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Abstract

To solve the problem of searching on encrypted data, many keyword search schemes have been proposed
in recent years. The goal of such schemes is to enable a user to give an untrusted storage server the ability
only to test whether an encrypted document contains a few keywords without learning anything else about
the document. In this paper, we are concerned with decrypting the searched results as well as searching for
desired documents. In the previously proposed schemes, except for the work by Waters et al. [26], a user
decrypts searched documents using his private key, Apriv, or a symmetric key. Our another goal is to enable
a user to give a proxy the ability to decrypt only the ciphertexts containing desired keywords, but not other
ciphertexts. We propose a new mechanism, Searchable Keyword-Based Encryption (SKBE) which satisfies
both the above goals. As a result of adding the delegation of decryption ability, our mechanism works more
securely and efficiently in several applications, such as email gateways, secure audit logs, and decryption
key delegation systems, than any of the previously proposed schemes. We formalize this mechanism, define
its security model and propose an efficient construction whose security is proved in a random oracle model
under the Bilinear Diffie-Hellman Inversion assumption. The scheme is constructed based on the Public Key
Encryption with Conjunctive Field Keyword Search scheme in [21] by using a hybrid encryption technique.

keywords: Searching on encrypted data, searchable encryption, delegating decryption key, PEKS, PECK,
identity-based cryptosystem

1 Introduction

Recently, there has been interest in the problem of searching on encrypted data. Consider a user with limited
resources storing her data on remote and untrusted storage servers. To preserve confidentiality, it is desirable
to store the data in encrypted form. However, encryption makes it hard to retrieve data selectively from the
server. In other words, when a user wishes to only retrieve specific content (e.g., containing certain words), it
is hard to let the server perform the search for desired data without any loss of data confidentiality. To address
this problem, various forms of searchable encryption have been proposed [1, 3, 7, 11, 16, 17, 21, 25, 26]. For
providing secure searchable encryption, most of these schemes encrypt the content of data and attach related
keywords to it in encrypted form. i.e.,

[EkeyE (M),SKE(keyI , (W1,W2, · · · ,Wm))]

where the first component is an encryption of message M and the second one is called a searchable keyword
encryption (SKE) of keywords (W1,W2, · · · ,Wm). A key keyE can be a symmetric key or a public key, depending
on the encryption algorithm. We call a message associated with related keywords a document. When a user
wants to retrieve documents containing a keyword W , she produces a trapdoor for keyword W enabling to test
for the existence of the keyword within the associated encryptions and sends it to the (untrusted) remote server.
The trapdoor for W reveals only which encryptions contain keyword W and no other information. Without a
trapdoor, the server learns nothing about encryptions.

∗This research was done during the first author was enrolled in POSTECH. This research was supported by University IT
Research Center Project, the Brain Korea 21 Project, and grant No. R01-2005-000-10713-0 from the research program of KOSEF.

1



Related works. Song, Wagner, and Perrig introduced such a searchable encryption in [25]. They proposed
a symmetric key scheme in which the same key was used to make SKEs and trapdoors. Afterwards, several
schemes have been proposed to improve and extend this scheme [3, 7, 16, 17, 21, 23, 26]. In [16], Goh proposed
an efficient symmetric key scheme using Bloom filters. The scheme can determine whether a document contains
a keyword in a constant time. Both of these schemes [16, 25] are symmetric key schemes, so they are not
applicable to a public key system such as the email gateway introduced by Boneh et al. [3]. For the public key
systems, Boneh et al. proposed the Public Key Encryption with Keyword Search (PEKS) whose ciphertexts are
created using a public key. In [26], Waters et al. presented an encrypted and searchable audit log (secure audit
log), which is a good application of searchable encryptions, and proposed two schemes to build the system.

However, none of these schemes [3, 16, 25, 26] support a secure conjunctive keyword search, which is an
indispensable requirement for the efficient and secure search in some applications, especially in secure audit logs.
For example, an audit escrow agent in a secure audit log system may not give a trapdoor of a single keyword,
such as “Alice”, to an investigator, because the trapdoor of single keyword may match a huge number of audit
logs including many unnecessary ones. There are two naive solutions for the conjunctive search, set intersection
[16] and meta keyword. These methods and their limitations are well explained in [17]. However, neither
solution is appropriate or practical. The set intersection makes an untrusted server learn which documents
match each individual keyword, and, over time, the server may use this information for statistical analysis to
deduce information about the user’s documents. The meta keyword approach is impractical because it requires
huge storage and searching time proportional to the number of keyword fields. The first secure conjunctive
keyword search scheme was proposed by Golle et al. in a symmetric key setting [17] and Park et al. proposed
the public key analogue of this scheme [21]. Recently proposed searchable encryption schemes, [23] and [7] also
support the conjunctive keyword search.

Propositions. In this paper, we introduce a new mechanism called “Searchable Keyword-Based Encryption
(SKBE)”, which is a natural extension of PECK. SKBE considers decrypting the searched results as well as
searching for desired documents. In the previously proposed searchable encryptions, except for the work by
Waters et al. [26], in order to decrypt searched documents a user uses a symmetric key [7, 11, 16, 17, 25] or
her private key, Apriv [1, 3, 21]. In addition to searching ability in previous schemes, SKBE’s another goal is
to enable a user to give a proxy the ability to decrypt only the encryptions containing desired keywords, but
not other encryptions. For providing the most powerful functionality, it is designed for supporting conjunctive
keyword search in a public key setting. SKBE is a public key encryption with the following functionalities. A
message is encrypted using a public key Apub. Then, the ciphertext depends on the keywords associated with the
message. Given certain information called a decrypt trapdoor for specific keywords Wi’s, ciphertexts containing
all of keywords Wi’s can be decrypted without a private key Apriv. Similar to searchable encryptions, given
another certain information called a search trapdoor for specific keywords Wi’s, we can test whether a ciphertext
contains keywords Wi’s all, but get no other information about its original document. These trapdoors can be
generated only with Apriv. Without a trapdoor(search trapdoor or decrypt trapdoor), a ciphertext does not
reveal anything about its corresponding document.

