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Abstract

This paper shows the first practical semantically secure public-key
encryption scheme such that its one-wayness is equivalent to general
factoring in the standard model (in the sense of IND-CPA).

Next our proof technique is applied to Rabin-Parlier encryption
scheme and a variant of RSA-Paillier encryption scheme to prove their
exactly tight one-wayness.

We finally present the first KEM which is secure in the sense of
IND-CCA under general factoring assumption in the random oracle
model.
Keywords: one-wayness, factoring, semantic security, tight reduction,
RSA-Paillier, Rabin-Paillier.

1 Introduction

1.1 Background

One-wayness and semantic-security are two important security notions of
public-key encryption schemes. A public-key encryption scheme is called

∗A preliminary version of this paper [21] was presented at ASIACRYPT 2003 and
appeared in Lecture Notes in Computer Science 2894, pp. 19–36, Springer-Verlag, 2003.
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one-way if it is hard to find the plaintext m from a ciphertext c. It is called
semantically-secure if c leaks no information on m in the computational
sense. Especially, it is desirable to construct a semantically-secure encryp-
tion scheme under a reasonable assumption such that its one-wayness is
equivalent to factoring n = pq.

Paillier showed an encryption scheme [28] such that it is one-way under
Computational Composite Residuosity (CCR) assumption. It is semanti-
cally secure against chosen message attack (in the sense of IND-CPA) under
Decisional Composite Residuosity (DCR) assumption.

RSA-Paillier encryption scheme given by [6] is one-way if RSA is one-way
[7] 1 . It is secure in the sense of IND-CPA under RSA-Paillier assumption
[6] 2 .

Rabin-Paillier encryption scheme is one-way if factoring Blum integers
is hard [15], where n(= pq) is called a Blum integer if p = q = 3 mod 4. It
is secure in the sense of IND-CPA under Rabin-Paillier assumption [15] 3 .

However, no semantically-secure encryption scheme is known whose one-
wayness is equivalent to factoring general n = pq in the standard model.

On the other hand, we say that the security proof (reduction) is tight if
the hardness of breaking the one-wayness and that of breaking the under-
lying computational problem are close. Otherwise, we say that the security
proof is loose. Tight security proof is important because we would like to
know how long n should be to protect the one-wayness. However, the pre-
vious security proofs on the one-wayness of RSA-Paillier and Rabin-Paillier
encryption schemes are loose.

Remarks

• There are several provably secure constructions in the random oracle
model, for example, OAEP+ [32], RSA-OAEP [14] and SAEP [3].
However, while the random oracle model is a useful heuristic, it does
not rule out all possible attacks. Indeed, there exist cryptosystems
that are secure in the random oracle model, but for which no secure
implementation exists [4, 25, 1, 24, 5].

• The one-wayness of Okamoto-Uchiyama scheme [27] is equivalent to
factoring n = p2q, but not n = pq.

1 This one-wayness problem was first raised by [30] and finally proved by [7] using LLL
algorithm of lattice theory.

2 In [6], the authors called the assumption Decisional Small e-Residues assumption.
3 In [15], the authors called the assumption Decisional Small 2e-Residues assumption.
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• Cramer and Shoup showed the first practical encryption scheme which
is semantically-secure against chosen ciphertext attacks (equivalently,
secure in the sense of IND-CCA) under the decision Diffie-Hellman
assumption [10]. They later showed a more general framework to con-
struct IND-CCA schemes [11].

1.2 Our Contribution

This paper shows the first semantically-secure public-key encryption scheme
such that its one-wayness is equivalent to general factoring of n = pq in the
standard model (in the sense of IND-CPA). The proposed scheme is based
on the encryption scheme given by Kurosawa et al. [18, 19]. For comparison,
see the following table on the one-wayness of Paillier, RSA-Paillier, Rabin-
Paillier and the proposed scheme.

One-wayness
Paillier CCR assumption

RSA-Paillier RSA assumption
Rabin-Paillier factoring Blum integers

Proposed factoring general integers

Also, our security proof is tight while the previous security proofs for
RSA-Paillier and Rabin-Paillier encryption schemes are loose. This is be-
cause our proof is very simple and totally elemental except using Copper-
smith algorithm [8]. The main differences from the previous proofs are:

1. Our proof technique makes only one decryption-oracle query while the
previous proofs for RSA-Paillier/Rabin-Paillier encryption schemes
make two oracle queries [7, 15].

2. No LLL algorithm is required, which was essentially used in the pre-
vious proofs for RSA-Paillier/Rabin-Paillier schemes [7, 15].

On semantic-security, the proposed scheme is secure in the sense of IND-
CPA under a natural extension of RSA-Paillier assumption. In fact, we show
a close relationship between our assumption and RSA-Paillier assumption.

We next apply our proof technique to Rabin-Paillier encryption scheme
and a variant of RSA-Paillier encryption scheme to prove their exactly tight
one-wayness (in the standard model):
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• In Rabin-Paillier encryption scheme, suppose that the one-way is bro-
ken with probability ε. Then according to the previous security proof
[15], Blum integers can be factored with probability O(ε2). On the
other hand, we give a factoring algorithm with success probability
just ε. This means that our security proof is exactly tight.

[15] Our proof
Factoring Blum integers O(ε2) ε

• Suppose that the one-wayness of RSA-Paillier is broken with proba-
bility ε. Then RSA is not one-way with probability O(ε2) according
to [7, 22]. Hence the security proof is loose.

We now introduce RSA-Paillier+ encryption scheme. Suppose that
the one-way is broken with probability ε. We then show that RSA
with e = 3 is not one-way with probability ε.

RSA-Paillier [7, 22] RSA-Paillier+
Breaking RSA O(ε2) ε

Finally, we consider hybrid encryption schemes. A hybrid encryption
scheme uses public-key encryption techniques to derive a shared key that is
then used to encrypt the actual messages using symmetric-key techniques.
For hybrid encryption schemes, Cramer and Shoup formalized the notion of
a key encapsulation mechanism (KEM), and an appropriate notion of se-
curity against adaptive chosen ciphertext attack [12]. A KEM works just
like a public key encryption scheme, except that the encryption algorithm
takes no input other than the recipient’s public key. The encryption algo-
rithm can only be used to generate and encrypt a key for a symmetric-key
encryption scheme. (One can always use a public-key encryption scheme for
this purpose. However, one can construct a KEM in other ways as well.) A
secure KEM, combined with an appropriately secure symmetric-key encryp-
tion scheme, yields a hybrid encryption scheme which is secure in the sense
of IND-CCA [12].

We can construct a CCA-secure KEM under the Blum integer factoring
assumption from Rabin-SAEP [3] in the random oracle model. However, no
KEM is known which is secure in the sense of IND-CCA under the general
factoring assumption even in the random oracle model. For this problem,
we show the first such KEM based on Kurosawa et al.’s encryption scheme
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[18, 19] in the random oracle model. We should appreciate moving to the
random oracle model when one is trying to achieve a goal that is difficult or
impossible to achieve in the standard model.

1.3 Organization

This paper is organized as follows: In Section 2, we describe security notions
discussed in this paper. In Section 3, the proposed scheme is presented. In
Section 4, we prove that the tight one-wayness of the proposed scheme.
In Section 5, we discuss its semantic security. In Section 6, the exactly
tight security proof is given for the one-wayness of Rabin-Paillier encryption
scheme. In Section 7, RSA-Paillier+ is introduced and the exactly tight one-
wayness is proved. In Section 7.5, we discuss on the relationship between
our results in the standard model and the previous results in the random
oracle model. In Section 8, we present a KEM which is secure in the sense
of IND-CCA under the general factoring assumption in the random oracle
model. Section 9 includes some final comments.

