
Burmester-Desmedt Tree-Based Key Transport

Revisited: Provable Security without Broadcast

Jens-Matthias Bohli1, Maŕıa Isabel González Vasco2, and Rainer Steinwandt3

1 Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe,
76128 Karlsruhe, Germany;

bohli@ira.uka.de
2 Área de Matemática Aplicada, Universidad Rey Juan Carlos, c/ Tulipán, s/n,

28933 Madrid, Spain;
migonzalez@escet.urjc.es

3 Dept. of Mathematical Sciences, Florida Atlantic University, 777 Glades Road,
Boca Raton, FL 33431, USA;

rsteinwa@fau.edu

Abstract. A tree-based key transport protocol is presented which can
be seen as a generalizing variant of the star- and tree-based protocols
proposed by Burmester and Desmedt at EUROCRYPT ’94. Our scheme
does not rely on the availability of globally verifiable signatures or arbi-
trary point-to-point connections, and its security against active adver-
saries is proven in the standard model under the Decision Diffie Hellman
assumption.

Keywords: Cryptography, Group Key Establishment, Provable Security

1 Introduction

Group key establishment protocols allow n ≥ 2 principals to agree upon a com-
mon secret key (referred to as the session key) for private communication. Dif-
fering from group key agreement protocols, group key transport protocols are key
establishment protocols in which a single principal fixes the session key, which is
thereafter sent to all the rest. This distinguished participant is usually referred
to as the leader.

At EUROCRYPT ’94, Burmester and Desmedt [BD95] proposed two key
transport protocols based on a star and a tree configuration, respectively. In the
star-based scheme, the leader has direct communication with all other princi-
pals, whereas the latter cannot communicate directly amongst themselves. In
the tree-based scheme, the principals’ communication channels are represented
by a binary tree, rooted by the leader. Thus, in both cases the protocol can be
described through a graph, where principals are viewed as nodes and edges rep-
resent direct communication channels. Also, both protocols consist of two basic
steps: initially, each principal generates his ephemeral secret key-public key Diffie
Hellman pair, which he uses for carrying out a Diffie Hellman key exchange with

each of his adjacent principals. In a second step, the session key is generated
by the leader and transported through the network to each principal. In this
transport, the session key is hidden at each edge via the agreed ephemeral keys
of the corresponding incident nodes.

Unlike many more recent proposals for key establishment [KY03,KLL04],
the mentioned two protocols do not rely on arbitrary point-to-point connections
among the principals. Unfortunately, in [BD95] security proofs are not included,
and so far these proposals have not been put into a modern framework for analyz-
ing key establishment schemes, say along the lines of [BPR00,BCPQ01,KY03].
As having available only limited network connections imposes additional limi-
tations and difficulties on a key establishment scheme, e. g., in defining session
identifiers, a lack of such a formal treatment is rather unfortunate.

In this contribution we introduce a generalization of the mentioned two pro-
tocols and give a security proof in the standard model based on the Decision
Diffie Hellman (DDH) assumption. Here ‘generalization’ means that we consider
the situation in which the communication graph can actually be any tree, e. g.
a spanning tree in an arbitrary connected network. Also, we do not make use
of a distinguished principal acting as leader. Our protocol can not be seen as
a centralized group key distribution scheme (see [KPT04] for an updated defini-
tion), as in our proposal any of the principals can start a key transport among
an authorized set of connected principals and generate the corresponding key.
This somewhat more flexible point of view allows, for instance, to handle hi-
erarchically organized networks, where keys may either be established within a
subnetwork (e. g., geographically or organizationally defined) or across several
hierarchies.

The main motivation for our construction is that indeed group communica-
tion applications often aim at transmitting data using minimum resources. Given
a set of n principals, at least n− 1 direct connections are required for construct-
ing a communication network among all of them. Such a minimal network is thus
a tree (i. e., an acyclic connected graph), and the star and tree configurations
considered in [BD95] can be taken for special cases.