1.1 Motivation and Applications

SKBE is of interest since it guarantees more secure and efficient operation than searchable encryption or ID-
based encryption (IBE) in applications like email gateways, decryption key delegation systems, and secure audit
logs.

Email gateway. Consider an email gateway. Suppose Alice wishes to read her email on a number of devices:
laptop, desktop, pager, etc., and she uses the method (of PEKS or PECK) in [3, 21]. Alice’s mail gateway is
supposed to route an email to an appropriate device based on the keywords in the email. For example, when Bob
sends an email with the keyword “urgent”, the mail is routed to Alice’s pager. Similarly, for “lunch”, the mail
is routed to Alice’s desktop to be read later. For Alice to decrypt and read the mail, Alice’s private key Apriv

has to be embedded in her devices. Now, suppose an adversary succeeds in attacking her pager and learning
Apriv. Afterwards, he can read not only the mails in the pager but all of Alice’s mails in the rest of her devices.
However, our SKBE can solve this problem because in our mechanism each device has a decrypt trapdoor for
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its own keyword (e.g., “urgent” for pager) and decrypts the corresponding mails using this trapdoor instead of
Apriv. Therefore, even if an adversary succeeds in learning the decrypt trapdoor of the pager, he cannot decrypt
and read mails in other devices.

Delegation of decryption keys. Consider the delegation of decryption keys. Suppose Alice has several as-
sistants, each responsible for a different task (e.g., one is “purchasing”, another is “human-resources”, etc.).
Suppose Alice wants to delegate decryption keys to her assistants, so they can decrypt mails corresponding
to their work, and she uses the method in an IBE scheme [5]. Alice plays the role of the PKG, and only she
knows her master-key. Bob encrypts a mail to Alice using the subject line as an IBE encryption key (e.g., if the
subject is “application for secretary”, he uses “human-resources” as the key). Alice can decrypt the mail using
her master-key. She gives one private key to each of her assistants corresponding to the assistant’s responsibility.
Each assistant can then decrypt messages whose subject line falls within his responsibilities, but cannot decrypt
messages intended for other assistants. This method has two drawbacks. The first one is that Bob should know
the tasks of Alice’s assistants, the standard for choosing an appropriate IBE encryption key. The other is that
the subject line must be known to receivers so that they can use an appropriate decryption key. Although these
may be small flaws, sometimes there are situations when all information must be hidden. Moreover, if Bob does
not need to know the assistants’ tasks to encrypt a mail, it will be more comfortable for him to send a mail
to Alice. Our SKBE can solve these flaws by giving Alice’s assistants each appropriate search trapdoor and
decrypt trapdoor according to their work. Bob encrypts a mail using the encryption algorithm of SKBE and
sends it to Alice. In this process, he need not know the tasks of Alice’s assistants, nor expose any information
of the message. The assistant gives the mail server the search trapdoor, and the server can search for mails
falling within the assistant’s responsibility using this trapdoor. Then the server sends the resulting mails to
the assistant, who can decrypt the mails with the decrypt trapdoor he received from Alice. Also, our scheme
can be efficiently used when the structure of the assistants is hierarchial since the scheme supports a secure
conjunctive keyword search.

Secure audit log. A similar mechanism to our scheme was suggested for building a secure audit log by Waters
et al. in [26]. The scheme allows a designated trusted party, named the audit escrow agent, to construct
trapdoors which allow (less trusted) investigators in possession of such trapdoors to search for and decrypt
log entries containing a given keyword. The escrow agent can distribute a trapdoor to an investigator if he
deems it appropriate. The investigator sends the trapdoor to a database server (storing encrypted log entries)
and requests entries containing the keyword. The server finds and decrypts the entries, and sends them to the
investigator. Here, observe that the database server must be trusted; if not, the above method is not secure
or requires an extra path between the escrow agent and investigators to be secure [26]. This problem could be
resolved by our SKBE because SKBE has a search trapdoor which can be used only to search for the appropriate
encryptions but not decrypt them. In SKBE the escrow agent gives a search trapdoor and a decrypt trapdoor
to an investigator, and the investigator sends only the search trapdoor to the database server. Therefore, the
server does not need to be trusted because he can only search for the entries for the search trapdoor but can
not decrypt them. In addition, we will design our SKBE for supporting a conjunctive keyword search, while
the Waters et al.’ scheme does not.

1.2 Our Contributions

Our main contribution is the proposition of the searchable keyword-based encryption scheme. For some applica-
tions, such as email gateways, decryption key delegation systems and secure audit logs, the scheme guarantees
more secure and efficient functionalities than any other scheme. We formalize SKBE and construct an efficient
and provably secure scheme using bilinear maps. The construction is based on the Bilinear Diffie-Hellman
Inversion (BDHI) assumption [2]. The proposed SKBE scheme is constructed from a PECK scheme in [21] by
using a hybrid encryption technique.

Overview. The rest of this paper is organized as follows. In section 2 we review a bilinear map and some
complexity assumptions to be used to argue security for the construction of SKBE in this paper. We formalize
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SKBE and define its security model in Section 3 and propose an efficient and provably secure construction of
SKBE in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Bilinear Map

Let G1 and G2 be two groups of order p for some large prime p. A bilinear map ê : G1 × G1 → G2 between
these two groups satisfies the following properties:

• Bilinear: We say that a map ê : G1 ×G1 → G2 is bilinear if ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and
all a, b ∈ Z.

• Non-degenerate: The map does not send all pairs in G1 × G1 to the identity in G2. Observe that since
G1,G2 are groups of prime order this implies that if P is a generator of G1 then ê(P, P ) is a generator of
G2.

• Computable: There is an efficient algorithm to compute ê(P,Q) for any P,Q ∈ G1.