2 Security of Encryption Schemes

PPT will denote a ”probabilistic polynomial time”. We say that a function
µ(l) is negligible if µ(l) approaches to zero faster than the inverse of any
polynomial in l, where l is the security parameter.
|m| denotes the bit length of m if m is a string or a number. If A(·, ·, · · ·)

is a probabilistic algorithm, then x R← A(x1, x2, · · ·) denotes the experiment
of running A on input x1, x2, · · · and letting x be the outcome. If S is a set,
x

R← S denotes the experiment of choosing x ∈ S at random.

2.1 Encryption Scheme

A public-key encryption scheme PE = (K, E ,D) consists of three algorithms.

• The key generation algorithm K outputs (pk, sk) on input 1l, where
pk is a public key, sk is the secret key and l is a security parameter.
We write (pk, sk) R← K(1�).

The public key defines the space of plaintexts (messages) M and the
space of ciphertexts C.
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• The encryption algorithm E outputs a ciphertext c on input the public
key pk and a plaintext (message) m; we write c R← Epk(m).

• The decryption algorithm D outputs m on input the secret key sk and
a ciphertext c (or a reserved symbol ⊥ to denote that it has been given
an invalid ciphertext c to decrypt); we write m/⊥ ← Dsk(c).

We require that Dsk(Epk(m)) = m for each plaintext m. K and E are
PPT algorithms, and D is a polynomial time algorithm.

2.2 One-Wayness

The one-wayness problem is as follows: given a public key pk and a ci-
phertext c, find the plaintext m such that c R← Epk(m). Formally, for an
adversary A, consider an experiment as follows.

(pk, sk) R← K, c R← Epk(m), m̃ R← A(pk, c).

where m is chosen uniformly at random from the message space defined by
pk. Let

Advow
PE(A) = Pr(m̃ = m).

For any t > 0, define

Advow
PE(t) = max

A
Advow

PE(A),

where the maximum is over all A who run in time t.

Definition 2.1 We say that PE is (t, ε)-one-way if Advow
PE(t) < ε. We also

say that PE is one-way if Advow
PE(A) is negligible for any PPT adversary A

on the security parameter �.

2.3 Semantic Security

Roughly speaking, we say that a public-key encryption scheme PE = (K, E ,D)
is semantically secure against chosen plaintext attacks (SS-CPA) if it is hard
to find any (partial) information on m from c [17]. This notion is equivalent
to indistinguishability [17], which is denoted by IND-CPA.

Now IND-CPA is formalized as follows [2, 16]. Consider the model of an
adversary B = (B1, B2) as follows.
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1. In the “find” stage, a challenger runs B1 on input a public key pk. B1

then outputs (m0,m1, state), where m0 and m1 are two equal length
plaintexts and state is some state information.

2. In the “guess” stage, the challenger chooses a random bit b and com-
putes a challenge ciphertext c R← Epk(mb). He then runs B2 on input
(c, state). B2 finally outputs a bit b̃.

We say that PE is secure in the sense of IND-CPA if |Pr(̃b = b) − 1/2|
is negligible. Formally, let

(pk, sk) R← K, (m0,m1, state)
R← B1(pk), c

R← Epk(mb), b̃
R← B2(c, state).

Definition 2.2 We say that PE is secure in the sense of indistinguishability
against chosen-plaintext attack (IND-CPA) if

Advind
PE (B)

�
= |Pr(b̃ = b)− 1/2|

is negligible for any PPT adversary B on the security parameter �.

If an adversary B = (B1, B2) is allowed to access the decryption oracle
Dsk(·), we denote it by BD = (BD

1 , B
D
2 ). If Advind

PE (BD) is negligible for any
PPT adversary BD, we say that PE is secure in the sense of indistinguisha-
bility against adaptive chosen-ciphertext attack (IND-CCA).

2.4 Factoring Assumptions

The general factoring problem is to factor n = pq, where p and q are two
primes such that |p| = |q|, where |a| stands for the bit-length of integer a.

For an factoring algorithm B, consider the following experiment. Gen-
erate two primes p and q such that |p| = |q| randomly. Run B on input
n = pq. We say that B wins if B can output p or q.

Definition 2.3 We say that the general factoring problem is (t, ε)-hard if
Pr(B wins) < ε for any B who runs in time t.

We also say that the general factoring problem is hard if Pr(B wins) is
negligible for any PPT algorithm B on the security parameter �, where
� = |p| = |q|. The general factoring assumption claims that this problem is
hard.
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A Blum integer is n(= pq) such that p = q = 3 mod 4, where p and q
are prime numbers with |p| = |q|. For an factoring algorithm B, consider
the following experiment. Generate a Blum integer n = pq randomly. Run
B on input n = pq. We say that B wins if B can output p or q.

Definition 2.4 We say that the Blum-factoring problem is (t, ε)-hard if
Pr(B wins) < ε for any B who runs in time t.

We also say that the Blum-factoring problem is hard if Pr(B wins) is neg-
ligible for any PPT algorithm B. The Blum-factoring assumption claims
that this problem is hard.

3 New Encryption Scheme

In this section, we propose a semantically secure (IND-CPA) encryption
scheme such that its one-wayness is as hard as the general factoring problem.
The proposed scheme is based on the encryption scheme given by Kurosawa
et al. [18]. (Also, see [19].)

3.1 Kurosawa et al.’s Encryption Scheme

Kurosawa et al.’s showed an encryption scheme as follows [18].

(Secret key) Two prime numbers p and q such that |p| = |q|.
(Public key) n(= pq) and α such that

(α/p) = (α/q) = −1, (1)

where (α/p) denotes Legendre’s symbol.

(Plaintext) m ∈ Z∗
n.

(Ciphertext) c = (E, s, t) such that

E = m+
α

m
mod n (2)

s =
{

0 if (m/n) = 1;
1 if (m/n) = −1,

t =
{

0 if (α/m mod n) > m;
1 if (α/m mod n) < m.
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(Decryption) From eq.(2), it holds that

m2 −Em+ α = 0 mod n. (3)

The above equation has four roots. We can, however, decrypt m
uniquely from (s, t) due to eq.(1). (See Appendix B.)

In [18], it is proved that this encryption scheme is one-way under the
general factoring assumption. However, it is not secure in the sense of IND-
CPA.

3.2 Proposed Encryption Scheme

We now show an encryption scheme which is secure in the sense of IND-CPA
and its one-wayness is equivalent to the general factoring problem.

(Secret key) Two prime numbers p and q such that |p| = |q|.
(Public key) n(= pq), e, α, where e is a prime such that |n|/2 < |e| < |n|

and α ∈ Z∗
n satisfies

(α/p) = (α/q) = −1. (4)

(Plaintext) m ∈ Zn.

(Ciphertext)

c =
(
r +

α

r

)e

+mn mod n2, (5)

where r ∈ Z∗
n is a random element such that (r/n) = 1 and (α/r mod

n) > r.

(Decryption) Compute E = cd mod n, where ed = 1 mod lcm(p−1, q−1).
Then it is easy to see that

E = r +
α

r
mod n.

Note that (E, 0, 0) is the ciphertext of r of Kurosawa et al.’s encryp-
tion scheme. Therefore we can find r by decrypting (E, 0, 0) with the
decryption algorithm. Finally, by substituting r into eq.(5), we can
obtain m.

Remark 1 In RSA-Paillier encryption scheme,

c = re(1 +mn) mod n2,

where m ∈ Zn and r ∈ Zn [6].
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3.3 How to Speed-Up Encryption

We need to compute 1/r mod n2 in our encryption algorithm. In this sub-
section, we show that it can be computed faster than computing it directly.

Lemma 3.1 Let D0 = 1/r mod n. Then

1/r = D0(2−D0r) mod n2.

Proof . We try to find D1 such that r−1 = D0 + nD1 mod n2. It is clear
that r(D0 +nD1) = 1 mod n2. On the other hand, rD0 = 1+kn for some k
because rD0 = 1 mod n. Therefore, it holds that 1+kn+nrD1 = 1 mod n2.
From this, we obtain that D1 = −kr−1 = −kD0 mod n. Therefore

r−1 = D0 + n(−kD0) = D0 +D0(1− rD0) = 2D0 −D2
0r mod n2.

