

1

Normal Basis Multiplication Algorithms for GF(2n) (Full Version)

Haining Fan, Duo Liu and Yiqi Dai
Department of Computer Science, Tsinghua University, Beijing 100084, People's Republic of China.

fan_haining@yahoo.com

Abstract - In this paper, we propose a new normal basis multiplication algorithm for GF(2n).

This algorithm can be used to design not only fast software algorithms but also low complexity

bit-parallel multipliers in some GF(2n)s. Especially, for some values of n that no Gaussian normal

basis exists in GF(2n), i.e., 8|n, this algorithm provides an alternative way to construct low

complexity normal basis multipliers. Two improvements on a recently proposed software normal

basis multiplication algorithm are also presented. Time and memory complexities of these normal

basis multiplication algorithms are compared with respect to software performance. It is shown

that they have some specific behavior in different applications. For example, GF(2571) is one of

the five binary fields recommended by NIST for ECDSA (Elliptic Curve Digital Signature

Algorithm) applications. In this field, our experiments show that the new algorithm is even faster

than the polynomial basis Montgomery multiplication algorithm: 525 s v. 819 s.

Index Terms - Finite field, normal basis, Massey-Omura multiplier, optimal normal basis.

1. Introduction

GF(2n) arithmetic plays an important role in the implementation of cryptosystems. Among

different types of field representations, the normal basis (NB) has received considerable attention

because squaring in NB is simply a cyclic shift of the coordinates of the element and, thus, it has

found applications in computing multiplicative inverses and exponentiations.

In software implementations, an algorithm for type-I ONB was shown in [11]. It can be further

improved if the symmetric property proposed in [21] or [4] is employed. In [4] and [5], Reyhani-

Masoleh and Hasan proposed a word-level NB multiplication algorithm over GF(2n), and we

This report compares three normal basis multiplication algorithms published in the following. It includes all experimental results omitted
in [$].

[*] H. Fan and Y. Dai, Two software normal basis multiplication algorithms for GF(2n),

Cryptology ePrint Archive, Report 2004/126, 2004. http://eprint.iacr.org/. This paper is now published in:
H. Fan, D. Liu and Y. Dai, Two Software Normal Basis Multiplication Algorithms for GF(2n),

Tsinghua Science and Technology, vol. 11, no.3, pp. 264-270, 2006.
[$] H. Fan and Y. Dai, Normal basis multiplication algorithm for GF(2n),

IEE Electronics Letters, vol.40, no.18, pp. 1112-1113, 2004.

http://eprint.iacr.org/

2

denote it as RH algorithm. RH algorithm is designed for working with all NB and its time

complexity depends not only on n but also CN (the complexity of selected NB [7]). The algorithm

developed in [23] is efficient for composite finite fields. Since XOR and AND instructions take

the same number of clock cycles on most modern CPUs, the time complexity of this algorithm is

the same as RH algorithm in GF(2n) where n is prime. All these previously mentioned algorithms

are word-level and more efficient than the bit-level NB multiplication algorithm presented in the

IEEE standard P1363-2000 [12]. In [13], Ning and Yin presented an improved algorithm of [12],

and we denote it as NY algorithm. Although NY algorithm is fast for ONB, it is slow for

nonoptimal NB.

In this paper, a new NB multiplication algorithm is proposed for GF(2n). The field element is

represented with a normal element of small multiplicative order. The complexity of the proposed

algorithm does not depend on CN, but the multiplicative order of the normal element. For some

GF(2n)s, this new algorithm can be used to design both fast software multiplication algorithms

and low complexity bit-parallel multipliers. Especially, for some values of n that no Gaussian NB

(GNB) exists in GF(2n), i.e., 8|n, this algorithm is still applicable. For software implementations,

we compare the proposed NB algorithm with the polynomial basis multiplication algorithm of [6],

i.e., the finite field analogue of the Montgomery multiplication for integers. Our experimental

results show that in some GF(2n)s the new algorithm is faster than the Montgomery algorithm, e.g.,

GF(2571), one of the five binary fields recommended by NIST for ECDSA (Elliptic Curve Digital

Signature Algorithm) applications.

Two improvements on the RH algorithm are also presented. Time and memory complexities of

these NB multiplication algorithms are compared with respect to their software performance. It is

shown that they have specific behaviors in different applications.

This paper is organized as follows: In Section 2, we review the RH algorithm and its two

improvements. Then, the proposed algorithm and software implementation are presented in

Section 3. Some mathematical properties of the new algorithm are derived in Section 4. In Section

5, we show the new bit-parallel multiplier. Section 6 presents a summary and conclusion.

3

2. Preliminaries

Given a normal basis N= },...,,,{
1210 2222 n

 of GF(2n) over GF(2), a field element A can be

represented by a binary vector (a0,a1,...,an-1) with respect to (w.r.t.) this NB as

T
n

n

i
i NaaaaA

i

),...,,(110

1

0

2 , where),...,,,(
1210 2222 n

N , * denotes the vector inner

product and T denotes the vector transposition. is called a normal element.

Throughout this paper, <x>i denotes the non-negative residue of x mod i, particularly, <x>

denotes the non-negative residue of x mod n. We define v=(n-1)/2 for n odd or v=n/2 for n even.

2.1 Computation of)11(2 niA
i

For simplicity, let Ai=)10(2 niA
i

, i.e., Ai is the i-fold right cyclic shifts of the binary

vector representation of A. Since Ai is used in software implementations, we now show how to

compute it efficiently for 11 ni .

Let z be the full width of data-path of the general-purpose processor, e.g., z=32 for Pentium

CPU. We assume that z<v and define the array DA as follows:

DA0 = (a0,a1,...,an-1,a0,a1,...,an-1) and

DAj = (aj,...,an-1,a0,a1,...,an-1a0,...,aj-1), where zj1 , i.e., DAj is the j-fold left cyclic shifts

of the 2n-bit vector DA0.

In software implementations, DA is defined as a 2-dimensional array DA[z][

2
z
n], and each

DAj is stored in

2
z
n successive computer words. So for 11 ni , An-i is stored in

z
n

successive computer words starting from DA[s][t] and ending at DA[s][t+

z
n -1], where t= zi / ,

s=i & (z-1) and & denotes the bit-wise AND. That is to say, two indexes of An-i can be computed

at the cost of 1 binary shift (t= zi /) and 1 bit-wise AND. Moreover, the starting address of An-i,

namely, the address of DA[s][t], may be calculated in the precomputation procedure.

The time complexity to compute all DAj is about 2z n-bit cyclic shift operations, and 2zn bits

are required to store DAj, where zj0 .

Now we introduce the RH algorithm of [4] and [5], and then we will present two slight

4

improvements on this algorithm.

2.2 RH algorithm

For 11 ni , let
1

0

2
,

2
n

j
ji

ji

be the expansion of

i2

w.r.t. the NB N, where

ji , GF(2). Let 1| , jii jS and hi=|Si|. So we have
i

ki

Sk

22 . Note that for a particular

normal basis N the representation of
i2

is fixed.

D=AB can be computed by the following formula [3], [4], [5]:

1

0

22
1

0

n

i
j

n

j
i

ji

baABD
v

i
jjij

n

j
ji

n

i
ii

jii

abbaba
1

2)12(
1

0

1

0

2)12()(
0

. (1)

v

i Sk

n

j
jjijji

n

i
ii

i

kji

abbaba
1

1

0

2
1

0

2 1
. (2)

Recall that Ai is defined as
i

AAi
2 , now we define B & An-i as follows:

B & An-i=),...,,(11110 niii bababa . (3)

Viewing B & An-i as a field element, we have
kin

n

j
jji ABba

kj

)&(
1

0

2

and (2) may be

rewritten as follows:

D
v

i Sk
kinin

i

BAABAB
1

1 &&& . (4)

Furthermore, we define R[i] as follows:

even. is if &

odd, is if)&()&(
][

,11 where)&()&(][

nBA

nBAAB
vR

viBAABiR

v

vnvn

inin

Then we have

D=(B & A)1+
v

i Sk
k

i

iR
1

])[(. (5)

The RH algorithm for n odd is based on this formula, and it is presented in Appendix 1. For n

even, (5) may be further improved by Lemma 1 of [3]. Please refer to [4] and [5] for more details.

