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Abstra
t. The 
lassi
al te
hnique to perform key mixing in blo
k 
i-

phers is through ex
lusive-or (exor). In this paper we show that when

the n-bit key is mixed in a blo
k 
ipher of size n bits via addition modulo

2

n

, the bias of the linear approximations falls exponentially fast. Exper-

imental results have been provided to show that su
h a s
heme 
annot

be 
ryptanalyzed using Linear Cryptanalysis.
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Lemma

1 Introdu
tion

Linear Cryptanalysis [1℄ is one of the most powerful and signi�
ant atta
ks

appli
able to symmetri
 key blo
k 
iphers. The blo
k 
iphers have to be designed

so that they provide resistan
e to Linear 
ryptanalysis (LC). Although some

design methodologies have been proposed, in [2{5℄, the systemati
 development

of blo
k 
iphers with resistan
e against linear 
ryptanalysis is still a 
hallenging

task.

Linear Cryptanalysis essentially deals with the probability of approximating

the input and output of non-linear fun
tions, used in the blo
k 
ipher with

linear expressions [6℄. The obje
tive of LC is to obtain the last round key of a R

round blo
k 
ipher from the linear approximations of (R�1) rounds. The linear

approximation is a
hieved by 
ombining the smaller linear expressions with large

bias [6℄. The bias of the linear expression is obtained using the Piling-Up lemma

and has to be suitably high for the atta
k to su

essfully reveal the last round

keys. From this lemma it is evident that for a linear expression with a large bias,

the biases of ea
h individual sub-expressions have to be signi�
ant. If one of

them is negligible (almost zero), then the bias of the resultant expression is also

negligible (almost zero) and does not lead to a su

essful linear 
ryptanalysis.

In Substitution-Permutation Network (SPN) like AES, DES the key mixing

step is performed by key exoring where the key bits are simply exored (that is

added without 
arry) with the data bits before ea
h round and after the last

round. In [7℄ the linear approximations of addition modulo 2

n

(with 
arry) was
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studied. The author derived an �(logn)-time algorithm to 
ompute the 
orrela-

tion of linear approximations of addition modulo 2

n

. The algorithm is optimal

and generates all linear approximations with a given non-zero 
orrelation 
oef-

�
ient, and also determines the distribution of the 
orrelation 
oeÆ
ients. The

present paper investigates if the repla
ement of key exoring step in an n bit

blo
k 
ipher with addition modulo 2

n


an redu
e the bias of linear expressions

in the 
ipher. Indeed some blo
k 
iphers like MARS [8℄, IDEA [9℄ use addition

modulo 2

n

inside their rounds. The present paper show both analyti
ally and

experimentally that su
h a key mixing operation 
an help to foil the powerful

linear 
ryptanalysis. In the present work the maximum bias of linear approxi-

mations of addition modulo 2

n

have been 
omputed. It has been shown that the

bias of linear approximations of the addition step falls exponentially fast with

the bit position. Finally, a SPN 
ipher named GPIG1 have been taken and su
-


essfully 
ryptanalayzed using LC. Results have been presented to demonstrate

that when the key mixing is performed through modulo 2

n

addition (in blo
k


ipher GPIG2) LC fails to reveal the key.

In the next se
tion (se
tion 2) the maximum bias of linear approximations for

addition modulo 2

n

has been evaluated. Se
tion 3 presents the 
onstru
tion of

the blo
k 
iphers GPIG1 and GPIG2. Se
tion 4 shows theoreti
ally that the bias

of sample linear approximations for GPIG2 is mu
h less 
ompared to those in

GPIG1. Se
tion 5 
ompares the linear atta
k on GPIG1 with that over GPIG2

and demonstrates that GPIG2 is a stronger 
ipher. The work is 
on
luded in

se
tion 6.

2 Best Linear Approximation of Addition modulo 2

n

Blo
k Ciphers use simple bit-wise ex
lusive OR between the key bits asso
iated

with a round and the data blo
k input to a round. Also at the end there is a

key exoring step with a round key, so that a 
ryptanalyst 
annot easily work his

way ba
kwards.

Linear Cryptanalysis (LC) tries to take advantage of high probability o
-


uren
es of linear expressions involving plaintext bits, 
iphertext bits and subkey

bits. The basi
 idea is to approximate a portion of the 
ipher with an expression

that is linear, where linearity refers to a mod-2 bitwise ex
lusive or operation.

The approa
h in LC is to determine expressions of the form whi
h have a high

or low probability of o

uren
e. Let us 
onsider an expression of the form:

< X

i

1

�X

i

2

� : : : X

i

u

> � < Y

j

1

� Y

j

2

: : :� Y

j

v

>= 0

where X

i

represents the i-th bit of the input X = [X

1

; X

2

; : : :℄ and Y

j

rep-

resents the j-th bit of the output Y = [Y

1

; Y

2

; : : :℄. This equation is representing

the ex
lusive OR of u input bits and v output bits.

If the bits are 
hosen randomly then the above approximated linear expres-

sion will hold with probability 1=2. If p

l

is the probability with whi
h the ex-

pression holds then the bias is de�ned as jp

l

� 1=2j.