We consider static groups only, that is, we do not deal with the issue of
updating agreed keys when principals leave or join. Also, we do not explore
the effect of corrupted insiders4 or crashed principals (cf. [CS04]). However, we
decided to explicitly take into account the following issues which are often taken
for granted in proposals for key establishment schemes:

1. It is not assumed that principals know from some protocol-external applica-
tion already that they want to agree on a key. Instead, the party initiating
the key establishment has to inform the other involved parties within the
protocol.

2. Besides agreeing on a common key, also a common (session) identifier for
this key is to be constructed by the protocol so that applications can later
refer to the established session key.

4 In fact, in our setting where neither global authentication nor a fully connected
network is assumed, corrupted insiders are quite powerful

As the security goals of [SSN98] suggest, our protocol will include key confirma-
tion. Indeed, for a group key establishment protocol key confirmation seems to
be more desirable than in the two participant case. While for two principals a
failure in the key establishment resembles a network failure in the application
protocol, in a group key establishment a situation can arise where only a sub-
set of the intended principals share a common key what can be a threat at the
application level.

Our protocol requires O(n) rounds of communication but for n ≫ 2 needs
significantly less messages than constant round protocols like [KY03]. Under the
Decision Diffie Hellman assumption it achieves both provable (semantic) security
and perfect forward secrecy. Also in the case of active adversaries we decided
to do without signatures, as in some applications public verification keys may
not be globally available. Instead, we rely on the availability of authenticated
links between neighboring nodes in the tree, which are implemented by shared
secret keys between neighbors exclusively. We base our proof on a model close
to [BCPQ01]. For more clarity we introduce a different notion of correctness and
can thereby simplify the definition of partnering.

To avoid ambiguities, in the next section we recall some details of the un-
derlying security model. Thereafter, in Section 3 a basic version of our group
key establishment protocol is explained and proven secure against passive ad-
versaries. Finally, Section 4 discusses the active case.

2 Underlying Security Model

For exploring the security of the tree based key transport protocol discussed in
the sequel, we essentially follow the approach of Bresson et al. [BCPQ01] and of
Katz and Yung [KY03], both building on [BR93,BR95,BPR00]. Although there
are clear limitations of this approach (e. g., no malicious insiders are considered),
we think it allows a convenient formalization of important security aspects. In
[BPR00] session identifiers are introduced for defining partnering, though in
many subsequent versions of the model (cf. [KY03,BCPQ01]) slight variants
of the definition of partnering are given. Obviously, restrictive definitions of
partnering allow for more attacks. On the other hand when using a lenient
definition one should make the point that several attacks are excluded, as all
oracles that know the session key may be partnered. The latter may severely
limit the practical relevance of a security proof. We decided to give a very simple
definition of partnering, which together with our definitions of correctness and
freshness yields a convenient basis for security proofs. The main ingredients of
our security model are as follows.

Participants We consider a fixed set of (potential) protocol participants, P =
{U1, . . . , Un}, which are modeled as probabilistic polynomial time (ppt) interac-
tive Turing machines. Further on, we assume the participants in P to be con-
nected through a tree-shaped communication network where all communication
channels can be used in both directions. In other words, P is the set of vertices of
an undirected tree, whose edges represent the available communication channels.

Each protocol participant U can execute polynomially many protocol in-
stances, usually referred to as oracles Πi

U (i = 1, 2, . . .) in parallel, and mes-
sages exchanged throughout the protocol must always be addressed to a specific
instance. Intuitively, the oracles Πi

U can be taken for processes executed by U .
Every oracle Πi

U has assigned the variables statei
U , sidi

U , pidi
U , ski

U , termi
U , usedi

U

and acci
U :

usedi
U indicates whether this oracle is or has been used for a protocol run;

statei
U keeps the state information during the protocol execution;

termi
U shows if the execution terminated;

sidi
U denotes the unique session identifier, and will act as a name for the key;

pidi
U stores the set of identities of those principals that Πi

U aims at establishing
a key with—including U himself;

acci
U indicates if the protocol instance was successful, i. e. the principal accepted
the session key;

ski
U stores the session key once it is accepted by the oracle Πi

U . Before accep-
tance, it stores a distinguished null value.