Now we present two improvements on the RH algorithm.

5

Since 10 nk , we may interchange the order of the summation in (5) and obtain the

formula:

k

n

k Skvii i

iRABD
1

0 and 1 :
1][& . (6)

Based on this formula, an improved software multiplication algorithm, which is called A1, is

presented in Appendix 2.

Now we show the second improvement. From (3) we know that

(A & B)i=
i

BA 2)&(=),...,,,...,,(11001111 ininnninininin bababababa =(Ai & Bi).

Thus (4) can be rewritten as:

v

i Sk
ikkikk

i

BAABABD
1

11 &&& . (7)

Since elements of Si are in the range of [0, n-1], (7) can be rewritten as:

1

0 and 1 :
11 &&&

n

k Skvii
ikkikk

i

BAABABD

1

0 and 1 : and 1 :
11 &&&

n

k Skvii
ikk

Skvii
ikk

ii

BAABAB . (8)

Based on this formula, a software multiplication algorithm, which is called A2, is presented in

Appendix 3.

Similarly, for even n, we have the following formula:

1

1
11 &&&&

v

i Sk
vkk

Sk
ikkikk

vi

ABBAABABD .

1

0 and 11 : and 1 :
11 &&&

n

k Skvii
ikk

Skvii
ikk

ii

BAABAB . (9)

3. Proposed Algorithm And Software Implementations

From now on, we assume that the multiplicative order of the normal element is m, i.e., m is the

least positive integer such that 1m .

The ordered cyclotomic cosets (OCC) mod m is defined as follows:

6

Definition 1. Ordered cyclotomic cosets mod m are the following ordered sets:

C0={<20>m, <21>m, <22>m,...,<2n-1>m}, <20>m=1 is called the coset leader;

Ci={<(2i+1)20>m, <(2i+1)21>m, <(2i+1)22>m,...,<(2i+1)2n-1>m}, where 0<i<n and

<(2i+1)20>m is called the coset leader.

In this definition, Ci is an ordered set and elements of Ci need not to be distinct. For example,

C1={3, 6, 12, 3, 6, 12} for m=21 and n=6. Sometimes we also view Ci as a set and call it the set

Ci. The following lemma shows that there are at most v+1 distinct sets Cis.

Lemma 1. For 0<i<n, the set Ci and the set Cn-i are identical.

Proof: It follows immediately from the fact m|(2n-1) and the congruence

iinnii 2)12(2212 mod (2n-1).

To clarify the description of the new algorithm, we first give a simple example.

3.1 An Example

GF(28) has been standardized for space communication by ESA and NASA, and for use in CD

players [20], so it is desirable to design low complexity multipliers for the field. Gaussian NB is

widely used to design low complexity NB multipliers. But no GNB exists in GF(28). In Section 5,

we will show that the time complexity of the proposed GF(28) NB multiplier matches the best

result available in the open literature and its gate complexity is less than the best result.

Let GF(28) be a root of the irreducible polynomial f(x)=x8+x7+x6+x4+x2+x+1. From

Appendix C of [14], we know that is a normal element of multiplicative order 17.

Consider the following 3 OCCs mod 17:

C0 = {20, 21, 22,...,27} = {1, 2, 4, 8, 16, 15, 13, 9} with the coset leader r0=20=1;

C1 = {3.20, 3.21, 3.22,...,3.27} = {3, 6, 12, 7, 14, 11, 5, 10} with the coset leader r1=3.20=3;

C4 = {0, 0, 0, 0, 0, 0, 0, 0} with the coset leader r4=0.

For 40 i , <2i+1>17 belongs to just one OCC, i.e.,

i=0: <20+1>17=2

C0 and 122 i
e

f

i

i r mod (17) holds for e0=0 and f0=1;

i=1: <21+1>17=3

C1 and 122 i
e

f

i

i r mod (17) holds for e1=1 and f1=0;

i=2: <22+1>17=5

C1 and 122 i
e

f

i

i r mod (17) holds for e2=1 and f2=6;

7

i=3: <23+1>17=9

C0 and 122 i

e
f

i

i r mod (17) holds for e3=0 and f3=7;

i=4: <24+1>17=0

C4 and 122 i

e
f

i

i r mod (17) holds for e4=4 and f4=0;

where the congruence 122 i
e

f

i

i r mod (17) means that <2i+1>17 is the fi-th element of the

OCC
ieC and fi is the smallest nonnegative integer such that the congruence holds.

Associated with each Cj (j=0, 1, 4), a GF(28) vector Nj=))(,...,)(,)(,)((
18210 2222 jjjj rrrr

is

defined as follows:

N0=N=),...,,,(
18210 2222 ;

N1=),...,,,(
18210 2222 ; where 128321623 and

N4=)1 ,1 ,1 ,1 ,1 ,1 ,1 ,1(
020 .

Let T

i
i NaaaaA

i

),...,,(710

7

0

2 and T

i
i NbbbbB

i

),...,,(710

7

0

2

be two elements

of GF(28). D=AB can be computed by the following formula:

D=AB=(a7b7, a0b0, a1b1 ,...,a6b6)*NT + (a0b1+b0a1, a1b2+b1a2 ,...,a7b0+b7a0)*N1
T +

(a2b4+b2a4, a3b5+b3a5 ,...,a1b3+b1a3)*N1
T + (a1b4+b1a4, a2b5+b2a5 ,...,a0b3+b0a3)*NT +

(a0b4, a1b5, a2b6,...,a7b3)*N4
T

=T0*NT+T1*N1
T+T2*N1

T+T3*NT+T4*N4
T.

The five inner products are denoted as T0*NT, T1*N1
T, T2*N1

T, T3*NT and T4*N4
T, as shown

above. Arrays ei and fi (40 i) are used to determine these inner products, e.g.,

T
effffffff

T NabbaabbaabbaNT
222222222

)(),...,(),(1821818218535382882812
,

where f2=6 and e2=1.

Now T0 and T3 have already been represented in the NB N. T1 and T2 can be combined into one

vector. After converting this vector and T4 into the GF(2) vector representation w.r.t. N, we get the

GF(2) vector representation of D=AB w.r.t. N.

3.2 Ordered Cyclotomic Cosets mod m

Lemma 1 shows that there are at most v+1 distinct sets Cis. However, the accurate number is

often less than v+1, e.g., the example presented in Section 3.1. Throughout this paper, u denotes

8

the number of different sets Cis. The following procedure determines the value of u and these sets.

INPUT: m (the order of the normal element).

OUTPUT: 1. integer u, OCC Cj's, where 10 uj ;

2. arrays rj, ei and fi, where 10 uj and vi0 .

S1: set R = ;

S2: OCC C0 = {<20>m, <21>m, <22>m,...,<2n-1>m};

S3: r0=20=1; e0=0; f0=1; R = R

C0; u=1;

S4: for i=1 to v do

S5: if <2i+1>m

R then { /* a new OCC */

S6: OCC Cu = {<(2i+1)20>m, <(2i+1)21>m, <(2i+1)22>m,...,<(2i+1)2n-1>m};

S7: ru=<(2i+1)20>m; ei=u; fi=0; R = R

Cu; u=u+1;

}else{

S8: Find j such that 10 uj and <2i+1>m

Cj ;

S9: Let f be the smallest nonnegative integer such that 2f.rj 2i+1 mod (m);

S10: ei=j; fi=f; }

Notes: 1. Since the proposed algorithm is applicable only to GF(2n) that the value of m is small,

one may first use reference [10] to find a small factor of 2n-1, and then check the existence of a

normal element whose multiplicative order equals this factor.

2. The following expression holds for vi0 :

ii

i
eme

f

m

i Cr212 . (10)

Arrays ei and fi will be used in the proposed algorithm, and they have the following meaning:

<(2i+1)20>m is the fi-th element of the OCC
ieC , where fi is the smallest nonnegative integer such

that (10) holds.