�

Lemma 3.1 shows that we have only to compute 1/r mod n (not over
mod n2) and two multiplications over Zn2 to obtain r−1 mod n2. This method
is faster than the direct computation. Consequently, a ciphertext c is com-
puted as follows:

D0 = r−1 mod n,
c = (r + αD0(2−D0r))e +mn mod n2.

4 One-Wayness of the Proposed Scheme

In this section, we prove that the one-wayness of the proposed scheme is
equivalent to general factoring. Our security proof is tight in the sense that
there is almost no gap between the one-wayness and the hardness of the
general factoring problem.

4.1 Idea

Our proof is very simple and totally elemental except using Coppersmith
algorithm [8]. In particular, our reduction algorithm makes only one query
to the decryption oracle, and no LLL algorithm is required. They are the
main differences from the previous proofs for RSA-Paillier/Rabin-Paillier
encryption schemes [7, 15] which are loose.
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To illustrate the underlying idea, consider a variant of our scheme such
that e = 1 in eq.(5). That is,

c = r +
α

r
+mn mod n2.

We show that this scheme is one-way under the general factoring assumption.
Suppose that it is not one-way. Then we can factor n as follows. For
simplicity, we assume that α satisfies eq.(4).

1. We first choose a random r̄ ∈ Z∗
n such that (r̄/n) = −1 and compute

x = r̄ +
α

r̄
mod n2.

2. Next for a randomly chosen m̃ ∈ Z∗
n, let c = x+ m̃n mod n2.

3. Since this scheme is not one-way, we can find m from c such that

c = r +
α

r
+mn mod n2,

where (r/n) = 1.

4. Note that the above r is a solution of the following quadratic equation.

r2 − (c−mn)r + α = 0 mod n2 (6)

We can find such r by applying Coppersmith’s algorithm [8] to eq.(6)
because r < n.

5. Now we have obtained r and r̄ such that

r̄ +
α

r̄
= x = c = r +

α

r
mod n.

6. It is shown that we can factor n by computing gcd(r − r̄, n).

Suppose that the one-wayness is broken with probability ε. Then we can
factor n with the same probability because we make only one decryption
query at step 3. Hence our proof is tight.

In what follows, it will be shown that the same approach can be applied
for 1 < e < n.

Remark Unfortunately, the above scheme is not IND-CPA because we can
distinguish the ciphertexts for m = m0 from those for m = m1. Find r by
solving eq.(6) by assuming that m = m0. By recomputing c from (r,m0),
we can check if m = m0 or not. To avoid this problem, r+ α/r is raised by
e in eq.(5).
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4.2 Proof of One-Wayness

We say that

1. r ∈ Z∗
n is principal if (r/n) = 1 and (α/r mod n) > r.

2. r̄ ∈ Z∗
n is conjugate if (r̄/n) = −1.

Note that in terms of the parameters of Kurosawa et al’s encryption scheme,
r ∈ Z∗

n is principal if (s, t) = (0, 0) and r̄ ∈ Z∗
n is conjugate if s = 1.

Lemma 4.1 For any conjugate r̄, there exists a unique principal r such that

E
�
= r̄ +

α

r̄
= r +

α

r
mod n. (7)

Further, gcd(r − r̄, n) = p or q.

Proof . In Kurosawa et al’s encryption scheme, E has four roots correspond-
ing to (s, t) = (0, 0), (0, 1), (1, 0), (1, 1) as shown in Appendix B. Hence, the
former part of this Lemma holds.

Further (r/n) = 1 and (r̄/n) = −1. Therefore, we can see that gcd(r −
r̄, n) = p or q from Appendix B. �

Lemma 4.2 Suppose that there exists an algorithm M0 which on input
(n, e, α) and u = (r + α/r)e mod n with principal r, outputs

w = (r + α/r)e mod n2

with probability ε in time t. Then there exists an algorithm M1 which can
factor n with probability ε/2 in time t+O((log n)3).

Proof . On input n, M1 first chooses a prime e such that |n|/2 < |e| < |n|.
M1 also chooses α ∈ Z∗

n such that (α/n) = 1 randomly. It is easy to see
that α satisfies eq.(4) with probability 1/2.

M1 next chooses a conjugate r̄ ∈ Z∗
n randomly and computes u = (r̄ +

α/r̄)e mod n . From Lemma 4.1, we can see that u = (r + α/r)e mod n for
some principal r ∈ QRn.

M1 next runs M0 on input (n, e, α, u). M0 then outputs w = (r +
α/r)e mod n2 with probability ε in time t.

Now since
(x

�
=)r̄ +

α

r̄
= r +

α

r
mod n,

12



it holds that
r +

α

r
= x+ yn mod n2 (8)

for some y ∈ Zn. We then obtain that

w = (r + α/r)e = (x+ yn)e = xe + eynxe−1 mod n2.

It is easy to see that

eyxe−1 =
w − xe

n
mod n.

Therefore y is obtained as

y =
w − xe

n
(exe−1)−1 mod n.

Substitute y into eq.(8) and let v = x+ yn mod n2. Then we obtain that

r2 − vr + α = 0 mod n2.

We can solve this quadratic equation in time O((log n)3) by using the Cop-
persmith’s algorithm [8] because of 0 < r < n. Then we can factor n from
(r̄, r) by using Lemma 4.1. The success probability of M1 is ε/2. �

Theorem 4.1 The proposed encryption scheme is (t, ε) one-way if the gen-
eral factoring problem is (t′, ε/2)-hard, where t′ = t+ poly(log n).

Proof . Suppose that there exists a PPT algorithm A that breaks the one-
wayness of the proposed scheme with probability ε in time t. We will show
an algorithm M0 which computes w = (r+α/r)e mod n2 from (n, e, α) and
u = (r + α/r)e mod n with probability ε in time t.

On input (n, e, α, u), M0 chooses a plaintext m ∈ Zn randomly, and
computes a ciphertext

c = u+mn mod n2.

M0 next runs A on input c and the public key (n, e, α, u). A then outputs a
plaintext m with probability ε in time t. Then we have

w = c−mn = (r + α/r)e mod n2.

Consequently, this Theorem holds from Lemma 4.2.
�
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The total factoring algorithm for the proposed encryption scheme is sum-
marized as follows:

OW Reciprocal Paillier

Input: n.
Output: p, q factoring of n
1. choose a prime e such that |n|/2 < |e| < |n|.

Also choose α ∈ Z∗
n such that (α/n) = 1 randomly.

2.choose a random r̄ ∈ Z∗
n such that (r̄/n) = −1.

3. compute x = r̄ + α/r̄ mod n2.
4. choose a random (fake) plaintext m̄ ∈ Z∗

n.
5. compute a ciphertext c = xe + m̄n mod n2.
6. obtain a valid plaintext m = A((n, e, α), c), where A is the one-wayness adversary.
7. compute w = c−mn = (r + α/r)e mod n2.
8. compute u = (w − xe)/n.
9. compute y = u(ex(e−1))−1 mod n.
10. compute v = (r̄ + α/r̄) + ny mod n.
11. solve r2 − vr + α = 0 mod n2 using Coppersmith’s algorithm [8].
12. return gcd(r̄ − r, n).

4.3 Hensel Lifting and Large Message Space

Catalano et al. proved that Hensel-RSA problem is as hard as breaking RSA
for any lifting index l [7, 22]. The Hensel-RSA problem with lifting index l
is to compute re mod nl from (n, e, re mod n) and l.

In this subsection, we define Hensel-Reciprocal problem and show that it
is as hard as the general factoring problem for any lifting index l. This result
implies that we can enlarge the message space of the proposed encryption
scheme so that m ∈ Znl−1 .

The Hensel-Reciprocal problem is to compute

Y =
(
r +

α

r

)e

mod nl

from (n, e, α, y) and l, where

y =
(
r +

α

r

)e

mod n

and r ∈ Z∗
n is principal.
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Theorem 4.2 The Hensel-Reciprocal problem is as hard as the general fac-
toring problem for any lifting index l ≥ 2.