For more details on the usage of the variables see [BPR00]. As no malicious
insiders are considered, we assume an oracle Πi

U must accept the session key
constructed at the end of the corresponding protocol instance if no deviation
from the protocol specification takes place. Thus, clearly each sidi

U must uniquely
determine a session key ski

U and only principals in pidi
U may have accepted (at

most) one key with the session identifier sidi
U .

Partnering Two oracles Πi
U and Π

j
U ′ are partnered if they have both accepted

(acci
U = accj

U ′= 1) and hold the same session identifier sidi
U = sidj

U ′ .

Communication network We assume the communication network to be pub-
licly known and the communication to be organized in rounds. One round con-
sists of the messages that can be sent in parallel and within each round the exact
order of message delivery can be fixed arbitrarily. To avoid technical problems
like one Turing machine potentially being able to measure the execution time
of other parties, we assume that a suitable scheduling mechanism ensures that
only one Turing machine is active at a time.

Initialization In case of an active adversary, before the actual key transport
protocol is executed for the first time, an initialization phase takes place. Here
each neighboring pair of principals (U, V) ∈ P2 (U 6= V) is equipped with a
uniformly at random chosen common secret key SK{U,V } allowing to implement
authenticated communication between U and V . An active adversary is not able
to influence this initialization phase.

A key motivation to use symmetric keys for implementing authentication are
use cases where the available infrastructure is limited and no PKI is available.
Even if we cannot assume that principals have access to signature verification
keys of all other principals, it may be feasible to implement ‘local authentication’
with symmetric keys.

Adversarial model When dealing with an active adversary, we may assume she
has full control over the communication network, i. e., she can eavesdrop, delay,
suppress, and send messages at will. A passive adversary does not interfere with
the communication among the parties and thus in her presence all sent messages
are delivered as specified in the protocol.

To make the adversary’s capabilities explicit, we assume she can access the
following oracles with the Send and Corrupt oracles being special in the sense
that they are available to an active adversary only:

Execute(Uu1
, (Uu2

, . . . , Uur
)) This executes the protocol among unused instances

Π
ij

Uuj
of the specified parties and returns a transcript of the protocol run

(listing all messages sent during the protocol execution among the oracles

Π
ij

Uuj
). At this, the principal Uu1

initiates the protocol.

Send(U, i,M) This sends the message M to the instance Πi
U and outputs the

reply generated by this instance. If the adversary calls this oracle with an
unused instance Πi

U and M = {Uu2
, . . . , Uur

}, then Πi
U initiates a protocol

instance with the partners listed in M. Thereafter, Send returns the ‘init
message’ Πi

U sends for this purpose.
Reveal(U, i) yields the session key ski

U and the session identifier sidi
U .

Corrupt(U) reveals all long term term secret keys SK{U,∗} of U to the adversary.
Test(U, i) Only one query of this form is allowed for an active adversary A.

Provided that ski
U is defined, (i. e. ski

U 6= null), A can execute this oracle
query at any time when being activated. Then with probability 1/2 the
session key ski

U and with probability 1/2 a uniformly chosen random session
key is returned.

Correctness To exclude ‘useless’ protocols, we require that a single execution
of the protocol for establishing a key among Uu1

, . . . , Uur
involving the oracles

Π
iu1

Uu1

, . . . ,Π
iur

Uur
ensures that for the participating oracles that have accepted,

i. e., {Π
ia1

Ua1

, . . . ,Π
ias

Uas
} = {Π

iuj

Uuj
∈ {Π

iu1

Uu1

, . . . ,Π
iur

Uur
}|acc

iuj

Uuj
= true}, the fol-

lowing holds. With overwhelming probability they

– obtain a common session identifier (i.e. sid
ia1

Ua1

= · · · = sid
iar

Uar
) which is

globally unique.

– have accepted the same session key sk
ia1

Ua1

= · · · = sk
iar

Uar
6=null associated

with the common session identifier sid
ia1

Ua1

.

