). Although bid
validity has never been mentioned in any first-bid auction scheme, an invalid
bid can compromise correctness and fairness of a first-bid auction scheme.

For example, three colluding bidders B1, B2 and B3 may perform the following
attack against first bid auction where in a bidding choice no-zero integer Y
and 0 stand for “YES” and “NO” respectively.

• B1, B2 and B3 estimate that the other bidders’ bids are lower than pµ while
their own evaluation is pν , which is higher than pµ. They try to win the
auction and pay as low as possible.

• B1 bids Y at prices no higher than pµ and zero at other prices; B2 bids Y
at prices no higher than pν and zero at other prices; B3 bids −Y at prices
higher than pµ but no higher than pν and zero at other prices.

• If all other bidder submits a bid lower than pµ as expected, the sum of
choices at pµ is non-zero and the sum of choices at prices higher than pµ is
0. So pµ is the winning price and there is a tie between B1 and B2. One of
them gives up and the other wins at pµ.

• If other bidders’ highest bid, pH is no lower than pµ but lower than pν , the
sum of choices at pH is larger than zero and the sum of choices at prices
higher than pH is 0. So some other bidder wins the auction at pH together
with B2. B2 disputes the tie and publishes his bid to win the auction at pν .

• If other bidders’ highest bid is pν , the sum of choices at pν is larger than
zero and the sum of choices at prices higher than pν is 0. So some other
bidder draws with B2 at pν . B2 still has a chance to win the auction in the
following tie-breaking operation.

With this attack, either B1 or B2 win unless another bidder submits a bid
higher than the attackers’ evaluation. The attackers can pay a price lower
than their evaluation if the other bids are as low as the attackers expect. So,
no matter what auction rule is applied, bid validity check is always necessary.

4.2 Implementation of Bid Validity Check

Bid validity check in homomorphic auctions can be implemented using zero
knowledge proof techniques. When the verifiable bid sharing mechanism in

6

[15] as described in Section 3.1 is employed, the bidder has to prove that the
bid committed in (e1,0, e2,0, . . . , ew,0) is valid. For simplicity, integer 1 is used
to represent a “YES” selection. So when the bid is the δth biddable price,
zero must be committed in e1,0, e2,0, . . . , eδ−1,0 while one must be committed
in eδ,0, eδ+1,0, . . . , ew,0. Validity of the bid can be proved using the following
zero-knowledge proof.

KN(logh e′j,0) ∨ KN(logh(e
′

j,0/g)) for j = 1, 2, . . . , w (1)

and

KN(logh((
w
∏

j=1

e′j,0)/g)) (2)

where e′j,0 = ej,0/ej−1,0 for j = 2, 3, . . . , w and e′1,0 = e1,0.

Theorem 1 If and only if (1) and (2) can be proved, the bid committed in
(e1,0, e2,0, . . . , ew,0) is valid.

Proof: Proof (1) indicates that either zero or one is committed in e′j,0 for
j = 1, 2, . . . , w. Proof (2) indicates that the sum of the committed bidding
selections in (e′1,0, e

′

2,0, . . . , e
′

w,0) is 1 mod q. As w < q, the sum of the com-
mitted bidding selections in (e′1,0, e

′

2,0, . . . , e
′

w,0) is 1. So one 1 and w − 1 zeros
are committed in (e′1,0, e

′

2,0, . . . , e
′

w,0) if and only if (1) and (2) can be proved.
As e′j,0 = ej,0/ej−1,0 for j = 2, 3, . . . , w and e′1,0 = e1,0, zero is committed
in e1,0, e2,0, . . . , eδ−1,0 and one is committed in eδ,0, eδ+1,0, . . . , ew,0 for a δ in
{1, 2, . . . , w} if and only if (1) and (2) can be proved. ✷

The normal method to verify equation (1) is to perform w instances of proof of
1-out-of-2 knowledge of logarithms based on [16] and [5]. This method is highly
costly. The computational cost for a bidder is e′j,0 for 3wExpCost(|q|) + 2w
multiplications. The computational cost of a verifier (auctioneer or observer)
is (4ExpCost(|q|) + 2)nw multiplications where n is the number of bidders.