Proof . It is easy to see that we can solve the Hensel-Reciprocal problem if
we can factor n. We will prove the converse.

Suppose that there exists a PPT algorithm which can solve the Hensel-
Reciprocal problem with probability ε for some l ≥ 2. That is, the PPT
algorithm can compute

Y =
(
r +

α

r

)e

mod nl

from (n, e, α, y). Then we obtain that

Y ′ =
(
r +

α

r

)e

mod n2.

Now Lemma 4.2, we can factor n with probability ε/2 in polynomial time.
�

5 Semantic Security of the Proposed Scheme

In this section, we prove that the proposed encryption scheme is secure in
the sense of IND-CPA under a natural extension of RSA-Paillier assump-
tion which we call Reciprocal-Paillier assumption. We also show a close
relationship between our assumption and RSA-Paillier assumption.

Definition 5.1 Let S be a countable index set. An ensemble indexed by S
is a sequence of finite sets indexed by S. Namely, any X = {Xw}w∈S , where
each Xw is a finite set, is an ensemble indexed by S.

Definition 5.2 Two ensembles, X = {Xw}w∈S and Y = {Yw}w∈S , are
indistinguishable if for any PPT algorithm (called a distinguisher) D, every
positive polynomial p(·), and all sufficiently long w ∈ S,

|Pr[D(x,w) = 1 | x R← Xw]− Pr[D(x,w) = 1 | x R← Yw]| < 1
p(|w|)
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5.1 Semantic security

It is known that RSA-Paillier encryption scheme is secure in the sense of
IND-CPA if SMALLRSAP (n, e) and LARGERSAP (n, e) are indistinguish-
able [6], where (n, e) is a public key of RSA and

SMALLRSAP (n, e)
�
= {x | x = re mod n2, r ∈ Z∗

n}
LARGERSAP (n, e)

�
= {x | x = re mod n2, r ∈ Z∗

n2}

We call this indistinguishability RSA-Paillier assumption.
We next extend it to Reciprocal-Paillier assumption which claims

that SMALLRSAK(n, e, α) and LARGERSAK(n, e, α) are indistinguishable,
where (n, e, α) is a public key of the proposed encryption scheme and

SMALLRSAK(n, e, α) �= {x | x =
(
r +

α

r

)e

mod n2, r ∈ Z∗
n is principal}

LARGERSAK(n, e, α) �= {x | x =
(
r +

α

r

)e

mod n2, r ∈ Z∗
n2}.

Then we prove the following theorem.

Theorem 5.1 The proposed encryption scheme is secure in the sense of
IND-CPA if and only if Reciprocal-Paillier assumption holds.

A proof will be given in the next subsection.

5.2 Proof of Theorem 5.1

Let (n, e, α) be a public key of the proposed encryption scheme. Define

ZERO(n, e, α)
�
= {

(
r +

α

r

)e

mod n2 | r ∈ Z∗
n is principal}

ALL(n, e, α)
�
= {

(
r +

α

r

)e

+mn mod n2 | m ∈ Zn and r ∈ Z∗
n is principal}.

Note that ZERO(n, e, α) is the set of ciphertexts form = 0 andALL(n, e, α)
is the set of ciphertexts for all m ∈ Zn.

We first show that the proposed encryption scheme is secure in the sense
of IND-CPA if and only if ZERO(n, e, α) and ALL(n, e, α) are indistin-
guishable. We next prove that ALL(n, e, α) = LARGERSAK(n, e, α). Then
this implies Theorem 5.1 because ZERO(n, e, α) = SMALLRSAK(n, e, α).
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Lemma 5.1 The proposed encryption scheme is secure in the sense of IND-
CPA if and only if ZERO(n, e, α) and ALL(n, e, α) are indistinguishable.

Proof . Suppose that there exists an adversary B = (B1, B2) which breaks
our encryption scheme in the sense of IND-CPA. We will show a distinguisher
D for ZERO(n, e, α) and ALL(n, e, α).

Let (x, (n, e, α)) be the input to D. Then D works as follows.

1. In the find stage, D runs B1 on input pk = (n, e, α). B1 then outputs
(m0,m1, state).

2. In the guess stage, D chooses a bit b randomly and computes

c = x+mbn mod n2.

D then runs B2 on input (cb, state). B2 finally outputs a bit b̃.

3. D outputs ”1” if b̃ = b. Otherwise, D outputs ”0”.

We consider two experiments.

(Experiment 0) x is randomly chosen from ZERO(n, e, α). In this case,
c is a valid ciphertext of mb. Therefore,

p0
�
= Pr(D = 1) = Pr(b̃ = b) = 1/2 + ε or 1/2− ε

for non-negligible ε from our assumption

(Experiment 1) x is randomly chosen from ALL(n, e, α). In this case, c
is uniformly distributed over ALL(n, e, α). Therefore, it is clear that

p1 = Pr(D = 1) = Pr(b̃ = b) = 1/2.

Hence |p0−p1| = ε. This means that D can distinguish between the two
sets, ZERO(n, e, α) and ALL(n, e, α).

We next prove the converse. Suppose that there exists a distinguisher
D for ZERO(n, e, α) and ALL(n, e, α). We will show an adversary B =
(B1, B2) which breaks our encryption scheme in the sense of IND-CPA. B
works as follows.

1. In the find stage, on input pk = (n, e, α), B1 outputs m0 = 0 and
m1 ∈ Zn, where m1 is randomly chosen from Zn.
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2. In the guess stage, B2 is given a challenge ciphertext cb, where b
is a random bit and cb is a ciphertext of mb. B2 runs D on input
(n, e, α, cb). Finally, B2 outputs whatever D does.

Note that c0 is randomly chosen from ZERO(n, e, α) and c1 is randomly
chosen from ALL(n, e, α). Therefore, D can distinguish them from our
assumption. Hence B2 can distinguish them. �

Lemma 5.2 LARGERSAK(n, e, α) ⊆ ALL(n, e, α).

Proof . Suppose that (n, e, α, c) ∈ LARGERSAK(n, e, α). Then

c =
(
r +

α

r

)e

mod n2

for some r ∈ Z∗
n2 . Decrypt c by our decryption algorithm. Then we can find

m ∈ Zn and a principal r′ ∈ Z∗
n such that

c =
(
r′ +

α

r′

)e

+mn mod n2.

Therefore (n, e, α, c) ∈ ALL(n, e, α). This means that

LARGERSAK(n, e, α) ⊆ ALL(n, e, α).

�

Lemma 5.3 ALL(n, e, α) ⊆ LARGERSAK(n, e, α).

Proof . Suppose that (n, e, α, c) ∈ ALL(n, e, α). Then

c =
(
r +

α

r

)e

+mn mod n2 (9)

for some m ∈ Zn and a principal r ∈ Z∗
n. We want to find u ∈ Z∗

n2 such that
c = (u+ α

u )e mod n2. For this purpose, we will compute up = u mod p2 and
uq = u mod q2.

Consider d such that ed = 1 mod φ(n)n. Then from eq.(9), it is easy to
see that

cd = r +
α

r
mod n.

In the following we want to find u ∈ Zn2 s.t. cd = u + a/u mod n2. At
first we compute u modulo the primes p2 and q2.
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From equation
cd = r +

α

r
mod p,

we have
r2 − cdr + α = 0 mod p. (10)

We claim that
2r − cd �= 0 mod p. (11)

On the contrary, suppose that 2r − cd = 0 mod p. Then we obtain that

cd = 2r = r +
α

r
mod p.

Therefore,
r =

α

r
mod p.

Then r2 = α mod p. Hence
(
α

p

)
=

(
r2

p

)
= 1.

However, this contradicts to eq.(4).
From eq.(10) and eq.(11), we see that there exists yp ∈ Zn such that

(r2 − cdr + α) + pyp(2r − cd) = 0 mod p2.

For this yp, define

up = r + pyp mod p2.