– know their partners pid
ia1

Ua1

= · · · = pid
iar

Uar
6=null associated with the com-

mon session identifier sid
ia1

Ua1

and it is Ua1
, . . . , Uar

∈ pid
ia1

Ua1

.

Remark 1. In case of a passive adversary all of the oracles Π
iu1

Uu1

, . . . ,Π
iur

Uur
ac-

cept. For an active adversary this cannot be guaranteed, as in this case messages
need not to be delivered.

Freshness An instance Πi
U participating in a key establishment among princi-

pals pidi
U = {Uu1

, . . . , Uur
} ∋ U is referred to as fresh if none of the following is

true:

– For some U ′ ∈ {Uu1
, . . . , Uur

} a Corrupt(U ′) query was executed before a
query of the form Send(U ′′, i, ∗) has taken place, where U ′′ ∈ {Uu1

, . . . , Uur
}.

– The adversary somewhen has queried Reveal(U, i) or Reveal(U ′, j) with Πi
U

and Π
j
U ′ being partnered.

Remark 2. The first condition in our freshness definition may look overnecessar-
ily restrictive. Note however, that with the more lenient approach proposed in
[KY03], an attack of the following type is not excluded: Once the first princi-
pal U has computed the session key, U is corrupted and outgoing messages of
this party are modified such that the other protocol participants end up with a
different session identifier but identical session key. Having provoked the latter
situation, breaking the security of the protocol is straightforward.

Security Let us start by fixing some notation: In the sequel, a ← A denotes
either that element a is chosen uniformly at random from A (if A is a set), or
random choice of a according to A (if A is a probability distribution). Now, we
define—as a function of the security parameter k—the advantage AdvA of an
adversary A in attacking a key establishment protocol P (see, again, [KY03]) as

AdvA := |2Succ − 1|

where

Succ := Pr[(T, sk0) ← P; sk1 ← G; b ← {0, 1} :

A(T, skb) = b)].

At this, G = G(k) is the key space and T is the transcript of the protocol run
(that is, all the information flowing through the network, which A can access).
Thus, Succ is actually the probability of success A has on guessing the output
of the Test oracle queried on (U, i) such that Πi

U is fresh.
We say that a protocol P is secure provided that, for any ppt adversary A

the function AdvA = AdvA(k) is negligible. The intuition behind this definition
of security is that P is secure against A if A cannot distinguish a session key
established through P from an element chosen uniformly at random among all
possible keys.

Authentication We say that a protocol P achieves implicit authentication if
once an oracle Πi

U has accepted a session key, Ui can be sure that no principal
outside the intended group has knowledge of this key. Explicit authentication is
achieved if, in addition, Ui knows that the intended group does have the agreed
shared key (i.e., explicit authentication is achieved through implicit authentica-
tion and key confirmation).

(Perfect) Forward Secrecy A protocol P is said to achieve (perfect) forward
secrecy if compromising the long term keys created in the initialization phase
does not endanger previously established session keys.

3 A Basic Tree Based Key Transport Protocol

We describe here our tree based group key transport protocol, which is inspired
in the star and tree protocols of Burmester and Desmedt [BD95].

3.1 Description of the Basic Protocol

Let P be a fixed finite set of principals, engaged in a connected communication
network. The protocol described below can be applied to arbitrary connected
subgraphs of P; let P ′ be the set of principals (vertices) in such a subgraph and
denote the cardinality of P ′ by n. We assume that some spanning tree among
P ′ is globally known. This tree is used by our protocol for exchanging messages
among principals in P ′. Finally, let us also assume that a cyclic group G of
prime order q and a generator g of G have been fixed, so that the corresponding
Decision Diffie Hellman problem is hard. Now consider the following protocol P:

Basic Protocol P:
Let us suppose principal U wants to establish a key among a set of principals
P ′ ∋ U forming the vertices of a subtree of the communication network, and
take U for the root of this tree. Then U selects uniformly at random a session
key sk ∈ G and generates at random a session identifier sid (say a bitstring
of length linear in the security parameter, whose first bits are an encoding of
U ′s identity and the rest is chosen uniformly at random). Also, he chooses
uniformly at random an exponent a1 ∈ Zq, computes g1 = ga1 and sends
(DHKEY0, g1, pid) to all his direct descendants.
Each principal Ui, upon receiving this message, chooses ai ∈ Zq uniformly
at random and
– sends (DHKEY1, gai) to his parent, thereby establishing a common key

between Ui and his parent;
– sends (DHKEY0, gai , pid) to all his direct descendants, thereby initiating

a Diffie Hellman key exchange.
Proceeding in this way ‘down the tree’, after no more than n rounds each
principal in P ′ has established a common Diffie Hellman key with his parent
as well as a common Diffie Hellman key with each of his direct descendants.
Once U receives an answer (DHKEY1, gai) from a direct child Ui, in the next
round he sends (KEY, sid, ga1ai · sk) to Ui, from which Ui can extract the ses-
sion key sk and accept it. The transmission of (KEY, sid, ga1ai ·sk) to Ui takes
place in the same round in which Ui receives the answers (DHKEY1, g

aij)
from his direct descendants. Thus, using the Diffie Hellman keys established
with his direct descendants, in the next round each Ui can communicate sid
and sk to his direct descendants Uij

. In summary the (sid, sk)-transmissions

are always ‘one level behind’ the Diffie Hellman key establishments in the
tree, and after at most n + 1 rounds of communication every principal has
learned (sid, sk).

A sample protocol run is sketched in Figure 1.

(a) Round 1 and 2 (b) Round 3 and 4

Fig. 1. The basic protocol, started by the hatched node.

3.2 Analysis in the Passive Case

Correctness In the passive case the correctness is straightforward to check, as the
adversary cannot interfere with the protocol execution and the protocol clearly
distributes sk, sid and pid among the participants.

Security As depicted in Section 2, we essentially follow the standard adversarial
model of Bresson et al. [BCPQ01]. For a fixed probability distribution χ on the
set of transcript-session key pairs, we denote by Pr[(T, sk) ← χ : A(T, sk) =
1] the probability of success an adversary A has, in sight of a pair (T, sk) in
distinguishing whether sk ∈ G is a uniformly at random chosen key or a properly
constructed key on a protocol run with transcript T (for instance, if χ is the
distribution induced by P, the above probability denotes Succ).

Proposition 1. Assume that the DDH assumption holds. Then the tree based
protocol P described above is a secure group key establishment protocol; namely,
for any ppt passive adversary A, AdvA(t) is negligible.

Proof. Let us start by noting that for the case of passive adversaries it is suffi-
cient to consider only Execute oracle calls of the adversary. Also, it is sufficient

to consider only a single call to the Execute oracle—as in protocol P no shared
information/state among different protocol executions exists, information col-
lected from additional protocol instances can be simulated by the adversary
herself. Analogously, we do not have to be concerned for Reveal calls either, be-
cause of session keys being chosen uniformly at random in each protocol instance
(therewith being statistically independent).

Let A be a ppt passive adversary achieving an advantage in attacking the
protocol (i. e., distinguishing random group elements from the session key). We
can transmogrify A into a DDH adversary D as follows. D uses A as black
box and simulates the Execute oracle as required. Presented a DDH instance
(gA, gB , gC), where dependent on a random coin, C is either AB or a random
value, D proceeds as follows. As soon as A calls the Execute oracle, D generates
a protocol transcript, where in the transport phase the Diffie Hellman messages
gai of Ui are replaced by (gA)ai if Ui is located at even distance to the principal
that initiated the protocol session. For those Ui located at odd distance, D
replaces gai with (gB)ai . Further on, instead of sending the encrypted session
key (KEY, sid, gAaiBaj · sk) to Uj , D sends (KEY, sid, (gC)aiaj · sk) to Uj . Note
that the session transcript obtained in this way is valid, because sk is a uniformly
at random chosen group element.