5 Efficiency Improvement of Bid Validity Check

The bid validity check mechanism in Section 4.2 is so inefficient, that it be-
comes an efficiency bottleneck. So, it is optimised in efficiency in this section.
The efficiency improvement is based on two new cryptographic primitives: a
new batch verification primitive and a new 1-out-of-w oblivious transfer tech-
nique, which are extensions of the existing schemes described in Section 3.

7

5.1 New Batch Verification Primitive

Theorem 2 is applied to verify knowledge of logg yi where yi ∈ G for i =
1, 2, . . . , w. Unless specified, any multiplicative computation in Theorem 2
and its proof occurs in G with a modulus p.

Theorem 2 Suppose yi ∈ G for i = 1, 2, . . . , w. Let L be a security parameter
such that 2L < q. If there is an efficient deterministic algorithm, which with
a probability bigger than 2−L can calculate logg

∏w
i=1 yti

i with random ti for
i = 1, 2, . . . , w where ti < 2L, then there is an efficient deterministic algorithm
to calculate logg yi for i = 1, 2, . . . , w.

Proof: Given any integer v in {1, 2, . . . , w}, there must exist integers t1, t2, . . . , tw
and t̂v in {0, 1, . . . , 2L − 1} such that there is an efficient deterministic algo-
rithm to calculate logg

∏w
i=1 yti

i and logg((
∏v−1

i=1 yti
i)y t̂v

v

∏w
i=v+1 yti

i) where tv 6= t̂v.

Otherwise, given any t1, t2, . . . , tv−1, tv+1, . . . , tw, any efficient deterministic al-
gorithm can calculate logg

∏w
i=1 yti

i for at most one tv. This deduction implies

among the 2wL possible combinations of t1, t2, . . . , tw, only 2(w−1)L of them en-
able an efficient deterministic algorithm to calculate logg

∏w
i=1 yti

i , which leads
to a contradiction: the probability that there exists an efficient deterministic
algorithm to calculate logg

∏w
i=1 yti

i with random t1, t2, . . . , tw is no more than
2−L.

So there exists an efficient deterministic algorithm to calculate

logg

w
∏

i=1

yti
i − logg((

v−1
∏

i=1

yti
i)y t̂v

v

w
∏

i=v+1

yti
i) = logg ytv−t̂v

v = (tv − t̂v) logg yv mod q

Note that tv 6= t̂v, tv, t̂v < 2L < q, so tv − t̂v 6= 0 mod q. So there is an efficient
deterministic algorithm to calculate loggyv. Therefore, there is an efficient de-
terministic algorithm to calculate logg yi for i = 1, 2, . . . , w as v can be any
integer in {1, 2, . . . , w}. ✷

According to Theorem 2 verification of knowledge of loggyi for i = 1, 2, . . . w
can be batched to verification of knowledge of logg

∏w
i=1 yti

i . The probability
that logg

∏w
i=1 yti

i is known while loggyi for some i in {1, 2, . . . , w} is unknown
is no more than 2−L.

8

5.2 New 1-out-of-w Oblivious Transfer

A 1-out-of-w oblivious transfer protocol must be employed in the optimised
bid validity verification mechanism. In the application of oblivious transfer in
this paper, only one value is transferred, so the 1-out-of-w oblivious transfer
protocol is performed only once and security requirement for multiple transfers
need not be considered. However, the employed 1-out-of-w oblivious transfer
protocol must be very efficient to achieve high efficiency in the bid valid-
ity verification mechanism. So a new 1-out-of-w oblivious transfer based on
RSA encryption is designed by extending [7] to 1-out-of-w circumstance while
keeping its high efficiency. After the extension, the new protocol only provides
one-time security, but is very efficient.