Inorder to extra
t the key bits the 
ryptanalyst forms linear approximations

for R � 1 rounds (if R is the total number of rounds) with large probability



3

bias. Then the 
ryptanalyst atta
ks the last round subkeys or round keys. The

probability of various linear expressions are formed and are 
olle
ted using the

Piling-Up Lemma to form bigger equations. The lemma is stated underneath

without proof.

Lemma 1. [1℄ For n independent, random binary variables X

1

; X

2

; : : : ; X

n

,

with bias �

1

; �

2

; : : : ;

�

n

,

Pr(X

1

� : : :�X

n

= 0) = 1=2 + 2

n�1

n

Y

i=1

�

i

Thus if X

1

; X

2

; : : : ; X

n

are n linear approximations then the bias of the linear

approximation made out of these n equations is denoted by [6, 10℄:

�

1;2;:::;n

= 2

n�1

n

Y

i=1

�

i

Thus it is evident that if the bias of any of the linear approximation falls

then the bias of the resultant equation also redu
es. In the following theorems

we 
ompute the maximum bias of all possible linear approximations of addition

modulo 2

n

. Hen
e we obtain the best linear approximation of addition modulo

2

n

in order to perform LC. Subsequently the biases are used to perform Linear

Cryptanalysis (LC) against an SPN 
ipher, where the key is mixed using addition

modulo 2

n

. Results show that su
h a 
ipher be
omes stronger against Linear

Cryptanalysis.

Theorem 1. For given n-bit inputs x and k the output is denoted by another

n-bit number y=(x+k) mod 2

n

. The probability that ea
h output bit y[i℄ 
an be

denoted by the linear fun
tion x[i℄ � k[i℄ is denoted by p

i

, 0 � i < n. Then

p

i

= 1=2 + (1=2)

i+1

and 1=2 < p

i

� 1.

Proof. Let 
[i℄ denote the 
arry out from the addition of x and k after i bits,

(refer �gure 1). Clearly, y[0℄ = x[0℄� k[0℄, with probability 1. Thus p

0

= 1.

(i+1) i (i−1) 01

2. 0, 1, ... ,(i−1), i, (i+1), ... indicates the bit positions of y
1. The Output Register y which stores the sum of two registers x and k

3. c[i−1] indicates the carry out after the addition of (i−1) bits are complete

   c[i] c[i−1]

Fig. 1. The Output State of the sum
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Now, y[1℄ = x[1℄� k[1℄ when there is no 
arry 
[0℄, fed from the 0

th

bit.

Now, 
[0℄ = 0, with probability 3=4 and hen
e p

1

= 3=4.

Let, the event that the i

th

bit of y 
an be expressed as a linear expression

x[i℄ and k[i℄ has a probability p

i

. Similarly the (i+1)

th


an be linearly expessed

with a probability p

i+1

.

Now, we note the following fa
t. The (i+1)

th

bit 
annot be linearly expressed

if there is a 
arry from the i

th

bit, that is if 
[i℄=1.

This 
an be divided into two mutually ex
lusive 
ases. First the event say A,


[i� 1℄=0 and the addition of x[i℄ and y[i℄ generates a 
arry. Now, when 
[i� 1℄

= 0, then y[i℄ must have been linearly expressed (using the above fa
t) and the

probability by de�nition is p

i

. Thus the probability that A is true is 1=4:p

i

.

The other event B is the 
ase where 
[i� 1℄=1 and the addition of x[i℄ and

y[i℄ propagates the 
arry. The probability that B is true is 3=4:(1� p

i

).

Clearly if the event (A [ B) o

urs then the (i+ 1)

th

bit 
annot be linearly

expressed and the probability is by de�nition (1� p

i+1

).

Thus, (1�p

i+1

) = P (A[B) = P (A)+P (B) (be
ause A and B are mutually

ex
lusive)

= 1=4:p

i

+ 3=4:(1� p

i

)

or, p

i+1

=1=4 + p

i

=2

Using the re
urren
e relation we have

p

i+1

=1=4+ p

i

=2

=1=4 + 1=2(1=4+ p

i�1

=2)

=1=4[1 + 1=2℄ + (1=2)

2

p

i�1

Thus 
ontinnuing we have

p

i+1

=1=4[1 + (1=2) + (1=2)

2

+ : : :+ (1=2)

i

℄ + (1=2)

i+1

p

0

=1=2[1 + (1=2)

i+1

℄, sin
e p

0

= 1

Thus, p

i

= 1=2[1 + (1=2)

i

℄ = 1=2 + (1=2)

i+1

.

Using the equation we have p

0

= 1; p

1

= 3=4; p

2

= 5=8; p

3

= 9=16 and so on.

Clearly, 1=2 < p

i

� 1.

Therefore, the bias of the linear approximation relating to the i

th

bit position

is (p

i

� 1=2) = 1=2

i+1

and hen
e falls exponentially fast with i.

In the following theorems we 
ompute the maximum value of the biases of all

possible linear approximations of the sum bits. We show in the following theorem

that the bias 
annot be more than 1=2

i+1

.