We can make the bilinear map using Weil pairing or Tate pairing [5, 6, 15, 18]. In the pairings, the group
G1 is a subgroup of the additive group of points of an elliptic curve. The group G2 is a subgroup of the
multiplicative group of a finite field. Therefore, throughout the paper we view G1 as an additive group and G2

as a multiplicative group.

2.2 Complexity Assumptions

Let G1 be a bilinear group of prime order p and P be its generator. Here, we review the Bilinear Diffie-Hellman
Inversion (BDHI) assumption [2] and the Bilinear Collusion Attack (BCA) assumption [8] on which the security
proof of our proposed scheme is based.

Bilinear Diffie-Hellman Inversion Assumption [2] The q-BDHI problem is defined as follows: given
the (q + 1)-tuple (P, xP, x2P, · · · , xqP ) ∈ (G∗1)q+1 as input, compute ê(P, P )1/x ∈ G∗2. An algorithm A has
advantage ε in solving q-BDHI in G1 if

Pr[A(P, xP, · · · , xqP ) = ê(P, P )1/x] ≥ ε

where the probability is over the random choice of generator P in G∗1, the random choice of x in Z∗p, and the
random bits of A.

Definition 1 We say that the (t, q, ε)-BDHI assumption holds in G1 if no t-time algorithm has advantage at
least ε in solving the q-BDHI problem in G1.

The q-BDHI assumption is used to analyze the security of the proposed SKBE system in next section.

Bilinear Collusion Attack Assumption [8] The q-BCA problem is defined as follows: given the tuple
(P, xP, u1, · · · , uq,

1
x+u1

P, · · · , 1
x+uq

P ) as input, compute ê(P, P )1/x ∈ G∗2. An algorithm A has advantage ε in
solving q-BCA in G1 if

Pr[A(P, xP, u1, · · · , uq,
1

x + u1
P, · · · ,

1
x + uq

P ) = ê(P, P )1/x] ≥ ε

where the probability is over the random choice of generator P in G∗1, the random choices of x, u1, · · · , uq in
Z∗p and the random bits of A, where u1, · · · , uq are different from each other.

Definition 2 We say that the (t, q, ε)-BCA assumption holds in G1 if no t-time algorithm has advantage at
least ε in solving the q-BCA problem in G1.

It is known that the q-BCA assumption is equivalent to the (q + 1)-BDHI assumption [8].
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3 Searchable Keyword-Based Encryption

In this section we define a searchable keyword-based encryption (SKBE). For SKBE to have applications de-
scribed in Section 1.1, we design the mechanism for a public key setting rather than a symmetric key setting. It
also supports a conjunctive keyword search. That is, SKBE is a public key encryption with conjunctive keyword
search and delegation decryption key ability.

We assume a document D as (M, H), where the message M is the content of D and the keywords H is
associated with M . We assume that H consists of m keyword fields. For example, if documents were emails,
we could define four keyword fields, such as “From”, “To”, “Data” and “Subject”. We denote the keywords as
H = (W1, · · · , Wm), where Wi is the keyword of the document D in the i-th keyword field. For simplicity, we
employ the same assumptions as in [17, 21]:

1. H does not have any two keyword fields filled in by the same keyword.
(i.e. H = (W1, · · · ,Wm), where all Wi’s are distinct from each other for 1 ≤ i ≤ m.)

2. Every document has no empty keyword field of its m keyword fields.

The first requirement is satisfied by prefixing the name of keyword field to the keyword (i.e., “Data:Test”
in “Data” field, “Subject:Test” in “Subject” field). The second requirement is by assigning the keyword “THE
NAME OF A FIELD:NULL” to the field that does not have a valid keyword.

To search for keywords conjunctively, a query Q for requesting a trapdoor has the following form: Q =
(I1, I2, · · · , It,Ω1,Ω2, · · · , Ωt), where Ii is the identifier, between 1 and m, of a keyword in the i-th keyword
field and Ωi’s are the keywords to search for. The corresponding search trapdoor TS

Q searches for the document
D whose H becomes {(WI1 = Ω1) ∧ (WI2 = Ω2) ∧ · · · ∧ (WIt = Ωt)}. Given the corresponding decrypt
trapdoor TD

Q , we can retrieve the message M by decrypting the ciphertext of D whose H becomes {(WI1 = Ω1)
∧ (WI2 = Ω2) ∧ · · · ∧ (WIt = Ωt)}. For simple description, we denote {(WI1 = Ω1) ∧ (WI2 = Ω2) ∧ · · · ∧
(WIt = Ωt)} as Q ⊆ H, and we say that H matches Q or that H and Q match.

We call the following defined system the searchable keyword-based encryption (SKBE).

Definition 3 A searchable keyword-based encryption consists of the following polynomial time randomized al-
gorithms:

1. KeyGen(1k): Takes a security parameter, 1k, and generates a public/private key pair Apub/Apriv.

2. Encrypt(Apub, D): For a public key Apub and a document D = (M, H) where M ∈ M, returns a ciphertext
C ∈ C (searchable keyword-based encryption of M based on its keyword fields H), where M is the message
space and C is the ciphertext space.

3. STrapdoor(Apriv, Q): Given a private key Apriv and a query Q, produces a search trapdoor TS
Q.

4. DTrapdoor(Apriv, Q): Given a private key Apriv and a query Q, produces a decrypt trapdoor TD
Q .

5. Test(Apub, C, TS
Q): Given a public key Apub, a ciphertext C = Encrypt(Apub, D) ∈ C, and a search trapdoor

TS
Q = STrapdoor(Apriv, Q), outputs ‘yes’ if {(WI1 = Ω1) ∧ (WI2 = Ω2) ∧ · · · ∧ (WIt = Ωt)} and ‘no’

otherwise.

6. Decrypt(Apub, C, TD
Q ): Given a public key Apub, a ciphertext C = Encrypt(Apub, D) ∈ C, and a decrypt

trapdoor TD
Q = DTrapdoor(Apriv, Q), outputs the message M ∈ M of the ciphertext if {(WI1 = Ω1) ∧

(WI2 = Ω2) ∧ · · · ∧ (WIt = Ωt)} and ⊥ (i.e., invalid) otherwise.