Then it is easy to see that

u2
p − cdup + α = 0 mod p2.

Similarly, there exists yq such that

(r2 − cdr + α) + qyq(2r − cd) = 0 mod q2.

For this yq, define

uq = r + qyq mod q2.

Then
u2

q − cduq + α = 0 mod p2.
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Now consider u such that

u = up mod p2, u = uq mod q2.

Then u satisfies
u2 − cdu+ α = 0 mod n2.

Hence
cd = u+

α

u
mod n2.

c =
(
u+

α

u

)e

mod n2

This means that c ∈ LARGERSAK(n, e, α). Hence

ALL(n, e, α) ⊆ LARGERSAK(n, e, α).

�

Now we are ready to prove Theorem 5.1. From Lemma 5.2 and Lemma
5.3, we obtain that

ALL(n, e, α) = LARGERSAK(n, e, α).

Further,
ZERO(n, e, α) = SMALLRSAK(n, e, α)

from their definitions. Therefore, from Lemma 5.1, we see that the proposed
encryption scheme is IND-CPA if and only if Reciprocal-Paillier assumption
holds.

5.3 Relationship with RSA-Paillier Assumption

We investigate the relationship between RSA-Paillier assumption and Reciprocal-
Paillier assumption. We first slightly modify RSA-Paillier assumption as
follows.

Modified RSA-Paillier assumption:
SMALL′

RSAP (n, e, α) and LARGE′
RSAP (n, e, α) are indistinguishable, where

(n, e, α) is a public key of the proposed encryption scheme and

SMALL′
RSAP (n, e, α) �= {x | x = re mod n2, r ∈ Z∗

n}
LARGE′

RSAP (n, e, α) �= {x | x = re mod n2, r ∈ Z∗
n2}.
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The difference from RSA-Paillier assumption is that α is added to (n, e).
However, the two assumptions are different because it is hard to find α
satisfying eq.(4) from (n, e).

SMALL assumption:
SMALLRSAK(n, e, α) and SMALL′

RSAP (n, e, α) are indistinguishable.

Then we have the relationship among assumptions as follows.

SMALLRSAK

(a)≈ SMALL′
RSAP

(b)≈ LARGE′
RSAP

(c)≈ LARGERSAK , (12)

where ≈ means indistinguishable. (a) is claimed by SMALL assumption.
(b) is claimed by modified RSA-Paillier assumption.

If we assume (c) as well, then we see that the proposed encryption scheme
is secure in the sense of IND-CPA from corollary of Theorem 5.1. We now
prove that even if we do not assume (c), the proposed encryption scheme is
secure in the sense of IND-CPA.

Corollary 5.1 The proposed encryption scheme is secure in the sense of
IND-CPA under modified RSA-Paillier assumption and SMALL assump-
tion.

Proof . From corollary of Theorem 5.1 and eq.(12), we have only to prove
that LARGERSAK(n, e, α) and LARGE′

RSAP (n, e, α) are indistinguishable.
Suppose that there exists a distinguisherA for LARGERSAK(n, e, α) and

LARGE′
RSAP (n, e, α). We construct a distinguisherD for SMALLRSAK(n, e, α)

and SMALL′
RSAP (n, e, α).

Let X = (n, e, α, c) be the input to D. Then D behaves as follows.

1. D chooses a random m ∈ Zn, and computes c′ = c+mn mod n2.

2. Then D runs A on input Y = (n, e, α, c′).

3. D outputs whatever A does.

It is easy to see that

• If X is randomly chosen from SMALLRSAK(n, e, α), then Y is uni-
formly distributed over LARGERSAK(n, e, α).

• If X is randomly chosen from SMALL′
RSAP (n, e, α), then Y is uni-

formly distributed over LARGE′
RSAP (n, e, α).
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Therefore, D can distinguish between SMALLRSAK(n, e, α) and
SMALL′

RSAP (n, e, α) if A can distinguish between LARGERSAK(n, e, α)
and LARGE′

RSAP (n, e, α). However, this is against our assumption of this
corollary. �

6 Exact One-Wayness of Rabin-Paillier Scheme

In this section, we show a tight security proof for the one-wyaness of Rabin-
Paillier encryption scheme.

Suppose that the one-way is broken with probability ε. Then accoring
to the previous proof [15], Blum integers can be factored with probabil-
ity O(ε2). On the other hand, we give a factoring algorithm with success
probability just ε.

[15] Our proof
Facoring Blum integers O(ε2) ε

6.1 Rabin-Paillier Encryption Scheme

Let
QRn

�
= {r2 mod n2 | r ∈ Z∗

n}.
We say that r̄ ∈ Z∗

n is conjugate if (r̄/n) = −1, where (m/n) denotes Jacobi’s
symbol.

Then Rabin-Paillier encryption scheme is described as follows.

(Secret key) Two prime numbers p and q such that |p| = |q| and p = q =
3 mod 4.

(Public key) n(= pq), e, where e is a prime such that |n|/2 < |e| < |n|.
(Plaintext) m ∈ Zn.

(Ciphertext)
c = r2e +mn mod n2, (13)

where r ∈ QRn is randomly chosen.

(Decryption) Let E = cd mod n, where ed = 1 mod lcm(p − 1, q − 1).
Then it is easy to see that

E = r2 mod n.
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We can find r such that r ∈ QRn uniquely because p = q = 3 mod 4.
Finally, by substituting r into eq.(13), we can obtain m.

In [15]. the authors showed that Rabin-Paillier encryption scheme is
secure in the sense of IND-CPA if (n, e, E(n, e; 0)) and (n, e,Qn2) are indis-
tinguishable, where

E(n, e; 0)
�
= {r2e mod n2 | r ∈ QRn}.

We call this indistinguishability Rabin-Paillier assumption.

Remark 2 1. In [15], the condition on e is that gcd(e, λ(n)) = 1, where
λ is Carmichael’s function. However, for this condition, we cannot
prove that the claimed one-wayness because we cannot choose such e
for a given n.

2. In Appendix A, we also point out a flaw on their claim for the semantic
security of Rabin-Paillier cryptosystem.

6.2 How to Prove Tight One-Wayness

We illustrate the underlying idea of our tight security proof. Consider a
variant of Rabin-Paillier encryption scheme such that e = 1. That is,

c = r2 +mn mod n2.

Suppose that it is not one-way. Then we can factor n as follows.

1. We first choose a conjugate r̄ randomly and compute x = r̄2 mod n2.

2. Next for a randomly chosen m̃ ∈ Z∗
n, let c = x+ m̃n mod n2.

3. Since this scheme is not one-way, we can find m from c such that

c = r2 +mn mod n2,

where r ∈ QRn.

4. Note that r is a solution of the following quadratic equation.

r2 = c−mn mod n2.

We can find such r by computing a square root of (c − mn mod n2)
without modulus because r < n.
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Scheme Factoring Probability
Galindo et al. [15] ε2

Our Proposed Proof ε

Table 1: Factoring probability using OW-oracle with probability ε

5. Now we have obtained r and r̄ such that

r̄2 = x = c = r2 mod n2.

6. It is easy to see that we can factor n by computing gcd(r − r̄, n).

Suppose that the one-wayness is broken with probability ε. Then we can
factor n with the same probability because we make only one decryption
query at step 3. Hence our proof is tight.

In what follows, it will be shown that the same approach can be applied
for 1 < e < n.

6.3 Proof of Tight One-Wayness

Lemma 6.1 Let n be a Blum integer. For any conjugate r̄, there exists a
unique r ∈ QRn such that

r2 = r̄2 mod n. (14)

Further, gcd(r − r̄, n) = p or q.

Proof . Note that (−1/p) = −1 and (−1/q) = −1 for a Blum integer n = pq.
A conjugate r̄ ∈ Z∗

n satisfies (r̄/n) = −1, namely (I) : (r̄/p) = 1∧(r̄/q) = −1
or (II) : (r̄/p) = −1 ∧ (r̄/q) = 1. In the case of (I), define r = r̄ mod p and
r = −r̄ mod q, then the statement of the lemma is obtained. Similarly in
the case of (II) we assign r = −r̄ mod p and r = r̄ mod q.