Associated with each OCC Cj, a GF(2n) vector Nj is defined as follows, where 10 uj :

Nj=))(,...,)(,)(,)((
1210 2222 n

jjjj rrrr . (11)

Since r0=1, we have N0=N. It is easy to see that the vector Nj possesses the following property:

T
jnn

T
jn NaaaaNaaa),...,,,(),...,,(2101

2

110
. (12)

9

3.3 New Multiplication Algorithm

We assume that n is odd, unless otherwise stated. Recall that the multiplicative order of is m.

By substituting (10) into (1), we have

D
v

i

r

jjij

n

j
ji

n

j

r

jj

jif
ie

jf
e abbaba

1

2
1

0

1

0

2
)(

0
0 . (13)

Now let k=fi+j, (13) can be rewritten as:

D
v

i

r

fkkfifk

n

k
kfi

n

k

r

fkfk

k
ie

iiii

k
e abbaba

1

2
1

0

1

0

2))(()(0

00
. (14)

From (11) and (3), we know that

T
efif

r

fk

n

k
kfi iii

k
ie

ii
NBAba *&))((2

1

0

. (15)

Applying (15) to (14), we have

v

i

T
eiffiff

T
eff iiiii

NABBANBAD
1

*&&&
000

. (16)

Since e0=0, f0=1 and 10 uei
, (16) can be rewritten as follows:

1

0 1 and :
011 *&&&

u

j

T
j

vieji
iffiff

T NABBANBAD
i

iiii
. (17)

Now we define the binary vectors Dj as follows:

vieji
iffiffj

viei
iffiffff

i

iiii

i

iiii

ABBAD

ABBABAD

1 and :

1 and 0 :
0

, &&

, &&)&(
00

 (18)

where 11 uj .

Applying this definition to (17), we have

1

1
00 *

u

j

T
jj

T NDNDD . (19)

Since N0=N, D0 is just the GF(2) vector representation of D0*NT w.r.t. the NB N. Each Dj*Nj
T

(0<j<u) is also a field element, but Dj is not the GF(2) vector representation of Dj*Nj
T w.r.t. N. So

we need to convert Dj*Nj
T into the GF(2) vector representation w.r.t. N. This may be done by the

table lookup approach in software implementations. Now view Dj as an integer. Let (dj,n-1,...,dj,1,

10

dj,0)2 be the binary representation of Dj and w (0<w<n) be the block size. We first divide Dj into

w
n blocks Dj,h as follows:

1

0

2
,

21

0

1

0

2
,

1

0

1

0

2
,

1

0

2
, *

w
n

wh

wh

w
n

i
w
n

iwhi

h
hj

h

w

i
iwhj

h

w

i
iwhj

n

i
ij

T
jj DdddND , (20)

where jr

and the binary representation of the block Dj,h is (dj,wh+w-1,...,dj,wh+1, dj,wh)2. In (20),

the term dj,i is defined as dj,i=0 for 1w
nwin .

The GF(2) vector representation of Dj*Nj
T w.r.t. N

can be computed by the GF(2n) addition

operation if the GF(2) vector representation of each Dj,h w.r.t. N

is available. In software

implementations, the GF(2) vector representation of Dj,h is stored in the precomputation table TB,

which is defined as follows:

for j=1 to u-1 do

for c=0 to 2w-1 do {

Let (cw-1cw-2 ... c1c0)2 be the binary representation of the integer c;

TB[j][c] = GF(2) vector representation of
1

0

2
w

i

r
i

i
jc

w.r.t. N;}

Note that the table TB depends only on N, i.e., once the NB is chosen the table can be created

during the precomputation stage.

Since the binary representation of the block Dj,h is (dj,wh+w-1,...,dj,wh+1, dj,wh)2, (20) can be

rewritten as follows:

1

0

2
2,1,1,]),,...,][([*

w
n

wh

h
whjwhjwwhj

T
jj dddjTBND . (21)

Thus D=AB can be computed by the following formula.

1

1

1

0

2
2,1,1,0]),,...,][([

u

j h
whjwhjwwhj

w
n

wh

dddjTBDABD . (22)

Based on (18), (19), (22) and Section 2.1, it is straightforward to present the following

multiplication algorithm for odd values of n.

Multiplication Algorithm A3 for n Odd:

INPUT: A, B, w, u, ei, fi, and TB[j][c], where vi0 , 120 wc and 11 uj .

11

OUTPUT: D=AB.

 S1: Compute DAi and DBi for zi0 ;

 S2:
00

&0 ff BAD =(A&B)1 ;

 S3: for j = 1 to u-1 do Dj=(0,0,...,0);

 S4: for i = 1 to v do iffiffee iiiiii
ABBADD && ;

 S5: for j = 1 to u-1 do

 S6: for h = 0 to
w
n -1 do D0 = D0 (TB[j][Dj,h])wh;

 S7: Output D0;

Notes: 1. Similar to Algorithm A1, starting addresses of iffiff iiii
BBAA , , , and

ieD in S4

may be stored sequentially in a 1-dimensinal array for vi1 . The size of this array is 5vz bits.

2. Since TB[j][Dj,h] is a GF(2n) element represented in the NB N, (TB[j][Dj,h])wh may also be

precomputed by the method introduced in Section 2.1. In S6, only wh-fold cyclic shifts of the

binary vector representation of TB[j][Dj,h] are required, thus it is easy to see that when w is

selected as a multiple of the minimal width of the data-path of the CPU, TB has the smallest size:

2n(u-1)2w bits. In our experiment, the value of w is 8.

Similarly, we have the following formula for even n:

T
evff

T

vvv
NBANBAD && 011

1

1

*&&
v

i

T
eiffiff iiiii

NABBA . (23)

Recall that the multiplicative order of the normal element is m, and m is a primitive factor of

2n-1=(2v-1)(2v+1), i.e., m|2v+1, we know that ev=u-1, fv=0 and Nu-1=(1,1,...,1) in the output of the

procedure of Section 3.2. So (23) may be rewritten as

T
uv

T NBANBAD 10011 &&
1

1

*&&
v

i

T
eiffiff iiiii

NABBA , (24)

where 20 uei
 for 11 vi

We may also compute the product D=AB using a lookup table. Since Nu-1={1,1,...,1},

(A0&Bv)*Nu-1
T is actually an element of GF(2), which is equal to the parity of (A0&Bv). This

observation may reduce the size of the lookup table.

12

3.4 Analysis and Comparison of Software Implementations

The time complexity of the RH algorithm is determined in [4] and [5]. It needs n n-bit AND

operations and
2

1

2

1 NCn = 2/)2(nCN
n-bit XOR operations. The number of n-bit cyclic shift

operations of the RH algorithm is equal to (CN+2n-1)/2.

Ning and Yin presented two algorithms in [13]: one is for ONB and the other is for nonoptimal

normal bases. The algorithm for nonoptimal normal bases is slow, and we only consider the one

for ONB. Since no description of the precomputation procedure was presented in [13] (parts of the

NY algorithm were described in a patent application), we assume that the method introduced in

Section 2.1 is used to perform this precomputation. For the NY algorithm, DAj and DBj are

defined as

z
nz -bit vectors, thus the total number of cyclic shift operations is about 2z. Based on

this assumption, we know that the NY algorithm 3 of [13] requires about 2n n-bit XOR, n+1 n-bit

AND and 2z n-bit cyclic shift operations.

Now we analyze the space complexity of Algorithm A3.

In line S1, 4zn bits are required to store arrays DAj and DBj (zj0). In line S2 and S3,

variables Djs (10 uj) require un bits. Note 2 shows that the table TB[j][Dj,h] requires 2n(u-

1)2w bits. Therefore the space complexity of Algorithm A3 is 4zn+un+2n(u-1)2w bits.

This size is reasonable on modern 32-bit computers. For example, if w=8 then it is 2709966 bits

(331 Kbytes) for GF(2571) (u=10).

In Algorithm A3, starting addresses of , , , , ,
iiiii eiffiff DBBBA

and (TB[j][Dj,h])wh may be

computed in the precomputation procedure, so it is easy to determine the time complexity.

The cyclic shift operation is required only in line S1. From Section 2.1, we know that the total

number of cyclic shift operations in the algorithm is 4z.