A message M is encrypted with a public key Apub and the ciphertext is dependent on H = (W1,W2, · · · , Wm).
The ciphertext value by itself does not reveal any information about the document. Given a certain search
trapdoor, we can test whether a ciphertext contains certain keywords but get no other information. Given
a certain decrypt trapdoor, we can decrypt only the ciphertexts containing certain keywords but not other
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ciphertexts. These trapdoors can be generated only with Apriv and it is not known for which keywords they
are intended.

We describe SKBE in operation using a secure audit log [26] as a sample application. An escrow agent runs
the KeyGen algorithm to generate her public/private key pair Apub/Apriv. An audit log server generating log
entries uses the public key Apub as input to the Encrypt algorithm to encrypt audit logs. At some point, when an
investigator requests a search/decrypt trapdoor pair TS

Q/TD
Q for keywords Q, if the agent deems it appropriate,

he produces TS
Q/TD

Q by using the STrapdoor/DTrapdoor algorithm and grants them to the investigator. The
investigator gives TS

Q to a database server storing encrypted entries and requests matching entries (sometimes,
TS

Q is given to the database server directly from the escrow agent with information identifying that this is for a
certain investigator). The server uses this given trapdoor TS

Q as input to the Test algorithm to determine which
entry’s H matches Q. Then he gives the results to the investigator. The investigator uses the results and TD

Q

as input to the Decrypt algorithm to get their decryptions.
Observe that for decrypting any ciphertext, even a user owning Apriv needs an appropriate decrypt trapdoor.

Alice in email gateway or decryption key delegation described in Section 1.1 should be allowed to decrypt all
mails sent to her. That is, she has to be able to make an appropriate decrypt trapdoor just given a ciphertext.
This problem could be solved easily by filling a public value Wpub into the last keyword field of every H (i.e., if
H consists of m keywords, H becomes (W1, W2, · · · ,Wm−1,Wpub)). Now, Alice can make a decrypt trapdoor
TD

Q of Q = (I1,Wpub), where I1 is m denoting the m-th keyword field. Alice can make the TD
Q with Apriv, and

then always decrypt any ciphertext using TD
Q . If necessary, we can use the public value Wpub as the one of the

domain parameters of SKBE.

Security definition. We define security for a SKBE system in the sense of chosen ciphertext security [4, 20, 22].
We need to ensure that an Encrypt(Apub, D) must not reveal any information about the document D = (M, H)
unless a suitable trapdoor (i.e. TS

Q or TD
Q , where Q ⊆ H) is available. When an active adversary attacks an

encryption in a SKBE system, the adversary might already possess some search/decrypt trapdoors of Q1, · · · , Qn

of her choice. The system should remain secure under such an attack. Consider an investigator in an audit
log system who received some search/decrypt trapdoor pairs (TS

Qi
, TD

Qi
)’s for 1 ≤ i ≤ n from the agent. She

is allowed to search and decrypt the encrypted log entries matching Qi’s, but it is forbidden to search or
decrypt other entries. Hence the definition of chosen ciphertext security must allow the adversary to obtain the
search/decrypt trapdoor for any Qi of her choice (the restriction is mentioned later). We refer to such queries
as search/decrypt trapdoor queries. In addition, similar to the IND-CCA in a public key encryption system,
we allow the adversary to get access to an oracle for the decryption function. The reason is that although
an investigator cannot obtain the trapdoors which are not allowed to her, she may use decryption functions
of other investigators only for the period of time (e.g., for lunchtime) preceding her being given the challenge
ciphertext (IND-CCA1) or even on ciphertexts chosen after obtaining the challenge ciphertext (IND-CCA2).
Of course, the restriction is that the adversary may not ask for the decryption of the challenge ciphertext itself.
Recall that the decryption algorithm in SKBE requires a decrypt trapdoor as an input parameter in addition
to a ciphertext. Such an additional input of decryption function is required for a proxy delegated a decryption
capability (i.e., decrypt trapdoor) to decrypt only ciphertexts falling within the category intended for by the
decrypt trapdoor. Thus, when an adversary asks for a decryption query, she has to issue a ciphertext Ci and
the desired category Qi. Even under such attack the adversary should not be able to distinguish an encryption
of a document D0 = (M0,H0) from an encryption of a document D1 = (M1,H1) for which she did not obtain
suitable trapdoors. Formally, we define the chosen ciphertext security against an active adversary A using the
following game between a challenger and the adversary.

Setup: The challenger runs the KeyGen(1k) algorithm to generate Apub and Aprive. It gives Apub to the
adversary.

Phase 1: The adversary issues queries q1, · · · , ql where query qi is one of:

- Search trapdoor query 〈Qi〉: The challenger responds by running algorithm STrapdoor to generate
the search trapdoor TS

Qi
corresponding to the query 〈Qi〉. It sends TS

Qi
to the adversary.

- Decrypt trapdoor query 〈Qi〉: The challenger responds by running algorithm DTrapdoor to gen-
erate the decrypt trapdoor TD

Qi
corresponding to the query 〈Qi〉. It sends TD

Qi
to the adversary.
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- Decryption query 〈Qi, Ci〉: The challenger responds by running algorithm DTrapdoor to generate
the decrypt trapdoor TD

Qi
corresponding to Qi. It then runs algorithm Decrypt to decrypt the

ciphertext Ci using the decrypt trapdoor TD
Qi

. It sends the resulting message Mi or ⊥ to the
adversary.

