
Pairing-Based Two-Party Authenticated Key

Agreement Protocol

Rongxing Lu1, Zhenfu Cao1, Renwang Su2, and Jun Shao1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University,

1954 Huashan Road, Shanghai 200030, P.R. China
{rxlu, cao-zf, shao-jun}@cs.sjtu.edu.cn

http://tdt.sjtu.edu.cn
2 College of Statistics and Computing Science,

Zhejiang Gongshang University,
Hangzhou 310035, Zhejiang, P.R. China

rwsu@263.net

Abstract. To achieve secure data communications, two parties should
be authenticated by each other and agree on a secret session key by
exchanging messages over an insecure channel. In this paper, based on the
bilinear pairing, we present a new two-party authenticated key agreement
protocol, and use the techniques from provable security to examine the
security of our protocol within Bellare-Rogaway model.

1 Introduction

In the area of secure communications, key agreement protocol is one of the
most important security mechanisms, by which a pair of users that communicate
over a public unreliable channel can generate a secure session key to guarantee
the later communications’ privacy and data integrity. The first pioneering work
for two-party key agreement is the Diffie-Hellman protocol given in their seminal
paper in 1976 [14]. However, the basic Diffie-Hellman protocol doesn’t provide
the authentication mechanism, and therefore easily suffers from the “man-in-
the-middle” attack and other attacks. To solve this issue, over the past years,
a bulk of two-party key agreement protocols with authentication function have
been developed [8, 2, 6, 16, 7].

The pairing, which was initially used to reduce the discrete logarithm prob-
lem on some elliptic curves (e.g., the super-singular curves) to the discrete log-
arithm problem on some finite field, had hindered the researchers from building
cryptosystems on such these curves until Joux [15] used the pairing to propose
the first one round tripartite key agreement protocol in 2000. Since then, due
to its merits, the pairing has become an important tool for construction of ID-
based cryptographic schemes and others. As regards the research of protocol
design, many pairing-based two-party authenticated key agreement (AKA) pro-
tocols have been proposed [18, 13, 17, 12] in recent years. Smart [18] proposed

2

an ID-based authenticated key agreement protocol from pairing, but the proto-
col doesn’t provide the perfect full forward secrecy. Chen and Kudla [13] also
used the pairing to propose an ID-based authenticate key agreement protocol.
Although Chen and Kudla [13] proved that their protocol was secure in the
Bellare-Rogaway model [8], yet Cheng et al. [11] pointed out that the proof in
[13] is flawed and their protocol was not secure against key revealing attacks.
Another ID-based authenticated key agreement protocol from pairing was pro-
posed by McCullagh and Barreto [17], but it can’t resist the key revealing attacks
pointed out by Choo [10], though it is proved to be secure [17] in Bellare-Rogaway
model. More recently, Choi et al. [12] have used the pairing to put forth a new
ID-based authenticate key agreement protocol for low-power mobile devices. Al-
though the protocol is very efficient, yet it only achieves half forward secrecy in
the sense that exposure of client’s private key doesn’t reveal the previous ses-
sion keys, while exposure of server’s private key does affect the security of the
previous session keys.

Motivated by the mentioned above, in this paper, we would like present
a new pairing-based two-party authenticated key agreement protocol and use
the techniques from provable security to analyze the security of our proposed
protocol within Bellare-Rogaway model. Compared with Choi et al. [12] protocol,
our protocol provides the full forward secrecy.

The rest of the paper is organized as follows. In section 2, we first recall the
security model for two-party authenticated key agreement protocols. Then, we
briefly review the bilinear pairing and computational Diffie-Hellman assumption
in section 3. We introduce our proposed pairing-based authenticated key agree-
ment protocol in section 4 and give its security analysis in section 5. Finally, we
draw our conclusions in section 6.

2 Model

In this section, we recall the security model for two-party authenticated key
agreement protocols proposed by Bellare and Rogaway [8], modified by Blake-
Wilson et al. [2, 6] and others [17, 12]. In the model, the players do not deviate
from the protocol and the adversary, whose capabilities are modelled through a
pre-defined set of oracle queries, is not a player, but does control all the network
communications.