The numbers of AND operations in line S2 and S4 are 1 and 2v=n-1, respectively. Thus the

algorithm requires n AND operations.

For simplicity, we suppose that the statement Dj=(0,0,...,0) of S3 can be performed at the cost of

1 n-bit XOR operation. In line S4, 2v=n-1 XOR operations are required. The XOR operation of

13

line S6 is repeated (u-1)
w
n times. Therefore the total number of XOR operations used in the

algorithm is (
w
n +1)(u-1)+n-1.

Table 1 compares the time and space complexities of these NB algorithms in GF(2n) where n is

odd. In the table, #Variables denotes the size of the temporary variables, and #Pointers denotes the

size of the 1-dimensional array discussed in Note 1 of Algorithms A1, A2 and A3.

TABLE 1: Comparison of NB multiplication algorithms (n odd).

No. of important n-bit operations Memory (in bits)

Algorithm

XOR AND Cyclic shift #Variables #pointers

RH (CN+n-2)/2 n (CN+2n-1)/2 3n+z(CN+n-2)/2 0

NY (ONB)

2n n+1 2z 4zn 0

A1 (CN+n-2)/2 n zn 3

4zn+n(n+1)/2 z(2+2v)+z(CN-1)/2

A2 CN-1 12n 4z 5zn+2n 2zn+z(CN-1)

A3 (
w
n +1)(u-1)+n-1

n 4z 4zn+un+n(u-1)2w+1

5zv

We assume that the general-purpose processor can perform 1 n-bit XOR or AND operation

using 1 n-bit operation. As defined in [5], we also assume that 1 cyclic shift operation needs

n-

bit operations. Our experiments and [5] show that the value of

is typically 4 for the C

programming language if only simple logical instructions, such as AND, SHIFT and OR are used

to emulated a k-fold cyclic shifts. Now we compare these algorithms. We assume that w=8, =4

and z=32, and obtain the following results:

1. Algorithm A1 is faster than the RH algorithm if CN > 193.

2. Algorithm A1 is faster than Algorithm A2 if CN > 7n - 258.

3. Algorithm A3 is faster than the NY algorithm if n > 292 and
even. 3

odd, 2

n

n
u .

4. Algorithm A3 is faster than Algorithm A1 if

14

22

2567
1

8
n

N nC
u . (25)

Appendix 4 contains 204 values of n such that 100<n<1001 and the inequality (25) is satisfied.

For memory constrained systems, Hasan proposed a lookup table-based polynomial basis

multiplication algorithm in [9]. The size of the tables is (w+d)2w, where d is the degree of the

second leading coefficient of the field-defining polynomial. Now we consider these NB

algorithms in such systems. For Algorithms A1, A2 and A3, we will not use arrays DA, DB and the

1-dimensional array introduced in Note 1 of these algorithms. Furthermore, we assume that values

of ek and cyclic shift count are hard-coded [5], i.e., they are stored as program codes. Table 2

compares the time and memory complexities of these NB algorithms. From the table, we conclude

that RH and NY algorithms are better choices in memory constrained systems.

TABLE 2: Comparison of NB algorithms in memory constrained systems (n odd).

No. of important n-bit operations

Algorithm

XOR AND Cyclic shift

Memory (in bits)

RH (CN+n-2)/2 n (CN+2n-1)/2 3n

NY (ONB)

2n n+1 2z 4zn

A1 (CN+n-2)/2 n n2

n(n+3)/2

A2 CN-1 12n 2n+CN 2n

A3 (
w
n +1)(u-1)+n-1

n 2n-1 un+n(u-1)2w+1

We implement these NB multiplication algorithms in ANSI C using Microsoft Visual C++ 6.0

complier. For comparison, we also implement the polynomial basis multiplication algorithm

presented in [6], i.e., the finite field analogue of the Montgomery multiplication for integers. For

simplicity, the Montgomery multiplication algorithm is implemented in GF(2k) instead of GF(2n),

where

w
nwk . Reference [6] indicates that the case w=8 results in the fastest implementation on

15

modern 32-bit computers. So we also select w=8, and employ the table lookup approach, which is

shown to be the best choice to perform word-level multiplications [6].

Our experiments are performed on an IBM ThinkPad 770X notebook with a 300 MHz Pentium

II CPU running Windows NT 4.0. Experimental results are listed in Table 3, where the first five

fields are the binary fields recommended by NIST for ECDSA applications. Since the NY

algorithm is slow for nonoptimal normal bases, we do not list timings for these fields. For GF(2n)

that the value of u is large, the timing of A3 do not listed in the table either. In Table 3, Algorithm

A2 is slightly slower than the Montgomery algorithm for GF(2409). So for applications that many

squaring operations are required, e.g. exponentiation, Algorithm A2 is a better choice.

TABLE 3: Timings for some GF(2n)s (s)

n
GNB

type
u

RH NY Montgomery

A1 A2 A3

163

4 - 164 - 57 123 112 -

233

2 6

180 56 127 140 98 87

283

6 34

516 - 190 318 339 455

409

4 - 671 - 421 506 441 -

571

10 10

2454 - 819 1481

1684

525

251

2 2

192 64 147 151 105 56

491

2 2

590 226 612 493 321 178

577

4 6

1231 - 865 993 825 395

599

8 - 2241 - 896 1444

1524

-

563

14 - 3308 - 801 1782

2198

-

4. Mathematical Properties

We now present some mathematical properties of the new algorithm.

Recall the definition of the primitive factor of 2n-1 in [15, p.173].

Definition 2. The prime p is said to be a primitive factor of 2n-1 iff the order of 2 mod p is n.

16

Lemma 2. If p is a primitive factor of 2n-1, then <p>n=1. If n odd, <p>8= 1; if <n>8= 2, <p>8=1

or 3; if <n>8=0, <p>2n=1 [15].

Given two GF(2n) normal elements A and B of multiplicative orders a and b, respectively. If a|b

then the number of different sets Cis mod a is not greater than that of b. Thus selecting A results in

a better implementation of the algorithm. From [25 Theorem V], we know that 2n-1 (n>1) posses

at least one primitive factor with the single exception n=6. So we only consider the normal

element of the prime order in this paper. We define the type of a normal element as follows:

Definition 3. A normal element of GF(2n) over GF(2) is said to be of type k if its multiplicative

order is kn+1 and kn+1 is a primitive factor of 2n-1.

It seems that the smaller multiplicative order may result in the smaller value of u, which in turn

results in a faster implementation of the proposed algorithm. But this is not always true. For

example, 328177=318*1032+1 and 359137=348*1032+1 are two primitive factors of 21032-1, and

in GF(21032) we have found two normal elements of orders 328177 and 359137, respectively. Our

experiments show that their values of u are 268 and 267, respectively.

Now we show the relation between the GNB and the type k normal element. The type-I GNB

are always called the type-I ONB, and they are determined by the following lemma [7]:

Lemma 3. GF(2n) contains a type-I ONB iff n+1 is a prime and 2 is a primitive root mod n+1.

From this lemma, the following theorem holds immediately.

Proposition 1. GF(2n) contains a type 1 normal element iff n+1 is a prime and 2 is a primitive

root mod n+1.

All type-II GNB, which are called type-II ONB, are described by the following lemma [7,8]:

Lemma 4. If

(1) 2 is primitive in Z2n+1, or

(2) 2n+1 is a prime congruent to 3 modulo 4 and 2 generates the quadratic residues in Z2n+1,

Let

be a primitive (2n+1)st root of unity in GF(22n) and 1 . Then

is a type-II

ONB generator.

If condition (1) holds then (2n+1) 2n-1, and there is no element of order 2n+1 in GF(2n). We

call the normal basis generated by condition (2) the second class of type-II ONB. In this case,

17

(2n+1) is a primitive factor of 2n-1. We may expect that either or -1, but not both, is a normal

element of type 2. But this is not true. Our experiments show that for n<2000 such that the second

class of type-II ONB exists in GF(2n), there are three fields that do not contain type 2 normal

elements: GF(2119), GF(2791) and GF(21659).