These queries may be asked adaptively, that is, each query qi may depend on the replies to q1, · · · , qi−1.
Challenge: Once the adversary decides that Phase 1 is over it outputs two different documents D0 =

(M0,H0), D1 = (M1, H1) on which it wishes to be challenged. (The messages M0 and M1 must have
equal length and could be the same value.) The restrictions are as follows: First, none of the search
trapdoors asked previously in Phase 1 is distinguishing for D0 and D1.1 Second, none of Qi for the
decrypt trapdoors such that Qi matches H0 or H1 were issued previously in Phase 1. Lastly, neither
decryption queries for 〈Qi ⊆ H0, C0〉 nor 〈Qi ⊆ H1, C1〉 were issued. The challenger picks a random
b ∈ {0, 1} and gives the adversary C = Encrypt(Apub, Db). We refer to C as the challenge ciphertext.

Phase 2: The adversary issues more queries ql+1, · · · , qn where query qi is one of:
- Search trapdoor query 〈Qi〉: Qi such that the corresponding search trapdoor TS

Qi
distinguishing

for D0 and D1 must not be allowed, elsewhere challenger responds as in Phase 1.
- Decrypt trapdoor query 〈Qi〉 where Qi * H0 or H1: Challenger responds as in Phase 1.
- Decryption query 〈Qi, Ci〉 where Ci 6= C: Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′.

We refer to such an adversary A as an IND-SKBE-CCA adversary. We define the adversary A’s advantage
in attacking a SKBE system E as the following function of the security parameter k: AdvE,A(1k) = |Pr[b =
b′]− 1/2|. Throughout the paper we use the term negligible function to refer to a function f : R→ [0, 1] where
f(k) < 1

g(k) for any polynomial g and sufficiently large k.

Definition 4 We say that a SKBE system E is semantically secure against an adaptive chosen ciphertext attack
if for any polynomial time IND-SKBE-CCA adversary A the function AdvE,A(1k) is negligible. As shorthand,
we say that E is IND-SKBE-CCA secure.

We do not consider an adversary who (existentially) forges a trapdoor, because if there is an adversary that
can generate a forged valid trapdoor with non-negligible probability, then he can also win the IND-SKBE-CCA
game with a non-negligible advantage. In other words, IND-SKBE-CCA secure SKBE means that there is no
such adversary.

4 Construction

We give an efficient construction for searchable keyword-based encryption.2 Our scheme is constructed from
Park et al.’s PECK scheme [21], the proposed scheme 2 represented in Section 5 of their paper, using a hybrid
encryption technique used in [14]. They use two groups G1, G2 of prime order p and a bilinear map ê :
G1×G1 → G2 between them. Let P1, P2 be two different generators of G1. In their scheme, if a ciphertext and
its suitable search trapdoor are given then the tester can compute ê(P1, P1)r0 and output ‘yes’, where r0 is a
random element in Z∗p . Our construction is stared from this point. If the session key to encrypt a message is
hidden behind ê(P1, P2)r0 , we can make a decrypt trapdoor easily by replacing P1 with P2 in a search trapdoor
in [21]. Note that it is hard to compute ê(P1, P2)r0 from ê(P1, P1)r0 , so decrypt trapdoor and search trapdoor
can be separated securely.

1A distinguishing search trapdoor for D0 and D1 implies that the test results of the trapdoor with D0 and D1 are different each
other (i.e., Test(Apub, C0, T S

Q) 6= Test(Apub, C1, T S
Q)). Observe that A succeeds trivially if a distinguishing search trapdoor for D0

and D1 is given to her. The security games of previously proposed conjunctive keyword search schemes [17, 21, 7, 23] also do not
allowed such distinguishing search trapdoor queries.

2Chow[9] introduced a method attacking the scheme represented in this paper’s previous version. The attack is not accomplished
as their description, but it is true that the previous scheme has a problem when the decryption query in their attack is issued
because SKBE allows a decryption query for Ci 6= C where C is a challenge ciphertext. We notice that our present work is modified
to solve that problem, and so is secure against the attack by Chow.
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4.1 Description

For our scheme, we need a secure symmetric key encryption scheme (G, E ,D) in FG (Find-Guess) sense [14] and
three hash functions H1 : {0, 1}∗ → {0, 1}log2 p,H2 : {0, 1}∗ → {0, 1}log2 p,H3 : {0, 1}∗ ×K → {0, 1}log2 p, where
K is the key space for a secret key sk of (G, E ,D). H1 and H2 are different from each other.

– KeyGen(1k): The input security parameter 1k determines the size, p, of the groups G1 and G2. The
algorithm chooses random numbers s1, s2, · · · , sm, sm+1, sm+2 ∈ Z∗p and two different generators P1, P2

of G1. It outputs Apub = [P1, P2, Y1 = s1P1, Y2 = s2P1, · · · , Ym = smP1, Ym+1 = sm+1P1, Ym+2 =
sm+2P1, g = ê(P1, P1), h = ê(P1, P2)] and Apriv = [s1, s2, · · · , sm, sm+1, sm+2].

– Encrypt(Apub, D = (M, H)): Produces a session key sk ∈ K by running the algorithm G. The algo-
rithm selects random numbers r1, r2, · · · , rm ∈ Z∗p and computes Bi = riYm+1 for 1 ≤ i ≤ m. Set r0

= H3(M ||B1|| · · · ||Bm, sk), where each Bi is treated as a bit string and || is a concatenation. It en-
crypts message by E = Esk(M) and computes the following values: Ai = r0(Yi + H1(Wi)P1) + riP1

for 1 ≤ i ≤ m, K = r0Ym+2, S = H2(gr0), and R = H2(hr0) ⊕ sk. Output the ciphertext C =
[E, A1, A2, · · · , Am, B1, B2, · · · , Bm,K, S,R] ∈ C.

– STrapdoor(Apriv, Q): For the input Q = (I1, I2, · · · , It, Ω1, Ω2, · · · , Ωt), selects a random u ∈ Z∗p and
makes the search trapdoor TS

Q = [TS
1 , TS

2 , TS
3 , I1, · · · , It] where

TS
1 =

1
sI1 + · · ·+ sIt

+ H1(Ω1) + · · ·+ H1(Ωt) + sm+2u
P1,

TS
2 =

1
sm+1

TS
1 ,

TS
3 = u.