2.1 Security Model

Players. We assume that two users A and B participate in the key agreement
protocol P . Each of them may have several instances called oracles involved in
distinct executions of P . We denote instance s of i ∈ {A, B} by Πs

i for an
integer s ∈ N. We also use the notation Πs

A,B to define the s-th instantiation of
A executing P with B.
Adversarial Model. We allow a probabilistic polynomial time (PPT) adver-
sary F to access to all message flows in the system. All oracles only communicate
with each other via F . F can replay, modify, delay, interleave or delete messages.

3

At any time, the adversary F can make the following queries:

– Execute(A, B): This query models passive attacks, where F gets access to
an honest execution of P between A and B by eavesdropping.

– Send(Πs
i , m): This query models F sending a message m to instance Πs

i .
The adversary F will get back the response of Πs

i , according to the proto-
col P . F may use this query to perform active attacks by modifying and
inserting the messages of the protocol. A query Send(Πs

A, Start) initializes
the protocol, and thus the adversary receives the flow that A should send
out to B.

– Reveal(Πs
A,B): This query models known key attacks in the real system. F

is allowed to expose an old session key that has been previously accepted.
Πs

A,B, upon receiving the query and if it has accepted and holds some session
key, will send this session key back to F .

– Corrupt(i): This query models exposure of the long-term secret key held by
i ∈ {A, B} to the adversary F . In the real scenarios, an insider cooperating
with the adversary or an insider who has been completely compromised by
the adversary are possible modelled by this query.

– Test(Πs
A,B): This query is the only oracle query that does not corresponding

to any of F ’s abilities. This query is used to define the advantage of F . When
F asks this query to an instance Πs

A,B, F is given either the actual session key
or a session key drawn randomly from the session key distribution, according
to a random bit b ∈ {0, 1}. Note that the Test query can be asked at most
once by the adversary.

2.2 Security Notions

Freshness. The notion of freshness is used to identify the session keys about
which F ought not to know anything because F has not revealed any oracles
that have accepted the key and has not corrupted i ∈ {A, B}. An oracle Πs

A,B

is said fresh if:

– Πs
A,B has accepted a session key sk and Πs

A,B has not been asked for a
Reveal query,

– No Corrupt query has been asked before a query of the form Send(Πs
A, ∗)

or Send(Πs
B, ∗).

Definitions of Security. The security of the protocol P is defined using the
following game, played between an adversary F and a collection of Πs

A,B oracles
for players A, B and s ∈ N.

– In the initialization phase, each player i ∈ {A, B} is assigned a long-term
key related to the security parameter.

– In the running phase, an adversary F may ask some queries and get back
the answers from the corresponding oracles.

– At some point, the adversary F asks a Test query to a fresh oracle, and
outputs its guess b′ for the bit b involved in the Test query.

4

Success of F in the game is quantified in terms of F ’s advantage in distin-
guishing whether F receives a real session key or a random value, i.e., its ability
guessing b. We define F ’s advantage as

Advaka
P (F) = |2× Pr[b = b′]− 1|

where the probability space is over all the random coins of the adversary and all
the oracles. We say that the protocol P is secure if Advaka

P (F) is negligible in
the security parameter.

3 Preliminaries

3.1 Bilinear Pairings

In recent years, the bilinear pairings have been found various applications in
cryptography and have been used to construct some new cryptographic primi-
tives [1, 4].

Let G1 be a cyclic additive group and G2 be a cyclic multiplicative group
of the same prime order q. We assume that the discrete logarithm problems in
both G1 and G2 are hard. A bilinear pairing is a map e : G1 × G1 → G2 which
satisfies the following properties:

1. Bilinear: For any P, Q ∈ G1 and a, b ∈ Z∗
q , we have e(aP, bQ) = e(P, Q)ab.

2. Non-degenerate: There exists P ∈ G1 and Q ∈ G1 such that e(P, Q) 6= 1.
3. Computable: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

From the literature [1], we note that such a bilinear pairing may be realized
using the modified Weil pairing associated with supersingular elliptic curves.