Once A queries the Test oracle, D forwards sk to A. If C = AB, then A
received the correct session key. In case of C having been chosen uniformly
at random, the sk-value appears to A as a uniformly at random chosen group
element. Thus, by adopting the answer of A, the DDH adversary D’s advantage
in solving the DDH problem equals A’s advantage in attacking the protocol.
Thus, under the DDH assumption a ppt passive adversary A achieving a non-
negligible advantage in attacking P cannot exist.

Authentication We may assume implicit authentication is obtained, as all prin-
cipals are supposed to behave honestly and the adversary can not impersonate
anyone (for she cannot send any message). Explicit authentication is achieved in
the sense that we know that indeed all group members will finally get the key,
as the adversary is passive and therewith delivery of all messages is guaranteed.

Communication complexity As we are doing without a broadcast channel, in
addition to the round complexity O(n) also the total number of messages needed
by the above protocol is of interest. By construction this depends on the number
of protocol participants only. Namely, for establishing the Diffie Hellman keys
we need 2 · (n−1) messages, and for transporting the actual session key, another
n−1 messages are sent. Thus, in total the passive protocol needs 3n−3 messages.

4 Allowing Active Adversaries

4.1 A Modified Protocol

For dealing with active adversaries we have to augment the above protocol with
the initialization phase described in Section 2. Thus, upon a Corrupt(Ui) query

of the adversary A, all long-lived keys authenticating messages between Ui and
its neighboring principals are revealed to A.

Based on this ‘infrastructure’ we extend the protocol from Section 3 as fol-
lows:

Starting – key transport phase:

Let us suppose principal U wants to establish a key among a set of principals
P ′ ∋ U forming the vertices of a subtree of the communication network, and
take U for the root of this tree. Then U selects uniformly at random a session
key sk ∈ G and generates at random a session identifier sid (say a uniformly
at random chosen bitstring of length equal to the security parameter k,
prepended by an encoding of U ’s identity). Also, he chooses uniformly at
random an exponent a1 ∈ Zq, computes g1 = ga1 and sends an authenticated
packet (DHKEY0, sid, pid, g1, U) to all his direct descendants.

Each principal Ui, upon receiving this message first checks the validity of the
authentication of U and ignores the packet if this check fails. If the packet
is properly authenticated, Ui chooses ai ∈ Zq uniformly at random and

– sends an authenticated packet having the form (DHKEY1, sid, gai , Ui)
to his parent, thereby establishing a common key between Ui and his
parent;

– sends an authenticated packet having the form (DHKEY0, sid, pid, gai , Ui)
to all his direct descendants, thereby initiating a Diffie Hellman key
exchange.

Proceeding in this way ‘down the tree,’ after no more than n rounds each
principal in P ′ has established a common Diffie Hellman key with his parent
as well as a common Diffie Hellman key with each of his direct descendants.

Once U receives an answer gai from a direct descendant Ui, in the next
round he sends an authenticated packet (KEY, sid, ga1ai · sk, U) to Ui, from
which Ui can—after having checked the validity of the authentication—
extract the session key sk. The transmission of the tuple (KEY, sid, ga1a1i ·
sk, U) to Ui takes place in the same round in which Ui receives the answers
(DHKEY1, sid, g

a1ij , Uij
) from his direct descendants. Thus, using the Diffie

Hellman keys established with his direct descendants, in the next round Ui

can communicate sid and sk to his direct descendants Uij
. In summary the

(sid, sk)-transmissions are always ‘one level behind’ the Diffie Hellman key
establishments in the tree, and after at most n+1 rounds of communication
every principal has learned sid and sk.

Key confirmation phase: For this part of the protocol, we again imagine the
subtree formed by P ′ as being rooted in the principal U that initiated the
protocol run.

1. Once a protocol participant U ′ has learned both sid and sk, we distinguish
three cases:

– If U ′ is a leaf, he sends an authenticated acknowledgment packet
(ACK, sid, U ′) to his parent.

– If U ′ is an inner node, he waits until having received correctly au-
thenticated acknowledgment packets (ACK, sid, U ′

i) from all his di-
rect descendants. Then he sends an authenticated acknowledgment
packet (ACK, sid, U ′) to his parent.