On the other hand, there exist type 2 normal elements in some GF(2n)s but no type-II ONB

exists in these fields. For example, Appendix 4 lists some values of n such that 8|n and type 2

normal elements exist in GF(2n). But there is no GNB exists in these fields.

We now present some additional differences between the type t GNB and type t normal

elements:

1. For some values of n and t (t>2) there exists type t GNB in GF(2n) but no normal element

with u=t exists in the field, and vice versa.

2. For a given GF(2n) and the value of t, the field can have, at most, one type t GNB, but the

field may contain more than one type t normal elements up to conjugacy, e.g., GF(2468)

have 6 type 16 normal elements up to conjugacy.

3. GNB generators always have high multiplicative orders, and are very often primitive [19].

5. New Bit-Parallel Multiplier

5.1 Architecture

We now assume that n is odd, unless otherwise stated. Because we have described the proposed

algorithm for software implementations in detail, it is easy to understand its application to VLSI

multipliers. The new multiplier works in a similar way of software implementations: it first

computes each Dj=(dj,0,dj,1,...,dj,n-1) by (18) and then converts each dj,k into the coordinate w.r.t. the

selected NB N.

The new multiplier first computes aibj (1,0 nji), which is called a term, using exactly n2

two-input AND gates. This operation requires a single AND gate delay TA due to the parallelism.

Then it computes coordinates of Dj=(dj,0,dj,1,...,dj,n-1) by (18) as follows:

vieji
ifkfkifkfkkj

viei
ifkfkifkfkfkfkk

i

iiii

i

iiii

abbad

abbabad

1 and :
,

1 and 0 :
,0

,

,
00

 (26)

18

where 10 nk and 11 uj .

For a fixed j and 10 nk , each dj,k has the same number of terms, which is denoted as |dj,k|.

Since each term aibj (1,0 nji) is XORed only once, the total number of two-input XOR gates

required in this step is n2-nu.

For 10 uj , dj,0 may be computed using a binary XOR tree, and the time delay is at most

|)(|log 0,2 jdMax TX due to the parallelism, where TX is the delay of one two-input XOR gate.

Since d0,k is already the coordinate representation w.r.t. N, we now need to convert each dj,k

(11 uj) into the coordinate representation w.r.t. N.

For 11 uj , let
1

0

2
,

n

t
tj

r t
j

be the expansion of jr
 w.r.t. N, where tj , GF(2) and

(10) holds for some i such that vi1 and ei=j. Let 1| ,tjj tH and hj=|Hj|. We may rewrite

Hj as },...,,{ ,2,1, jhjjjj wwwH , where 1...0 ,2,1, nwww
jhjjj

, and obtain the following

identity:

j
kjw

j

k
j

h

kHk

r

1

22 , . (27)

By (11), we know that

j
kjwtj

kjwtt
j

h

k

n

t
tj

n

t

h

k
tj

n

t

r
tj

T
jj dddND

1

2
1

0
,

1

0 1

2
,

1

0

2
,

,,

* . (28)

The coefficient of

in (28) is
j

kj

h

k
wnjd

1
, ,

. Therefore, from (19) we know that the expression

of d0, which is the coefficient of in the final result of D=AB=(d0,d1,...,dn-1), is

1

1 1
,0,00 ,

u

j

h

k
wnj

j

kj
ddd . (29)

The term d0 may be computed by a binary XOR tree, which requires
1

1

u

j
jh XOR gates and

1

1
2 1log

u

j
jh TX gate delay. Therefore the total number of XOR gates required in this

conversion step is n
1

1

u

j
jh . Since the XOR gate delay to generate dj,0 may be different for different

19

values of j, the delay of 1

1
2 1log

u

j
jh TX in this conversion step is an upper bound. Take

GF(2468) (u=17) for example. For 10 uj , values of |dj,0| are 29, 30, 34, 30, 32, 32, 22, 24, 24,

22, 26, 36, 36, 26, 36, 28 and 1, respectively. There are 6 type 16 normal elements up to

conjugacy, and values of
2

1

u

j
jh for these normal elements are 3424, 3444, 3420, 3448, 3468, and

3456, respectively. We select the normal element of
2

1

u

j
jh =3420 to represent field elements. For

this normal element, values of hj are 232, 253, 233, 236, 225, 241, 216, 228, 229, 221, 225, 228,

216, 228 and 209, respectively, where 21 uj .

From values of |dj,0|, it is easy to see that generating d0,k, d1,k, d3,k, d4,k, d5,k, d6,k, d7,k, d8,k, d9,k,

d10,k, d13,k and d15,k requires 5TX and generating d2,k, d11,k, d12,k and d14,k requires 6TX, where

10 nk . In (29), terms generated in 5TX may be first XORed pairwisely, and then these

summations and terms generated in 6TX are XORed. The accurate time delay of this computation

procedure is 2/2486934log2
TX=12TX, where 934=h2+h11+h12+h14=253+225+228+228 and

2486=
2

1

u

j
jh -934=3420-934.

For even values of n, we have the following formula from (24):

,

,

,

,1

11 and :
,

11 and 0 :
,0 00

vkkku

vieji
ifkfkifkfkkj

viei
ifkfkifkfkfkfkk

bad

abbad

abbabad

i

iiii

i

iiii

 (30)

where 10 nk and 21 uj .

The conversion step for n even is similar to that of n odd. The only difference is g = Du-1*Nu-1
T.

From the discussion after (24), we know that Nu-1=(1,1,...,1) and)2(GFg . Therefore we may

first compute g using n-1 XOR gates and then XOR this single bit to each dk (10 nk) at the

cost of n XOR gates. This method needs only 2n-1 XOR gates.

In [22], this idea was generalized. Converting Dj*Nj
T (11 uj) into the coordinate

representation w.r.t. N

requires nhj XOR gates in (28). If nhj>n+n(n-hj), i.e., hj>n/2, then we have

20

the following variants of (27) and (28):

j

k

j

kkk
j

HknkHk

n

k

n

k

r

and 10

22
1

0

2
1

0

2 1 . (31)

1

0

1

0 and 10

2
, ,

1

0

2
, *

n

t

n

t Hknk
tjtj

n

t

r
tj

T
jj

j

ktt
j dddND . (32)

Formula (32) requires n+n(n-hj) XOR gates to convert Dj*Nj
T.

5.2 Analysis and Comparison of Bit-Parallel Multipliers

The gate and time complexities of the new multiplier are listed in Table 4, where complexities

of the multiplier in [3] are also listed. In the table, Max(|dj,0|) denotes the maximum value of |dj,0|

for 10 uj .

TABLE 4: Comparison of two NB multipliers.

Multipliers #AND

#XOR Time Delay

Proposed

(n odd)
n2 n2-nu+n

1

1

u

j
jh TA+ |)(|log 0,2 jdMax TX+

1

1
2 1log

u

j
jh TX

Proposed

(n even)
n2 n2-nu+2n-1+n

2

1

u

j
jh

TA+ |)(|log 0,2 jdMax TX+
2

1
2 2log

u

j
jh TX

[3] Theorem 2

n2 n(CN+n-2)/2 TA+)1(log2 NC TX

Since it is not easy to determine the explicit expression of hj, we assume that hj=n/2 and CN=tn

for simplicity. Based on this assumption, we know that numbers of XOR gates required by two

multipliers are about nun
u 2

2

)1(and nn
t 2

2

)1(, respectively. Therefore the new algorithm

may be used to design multipliers in GF(2n)s such that u<t. As enumerated in Appendix 4

(100<n<1001), there are 25 n values such that 8 n and u<t.

Now we analyze the time complexity of the new multiplier. In Table 4, Max(|dj,0|) is used to

determine the time delay. For a fixed j and 10 nk , each dj,k has the same number of terms,

and |dj,k|=n/u on average. Thus, time complexities of two multipliers are about TA+)2/(log 2
2 n TX

and TA+ tn2log TX, respectively. For the GNB of small value of t, the time delay of the new

21

multiplier is larger than [3]. For a randomly selected NB, the average value of t is n/2 and the time

delay of two multipliers are equal. So for GF(2n) that no GNB exists (8|n) and the value of u is

small, the algorithm provides an new way to design multipliers in these fields. In Appendix 4

there are 22 n values such that u<12 and 8|n.