3.2 Computational Diffie-Hellman Assumption

The Computational Diffie-Hellman (CDH) problem in G1 is to compute
abP ∈ G1 when given P , aP and bP for some a, b ∈ Z∗

q .
A (τ, ǫ)-CDH adversary in G1 is a probabilistic machine Φ running in time τ

such that
Succcdh

G1
(Φ) = Pr[Φ(P, aP, bP) = abP] ≥ ǫ

where the probability is taken over the random values a and b. The CDH problem
is (τ, ǫ)-intractable if there is no (τ, ǫ)-adversary in G1. The CDH assumption
states that is the case for all polynomial τ and any non-negligible ǫ.

4 Our Proposed Protocol

In this section, we introduce our new two-party authentication key agreement
protocol from bilinear pairings. The protocol is composed of two phases: protocol

initialization and protocol running. We describe each of them in turn.

5

4.1 Protocol Initialization

As described in section 3.1, G1, G2 are two groups of the same prime order q,
where |q| = k1, and e : G1×G1 → G2 is an admissible bilinear map in the system.
Let P be a generator of G1 and H1, H2 and H3 be three secure hash functions,
where H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G1 and H3 : {0, 1}∗ → {0, 1}k2. Here
k1, k2 are two secure parameters.

The player A chooses a random xA ∈ Z∗
q as her private key, and computes

the corresponding public key YA = xAP . Similarly, the player B also chooses a
random xB ∈ Z∗

q as his private key, and computes his public key YB = xBP .

4.2 Protocol Running

When A and B want to establish a session key, they execute the following
protocol as shown in Figure 1:

A B

(xA, YA = xAP) (xB, YB = xBP)

a
R
←− Z

∗

q ; X1 = aP

h1 = H1(X1‖IDA‖IDB)

Y1 = xAh1
IDA,(X1,Y1)

−−−−−−−−−−−−→
h1 = H1(X1‖IDA‖IDB)

e(YA, h1)
?
= e(P, Y1)

b
R
←− Z

∗

q ; X2 = bP

Z = bX1 = abP

h2 = H2(Z‖X1‖X2‖IDA‖IDB)
IDB ,(X2,Y2)

←−−−−−−−−−−−− Y2 = xBh2

Z = aX2 = abP

h2 = H2(Z‖X1‖X2‖IDA‖IDB) sk = H3(Z‖X1‖X2‖IDA‖IDB)

e(YB, h2)
?
= e(P, Y2)

sk = H3(Z‖X1‖X2‖IDA‖IDB)

Fig. 1. Proposed two-party authenticated key agreement protocol

1. A picks a random number a ∈R Z∗
q , computes X1, h1, Y1, where X1 = aP ,

h1 = H1(X1‖IDA‖IDB) and Y1 = xAh1. Here IDA, IDB are the identities
of A, B and ‖ is the catenation symbol. A then sends 〈IDA, X1, Y1〉 to B.

2. Upon receiving 〈IDA, X1, Y1〉, B computes h1 = H1(X1‖IDA‖IDB) and
checks whether e(YA, h1) = e(P, Y1). If it is not true, B terminates the pro-
tocol. Otherwise, B picks a random number b ∈R Z∗

q , and computes X2, Z, h2

and Y2, where X2 = bP , Z = bX1 = abP , h2 = H2(Z‖X1‖X2‖IDA‖IDB)
and Y2 = xBh2. Finally, B sends 〈IDB, X2, Y2〉 to A, and computes the
session key sk = H3(Z‖X1‖X2‖IDA‖IDB).

6

3. When A receives 〈IDB, X2, Y2〉, she computes Z = aX2 = abP and h2 =
H2(Z‖X1‖X2‖IDA‖IDB). Then she checks whether e(YB, h2) = e(P, Y2). If
it is not true, A also aborts the protocol. Otherwise, A computes the session
key sk = H3(Z‖X1‖X2‖IDA‖IDB).

Correctness. In an honest execution of the proposed protocol in Figure 1,
we have the Diffie-Hellman secret value aX2 = bX1 = Z = abP , Hence the
correctness follows.

Efficiency. In the proposed protocol, the hash functions H1, H2 are Map-
To-Point operations, which require many computations. However, with several
efficient algorithms available for pairings [3, 5] and some off-line computations
in the protocol, the efficiency of the protocol is acceptable.