– If U ′ is the root, he he waits until having received correctly authen-
ticated acknowledgment packets (ACK, sid, U ′

i) from all his direct de-
scendants. Then he accepts the session key sk and sends a correctly
authenticated confirmation packet (CNF, sid, U ′) to all his direct de-
scendants.

2. Once a principal Uij receives a correctly authenticated confirmation
packet (CNF, sid, Ui) from his parent he accepts the session key sk and
sends a correctly authenticated confirmation packet (CNF, sid, Ui) to all
his direct descendants.

In the worst case (a tree consisting of a single branch of length n) after
2 · (n− 1) rounds the confirmation messages have been delivered throughout
the network.

4.2 Analysis in the Active Case

Correctness Proving the above protocol to be correct is not hard:

Proposition 2. The above modified protocol for authenticated group key estab-
lishment is correct in the presence of active adversaries under the existential
unforgeability of the authentication scheme under chosen message attacks and
achieves forward secrecy.

Proof. The session identifier is generated uniformly at random by the initiator
so it is globally unique with overwhelming probability. The session identifier
and the partner identifier resp. the session identifier and the session key are
sent in the same message that cannot be forged by the adversary. So, since
all participants are supposed to be honest, they will accept the same session
identifier, partner identifier and session key. Finally the session key is only sent
to participants that are included in the partner identifier and all participants will
know their partners. Clearly, the modified protocol achieves forward secrecy, as
the long-term secret keys are used for message authentication only.

Security The security of the above protocol is summarized in

Proposition 3. The above modified protocol for authenticated group key estab-
lishment is secure against active adversaries under the DDH assumption and
the existential unforgeability of the authentication scheme under chosen message
attacks.

Proof. The proof comprises a series of games similar to [KLL04]. Let Advcma
S

be the maximum advantage that a ppt adversary achieves in forging a mes-
sage/MAC pair under chosen message attack and let Forge be the event that
A outputs a new authenticated message (m,MACSK{Ui,Uj}

(m)) with respect to

the key SK{Ui,Uj} shared between Ui and Uj without having queried Corrupt(Ui)
or Corrupt(Uj) before. Let Repeat be the event that the principal U starting the
protocol chooses a session identifier sid that was previously or is currently used
for another protocol run. Since sid is chosen (uniformly) at random by U who

is supposed to be uncorrupted we have P (Repeat) ≤ (qs+qex)2

2k+1 with qs resp. qex

denoting the number of calls to the Send resp. Execute oracle.
Now assume the existence of an adversary A achieving an advantage AdvA

in attacking the modified protocol. Without restriction we assume Succ > 0.5,
thus AdvA = 2 · Succ − 1.

– Game 0: This game is identical to the real attack with the oracles faith-
fully simulated for the adversary A. The probability of a successful attack is
denoted by Succ0 and is identical to the success probability of the adversary
attacking the real protocol:

Succ0 = Succ.

– Game 1: This game differs from Game 0 if the event Forge occurs. In this
case Game 1 will be aborted. An adversary A that succeeds in Game 0 but
not in Game 1 has provoked the event Forge. Thus

Succ0 − Succ1 ≤ P (Forge).

To use adversary A for forging a message authentication for a given authen-
tication key, this key has to be assigned to one of the n principals. If A
produces a forgery the probability that it is for the selected principal is 1

n
.

Thus:

Advcma
S ≥

1

n
· P (Forge).

– Game 2: Game 2 is, compared to Game 1, aborted if the event Repeat
occurs. Hence an adversary A successful in Game 1 but failing in Game 2
has provoked the event Repeat.

Succ1 − Succ2 ≤ P (Repeat) ≤
(qs + qex)2

2k+1
.

Due to the definition of freshness, the adversary cannot forge a message without
violating freshness of the oracles participating in the protocol instance. Moreover,
as each protocol instance among fresh oracles has a unique session identifier and
the messages within a protocol instance are distinguished the adversary cannot
reuse old messages. All fresh oracles that accept the same session key sk hold
the same sid because they are sent in the same message. Therewith all of these
oracles are partnered and the sk of the test session cannot be revealed to the
adversary.