The sender has w secrets s1, s2, . . . sw and the chooser wants to know sδ ∈
{1, 2, . . . , w}. They run the following protocol where the chooser’s operation
is denoted as OT1(sδ) and the sender’s operation is denoted as OT2(sδ).

(1) Initialisation: The sender sets up RSA encryption, keeps private key d
and publishes public key e and N where ed = 1 mod φ(N). He randomly
selects ǫi,j from ZN for i = 1, 2, . . . , log2 w and j = 0, 1 and publishes

s′l = sl − (
∏log2 w

i=1 ǫi,bl,i
) mod N for l = 1, 2, . . . w where bl,i denotes the ith

bit of l. He chooses randomly ci ∈ ZN for i = 1, 2, . . . log2 w and sends
them to the chooser.

(2) OT1(sδ): choosing a secret

The chooser chooses secrets τi ∈ N for i = 1, 2, . . . log2 w. He calculates
yi,bδ,i

= τ e
i mod N for i = 1, 2, . . . , log2 w. Then he calculates yi,1⊕bδ,i

=
yi,bδ,i

ci mod N if bδ,i = 0 or yi,1⊕bδ,i
= yi,bδ,i

/ci mod N if bδ,i = 1 for
i = 1, 2, . . . log2 w where ⊕ stands for XOR. He sends yi,0 and yi,1 for
i = 1, 2, . . . log2 w to the sender in correct order.

(3) OT2(sδ): sending the secret

The sender verifies yi,1 = ciyi,0 mod N for i = 1, 2, . . . log2 w and sends
Ei,0 = yd

i,0ǫi,0 mod N and Ei,1 = yd
i,1ǫi,1 mod N for i = 1, 2, . . . log2 w to

the chooser.
(4) Obtaining the secret: The chooser can only get sδ = s′δ+(

∏log2 w
i=1 Ei,bδ,i

)/
∏log2 w

i=1 τi mod N .

Properties of this 1-out-of-w oblivious transfer protocol are as follows.

(1) Correctness
If the sender and the chooser follow the protocol, the chooser can obtain
sδ as

s′δ + (
log2 w
∏

i=1

Ei,bδ,i
)/

log2 w
∏

i=1

τi mod N

9

= s′δ + (
log2 w
∏

i=1

yd
i,bδ,i

ǫi,bδ,i
)/

log2 w
∏

i=1

τi mod N

= s′δ + (
log2 w
∏

i=1

τ ed
i ǫi,bδ,i

)/
log2 w
∏

i=1

τi mod N

= s′δ +
log2 w
∏

i=1

ǫi,bδ,i
mod N = sδ

(2) Privacy of the chooser
As yi,0 and yi,1 for i = 1, 2, . . . log2 w are distributed uniformly, the
sender has no knowledge of δ. Namely, information-theoretic privacy of
the chooser is achieved.

(3) Privacy of the sender
It is widely believed that composite factorization is intractable and with-
out the knowledge of the factorisation of N it is intractable to find d
given e and N . So the chooser can get only one of ǫi,0 and ǫi,1 for every
i in {1, 2, . . . , log2 w}. Therefore, the chooser does not know any other
secret than sδ.

(4) High efficiency
• The cost to the sender is 2 log2 w exponentiations and n(log2 w − 1) +

2 log2 w multiplications;
• The cost to the chooser is (log2 w)/2 + 1 divisions and 1.5 log2 w + 1

multiplications on average if e is a small integer as suggested in [7].

In this paper, this 1-out-of-w oblivious transfer protocol will be applied to
transfer L-bit integers, which are smaller than N .