5 Security

In this section, we prove that our proposed two-party authenticated key
agreement protocol is secure in the random oracle model [8] as long as the
CDH problem is assumed hard in G1. Before doing that, we first show that the
transcripts of the player i, i ∈ {A, B}, is unforgeable.

Lemma 1. Assume that the hash function H1 is a random oracle. Let Fs be

an adversary which can, with success probability ǫ, forge a valid transcript of the

player A within a time τ , after qh and qs to the hash oracle H1 and Send oracle,

respectively. Then, there exists an attacker Φs that solves the CDH problem with

another probability ǫ′ within time τ ′, where

ǫ′ ≥
1

(qs + 1)exp(1)
· ǫ, τ ′ ≤ τ + (qh + qs + 1) · tpm

with exp(1) ≈ 2.17 . . . the Napierian logarithm base and tpm the time for a point

scalar multiplication evaluation in G1.

Proof. Initially, Φs is given an instance (P, xP, yP) ∈ G1 of the CDH problem,
where x, y ∈ Z∗

q , and its goal is to compute xyP ∈ G1. Φs then runs Fs as a
subroutine and simulates its attack environment. First, Φs sets YA = xP , the
public key of the player A and gives it to Fs.

Then, Φs will respond Fs’s hash oracle H1 and Send oracle queries. To
avoid collision and consistently respond to these queries, a hash list ΛH, which
is initially empty, will maintained by Φs. Concretely, Φs interacts with Fs as
follows:
H1-query. At any time, Fs provides a message m for H1 oracle query. To
respond it, Φs selects a random number r ∈ Z∗

q and then

– with probability α, computes rP ∈ G1, adds (m, r, rP) to ΛH, and responds
to Fs with H1(m) = rP , where α is a fixed probability determined later [9];

– with probability 1 − α, computes ryP ∈ G1, adds (m, r, ryP) to ΛH, and
responds to Fs with H1(m) = ryP .

7

Note that the form of the message m is X1‖IDA‖IDB here.

Send-query. When Fs makes a Send(Πs
A, m) query, which has been preceded

by an H1 query. Φs looks up ΛH.

– If H1(m) = rP , with probability α, Φs computes Y = rxP and sets Y1 = Y

and returns 〈IDA, (X1, Y1)〉 to Fs. Obviously, the simulation works correctly
since Fs, without knowing the private key of A, can not distinguish whether
any transcript 〈IDA, (X1, Y1)〉 is valid or not.

– If H1(m) = rbP , with probability 1−α, Φs terminates the game and admits
failure.

Eventually, Fs outputs a valid transcript 〈IDA, (X⋆, Y ⋆)〉. As we assume
that the hash value H1(m) of m has been asked and existed in ΛH. In the found
entry in ΛH,

– If H1(m) = rP , with probability α, Φs terminates the game and admits
failure.

– If H1(m) = ryP , with probability 1− α, Φs obtains the challenged xyP by
computing r−1Y ⋆ = r−1rxyP = xyP , since we have Y ⋆ = rxyP and know
the value of r.

Based upon the analysis above, if the game does’t terminate, Φs resolves the
CDH problem with probability at least ǫ′, where ǫ′ = αqs(1 − α)ǫ. Since the
maximum value of αqs(1 − α)ǫ is 1

qs+1 · (
1

1+ 1

qs

)qs , where α = qs

qs+1 , we will have

ǫ′ = 1
qs+1 ·(

1
1+ 1

qs

)qs ·ǫ. And for the enough large qs, (1
1+ 1

qs

)qs ≈ 1
exp(1) . Therefore,

ǫ′ ≥ 1
(qs+1)exp(1) · ǫ, which is our desired. �

Lemma 2. Assume that the hash function H2 is a random oracle. Let Fs be

an adversary which can, with success probability ǫ, forge a valid transcript of the

player B within a time τ , after qh and qs to the hash oracle H2 and Send oracle,

respectively. Then, there exists an attacker Φs that solves the CDH problem with

another probability ǫ′ within time τ ′, where

ǫ′ ≥
1

(qs + 1)exp(1)
· ǫ, τ ′ ≤ τ + (qh + qs + 1) · tpm

with exp(1) ≈ 2.17 . . . the Napierian logarithm base and tpm the time for a point

scalar multiplication evaluation in G1.