Lemma 6.2 Let n be a Blum integer. Suppose that there exists an algo-
rithm M0 which on input (n, e) and v = r2e mod n with r ∈ QRn, outputs
w = r2e mod n2 with probability ε in time t. Then there exists an algorithm
M1 which can factor n with probability ε in time t+O((log n)3).
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Proof . On input n, M1 first chooses a prime e such that |n|/2 < |e| < |n|.
It also chooses a conjugate r̄ ∈ Z∗

n randomly and computes v = r̄2e mod n.
From Lemma 6.1, we can see that v = r2e mod n for some r ∈ QRn.

M1 next runs M0 on input (n, e, v). M0 then outputs w = r2e mod n2

with probability ε in time t.
Now since r2 = r̄2 mod n, r2 is written as

r2 = r̄2 + yn (15)

for some −n < y < n. By letting x = r̄2, we obtain that

w = r2e = (x+ yn)e = xe + eynxe−1 mod n2. (16)

It is easy to see that

eyxe−1 =

(
w − xe mod n2

n

)
mod n.

Therefore

y = (exe−1)−1

(
w − xe mod n2

n

)
mod n.

Let

A = (exe−1)−1

(
w − xe mod n2

n

)
mod n.

Then y is obtained as
y = A or A− n (17)

because −n < y < n. Substitute eq.(17) into eq.(15). Then we can obtain
r > 0 by computing a square root of r̄2 + yn because r2 < n2. Finally we
can factor n by using (r, r̄) from Lemma 6.1. This completes the proof.

�

Theorem 6.1 Rabin-Paillier encryption scheme is (t, ε)-one-way if Blum
factoring problem is (t′, ε)-hard, where t′ = t+O((log n)3).

Proof . Suppose that there exists a PPT algorithm A which breaks the one-
wayness of Rabin-Paillier encryption scheme with probability ε in time t.
We will show an algorithm M0 which computes w = r2e mod n2 from (n, e)
and v = r2e mod n with probability ε in time t+O((log n)3).
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On input (n, e, v), M0 chooses a plaintext m ∈ Zn randomly, and com-
putes a ciphertext

c = v +mn mod n2.

M0 next runs A on input (n, e, c). A then outputs a plaintext m with
probability ε in time t. Then we have

w = c−mn = r2e.

Consequently, this Theorem holds from Lemma 6.2.
�

The total algorithm of A which breaks the one-wayness of Rabin-Paillier
scheme is summarized as follows.

Exact OW Rabin Paillier

Input: n.
Output: p, q factoring of n
0. chooses a prime e such that |n|/2 < |e| < |n| randomly.
1. choose a random r̄ ∈ Z∗

n such that (r̄/n) = −1.
2. compute x = r̄2 mod n2.
3. choose a random (fake) plaintext m̄ ∈ Z∗

n.
4. compute a ciphertext c = xe + m̄n mod n2.
5. obtain a valid plaintext m = A(n, e, c)
6. compute w = c−mn = r2e mod n2.
7. compute u = (w − xe)/n.
8. compute y = u(ex(e−1))−1 mod n.
9. compute v = r̄2 + ny.
10. Find r > 0 such that r2 = v in Z.
11. return gcd(r̄ − r, n).

7 RSA-Paillier+

In this section, we introduce RSA-Paillier+, a variant of RSA-Pailier en-
cryption scheme, and prove its exactly tight one-wayness by extending our
proof technique.

Suppose that the one-wayness of RSA-Paillier encryption scheme is bro-
ken with probability ε. Then according to [7, 22], RSA is not one-way with
probability ε′ = O(ε2). On the other hand, suppose that the one-wayness of
RSA-Pailier+ is broken with probability ε. Then we show that RSA with
e = 3 is not one-way with probability ε.
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RSA-Paillier [7, 22] RSA-Paillier+
Breaking RSA O(ε2) ε

7.1 RSA-Paillier+

RSA-Paillier+ encryption scheme is described as follows.

Key generation: Generate two prime numbers p and q such that |p| = |q|
and 3 � |p − 1, 3 � |q − 1. Choose a prime s such that |n|/2 < |s| < |n|.
Let n = pq and e = 3s. Compute d such that

ed = 1 mod lcm(p− 1, q − 1).

The public-key is (n, e) and the secret-key is d.

Encryption: To encrypt a message m ∈ Zn2, choose r ∈ Zn randomly and
compute

c = re +mn mod n3. (18)

The ciphertext is c.

Decryption: To decrypt c, first compute r by r = cd mod n. Next by
substituting r into eq.(18), we can obtain m.

The message space is Zn2 and the space of ciphertexts is Zn3 . Hence the
bandwidth is 2/3, where the bandwidth is the message bit-length divided
by the ciphertext bit-length. Note that the bandwidth of RSA-Paillier en-
cryption scheme is 1/2.

It is easy to see that RSA-Paillier+ encryption scheme is secure in the
sense of IND-CPA if Zn3 and {x | x = re mod n3, r ∈ Zn} are indistinguish-
able.

7.2 How to Prove Tight One-Wayness

We illustrate the underlying idea of our reduction. Consider a variant of
RSA-Paillier+ such that e = 3. That is,

c = r3 +mn mod n3.

Suppose that it is not one-way. Then we can find r such that x = r3 mod n
from (n, e = 3, x) as follows.
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1. For a randomly chosen m̃ ∈ Zn2 , let c = x+ m̃n mod n3.

2. Since this scheme is not one-way, we can find m from c such that

c = r3 +mn mod n3,

where r ∈ Zn.

3. Note that r is a solution of the following equation.

r3 = c−mn mod n3.

We can find such r by computing a cubic root of (c − mn mod n3)
without modulus because r < n.

4. Now we have obtained r such that

x = c = r3 mod n.

Suppose that the one-wayness is broken with probability ε. Then we can
break RSA of e = 3 with the same probability because we make only one
decryption query at step 2. Hence our proof is tight.

In what follows, it will be shown that the same approach can be applied
for e = 3s.

7.3 Proof of One-Wayness

We denote RSA encryption scheme with a public-key (n, e) by RSA(n, e),
and RSA-Paillier+ encryption scheme with a public-key (n, e) by RSA-
Paillier+(n, e). We then prove the tight equivalence between the one-wayness
of RSA-Paillier+(n, e) and the one-wayness of RSA(n, 3).

Theorem 7.1 RSA-Paillier+(n, e) is (t, ε) one-way if RSA(n, 3) is (t′, ε)
one-way, where t′ = t+O((log n)3).

Proof . Suppose that there exists a PPT algorithm A which breaks the one-
wayness of RSA-Paillier+(n, e) with probability ε in time t. We will show an
algorithm M0 which breaks the one-wayness of RSA(n, 3) with probability
ε in time t+O((log n)3).

Let (n, 3, y) be the input to M0, where M0 wants to find x ∈ Zn such
that y = x3 mod n.
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M0 first chooses a prime s such that |n|/2 < |s| < |n| randomly, and
computes e = 3s. It next chooses a fake plaintext m′ ∈ Zn2 randomly, and
computes a ciphertext

c = ys +m′n mod n3. (19)

M0 then runs A on input (n, e, c). A outputs a plaintext m ∈ Zn2 with
probability ε in time t. Then we have

c = re +mn mod n3 (20)

for some r ∈ Zn. From eq.(19) and eq.(20), we obtain that

c = ys +m′n = x3s +m′n = r3s +mn mod n3.