We now show the performance of the new multiplier with four examples.

In [1] and [3], two type-I ONB multipliers are presented. Both multipliers require n2-1 XOR

gates and n2 AND gates. Their gate delays are
XA TnT)1(log2 2

 and
XA TnT)1(log1 2

,

respectively. For GF(2n) where type-I ONB exists, N0=N and N1=(1,1,...,1). Since d1,0 consists of a

single term, no XOR gate is required to compute D1. It is easy to see that n(n-2) XOR gates are

required to compute D0. Computing g=D1*N1
T, which is the parity of D1, requires n-1 XOR gates,

and the gate delay is n2log TX. The final result is obtained by adding this bit to every bits of D0,

and this needs n XOR gates and 1TX gate delay. Thus the total number of XOR gates is n2-1 and

the gate delay is
XA TnT 2log1 . Since)1(loglog 22 nn for n>3 and 8 n, the new

multiplier matches the best result presented in Table 3 of [3].

Table 5 shows a comparison of the new multiplier with the multiplier of [3] in three fields:

GF(2370), GF(2468) and GF(2571). From [24], we know that there exist cryptographically

interesting elliptic curves in GF(2468). Since the signal reuse method introduced in [3] is

applicable to both multipliers, it is not used here. In Table 5, t denotes the GNB type and h

denotes the minimal value of
1

1

u

j
jh (n odd) or

2

1

u

j
jh (n even).

TABLE 5: Comparison of NB multipliers for GF(2370), GF(2468) and GF(2571)

n t CN u h Multiplier #AND

#XOR Delay

Proposed 3702 337069

TA+17TX

370

6 2199

5 544
[3] Theorem 2

3702 474895

TA+12TX

Proposed 4682 1812563

TA+18TX

468

21

9899

17

3420

[3] Theorem 2

4682 2425410

TA+14TX

Proposed 5712 1796937

TA+18TX

571

10

5637

10

2586

[3] Theorem 2

5712 1771813

TA+13TX

22

5.3 An Example

Now we illustrate the proposed multiplier for GF(28). From Section 2.1, we have the following

formulas for D0, D1 and D2:

D0=(d0,0, d0,1,...,d0,7)=T0+T3=(x1,4+a7b7, x2,5+a0b0 ,...,x0,3+a6b6),

D1=(d1,0, d1,1,...,d1,7)=T1+T2=(x2,4+x0,1, x3,5+x1,2 ,...,x1,3+x7,0) and

D2=(d2,0, d2,1,...,d2,7)=T4=(a0b4, a1b5, a2b6,...,a7b3), where xi,j=aibj+ ajbi.

Computing D0 and D1 requires 2n+3n=40 XOR gates, and no XOR gate is required to compute

D2. Recall that N2={1,1,...,1}, the value of g=D2*N2
T is equal to the parity of D2, which can be

computed using n-1=7 XOR gates. Since N1= },...,,{
1810 222 , where

7541 2222 ,

we have the following formulas for D=AB=(d0, d1,...,d7):

d0=d0,0+g+d1,7+d1,4+d1,3+d1,1=d0,0+g+(d1,3+d1,7)+d1,1+d1,4,

d1=d0,1+g+d1,0+d1,5+d1,4+d1,2=d0,1+g+(d1,0+d1,2)+d1,4+d1,5,

d2=d0,2+g+d1,1+d1,6+d1,5+d1,3=d0,2+g+(d1,3+d1,6)+(d1,1+d1,5),

d3=d0,3+g+d1,2+d1,7+d1,6+d1,4=d0,3+g+(d1,2+d1,7)+(d1,4+d1,6),

d4=d0,4+g+d1,3+d1,0+d1,7+d1,5=d0,4+g+(d1,3+d1,7)+d1,0+d1,5,

d5=d0,5+g+d1,4+d1,1+d1,0+d1,6=d0,5+g+(d1,4+d1,6)+d1,0+d1,1,

d6=d0,6+g+d1,5+d1,2+d1,1+d1,7=d0,6+g+(d1,1+d1,5)+(d1,2+d1,7) and

d7=d0,7+g+d1,6+d1,3+d1,2+d1,0=d0,7+g+(d1,0+d1,2)+(d1,3+d1,6).

The signal reuse technique of [3] is employed in these formulas. Partial sums in the brackets

can be reused, e.g., both d0 and d4 have common terms (d1,3+d1,7). Therefore the total number of

XOR gates used in this conversion step is reduced from 40 to 34, and the total number of XOR

gates of the multiplier is 40+7+34=81.

Generating g needs 1 TA and 3 TX time delay, and generating each di,j needs 1 TA and 2 TX due to

the parallelism. So the total gate delay of the multiplier is 1TA+5TX.

From Table 2 of [21], we know that the minimal value of CN is 21 for GF(28), and the formula

for D=AB=(d0, d1,...,d7) is

di=a<i+7>b<i+7> + xi+4, i+5 + xi+6, i+7 + xi+2, i+4 + xi+3, i+5 + xi+7, i+1 +

23

xi+3, i+6 + xi+6, i+1 + xi+0, i+3 + xi+2, i+6 + xi+3, i+7 , where 70 i and xk,j=a<k>b<j>+a<j>b<k>.

Using the symmetry property and the signal reuse technique of [3], we know that the GF(28)

multiplier of [3] requires 96 XOR gates and the total gate delay is 1TA+5TX.

6. Conclusions

We have proposed a new NB multiplication algorithm for GF(2n). The proposed algorithm

provides a new way to perform NB multiplication in some GF(2n)s. The complexity of the

proposed algorithm does not depend on CN but the multiplicative order of the normal element. For

these GF(2n)s, the new algorithm can be used to design not only fast software multiplication

algorithms but also low complexity bit-parallel VLSI multipliers. Especially, for some values of n

that no Gaussian NB exists in GF(2n), i.e., 8|n, the algorithm can still be used to design low

complexity VLSI multipliers.

The proposed algorithm speedups software implementations by look-up table. But for VLSI

implementations, the time complexity of the new multiplier is higher than the multiplier of [3] in

GF(2n) where low complexity NB exists.

Two improvements on RH algorithm have been shown. Both theoretical and experimental

comparisons of these NB algorithms have been presented. It is shown that they have specific

behaviors in specific applications.

24

Appendix 1:

RH Multiplication Algorithm for n odd:

INPUT: A, B, Si, where vi1 .

OUTPUT: D=AB.

 S1: D = (A & B)1;

 S2: for i = 1 to v do {

 S3: R = (B & An-i) (A & Bn-i);

S4: for each
iSk do D = D

Rk; }

 S5: Output D ;

25

Appendix 2:

Multiplication Algorithm A1 for n Odd:

For each 10 nk , the following precomputation procedure is to find all values of i such that

vi1 and
iSk .

A2.1 Precomputation:

INPUT: n, Si, where vi1 .

OUTPUT: ek and m[k][j], where 10 nk and 10 kej .

 S1: for k = 0 to n-1 do ek =0;

 S2: for i = 1 to v do {

 S3: for each
iSk do {

 S4: m[k][ek] = i ;

 S5: ek = ek+1; } }

This procedure outputs ek and m[k][j], where 10 nk and 10 kej . ek is the total

number of is such that vi1 and
iSk , and m[k][0] to m[k][ek-1] store these is, i.e.,

]][[jkmSk

for 10 kej .

A2.2 Algorithm A1 for n Odd:

INPUT: A, B, ek and m[k][j], where 10 nk and 10 kej .

OUTPUT: D=AB.

 S1: Compute DAi and DBi for zi0 ;

 S2: D = A1 & B1= (A & B)1;

 S3: for i = 1 to v do R[i] = (B & An-i) (A & Bn-i);

 S4: for k = 0 to n-1 do

 S5: if ek > 0 then{

 S6: C = R[m[k][0]];

 S7: for j = 1 to ek-1 do C =C R[m[k][j]];

 S8: D = D (C >> k); } // C>>k denotes k-fold right cyclic shifts of C.