Proof. The proof is similar to the proof of Lemma 1 and therefore it is omitted.
Here we should note that, when Fs makes the H2 and Send oracles, the message
m in H2(m) and Send(Πs

B , m) has the form of Z‖X1‖X2‖IDA‖IDB, where
X2 = bP and Z = bX1 for some b ∈ Z∗

q . �

We denote Succcma
SIG (τ ′) the maximum success probability of any adversary

running in time τ ′ to forge the transcript of the player i, i ∈ {A, B}. Then, we

8

have the advantage Advaka
P (Fs) of the adversary Fs to break the protocol by

forging the transcript of A and B is bounded by

Advaka
P (Fs) ≤ Succcma

SIG,Fs→A(τ ′) + Succcma
SIG,Fs→B(τ ′) ≤ 2 · Succcma

SIG (τ ′)

By Lemma 1 and Lemma 2, the advantage Advaka
P (Fs) is negligible.

Next, we consider the case in which an adversary Fp breaks the protocol
without altering the transcripts.

Lemma 3. Assume that the hash functions H1, H2 and H3 are random oracles.

Let Fp be an adversary which can break the proposed protocol without altering

the transcripts, within a time τ , after making several oracles’ queries defined in

section 2.1. Then, we have

Adv
aka
P (Fp) ≤ 2qs · Succcdh

G1
(τ ′)

where τ ′ is the total running time and qs is the total number of session instances

Π1
A,B, Π2

A,B, · · · , Πqs

A,B.

Proof. Since the adversary Fp can, with non-negligible advantage, break the
proposed protocol, using Fp, we can construct another attacker Φp to solve the
CDH problem in G1.

First, Φp is given an instance of the CDH problem (P, xP, yP), where x, y ∈
Z∗

q , and its goal is to compute xyP ∈ G1. Then, Φp runs Fp as a subroutine and
simulates its attack environment.

For each player i ∈ {A, B}, Φp chooses xi ∈ Z∗
q , and creates a public key as

Yi = xiP . Then, Φp gives the public keys YA, YB to Fp and interacts with him.
In the game below, Φp simulates the hash oracles H1, H2 and H3, as usual by

maintaining hash list ΛH1
, ΛH2

and ΛH3
for avoiding collision and consistently

response. Φp also simulates all the instances, as the real players would do, for the
Send, Execute, Reveal, Corrupt and Test queries. Without loss of generality,
we assume that all queries are distinct, that is, Fp doesn’t ask queries on a same
message more than once. To make use of the advantage of Fp, Φp guesses β such
that Fp asks its Test query in the β-th session.
H1-query. When Fp makes a hash query H1(m) such that a record 〈m, r1, r1P 〉
appears in ΛH1

, Φp answers with r1P . Otherwise, Φp chooses a random r1 ∈ Z∗
q ,

adds 〈m, r1, r1P 〉 to ΛH1
and returns r1P to Fp.

H2-query. When Fp makes a hash query H2(m) such that a record 〈m, r2, r2P 〉
appears in ΛH2

, Φp answers with r2P . Otherwise, Φp chooses a random r2 ∈ Z∗
q ,

adds 〈m, r2, r2P 〉 to ΛH2
and returns r2P to Fp.

H3-query. When Fp makes a hash query H3(m) such that a record 〈m, r3〉
appears in ΛH3

, Φp answers with r3. Otherwise, Φp chooses a random r3 ∈
{0, 1}k2, adds 〈m, r3〉 to ΛH3

and returns r3 to Fp.
Send-query. We classifies Send-query into three types as follows:

– Send(Πs
A, Start). When Fp makes a Send(Πs

A, Start) query,

9

• if the query is in the β-th session, Φp chooses a random r1 ∈ Z∗
q , computes

X1 = xP , Y1 = xAr1P and returns IDA and (X1, Y1) to Fp.

• otherwise, Φp chooses two random numbers a, r1 ∈ Z∗
q , computes X1 =

aP , Y1 = xAr1P and returns IDA and (X1, Y1) to Fp. Φp also adds
〈m, r1, r1P 〉 to ΛH1

, where m = X1‖IDA‖IDB. The instance Πs
A then

goes to an expecting state.