It is now easy to see that x3s = r3s mod n. Hence x = r because x, r ∈ Zn

and gcd(3s, p− 1) = gcd(3s, q − 1) = 1. Therefore,

x3s = xe = re = c−mn mod n3. (21)

On the other hand, x3 is written as

x3 = y + t0n+ t1n
2 (22)

for some t0, t1 ∈ Zn because x3 < n3. First we show that we can compute
t0. From eq.(22), it holds that

x3s = (y + t0n+ t1n
2)s mod n2

= ys + sys−1(t0n+ t1n
2) mod n2

= ys + sys−1t0n mod n2

Therefore, it is easy to see that

x3s − ys mod n2

n
= sys−1t0 mod n.

Hence we can obtain t0 as

t0 =

(
x3s − ys mod n2

n

)
/sys−1 mod n

=

(
c−mn− ys mod n2

n

)
/sys−1 mod n,
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where we used eq.(21).
Similarly, we can compute t1 as follows. From eq.(22), it holds that

x3s = (y + t0n+ t1n
2)s mod n3

= (y + t0n)s + s(y + t0n)s−1t1n
2 mod n3.

Therefore, it is easy to see that

x3s − (y + t0n)s mod n3

n2
= s(y + t0n)s−1t1 = sys−1t1 mod n.

Hence we can obtain t1 as

t1 =

(
x3s − (y + t0n)s mod n3

n2

)
/sys−1 mod n

=

(
c−mn− (y + t0n)s mod n3

n2

)
/sys−1 mod n,

where we used eq.(21).
Finally, substitute the above t0 and t1 into eq.(22). Then we can find x.

This means that M0 can break the one-wayness of RSA(n, 3) with probabil-
ity ε in time t′ = t+O((log n)3).

�

7.4 Generalization

We can generalize RSA-Paillier+ so that the message space is Znk and the
modulus is nk+1 for k ≥ 2. The key generation algorithm and the decryption
algorithm are the same as in RSA-Paillier+. The encryption algorithm is
described as follows.

Encryption: To encrypt a message m ∈ Znk , choose r ∈ Zn randomly and
compute

c = re +mn mod nk+1.

The ciphertext is c.

We call this scheme the generalized RSA-Paillier+ encryption scheme. It
improves the bandwidth even more, and IND-CPA security holds under the
assumption that distinguishing {x | x = re mod nk+1, r ∈ Zn} from Znk+1

is hard. Further, we can prove the one-wayness similarly to Theorem 7.1.

30



Corollary 7.1 The generalized RSA-Paillier+(n, e) is (t, ε) one-way if RSA(n, 3)
is (t′, ε) one-way, where t′ = t+O((log n)3).

The proof is almost the same as that of Theorem 7.1.

7.5 Discussion

In the random oracle model, the following encryption schemes are proved to
be secure in the sense of IND-CCA.

1. Rabin-SAEP under Blum integer factoring assumption [3].

2. RSA-OAEP with e = 3 under RSA assumption [32].

3. RSA-OAEP with general e under RSA assumption [14].

The security proof of RSA-OAEP with general e uses LLL Algorithm,
and its security reduction is not as tight as those of Rabin-SAEP and RSA-
OAEP with e = 3 using the Coppersmith algorithm.

Now there is an interesting correspondence between the one-wayness of
some variants of RSA-Paillier encryption schemes in the standard model and
the above results in the random oracle model:

• Our result on Rabin-Paillier encryption scheme corresponds to Rabin-
SAEP because both schemes are tightly reduced to factoring Blum
integers.

• Our result on RSA-Paillier+ corresponds to RSA-OAEP with e = 3
because both schemes are tightly reduced to RSA with e = 3.

• RSA-Paillier corresponds to RSA-OAEP with general e because both
schemes are loosely reduced to RSA with general e.

8 CCA-Secure KEM under General Factoring

In this section, we present the first CCA-secure KEM under the general
factoring assumption in the random oracle model.
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8.1 Definition of KEM [12, Sec.7.1]

It is known that by combining a KEM and a one-time symmetric encryption
scheme which are both secure in the sense of IND-CCA, we can obtain a
hybrid encryption scheme which is secure in the sense of IND-CCA. A key
encapsulation mechanism KEM consists of the following algorithms.

• A key generation algorithm KEM.Gen that on input 1l outputs a pub-
lic/secret key pair (pk, sk).

• An encryption algorithm KEM.Enc that on input 1l and a public key
pk, outputs a pair (K,ψ), where K is a key and ψ is a ciphertext.

A key K is a bit string of length KEM.Len(l), where KEM.Len(l) is
another parameter of KEM.

• A decryption algorithm KEM.Dec that on input 1l, a secret key sk,
a string (in particular a ciphertext) ψ, outputs either a key K or the
special symbol reject.

KEM.Gen and KEM.Enc are PPT algorithms and KEM.Dec is a deterministic
polynomial time algorithm.

In the chosen ciphertext attack (IND-CCA) game, we imagine a PPT
adversary A that runs in two stages. In the find stage, A takes a public key
pk and queries an encryption oracle. The encryption oracle computes:

(K∗, ψ∗) R← KEM.Enc(1l);K+ R← {0, 1}k ; b R← {0, 1};

if b = 0 then K† ← K∗ else K† ← K+ (23)

where k = KEM.Len(l), and responds with the pair (K†, ψ∗). In the guess
stage, given (K†, ψ∗), the adversary A outputs a bit b̃ and halts.

The adversary A is also given access to a decryption oracle. For each
decryption oracle query, the adversary A submits a ciphertext ψ, and the
decryption oracle responds with KEM.Dec(1l, sk, ψ), where A cannot query
the challenge ciphertext ψ∗ itself in the guess stage.

Definition 8.1 We say that KEM is secure in the sense of IND-CCA if
|Pr(b̃ = b)− 1/2| is negligible in the above game for any PPT adversary A.

In particular, we define the IND-CCA advantage of A as follows.

Advcca
KEM(A) = |Pr(b̃ = b)− 1/2|. (24)

32



In the random oracle model, define Advcca
KEM(t, qd, qh) = maxA Advcca

SKE(A),
where the maximum is taken over all A which runs in time t, makes at most
qd queries to the decryption oracle and makes at most qh queries to the
random oracle H.

Definition 8.2 We say that KEM is (t, qd, qh, ε)-secure if

Advcca
KEM(t, qd, qh) < ε.

8.2 Proposed KEM

Let H be a random hash function.

(Secret key) Two prime numbers p and q such that |p| = |q|.
(Public key) n(= pq) and α ∈ Z∗

n such that

(α/p) = (α/q) = −1. (25)

(Remark) We say that r ∈ Z∗
n is principal if (r/n) = 1 and (α/r mod n) >

r. Otherwise, we say that r is non-principal.

(Encryption) Choose a principal r randomly. Compute

ψ = r +
α

r
mod n (26)

K = H(r).

Output (K,ψ).

(Decryption) For a given ψ, first compute a principal r which satisfies
eq.(26) Then compute K = H(r).

8.3 Security

We now prove that the proposed KEM is secure in the sense of IND-CCA
if the general factoring problem is hard.

Lemma 8.1 [12, Lemma 6.2] Let S1, S2 and F be events defined on some
probability space. Suppose that the event S1∧¬F occurs if and only if S2∧¬F
occurs. Then

|Pr(S1)− Pr(S2)| ≤ Pr(F ).
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Theorem 8.1 The proposed KEM is (t, qd, qh, ε)-secure if the general fac-
toring problem is (t′, ε′)-hard, where

ε ≤ 2ε′ + 5qd/n,
t′ = t+O(qh + qd).

(Proof) Let G0 be the original attack game on the proposed KEM with an
adversary A. That is,

step 1. A random public key (n, α) is given to the adversary A.

step 2. The adversary A queries to the encryption oracle, and the encryp-
tion oracle responds with (K†, ψ∗) according to the hidden bit b of
eq.(23).

step 3. The adversary A outputs a bit b̃.

During the game, A can query ciphertexts ψ to the decryption oracle adap-
tively, and the decryption oracle responds with the keys K.

Let T0 be the event that b = b̃. We define a sequence of games G1,G2,
and define Ti be the event that b = b̃ in game Gi.