– DTrapdoor(Apriv, Q): For the input Q = (I1, I2, · · · , It, Ω1,Ω2, · · · , Ωt), selects a random v ∈ Z∗p and
makes the decrypt trapdoor TD

Q = [TD
1 , TD

2 , TD
3 , I1, · · · , It] where

TD
1 =

1
sI1 + · · ·+ sIt + H1(Ω1) + · · ·+ H1(Ωt) + sm+2v

P2,

TD
2 =

1
sm+1

TD
1 ,

TD
3 = v.

– Test(Apub, C, TS
Q): Checks the equality,

H2(
ê(AI1 + · · ·+ AIt + TS

3 K,TS
1 )

ê(BI1 + · · ·+ BIt , T
S
2 )

) = S. (1)

If so, outputs ‘yes’; otherwise, outputs ‘no’.

– Decrypt(Apub, C, TD
Q ): Computes h̃r0 = ê(AI1+···+AIt+T D

3 K, T D
1 )

ê(BI1+···+BIt , T D
2 )

, s̃k = H2(h̃r0) ⊕ R, M̃ = D
s̃k

(E) and

r̃0 = H3(M̃ ||B1|| · · · ||Bm, s̃k). Checks the equality,

hr̃0 = h̃r0 . (2)

If so, outputs M̃ ; otherwise, outputs ⊥.

The equality of Test(1) holds if (WIi = Ωi) for 1 ≤ i ≤ t. We can check as follows:

H2(
ê(AI1 + · · ·+ AIt + TS

3 K,TS
1 )

ê(BI1 + · · ·+ BIt , T
S
2 )

)

= H2(
ê(AI1 + · · ·+ AIt + TS

3 K, TS
1 )

ê(rI1P1 + · · ·+ rItP1, TS
1 )

)

= H2(ê(r0(YI1 + H1(WI1)P1) + · · ·+ r0(YIt + H1(WIt)P1) + TS
3 K,TS

1 )
= H2(ê(r0P1, P1)) = S.
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The equality of Decrypt(2) holds if {(WIi
= Ωi) for 1 ≤ i ≤ t. We can check as follows:

h̃r0 =
ê(AI1 + · · ·+ AIt + TD

3 K, TD
1 )

ê(BI1 + · · ·+ BIt
, TD

2 )

=
ê(AI1 + · · ·+ AIt

+ TD
3 K, TD

1 )
ê(rI1P1 + · · ·+ rIt

P1, TD
1 )

= ê(r0(YI1 + H1(WI1)P1) + · · ·+ r0(YIt + H1(WIt)P1) + TD
3 K,TD

1 )
= ê(r0P1, P2) = hr0 .

, s̃k = H2(h̃r0) ⊕ R = H2(hr0) ⊕ R = sk , and then M̃ = D
s̃k

(E) = Dsk(Esk(M)) = M and r̃0 =
H3(M̃ ||B1|| · · · ||Bm, s̃k) = H3(M ||B1|| · · · ||Bm, sk) = r0. Therefore, hr̃0 = hr0 = h̃r0 .

4.2 Security analysis

We prove that this scheme is IND-SKBE-CCA’ secure under the q-BDHI assumption in a random oracle model.
IND-SKBE-CCA’ differs from IND-SKBE-CCA in that there is no common keyword sharing between D0 and
D1 (i.e., ∀j, H0,j 6= H1,j) in the challenging stage, or an adversary cannot ask a trapdoor query for the sharing
keywords. We conjecture that if a SKBE scheme is IND-SKBE-CCA secure, the scheme is IND-SKBE-CCA’
secure also because in common sense it is more difficult to distinguish something from the one similar to it than
the one with a distinct difference; it remains as open problem to prove this conjecture in a formal language.

Theorem 1 Suppose the (qT + 1)-BDHI assumption holds in G1. Then the above scheme is IND-SKBE-CCA’
secure.

Proof. Suppose A has advantage ε in attacking the proposed scheme under the IND-SKBE-CCA’ game. Suppose
A makes STrapdoor or DTrapdoor queries at most qT times, H1 queries at most qH1 times, and H3 queries at
most qH3 times. We build an adversary B that solves the (qT + 1)-BDHI problem in G1 with probability at
least ε′ = ε/(e(qH1)

mqH3), where e is the base of the natural logarithm. The running time of adversary B is
approximately the same as A’s.

On input (P, xP, x2P, · · · , xqT +1P ) adversary B’s goal is to compute the value ê(P, P )1/x ∈ G2 by simulating
the challenger and interacts with the algorithm A as the following IND-SKBE-CCA’ security game.

Setup: Adversary B works as follows:

1. B selects δ1, δ2, · · · , δqT
∈ Z∗p at random and let f(z) =

∏qT

j=1(z + δj).

2. Expand the terms of f to get f(z) =
∑qT

i=0 ciz
i. Compute U = f(x)P =

∑qT

i=0 cix
iP and V = xU =∑qT +1

i=1 ci−1x
iP .

3. B computes 1
x+δi

U = (f(x)/(x + δi))P =
∑qT−1

j=0 djx
jP for 1 ≤ i ≤ qT , and stores the pairs

(δi,
1

x+δi
U)’s.

4. B selects random numbers α0, α1, α2, · · · , αm, β1, β2, · · · , βm ∈ Zp and computes Yi = αiV − βiU
for 1 ≤ i ≤ m, Ym+1 = αm+1U , Ym+2 = αm+2V , g = ê(U,U) and h = ê(U,α0U). B gives A
the public key Apub = [U,α0U, Y1, · · · , Ym, Ym+1, Ym+2, g, h]. The corresponding private key Apriv

becomes [s1 = α1x − β1, · · · , sm = αmx − βm, sm+1 = αm+1, sm+2 = αm+2x] where the s1, · · · , sm

and sm+2 are unknown to B.