– Send(Πs
B , (IDA, X1, Y1)). When Fp makes a Send(Πs

B, (IDA, X1, Y1)) query,

• if the query is in the β-th session, Φp chooses a random r2 ∈ Z∗
q , computes

X2 = yP , Y2 = xBr2P and returns IDB and (X2, Y2) to Fp.

• otherwise, after checking (X1, Y1), Φp chooses two random numbers b, r2 ∈
Z∗

q , computes X2 = bP , Z = bX1 = abP and Y2 = xBr2P and re-
turns IDB and (X2, Y2) to Fp. Φp also adds 〈m, r2, r2P 〉 to ΛH2

, where
m = Z‖X1‖X2‖IDA‖IDB. Finally, Φp chooses a random r3 ∈ {0, 1}k2

as the session key sk and adds 〈m, r3〉 to ΛH3
.

– Send(Πs
A, (IDB , X2, Y2)). When Fp makes a Send(Πs

A, (IDB, X2, Y2)) query,

• if the query is in the β-th session, Φp does nothing.

• otherwise, Φp checks the validity of the transcript (X2, Y2).

Execute-query. When Fp makes an Execute(A, B), then Φp returns the tran-
script ((IDA, X1, Y1), (IDB, X2, Y2)) using the above successive simulation of
Send queries.

Reveal-query. When Fp makes a Reveal(Πs
A,B) query, if Πs

A,B is accepted,
Φp returns the session key sk to Fp.

Corrupt-query. When Fp makes a Corrupt(i) query on the player i, i ∈
{A, B}, Φp returns the private key xi to Fp.

Test-query. When Fp makes a Test query,

– if the query is asked in the β-th session, Φp flips a coin b. If b = 1, Φp returns
the value of the session key sk, otherwise he returns a random value drawn
from {0, 1}k2.

– otherwise, Φp terminates the protocol and reports failure.

Let E the event that Φp guesses the correct the β-th session that Fp wants
to make the Test query from total qs session instances Πs

A,B. Thus we have

Pr[E] ≥ 1
qs

.

If Fp does not detect any inconsistencies in Φp’s responses and guesses
the correct value of b, i.e. b = b′, which means that Fp knows the session
key sk corresponded to the β-th session query. Then, he must have issued
a query for H3(xyP‖X1‖X2‖IDA‖IDB) with advantage 1

2Advaka
P (Fp), since

1
2Advaka

P (Fp) = Pr[b = b′] − 1
2 . Therefore, by looking up the entry 〈m, r3〉 in

ΛH3
and checking them by the algorithm Solve-CDH below, Φp can get the Diffie-

Hellman secret value Z = xyP with probability at least 1
2Advaka

P (Fp) when the

10

event E occurs.

Algorithm: Solve-CDH(ΛH3
, xP, yP)

for i := 1 to |ΛH3
|

〈m, r3〉 ← ΛH3
;

Z‖X1‖X2‖IDA‖IDB ← m;
if X1 = xP and X2 = yP and e(X1, X2) = e(Z, P)
then return Z = xyP ;

Then, we have

Succcdh
G1

(τ ′) = Pr[E] ·
1

2
Advaka

P (Fp) ≥
1

qs

·
1

2
Advaka

P (Fp)

Therefore,

Advaka
P (Fp) ≤ 2qs × Succcdh

G1
(τ ′)

where τ ′ is the total running time, which includes Fp’s running time τ and other
time costed in the game. �

To break the proposed protocol P , an active adversary F can get the advan-
tage Advaka

P (F) by (i) forging authentication transcripts of the player A and
B; (ii) breaking the protocol without altering the transcript. Therefore, based
upon three Lemmas above, we have

Advaka
P (F) = Advaka

P (Fs)+Advaka
P (Fp) ≤ 2 ·Succcma

SIG (τ ′)+2qs ·Succcdh
G1

(τ ′).

As a consequence, we can reach the following security result

Theorem 1. Our proposed pairing-based two-party authenticated key agreement

protocol is secure, given the CDH assumption and the hash functions are assumed

random oracles. �

6 Conclusions

In this paper, we have presented a new pairing-based two-party authenticated
key agreement protocol, which could provide the full forward secrecy. That is,
compromise of private keys of both parties does not appear to allow an attacker
to recover any past session keys using transcripts. Within the specific Bellare-
Rogaway model, our protocol has been strictly proved to be secure in the random
oracle model under the CDH assumption.