5.3 Batch Verification of Bid Validity

A method to improve efficiency of bid validity check is to apply the batch ZK
proof-verification technique in Section 5.1 to batch prove and verify validity
of a bid. For example, according to Theorem 2, Proof (1) and Proof (2) can
be batched into

KN(δ | KN(logh(
w
∏

j=1

e′
tj
j,0)/g

tδ), 1 ≤ δ ≤ w) (3)

where the bid is the δth biddable price and t1, t2, . . . , tw are random L-bit
integers. A simple implementation of Proof (3) is presented in Figure 1, where
A and B represent a verifier (auctioneer) and a prover (bidder) respectively
and tj is much smaller than q.

10

B → A : a = hr mod p where r is randomly chosen from Zq.

A → B : t1, t2, . . . , tw where tj ∈ {0, 1}L for j = 1, 2, . . . , w
B → A : z = s − r mod q where s =

∑w
j=1 u′

jtj mod q

where u′

j = uj − uj−1 for j = 2, 3, . . . , w and u′

1 = u1.
Verification:

∏w
j=1 e′

tj
j,0 = ahzgtδ mod p

Fig. 1. Simple Batch Proof-Verification of Bid Validity

Although this approach is efficient, the verification equation
∏w

j=1 e′
tj
j,0 = ahzgtδ

mod p reveals that the bid is the δth biddable price. So the proof in Figure 1
is not a ZK proof of (3). Instead, it is a ZK proof of KN(logh(

∏w
j=1 e′

tj
j,0)/g

tδ),
which reveals δ. Therefore, the batch proof-verification protocol in Figure 1
must be modified, so that the bid is not revealed. The following is a modified
four-move protocol.

• In the first move (the added move) the prover and the verifier perform
an oblivious transfer. Firstly, the verifier (auctioneer as the sender in the
oblivious transfer) chooses challenges t1, t2, . . . , tw and keep them secret.
Then the prover (bidder as the chooser in the oblivious transfer) use the
1-out-of-w oblivious transfer protocol in Section 5.2 to obtain tδ from the
verifier while he obtains no knowledge of other secret challenges.

• The prover’s commitment is the second move, which is a commitment of
two secrets: tδ and a random integer r.

• The last two moves (challenge and response) are the same as the last two
moves in Figure 1.

• The verification equation is slightly modified so that tδ does not appear
explicitly in the verification equation and the bid is not revealed.

The protocol is described in detail in Figure 2. A and B represent a verifier
(auctioneer) and a prover (bidder) respectively. According to Theorem 2 and
the privacy property for the sender in the 1-out-of-w transfer, the protocol in
Figure 2 proves

KN(logh e′j,0) for w − 1 instances of j ∈ {1, 2, . . . , w} (4)

Note that in his proof of the binding property of his VSS in [14], Pedersen
assumed that ej,0 is in the cyclic subgroup G. So although it is not explicitly
described, ej,0 for j = 1, 2, . . . , w must have been verified to be in G for the
sake of verifiability of secret sharing. Therefore, e′j,0 ∈ G for j = 1, 2, . . . , w
and the condition in Theorem 2 is satisfied. This proof is much more efficient
than Proof (1) in Section 4.2, but is as effective as it. In addition to Proof (2)
(which can be proved and verified using a standard Schnnor ZK proof protocol
[16]), Proof (4) guarantees that (1, 0, 0 . . . , 0) is committed in e′1,0, e

′

2,0, . . . , e
′

w,0

in an unknown order. The position of commitment of 1 (bidding information)

11

B → A : OT1(tδ)

A → B : OT2(tδ),
B → A : a = hrgtδ mod p where r is randomly chosen from Zq.

A → B : t1, t2, . . . , tw where tj ∈ {0, 1}L for j = 1, 2, . . . , w
B → A : z = s − r mod q where s =

∑w
j=1 u′

jtj
where u′

j = uj − uj−1 for j = 2, 3, . . . , w and u′

1 = u1.
Verification:

∏w
j=1 e′

tj
j,0 = ahz mod p

Fig. 2. Batch Verification with Secret Sharing

is not revealed in the proof.