The adversary A that successfully attacks Game 2 can be used to solve the
DDH problem, just as shown in the proof of Proposition 1 (note that the situation
she faces is exactly the case of a passive adversary attacking the basic protocol

presented in the previous section, except that in this case she can refuse delivery
of messages and halt the protocol if it was initiated by a Send call):

SuccDDH ≥ Succ2.

Putting it all together we obtain:

Succ0 ≤ n · Advcma
S +

(qs + qex)2

2k+1
+ SuccDDH,

thus,

AdvA ≤ 2n · Advcma
S +

(qs + qex)2

2k
+ AdvDDH,

that is, the advantage of A in attacking the modified protocol is negligible.

Authentication Implicit authentication is obtained: no principal outside the in-
tended group can learn the key. Moreover, by key confirmation the protocol
achieves explicit authentication.

Communication complexity The message flow in the key transport phase is ba-
sically identical to the message flow in the passive protocol and takes 3 · (n− 1)
messages. In the key confirmation phase each principal has to send one confir-
mation message to each of his neighbors. Thus, the key confirmation phase takes
another 2 · (n− 1) messages, yielding a total of 5n− 5 messages for the modified
protocol.

5 Conclusion

The above discussion shows that the original tree based protocols of Burmester
and Desmedt can be generalized to a group key establishment protocol that is
provably secure in the standard model and that works in a rather general setting:
neither a completely connected network nor global authentication are necessary.
Moreover, the (linear) message complexity of the protocol is rather moderate,
thereby facilitating its use in applications with a restricted communication in-
frastructure.

Acknowledgments

This work has been partially supported by the German Academic Exchange
Service DAAD and the Spanish M.E.C. as part of the BaSe CoAT project within
the Acciones Integradas Hispano-Alemanas.

References

[BCPQ01] E. Bresson, O. Chevassut, D. Pointcheval, and J. J. Quisquartier. Provably
Authenticated Group Diffie-Hellman Key Exchange. In P. Samarati, editor,
Proceedings of the 8th ACM Conference on Computer and Communications
Security (CCS-8), pages 255–264. ACM, 2001.

[BD95] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key
Distribution System. In A. De Santis, editor, Advances in Cryptology —
EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages
275–286. Springer, 1995.

[BM04] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establish-
ment. Springer, 2004.

[BPR00] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange
Secure Against Dictionary Attacks. In B. Preneel, editor, Advances in Cryp-
tology — EUROCRYPT’00, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 139–155. Springer, 2000.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution. In
D. R. Stinson, editor, Advances in Cryptology—CRYPTO ’93, volume 773
of Lecture Notes in Computer Science, pages 232–249. Springer, 1993.

[BR95] M. Bellare and P. Rogaway. Provably secure session key distribution— the
three party case. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, STOC’95, pages 57–66. ACM Press, 1995.

[CS04] C. Cachin and R. Stobl. Asynchronous Group Key Exchange with Failures.
In Proceedings of the 23rd ACM Symposium on Principles of Distributed
Computing (PODC 2004), pages 357–366. ACM, 2004.

[KLL04] H. J. Kim, S. M. Lee, and D. H. Lee. Constant-Round Authenticated Group
Key Exchange for Dynamic Groups. In P.J. Lee, editor, Advances in Cryptol-
ogy — ASIACRYPT’04, volume 3329 of Lecture Notes in Computer Science,
pages 245–259. Springer, 2004.

[KPT04] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement. ACM
Trans. Inf. Syst. Security, 7(1):60–96, 2004.

[KY03] J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key
Exchange. In D. Boneh, editor, Advances in Cryptology — CRYPTO’03,
volume 2729 of Lecture Notes in Computer Science, pages 110–125. Springer,
2003.

[SSN98] S. Saeednia and R. Safavi-Naini. Efficient identity-based conference key
distribution protocols. In C. Boyd and E. Dawson, editors, Information
Security and Privacy: Third Australasian Conference — ACISP’98, volume
1439 of Lecture Notes in Computer Science, pages 320–331. Springer, 1998.