Acknowledgment

The authors would like to thank Shengbao Wang for his comments on earlier
drafts of this paper.

11

References

1. D. Boneh and M. Franklin, Identity-based encryption from the weil pairing, SIAM
Journal on Computing, vol. 32, no. 3, pp. 585 - 615, 2003.

2. S. Blake-Wilson, D. Johnson, and A. Menezes, Key agreement protocols and their
security analysis, in: 6th IMA International Conference on Cryptography and Cod-
ing, LNCS 1355, pp. 30 - 45, Springer-Verlag, 1997.

3. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, Efficient algorithms for
pairing-based cryptosystems, in agreement protocols and their security analysis, in:
Advances in Crytography - Crypto’02, LNCS 2442, pp. 354 - 368, Springer-Verlag,
2002.

4. D. Boneh, H. Shacham, and B. Lynn, Short signatures from the Weil pairing, Journal
of Cryptology, vol. 17, no. 4, pp. 297 - 319, 2004.

5. Paulo S. L. M. Barreto, B. Lynn, and M. Scott, Efficient implementation of pairing-
Based cryptosystems, Journal of Cryptology, vol. 17, no. 4, pp. 321 - 334, 2004.

6. S. Blake-Wilson and A. Menezes, Security proofs for entity authentication and au-
thenticated key transport protocols employing asymmetric techniques, in: Security
Prootocols Workshop, LNCS 1361, pp. 137 - 158, Springer-Verlag, 1997.

7. C. Boyd, W. Mao, and K. Paterson, Key agreement using statically keyed authenti-
cators, in: Applied Cryptography and Network Security - ACNS’2004, LNCS 3089,
pp.248 - 262, Springer-Verlag, 2004.

8. M. Bellar and P. Rogaway, Entity authentication and key distribution, in: Advances
in Crytography - Crypto’93, LNCS 773, pp. 110 - 125, Springer-Verlag, 1993.

9. J. Coron, On the exact security of full domain hash, in: Advances in Cryptology -
Crypto ’00, LNCS 1880, pp. 229 - 235, Springer-Verlag, 2000.

10. K. K. R. Choo, Revist of McCullagh-Barreto two-party Id-based authenticated key
agreement protcols, International Journal of Network Security, vol.1, no.3, pp. 154
- 160, 2005.

11. Z. Cheng, M. Nistazakis, R. Comley, and L. Vasiu, On the indistinguishability-
based security model of key agreement protocols-simple cases, available at: Cryp-
tology ePrint Archive: Report 2005/129.

12. K. Y. Choi, J. Y. Hwang, D. H. Lee, and I. S. Seo, ID-based authenticated key
agreement for low-power mobile devices, in: 10th Australasian Conference on Infor-
mation Security and Privacy - ACISP 2005, LNCS 3574, pp. 494 - 505, Springer-
Verlag, 2005.

13. L. Chen and C. Kudla, Identity based authenticated key agreement protocols from
pairing. in: Proc. 16th IEEE Security Foundations Workshop, pp. 219 -233. IEEE
Computer Society Press, 2003.

14. W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on
Information Theory, vol. 22, no. 6, pp. 644 - 654, 1976.

15. A. Joux, A one round protocol for tripartite Diffie-Hellman, in: Proceedings of
Algorithmic Number Theory Symposium ANTS IV, LNCS 1838, pp. 385 - 393,
Springer-Verlag, 2000.

16. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, An efficient protocol
for authenticated key agreement, Designs, Codes and Cryptogrpahy, vol. 28, no. 2,
pp.119-134, 2003.

17. N. McCullagh and Paulo S. L. M. Barreto, A new two-party identity-based authen-
ticated key agreement, in: Cryptographers’ Track at RSA Conference - CT-RSA
2005, LNCS 3376, pp. 262 - 274, Springer-Verlag, 2005.

18. N. P. Smart, An identity-based authenticated key agreement protocol based on the
weil pairing, Electronic Letters, vol.38, no.13, pp. 630 - 632, 2002.