This new proof and verification cost O(log2 w) full-length exponentiations and
is much more efficient than before batch verification is applied.

6 Analysis

In this section we show that the optimised bid validity check mechanism using
batch verification is correct, sound, zero knowledge and efficient.

6.1 Security Analysis

Security properties of batch verification of bid validity is analysed in this sec-
tion. Correctness of the batch verification is obvious, namely when the bidders
are honest their validity proof can successfully pass the verification. Other se-
curity properties like soundness and zero knowledge are not so obvious.

Theorem 3 The proof protocol in Figure 2 is honest-verifier ZK.

Proof: Without any help from the prover, the verifier can generate a proof
transcript as follows. He randomly selects OT1(tδ) ,OT2(tδ), z from Zq and

t1, t2, . . . , tw from {0, 1}L. Then he calculates a =
∏w

j=1 e′
tj
j,0/h

z. Thus he inde-
pendently gets a proof transcript (OT1(tδ), OT2(tδ), a, t1, t2, . . . , tw, z). In this
transcript, every integer is uniformly distributed. If the verifier is honest and
randomly selects his challenge t1, t2, . . . , tw, the proof protocol in Figure 2 also
generates a proof transcript (OT1(tδ), OT2(tδ)a, t1, t2, . . . , tw, z), in which every
integer is uniformly distributed. These two transcripts are indistinguishable. ✷

Theorem 4 The proof protocol in Figure 2 is sound. More precisely, if the

12

B → A : δ

A → B : tδ
B → A : a = hrgtδ mod p where r is randomly chosen from Zq

A → B : t1, t2, . . . , tδ−1, tδ+1, . . . , tw where tj ∈ {0, 1}L for j = 1, 2, . . . , w
B → A : z = s − r mod q where s =

∑w
j=1 u′

jtj
Verification:

∏w
j=1 e′

tj
j,0 = ahz mod p

Fig. 3. A protocol used in proof of Theorem 4

verifier is honest and the proof passes the verification in the protocol in Figure 2
with a non-negligible probability, the proof together with Proof (2) guarantees
that (1, 0, 0 . . . , 0) is committed in e′1,0, e

′

2,0, . . . , e
′

w,0 after being permuted.

To prove Theorem 4, the following two lemmas are proved first.

Lemma 1 If a prover can pass the protocol in either Figure 3 or Figure 2,
then he can pass the other as well.

Proof: As the oblivious transfer protocol guarantees privacy of sender, in the
protocol in Figure 2 the prover only gets tδ in the first two steps and has no
information about t1, t2, . . . , tδ−1, tδ+1, . . . , tw until the fourth step. So in pro-
tocols in Figure 2 and Figure 3 the prover tries to prove the same statement
while given the same knowledge. Therefore, he can pass the other as well if he
can pass one of them. ✷

Lemma 2 The protocol in Figure 3 is sound. More precisely, if the verifier is
honest and the prover can pass the verification in the protocol in Figure 3 with
a non-negligible probability, then he knows logh e′1,0, loghe

′

2,0, . . . , loghe
′

δ−1,0,
loghe

′

δ+1,0 . . . , loghe
′

w,0.

Proof: As the prover can pass the verification in the protocol in Figure 3
with a non-negligible probability, the prover must be able to give two re-
sponses z and z′ to two different challenges t1, t2, . . . , tδ−1, tδ+1, . . . , tw and
t′1, t

′

2, . . . , t
′

δ−1, t
′

δ+1, . . . , t
′

w to the same commitment a, such that

w
∏

j=1

e′
tj
j,0 = ahz mod p (5)

(
δ−1
∏

j=1

e′
t′
j

j,0)e
′tδ
δ,0

w
∏

j=δ+1

e′
t′
j

j,0 = ahz′ mod p (6)

with a probability larger than 2−L. Otherwise, the prover can give correct
response to at most one challenge with a non-negligible probability, while

13

the probability that he can give a correct response to any other challenge is
no larger than 2−L. This deduction implies a contradiction: when an honest
verifier chooses a random challenge from all the 2wL possible challenges the
probability that the prover can pass the verification is no more than 1/2wL +
2−L(2wL − 1)/2wL, which is negligible.