 S9: Output D ;

26

Notes 1: For each vi1 , An-i is stored in

z
n successive computer words starting from

DA[s][t] and ending at DA[s][t+

z
n -1], where t = zi / , s = i & (z-1) and & denotes the bit-wise

AND. In our implementation, these address computations are performed in the precomputation

procedure, and starting addresses of A1, B1, An-i, Bn-i and R[m[k][j]] are stored sequentially in a 1-

dimensional array, where vi1 , 10 nk and 10 kej . Since 2/)1(
1

1

0
N

v

i
i

n

k
k Che ,

the size of this 1-dimensinal array is z(2+2v) + z(CN-1)/2 bits.

2: Algorithm A1 may be implemented without computing arrays DA and DB. Experimental

results show that arrays DA and DB speedup Algorithm A1 by no more than 10% for GF(2n)s

listed in Table 3 of Section 3. For example, Algorithm A1 without computing arrays DA and DB

performs one multiplication operation in 1566 s over GF(2571).

A2.3 Complexity Analysis:

First we show that there is no need to define array DAj as a 2n-bit vector in line S1. Since only

i-fold left cyclic shifts of A is required in line S3, where vi1 , we may define array DAj as a

(n+v)-bit vector.

DA0 = (a0,a1,...,an-1,a0,a1,...,av-1) and

DAj = (aj,...,an-1,a0,a1,...,av-1a0,...,aj-1), where zj1 .

From this definition, we know that the time complexity to compute DAj's and DBj's (zj0)

is about 3z n-bit cyclic shift operations, and 3zn bits are required to store these arrays.

The cyclic shift operation is also required in line S8. Since ek may be zero for some values of k,

one can see that the total number of cyclic shift operations in Algorithm A1 is at most n+3z. For

example, our experiments show that for 100<n<1000, where n is odd and the type-II ONB exists

in GF(2n), the minimal, average and maximal percentages that ek=0 are 22.9%, 25.0% and 27.2%

respectively.

XOR operations are required in S3, S7 and S8. In S3, the XOR operation is repeated v=(n-1)/2

times. Since 2/)1(
1

0
N

n

k
k Ce , the total number of XOR operations in line S7 and S8 is 2/)1(NC .

Therefore the total number of XOR operations in Algorithm A1 is
2

1

2

1 NCn = 2/)2(nCN
.

27

In line S2 and S3, 1 and 2v=n-1 AND operations are required, respectively. Therefore

Algorithm A1 requires n AND operations.

Now we analyze the space complexity of Algorithm A1.

In line S1, arrays DAj and DBj (zj0) need 3zn bits. In line S3, the array R[i] (vi1)

requires vn bits. In line S5, the array ek (10 nk) requires zn bits. The temporary variable C

of S6 needs n bits. From Note 1, we know that there is no need to store the array m[k][j] in

Algorithm A1. Therefore the space complexity of the Algorithm A1 is 3zn+vn+zn+n =

4zn+n(n+1)/2 bits.

28

Appendix 3:

Multiplication Algorithm A2 for n Odd:

We only present the algorithm for n odd. In this case, both Algorithm A1 and A2 share the same

precomputation procedure, which have been presented in Appendix A2.1.

A3.1 Algorithm A2 for n Odd:

INPUT: A, B, ek and m[k][j], where 10 nk and 10 kej .

OUTPUT: D=AB.

 S1: Compute DAi and DBi for zi0 ;

 S2: D = A1 & B1= (A & B)1;

 S3: for k = 0 to n-1 do

 S4: if ek > 0 then{

 S5: UA = A<k-m[k][0]>; UB = B<k-m[k][0]>;

 S6: for j = 1 to ek-1 do { UA = UA

A<k-m[k][j]>; UB = UB

B<k-m[k][j]>; }

 S7: D = D

(Bk & UA)

(Ak & UB); }

 S8: Output D ;

Note 1: In our implementation, starting addresses of Ak, Bk A<k-m[k][j]>, and B<k-m[k][j]> in Algorithm

A2 are also computed in the precomputation procedure and stored in a 1-dimensional array, where

10 nk and 10 kej . Since 2/)1(
1

0
N

n

k
k Ce , the size of this array is 2zn+z(CN-1) bits.

A3.2 Complexity Analysis:

Since DAj and DBj are defined as 2n-bit vectors, the number of cyclic shift operations, which

are required only in line S1, is 4z.

AND operations are required in S2 and S7. In line S2, one AND operation is required. Since ek

may be zero for some values of k, one can see that at most 2n AND operations are required in S7.

Therefore the total number of AND operations in Algorithm A2 is at most 2n+1.

Since 2/)1(
1

0
N

n

k
k Ce , the total number of XOR operations in Algorithm A2 is CN-1.

Now we analyze the space complexity of Algorithm A2.

29

Since DAj and DBj (zj0) are defined as 2n-bit vectors in line S1, 4zn bits are required to

store them. In line S4, the array ek (10 nk) requires zn bits. Temporary variables UA and

UB of S5 need 2n bits. From Note 1, we know that there is no need to store the array m[k][j] in

Algorithm A2. Therefore the space complexity of Algorithm A2 is 4zn+zn+2n = 2n+5zn bits.

30

Appendix 4:

This appendix lists all values of n such that 100<n<1001 and one of the following two

conditions is satisfied:

(1). u<12 and 8|n;

(2). the inequality (25) is satisfied and type t GNB exists in GF(2n);

The table contains 22 values of n such that (1) is satisfied and 204 values of n such that (2) is

satisfied. In the table, The value of u is the smallest value for GF(2n). Because type-I normal

elements can be determined by theorem 1, they are not listed here.

(n, t, u) denotes that both the type t GNB and a normal element of u OCCs exists in GF(2n).

(n, -, u) denotes that a normal element of u OCCs exists in GF(2n) (8|n).

(110, 6, 24) (114, 5, 6) (117, 8, 8) (121, 6, 6) (131, 2, 2) (135, 2, 2)

(146, 2, 13) (152, -, 9) (153, 4, 6) (154, 25, 5) (155, 2, 2) (156, 13, 3)

(159, 22, 38) (161, 6, 8) (166, 3, 4) (179, 2, 2) (183, 2, 2) (188, 5, 21)

(190, 10, 13) (191, 2, 2) (194, 2, 6) (197, 18, 34) (198, 22, 28) (201, 8, 8)

(214, 3, 4) (215, 6, 8) (217, 6, 21) (219, 4, 18) (221, 2, 6) (222, 10, 16)

(224, -, 3) (230, 2, 4) (231, 2, 2) (233, 2, 6) (236, 3, 6) (237, 10, 6)

(239, 2, 2) (243, 2, 2) (244, 3, 4) (245, 2, 6) (251, 2, 2) (258, 5, 5)

(262, 3, 5) (266, 6, 18) (270, 2, 4) (274, 9, 5) (284, 3, 3) (286, 3, 8)

(295, 16, 16) (298, 6, 5) (299, 2, 2) (303, 2, 2) (305, 6, 6) (308, 15, 28)

(317, 26, 30) (318, 11, 20) (323, 2, 2) (325, 4, 22) (332, 3, 4) (333, 24, 6)

(336, -, 7) (337, 10, 50) (340, 3, 4) (356, 3, 4) (357, 10, 14) (359, 2, 2)

(362, 5, 6) (363, 4, 24) (365, 24, 24) (370, 6, 5) (371, 2, 2) (375, 2, 2)

(377, 14, 14) (380, 5, 3) (384, -, 3) (386, 2, 18) (397, 6, 6) (400, -, 5)

(404, 3, 3) (407, 8, 8) (411, 2, 2) (419, 2, 2) (422, 11, 12) (426, 2, 13)

(428, 5, 3) (431, 2, 2) (436, 13, 14) (443, 2, 2) (445, 6, 6) (461, 6, 6)

(463, 12, 24) (464, -, 3) (468, 21, 17) (472, -, 5) (475, 4, 10) (477, 46, 182)

(482, 5, 6) (483, 2, 2) (484, 3, 8) (487, 4, 10) (488, -, 3) (491, 2, 2)