H1 queries: At any time adversary A can query the random oracle H1. To respond to H1 queries, B maintains
a list of tuples < Wi, hi, ci > called the H1-list. The list is initially empty. When A queries the random
oracle H1 at a point Wi ∈ {0, 1}∗, B responds as follows:

1. If the query Wi already appears in the H1-list in a tuple < Wi, hi, ci >, then B responds with
H1(Wi) = hi.

2. Otherwise, B generates a random ci ∈ {1, · · · , qH1} so that Pr[ci ≤ m] = m/qH1 .
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3. If ci > m, B selects a random hi ∈ {0, 1}log2 p. Otherwise, B makes hi ← βci
.

4. B adds the tuple < Wi, hi, ci > to the H1-list and responds with H1(Wi) = hi.

H2 queries: Similarly, at any time adversary A can query the random oracle H2. To respond to H2 queries,
B maintains a list of tuples < gi, γi > called the H2-list. The list is initially empty. When A queries the
random oracle H2 at a point gi ∈ {0, 1}∗, B responds as follows:

1. If the query gi already appears in the H2-list in a tuple < gi, γi >, then B responds with H2(gi) = γi.

2. Otherwise, B selects a random γi ∈ {0, 1}log2 p and adds the tuple < gi, γi > to the H2-list. B
responds with H2(gi) = γi.

H3 queries: Similarly, at any time adversary A can query the random oracle H3. To respond to H3 queries,
B maintains a list of tuples < Mi||Bi,1||Bi,2|| · · · ||Bi,m, ski, r0i, Xi, Yi > called the H3-list. The list is
initially empty. When A queries the random oracle H3 at a point Mi||Bi,1||Bi,2|| · · · ||Bi,m ∈ {0, 1}∗ and
ski ∈ K, B responds as follows:

1. If the query Mi||Bi,1||Bi,2|| · · · ||Bi,m, ski already appears in the H3-list in a tuple < Mi||Bi,1|| · · · ||Bi,m

, ski, r0i, Xi, Yi >, then B responds with H3(Mi||Bi,1|| · · · ||Bi,m, ski) = r0i.

2. Otherwise, B selects a random r0i ∈ Z∗p and computes Xi = H2(gr0i) and Yi = H2(hr0i) ⊕ ski. B
adds the tuple < Mi||Bi,1|| · · · ||Bi,m, ski, r0i, Xi, Yi > to the H3-list and gives r0i to A.

Phase 1: A issues queries qi where query qi is one of:

STrapdoor queries: When A issues a query for the search trapdoor corresponding to the query Qi =
(Ii,1, Ii,2, . . . , Ii,ti , Ωi,1,Ωi,2, . . . , Ωi,ti), B responds as follows:

1. B executes the above simulation for responding to H1 queries to obtain hi,j ’s such that hi,j =
H1(Ωi,j). Let < Ωi,j , hi,j , ci,j > be the corresponding tuple on the H1-list. If ∀j, ci,j = Ii,j , then
B fails.

2. Otherwise, B defines Ji = sIi,1 + · · · + sIi,ti
+ hi,1 + · · · + hi,ti = Γix + ∆i and computes Ji.

Observe that since Ji is equivalent to (αIi,1 +· · ·+αIi,ti
)x−(βIi,1 + · · ·+βIi,ti

)+(hi,1+· · ·+hi,ti),
B can obtain the values Γi, ∆i from αIi,j ’s, βIi,j ’s, hi,j ’s which are known to B.

3. B picks i-th pair (δi,
1

x+δi
U) in a storage. B finds ui, vi satisfying the equality of 1

x+δi
U =

(vi/(Γix + ∆i + αm+2xui))U . The ui and vi become (∆i/δi−Γi)/αm+2 and ∆i/δi, respectively.
B computes Fi = 1/vi

x+δi
U . Observe that the value Fi = 1

vi(x+δi)
U = 1

Γix+∆i+αm+2xui
U is same as

(1/(si,1 + · · ·+ si,ti + hi,1 + · · ·+ hi,ti + sm+2ui)U . Thus, (Fi,
1

αm+1
Fi, ui) is the correct search

trapdoor TS
Qi

corresponding to the query Qi. B responds to A with [Fi,
1

αm+1
Fi, ui, Ii,1, · · · , Ii,ti

].

DTrapdoor queries: When A issues a query for the decrypt trapdoor corresponding to the query Qi =
(Ii,1, Ii,2, . . . , Ii,ti , Ωi,1,Ωi,2, . . . , Ωi,ti), B responds as follows:

1. B executes the above simulation for responding to H1 queries to obtain hi,j ’s such that hi,j =
H1(Ωi,j). Let < Ωi,j , hi,j , ci,j > be the corresponding tuple on the H1-list. If ∀j, ci,j = Ii,j , then
B fails.

2. Otherwise, B defines Ji = sIi,1 + · · · + sIi,ti
+ hi,1 + · · · + hi,ti = Γix + ∆i and computes Ji.

Observe that since Ji is equivalent to (αIi,1 +· · ·+αIi,ti
)x−(βIi,1 + · · ·+βIi,ti

)+(hi,1+· · ·+hi,ti),
B can obtain the values Γi, ∆i from αIi,j ’s, βIi,j ’s, hi,j ’s which are known to B.

3. B picks i-th pair (δi,
1

x+δi
U) in a storage. B finds ui, vi satisfying the equality of 1

x+δi
U =

(vi/(Γix + ∆i + αm+2xui))U . The ui and vi become (∆i/δi−Γi)/αm+2 and ∆i/δi, respectively.
B computes Gi = α0/vi

x+δi
U . Observe that the value Gi = α0

vi(x+δi)
U = α0

Γix+∆i+αm+2xui
U is same as

(α0/(si,1 + · · ·+ si,ti +hi,1 + · · ·+hi,ti + sm+2ui)U . Thus, (Gi,
1

αm+1
Gi, ui) is the correct decrypt

trapdoor TD
Qi

corresponding to the query Qi. B responds to A with [Gi,
1

αm+1
Gi, ui, Ii,1, · · · , Ii,ti ].