Dividing (5) with (6) yields

δ−1
∏

j=1

e′
tj−t′

j

j,0

w
∏

j=δ+1

e′
tj−t′

j

j,0 = hz−z′ mod p,

which is correct with a probability larger than 2−L. So, the prover knows

logh(
∏δ

j=1 e′
tj−t′

j

j,0

∏w
j=δ+1 e′

tj−t′
j

j,0) = z − z′ with a probability larger than 2−L.

As the verifier is honest and chooses t1, t2, . . . , tδ−1, tδ+1, . . . , tw and t′1, t
′

2, . . . ,
t′δ−1, t

′

δ+1, . . . , t
′

w randomly, t1−t′1, t2−t′2, . . . , tδ−1−t′δ−1, tδ+1−t′δ+1, . . . , tw−t′w
are random. So according to Theorem 2, the prover knows logh e′1,0, loghe

′

2,0, . . . ,
loghe

′

δ−1,0, loghe
′

δ+1,0 . . . , loghe
′

w,0. ✷

Proof of Theorem 4: According to Lemma 1, if the proof protocol in Figure 2
passes the verification with a non-negligible probability when the verifier is
honest, the prover can also pass the protocol in Figure 3 with the same non-
negligible probability when the verifier is honest.

So according to Lemma 2, the prover knows logh e′1,0, loghe
′

2,0, . . . , loghe
′

δ−1,0,
loghe

′

δ+1,0 . . . , loghe
′

w,0. Proof (2) guarantees that the prover knows logh(
∏w

j=1 e′j,0)/g.
So the prover knows logh e′δ,0/g. As the prover does not know logg h and the
commitment of shares in [14] is binding, 1 is committed in e′δ,0 and 0 is commit-
ted in e′1,0, e

′

2,0, . . . , e
′

δ−1,0, e
′

δ+1,0 . . . , e′w,0 Therefore, (1, 0, 0 . . . , 0) is committed
in e′1,0, e

′

2,0, . . . , e
′

w,0 after being permuted. ✷

6.2 Efficiency Analysis

Suppose an inverse with modulus has the same cost of an exponentiation with
the same modulus and e, the RSA public key in the oblivious transfer, is a
small integer. In Table 1, the cost of bid validity check with normal method
and batch solution respectively are compared. An example is given in the table
for this comparison, where w = 1024, |N | = |q| = 1024 and L = 20. Suppose
ExpCost(x) = 1.5x and ExpCosty(x) = x + 0.5xy.

The batch solution is much more efficient in computation, while the probability
that an invalid bid is accepted is no more than 2−L = 2−20. The larger w

14

Table 1
Comparison of Computation Efficiency

prover verifier

cost example verifier example

normal w(3ExpCost(|q|) + 2) 4722177 w(4ExpCost(|q|) + 2)+ 6296577

+ExpCost(|q|) + 1 2ExpCost(|q|) + 1

(0.5 log
2

w + 1)ExpCost(|n|)+ 2(ExpCost(|n|) + 1) log
2

w+

batch 2ExpCost(|q|) + ExpCostw(L) 23590 3ExpCost(|q|) + ExpCostw(L) 55850

+w + 1.5 log
2

w + 3 +w log
2

w + 2

is, the greater advantage the batch solution has. In auction, the number of
biddable prices must be large enough to avoid tie situation, especially when
many bidders take part in the auction. So computational improvement by
batch verification is very helpful in large-scale auctions.