Game G1. We modify game G0 as follows. The encryption oracle computes
(K†, ψ∗) at the beginning of the game. Second, if A submits a ciphertext
ψ = ψ∗ to the decryption oracle before the encryption oracle is invoked,
then we abort the game immediately.

Let F1 be the event that game G1 is aborted as above. If n is large
enough, then the size of the set of ψ is bounded by

|{ψ}| = |Z∗
n|/4 = (p− 1)(q − 1)/4 > n/5

because r ∈ Z∗
n and the function r � ψ is a 4 : 1 function. Therefore, it

holds that
Pr[F1] ≤ qd/|{ψ}| ≤ 5qd/n.

It is clear that games G0 and G1 proceed identically until event F1 occurs,
and so by Lemma 8.1, we have |Pr[T1]− Pr[T0]| ≤ Pr[F1].

Game G2. We next modify game G1 as follows. If A queries the principal
r∗ such that

ψ∗ = r∗ +
α

r∗
mod n,
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to the random oracle H, then we abort the game immediately. It is easy to
see that Pr[T2] = 1/2 because A has no information on K∗ = H(r∗) in this
case.

Let F2 be the event that game G1 is aborted as above. It is clear
that games G1 and G2 proceed identically until event F2 occurs, and so by
Lemma 8.1, we have |Pr[T2]− Pr[T1]| ≤ Pr[F2].

We will show that there exists a PPT algorithm B which can factor n
with probability ε′ = Pr[F2]/2. On input n, B simulates the environment
of game G2 for A as follows.

1. B chooses α ∈ Z∗
n such that (α/n) = 1 randomly. It is easy to see that

α satisfies eq.(25) with probability 1/2.

2. B chooses K† randomly. Note that K∗ = H(r∗) is random because H
is a random oracle. Therefore, K† is random from a view point of A
regardless of the value of b.

3. B next chooses r̄ such that (r̄/N) = −1 randomly and computes

ψ∗ = r̄ +
α

r̄
mod n.

This has no problem because there exists a principal r∗ such that

ψ∗ = r∗ +
α

r∗
mod n

from Lemma 4.1.

4. B then runs A on input pk = (n, α).

5. If A queries to the encryption oracle, then B returns (K†, ψ∗) to A.

To simulate the decryption oracle, B maintains a list Ld of (ψ,K). To
simulate the random oracle H, B maintains a list LH+ of (r,K) such that
H(r) = K for a principal r. Similarly, B maintains a list LH− of (r,K) such
that H(r) = K for a non-principal r. Initially, LH and Ld are empty.

Suppose that A queries ψ to the decryption oracle. Then B executes the
following algorithm.
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• If there exists (r,K) ∈ LH+ such that

ψ = r +
α

r
mod n,

then return K.

• Otherwise choose K randomly, add (ψ,K) to Ld and return K.

Suppose that A queries a non-principal r to H. Then B executes the
following algorithm.

• If (r,K) ∈ LH− for some K, then return K.

• Otherwise choose K randomly, add (ψ,K) to LH− and return K.

Suppose that A queries a principal r toH. ThenB executes the following
algorithm.

• (The event F2 occurs.) If r = r∗ such that

ψ∗ = r∗ +
α

r∗
mod n, (27)

then B computes y = gcd(r∗ − r̄), outputs y and halts.

• Else if (r,K) ∈ LH+ for some K, then return K.

• Else if there exists (ψ,K) ∈ Ld such that

ψ = r +
α

r
mod n,

then return K.

• Otherwise choose K randomly, add (ψ,K) to LH+ and return K.

We have finished the description of B. Now if F2 occurs, then B obtains
r̄ and r∗ such that

r̄ +
α

r̄
= ψ∗ = r∗ +

α

r∗
mod n.

In this case, it holds that y = gcd(r∗− r̄) = p or q from Lemma 4.1. Further,
if α satisfies eq.(25), then B simulates the environment of game G2 for A
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perfectly. Hence B can factor n with probability ε′ = Pr[F2]/2 because α
satisfies eq.(25) with probability 1/2.

Now we have

ε
�
= |Pr[T0]− (1/2)|
= |Pr[T0]− Pr[T1] + Pr[T1]− Pr[T2] + Pr[T2]− (1/2)|
≤ |Pr[T0]− Pr[T1]|+ |Pr[T1]− Pr[T2]|+ |Pr[T2]− (1/2)|
≤ Pr[F1] + Pr[F2] + 0
≤ 5qd/n+ 2ε′.

It is easy to see that B runs in time t′ = t+O(qh + qd) if A runs in time
t. This means that the theorem holds.

Q.E.D.

9 Conclusion

We showed the first practical semantically secure public-key encryption
scheme such that its one-wayness is equivalent to general factoring in the
standard model (in the sense of IND-CPA).

We next applied our proof technique to Rabin-Paillier encryption scheme
and RSA-Paillier+ encryption scheme to prove their exactly tight one-wayness.

We finally presented the first KEM which is secure in the sense of IND-
CCA under general factoring assumption in the random oracle model.

It will be a further work to develop a CCA-secure KEM under general
factoring assumption in the standard model. We hope that our results pro-
vide us a good starting point to this challenging problem.
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A Flaw on the Semantic Security of Rabin-Paillier

Let

SMALLQR(n, e) �= {(n, e, x) | x = r2e mod n2, r ∈ QRn}
LARGEQR(n, e) �= {(n, e, x) | x = r2e mod n2, r ∈ Qn2}
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Rabin-Paillier encryption scheme is IND-CPA if and only if SMALLQR(n, e)
and LARGEQR(n, e) are indistinguishable [15, Proposition 9].

Galindo et al. further claimed that SMALLQR(n, e) and LARGEQR(n, e)
are indistinguishable if

• SMALLRSA(n, e) and LARGERSA(n, e) are indistinguishable (RSA-
Paillier is IND-CPA under this condition) and

• QR(n) and QNR(n,+) are indistinguishable, where

QR(n)
�
= {(n, x) | x ∈ QRn}

QNR(n,+) �=
{

(n, x) | x ∈ Z∗
n,

(
x

n

)
= 1

}

in [15, Proposition 11].
However, this claim is wrong. In the proof, they say that D1 and D2 are

indistinguishable, where

D1
�= {x | x = re mod n2, r ∈ QRn}

D2
�= {x | x = re mod n2, r ∈ Z∗

n}.

However, we can distinguish them easily by computing
(x

n

)
.

B Decryption of Kurosawa et al’s Encryption Scheme

Let a1 and a2 be the roots of eq.(3) mod p and b1 and b2 be the roots of
eq.(3) mod q. Then, eq.(3) mod n has the following four roots:

M1 = [a1, b1], M2 = [a2, b2]
M3 = [a1, b2], M4 = [a2, b1]

where M1 = [a1, b1] means M1 = a1 mod p and M1 = b1 mod q.
The plaintext m is one of the four roots. s and t tell the receiver which

root the plaintext m is. From the relationship between the roots and the
coefficients of eq.(3), we obtain

(a1/p)(a2/p) = (α/p) = −1.

We set
(a1/p) = 1, (a2/p) = −1. (28)
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Similarly, we set
(b1/q) = 1, (b2/q) = −1. (29)

Then, we obtain

(M1/n) = (M1/p)(M1/q) = (a1/p)(b1/q) = 1.

Similarly, we get

(M2/n) = 1
(M3/n) = (M4/n) = −1.

Therefore, the receiver sees that

m =
{
M1 or M2 if s = 0;
M3 or M4 if s = 1.

Now, suppose that s = 0. The relationship between the roots and the
coefficients of eq.(3) gives us

M1M2 = [a1a2, b1b2] = [α, α] = α mod n.

Hence,
M2 = α/M1 mod n.

Therefore, the receiver sees that

m =
{

min(M1,M2) if t = 0;
max(M1,M2) if t = 1.

When s = 1,

m =
{

min(M3,M4) if t = 0;
max(M3,M4) if t = 1.

Thus, a ciphertext is uniquely deciphered.
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