Decrypt queries: Let 〈Qi, Ci〉 be a decryption query issued by algorithm A. Let Ci = [Ei, Ai,1, · · · , Ai,m

, Bi,1, · · · , Bi,m,Ki, Si, Ri]. B responds to this query as follows:

10



1. Run the above algorithm for responding to H1 queries to obtain hi,j ’s such that hi,j = H1(Ωi,j).
Let < Ωi,j , hi,j , ci,j > be the corresponding tuple on the H1-list.

2. Suppose [hi,1, · · · , hi,ti
] 6= [βIi,1 , · · · , βIi,ti

]. In this case run the algorithm for responding to
decrypt trapdoor queries to obtain the decrypt trapdoor TD

Qi
for Qi. Then use the decrypt

trapdoor to respond to the decryption query.
3. Suppose [hi,1, · · · , hi,ti

] = [βIi,1 , · · · , βIi,ti
]. Recall that for valid encryption, r0i must have been

asked to the H3 oracle.3 Thus, B can respond to the decryption query using its H3-list as follows;
B searches for a tuple such that Xi = Si and Yi = Ri on H3-list.
(a) If there are no such tuples, B sends ⊥ to A.
(b) Else if B finds out such a tuple, B compares Bi,1, Bi,2, · · · , Bi,m in Ci with the ones in the

tuple on H3-list respectively and if there is at least different one, then B sends ⊥ to A.
(c) Otherwise (no different one between the Bi,j ’s in Ci and the ones in the tuple), B checks

whether Ei = Eski
(Mi). If so, B sends Mi to A, otherwise ⊥.

Challenge: Once algorithm A decides that Phase 1 is over it outputs two documents, D0 = (M0, H0), D1 =
(M1,H1) that she wishes to be challenged on and sends them to B. B responds as follows:

1. B executes the above algorithm for responding to H1 queries to obtain hi,j ’s such that hi,j = H1(Wi,j)
for i ∈ {0, 1}, 1 ≤ j ≤ m. Let < Wi,j , hi,j , ci,j > be the corresponding tuples on the H1-list. Unless
∀j, ci,j = j for at least one of i’s, then B fails.

2. B picks a random i ∈ {0, 1} such that ∀j, ci,j = j.

3. B selects random ρ, r1, ..., rm ∈ Z∗p, sk ∈ K and computes E = Esk(Mi), Aj = ρ
x (βjU +(αjx−βj)U)+

rjU = ραjU + rjU and Bj = rjYm+1 for 1 ≤ j ≤ m and K = ραm+2U . B selects random S, R ∈
{0, 1}log2 p and responds to A with the challenge C = [E, A1, · · · , Am, B1, · · · , Bm, K,S, R].

Phase 2: B responds to queries qi of A in the same way it did in Phase 1. The restriction is that no STrapdoor
query distinguishes D0 from D1 and that no DTrapdoor query decrypts D0 or D1 and that no Decrypt
query for the challenge C is answered.

Output: Finally, A outputs b′ ∈ {0, 1} indicating whether the challenge is the ciphertext of D0 or D1.

Guess: B selects random r in the H3-list’s roi’s and computes hr and (hr)1/(α0ρ). B outputs this value as
ê(P, P )1/x.

If algorithm B does not abort during the simulation then algorithm A’s view is identical to its view in the
real attack. In other words, B succeeds in simulating the challenger in the IND-SKBE-CCA’ game with the
adversary A. Now, we calculte the probability ε′ that B wins the game. Adversary B can fail in responding to
STrapdoor/DTrapdoor trapdoor queries and in preparing the challenge. We define three following events:

E1 : B does not fail as the result of any A’s STrapdoor or DTrapdoor trapdoor queries.

E2 : B does not fail preparing the challenge.

E3 : B selects the right value as ê(P, P )1/x in the H3-list during the Guess step.

We can assume that qT is sufficiently large, thus, (1− 1/qT )qT = 1/e. Pr[E1] =
∏qT

i=1(1−1/(qH1)
ti) ≥ ∏qT

i=1(1−
1/(qT )ti) ≥ ∏qT

i=1(1 − 1/qT ) = 1/e, Pr[E2] ≥ 1/(qH1)
m and Pr[E3] ≥ 1/qH3 . Thus, B breaks (qT + 1)-BDHI

problem with the advantage ε′ > ε× 1
e × ( 1

qH1
)m × 1

qH3
= ε

e(qH1 )mqH3
. ¤

3If A asks a randomly chosen ciphertext Ci then B responds with ⊥ indicating “invalid”. This is because a randomly chosen
ciphertext will not have the valid form with a significantly higher probability. Such a simulation of the Decrypt oracle is possible
because there exists a λ(k)-knowledge extractor where 1−λ(k) is negligible. Note that the proposed scheme is a hybrid encryption
and the decrypt algorithm checks the validity of the decryption value. In such a hybrid encryption scheme, an adversary can not
create a valid ciphertext C without “knowing” its underlying plaintext M [4, 14].
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5 Concluding Remarks and Open Problem

We suggested a new mechanism called searchable keyword-based encryption (SKBE) that allowed the secure
delegation of search capabilities and decryption capabilities. Our mechanism is the most suitable for some
applications, such as email gateways, decryption key delegation systems, and secure audit logs. We defined
SKBE and provided its well-formulated security model. We constructed an efficient SKBE scheme that would
be IND-SKBE-CCA’ secure in the random oracle model. The security is proved under the bilinear Diffie-
Hellman inversion (BDHI) assumption. We notice that our proposed SKBE scheme (in Section 4) is not
statistically consistent but computationally consistent [1]. However, we believe that our scheme can be modified
to meet statistical consistency in a similar way that Abdalla et al. used in their paper to make the Boneh et
al.’s PEKS scheme statistically consistent. We remain to deal with this problem related to consistency and
construct a SKBE scheme without random oracle as future work. Also, it will be a meaningful job to find a
relation between SKBE and other cryptographic primitives such as identity-based encryption or hierarchical
identity-based encryption.
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