7 Conclusion

Bid validity check is necessary in homomorphic auction schemes to prevent
attack against correctness and fairness. However, bid validity check is usually
costly. Batch verification technique and oblivious transfer can be combined to
significantly improve efficiency of bid validity check in homomorphic auction
schemes without compromising bid privacy.

Acknowledgements

We acknowledge the support of the Australian Research Council through ARC
Discovery Grant No. DP0345458.

References

[1] Riza Aditya, Kun Peng, Colin Boyd, and Ed Dawson. Batch verification for
equality of discrete logarithms and threshold decryptions. In Second conference
of Applied Cryptography and Network Security, ACNS 04, volume 3089 of
Lecture Notes in Computer Science, pages 494–508, Berlin, 2004. Springer-
Verlag.

15

[2] M Bellare, J A Garay, and T Rabin. Fast batch verification for modular
exponentiation and digital signatures. In EUROCRYPT ’98, pages 236–250,
Berlin, 1998. Springer-Verlag. Lecture Notes in Computer Science 1403.

[3] Colin Boyd and Chris Pavlovski. Attacking and repairing batch verification
schemes. In ASIACRYPT ’00, pages 58–71, Berlin, 2000. Springer-Verlag.
Lecture Notes in Computer Science 1976.

[4] J. Cohen Benaloh. Secret sharing homomorphisms: keeping shares of a secret
secret. In CRYPTO ’86, pages 251–260, Berlin, 1986. Springer-Verlag. Lecture
Notes in Computer Science Volume 263.

[5] R. Cramer, I. B. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO ’94, pages 174–
187, Berlin, 1994. Springer-Verlag. Lecture Notes in Computer Science Volume
839.

[6] L Harn. Batch verifying multiple DSA-type digital signatures. In Elecrronics
Letters, 34,9, pages 870–871, 1998.

[7] A. Juels and M. Szydlo. An two-server auction protocol. In Proc. of Financial
Cryptography, pages 329–340, 2002.

[8] H Kikuchi, Michael Harkavy, and J D Tygar. Multi-round anonymous auction.
In Proceedings of the First IEEE Workshop on Dependable and Real-Time E-
Commerce Systems, pages 62–69, June 1998.

[9] Hiroaki Kikuchi. (m+1)st-price auction. In The Fifth International Conference
on Financial Cryptography 2001, pages 291–298, Berlin, February 2001.
Springer-Verlag. Lecture Notes in Computer Science Volume 2339.

[10] Hiroaki Kikuchi, Shinji Hotta, Kensuke Abe, and Shohachiro Nakanishi.
Distributed auction servers resolving winner and winning bid without revealing
privacy of bids. In proc. of International Workshop on Next Generation Internet
(NGITA2000), IEEE, pages 307–312, July 2000.

[11] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Twelfth
Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington,
DC, USA. ACM/SIAM, pages 448–457, 2001.

[12] Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy perserving auctions
and mechanism design. In ACM Conference on Electronic Commerce 1999,
pages 129–139, 1999.

[13] Torben P. Pedersen. Distributed provers with applications to undeniable
signatures. In EUROCRYPT ’91, pages 221–242, Berlin, 1991. Springer-Verlag.
Lecture Notes in Computer Science Volume 547.

[14] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In EUROCRYPT ’91, pages 129–140, Berlin, 1991. Springer-
Verlag. Lecture Notes in Computer Science Volume 547.

16

[15] Kun Peng, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Robust, privacy
protecting and publicly verifiable sealed-bid auction. In ICICS, volume 2513 of
Lecture Notes in Computer Science, pages 147 – 159. Springer, 2002.

[16] C Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4, 1991, pages 161–174, 1991.

[17] Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes. In Public
Key Cryptography, 5th International Workshop on Practice and Theory in
Public Key Cryptosystems, PKC 2002, Paris, France, February 12-14, 2002,
Proceedings, volume 2274 of Lecture Notes in Computer Science, pages 159–
171. Springer, 2002.

17