(492, 13, 7) (495, 2, 2) (497, 20, 14) (500, 11, 15) (506, 5, 9) (515, 2, 2)

31

(519, 2, 2) (525, 8, 8) (526, 3, 4) (531, 2, 2) (532, 3, 4) (534, 7, 8)

(537, 8, 8) (542, 3, 4) (543, 2, 2) (544, -, 11) (545, 2, 6) (547, 10, 10)

(549, 14, 66) (551, 6, 8) (557, 6, 6) (560, -, 9) (566, 3, 4) (568, -, 5)

(571, 10, 10) (574, 3, 4) (575, 2, 2) (576, -, 7) (577, 4, 6) (594, 17, 41)

(596, 3, 4) (598, 15, 5) (601, 6, 6) (605, 6, 6) (611, 2, 2) (615, 2, 2)

(624, -, 9) (627, 20, 18) (635, 8, 8) (636, 13, 17) (637, 4, 6) (639, 2, 2)

(644, 3, 4) (648, -, 3) (650, 2, 6) (651, 2, 2) (659, 2, 2) (662, 3, 9)

(663, 14, 72) (667, 6, 18) (679, 10, 10) (680, -, 3) (683, 2, 2) (687, 10, 10)

(688, -, 7) (697, 4, 24) (704, -, 3) (711, 8, 8) (719, 2, 2) (723, 2, 2)

(724, 13, 14) (734, 3, 4) (737, 6, 6) (743, 2, 2) (748, 7, 8) (753, 16, 6)

(755, 2, 2) (761, 2, 6) (762, 10, 5) (764, 3, 6) (771, 2, 2) (777, 16, 6)

(779, 2, 2) (782, 3, 4) (783, 2, 2) (784, -, 5) (788, 11, 7) (790, 3, 8)

(793, 6, 6) (794, 14, 18) (803, 2, 2) (806, 11, 9) (810, 2, 9) (814, 15, 20)

(831, 2, 2) (836, 15, 9) (838, 7, 8) (839, 12, 32) (842, 5, 6) (848, -, 3)

(849, 8, 22) (857, 8, 8) (861, 28, 6) (868, 19, 37) (871, 6, 18) (874, 9, 10)

(877, 16, 40) (879, 2, 2) (881, 18, 30) (883, 4, 10) (890, 5, 9) (891, 2, 2)

(904, -, 11) (908, 21, 7) (911, 2, 2) (916, 3, 4) (917, 6, 6) (923, 2, 2)

(929, 8, 14) (931, 10, 16) (935, 2, 2) (939, 2, 2) (941, 6, 8) (943, 6, 10)

(955, 10, 18) (958, 6, 5) (967, 16, 24) (972, 5, 4) (975, 2, 2) (986, 2, 6)

(992, -, 7) (996, 43, 3) (999, 8, 8) (1000, -, 5)

32

References

[1] C.K. Koc and B. Sunar, "Low-Complexity Bit-Parallel Canonical and Normal Basis

Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 3,

pp. 353-356, Mar. 1998.

[2] C.K. Koc and B. Sunar, "An Efficient Optimal Normal Basis Type II Multiplier,"

IEEE Trans. Computers, vol. 50, no. 1, pp. 83-87, Jan. 2001.

[3] A. Reyhani-Masoleh and M.A. Hasan, "A New Construction of Massey-Omura Parallel

Multiplier over GF(2m)," IEEE Trans. Computers, vol. 51, no. 5, pp. 511-520, May 2002.

[4] A. Reyhani-Masoleh and M.A. Hasan, "Fast Normal Basis Multiplication Using General

Purpose Processors," IEEE Trans. Computers, vol. 52, no. 11, pp. 1379-1390, Nov. 2003.

[5] A. Reyhani-Masoleh and M.A. Hasan, "Fast Normal Basis Multiplication Using General

Purpose Processors," Technical Report CORR 2001-25, Dept. of C&O,

University of Waterloo, Canada, Apr. 19, 2001.

[6] C. Koc and T. Acer, "Montgomery Multiplication in GF(2k),"

Design,Codes and Cryptography, vol. 14, no.1, pp. 57-69, Apr. 1998.

[7] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson, "Optimal Normal Bases in

GF(p n)," Discrete Applied Mathematics, vol. 22, pp. 149-161, 1988/89.

[8] S. Gao and Jr. H.W. Lenstra, "Optimal Normal Bases,"

Design, Codes and Cryptography, vol. 2 pp. 315-323, 1992.

[9] M.A. Hasan, "Look-Up Table-Based Large Finite Field Multiplication in Memory Constrained

Cryptosystems," IEEE Trans. Computers, vol. 49, no. 7, pp. 749-758, July 2000.

[10] J. Brillhart, D. H. Lehmer J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr.,

"Factorizations of bn 1, b= 2, 3, 5, 6, 7,10, 11, 12 up to High Powers," third ed.

Contemporary Mathematics, vol. 22, American Mathematical Society,

Providence, Rhode Island, Available at http://www.ams.org.

[11] H.N. Fan, "Simple Multiplication Algorithm for a Class of GF(2n),"

Electronics Letters, vol. 32, no.7, pp. 636-637, 1996.

[12] IEEE P1363-2000. "Standard Specifications for Public Key Cryptography," Aug. 2000.

[13] P. Ning and Y.L. Yin, "Efficient Software Implementation for Finite Field Multiplication in

33

Normal Basis," In LNCS 2229 as Proceedings of 3rd International Conference on Information

and Communications Security (ICICS) 2001, pp.177-188, Xian, China, 2001. Springer Verlag.

[14] W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes. second ed. Cambridge, Mass.:

The M.I.T. Press, 1972.

[15] E.R.Berlekamp, Algebraic Coding Theory. revised ed. Laguna Hills, CA: Aegean Park Press,

1984.

[16] O. Moreno, "On Primitive Elements of Trace Equal to 1 in GF(2n)," Discrete Mathematics,

vol. 41, pp. 53-56, 1982.

[17] D.Y. Pei, C.C. Wang and J.K. Omura, "Normal Basis of Finite Field GF(2m),"

IEEE Trans. Information Theory, vol. 32, no. 2, pp. 285-287, 1986.

[18] G. Seroussi, "Table of Low-Weight Binary Irreducible Polynomials,"

Technical Report HPL-98-135, Hewlett-Packard Laboratories, Palo Alto, Calif., Aug. 1998,

Available at http://www.hpl.hp.com/techreports/98/HPL-98-135.html.

[19] S.H. Gao, J.V.Z.Gathen and D. Panario, "Gauss Periods: Orders and Cryptographical

Applications," Mathematics of Computation, vol. 67, no. 221 pp. 343-352, 1998.

[20] C. Paar, P. Fleischmann and P. Roelse, "Efficient Multiplier Architectures for Galois Fields

GF(24m)," IEEE Trans. Computers, vol. 47, no. 2, pp. 162-170, Feb. 1998.

[21] Chung-Chin Lu, "A Search of Minimal Key Functions for Normal Basis Multipliers,"

IEEE Trans. Computers, vol. 46, no. 5, pp. 588-592, May 1997.

[22] H.N. Fan and Y.Q. Dai, "Key Function of Normal Basis Multipliers in GF(2n),"

Electronics Letters, vol. 38, no.23, pp. 1431-1432, 2002.

[23] A. Reyhani-Masoleh and M.A. Hasan, "Efficient Multiplication Beyond Optimal Normal

Bases," IEEE Trans. Computers, vol. 52, no. 4, pp. 428-439, Apr. 2003.

[24] M. Maurer, A. Menezes and E. Teske, "Analysis of the GHS Weil Descent Attack on the

ECDLP over Characteristic Two Finite Fields of Composite Degree," Technical Report

CORR 2001-59, Dept. of C&O, University of Waterloo, Canada, Oct. 12, 2001.

[25] G.D. Birkhoff and H.S. Vandiver, "On the Integral Divisors of an-bn,"

Annals of Mathematics, vol. 5, no.2, pp. 173-180, 1904.

http://www.hpl.hp.com/techreports/98/HPL-98-135.html