Theorem 2. For given n-bit inputs x and k the output is denoted by another

n bit number y = (x + k) mod 2

n

. The largest bias of a linear approximation of

y[i℄ is (1=2)

i+1

.

Proof. It is evident that, y[i℄ = x[i℄� k[i℄� 
[i� 1℄, where 
[i� 1℄ is the 
arry in

of the i

th

bit of the addition. The 
arry in is the non-linear part of the equation.

Thus in order to obtain various linear approximations for the non-linear part

linear approximations have to be found out for the 
arry in term. Ea
h possible

approximation of 
[i℄, denoted by L[i℄ will give rise to di�erent biases whi
h are

equal to the bias of a linear approximation of y[i℄.
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The equation for 
[0℄ = x[0℄k[0℄, whi
h is a boolean fun
tion for two variables.

Likewise, 
[1℄ = majority(x[1℄; k[1℄; 
[0℄)

= majority(x[1℄; k[1℄; x[0℄k[0℄)

= x[1℄k[1℄� x[1℄x[0℄k[0℄� k[1℄x[0℄k[0℄.

Thus 
[1℄ is a boolean fun
tion of four variables.

Likewise, 
[i℄ is a boolean fun
tion for 2(i+ 1) variables.

The maximum non-linearity for an m variable boolean fun
tion, where m

is even, is 2

m�1

� 2

m=2�1

. Hen
e, the probability of mat
h for the best linear

approximation of a boolean fun
tion operating on an even number of variables

is: 1�

2

m�1

�2

m=2�1

2

m

=

1

2

+ 2

�(m=2+1)

.

Thus, the probability of mat
hing for the best linear approximation for 
[i℄

is 1=2 + 2

�(i+2)

, substituting m = 2(i+ 1).

The output y[i℄ = x[i℄� k[i℄� 
[i� 1℄ 
an thus be approximated by a linear

equation, y

0

[i℄ = x[i℄�k[i℄�L[i�1℄, where L[i�1℄ is the best linear approximation

for 
[i� 1℄.

Hen
e, the largest probability with whi
h a linear approximation 
an mat
h

y[i℄ is 1=2+2

�(i�1+2)

= 1=2+2

�(i+1)

. Thus, the largest bias of a linear approx-

imation for y[i℄ is (1=2)

i+1

.

From the above results it is evident that:

Corollary 1. The best linear approximation for s[i℄ is a[i℄ � k[i℄, where the

probability of mat
h is 1=2 + 2

�(i+1)

and hen
e the bias is 2

�(i+1)

.

So, if the key-mixing step in the blo
k 
ipher is an addition modulo 2

n

step,

the probability of any linear expression relating to the key elements may be

estimated using the above result and the Piling-Up lemma. If the resulting linear

expression involves any parti
ular bit position, say the i

th

bit of the key, the

bias of the resulting equation is lesser than (1=2)

i+1

and as the following table

suggests the biases be
ome negligible very fast.

The bias of the linear expression relating the key bits have been 
omputed

using the above expression and tabulated in table 1.

Table 1. Biases of Linear Approximations Involving Key Bits

Key Bit #

Position 0 1 2 3 4 5 6 7 8 9 10

Bias 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0079 0.0039 0.0020 0.0010 0.0004

We see that the bias of the linear approximations involving the key bits falls

ver fast. With an expe
ted key size of 128 the bias of the linear approximations

is almost zero (negligible) beyond a bit position of six (marked in table 1). This

fa
t makes the �nding of linear approximations in the 
ipher with a large bias a

more diÆ
ult task. Dis
overing the key through Linear Cryptanalysis be
omes

improbable.
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In order to observe the e�e
ts of key mixing through addition on linear 
rypt-

analysis we 
onstru
t two SPN 
iphers, GPig1 and GPig2. GPig2 di�ers from

GPig1 in the fa
t that the key mixing is performed through addition modulo 2

n

.

First, the 
onstru
tion of the two blo
k 
iphers are highlighted in the following

se
tion.

3 Constru
tion of the SPN Ciphers : GPig1 and GPig2

In this se
tion we present the 
onstru
tion of Substitution-Permutation net-

works, GPig1 and GPig2, whi
h is subsequently 
ryptanalyzed using linear 
rypt-

analysis. The 
ipher, named GPig1, has been 
hosen from the tutorial presented

in [10, 6℄. The 
ipher GPig1 is essentially a traditional SPN blo
k 
ipher, where

the key mixing is performed by exoring between the data and the round keys.

GPig1 is modi�ed into another 
ipher and named GPig2, the only modi�
ation

in the latter 
ipher being that the key mixing step is performed through addi-

tion modulo 2

n

. In subsequent se
tions linear 
ryptanalysis against the modi�ed


ipher has been 
ompared with that of the original 
ipher to demonstrate the

bene�t of the 
hange.

3.1 The Substitution-Permutation Network-GPig1

In �gure 2 the unmodi�ed blo
k 
ipher GPig1 is illustrated. The 
ipher takes a

16-bit input blo
k and pro
esses the blo
k by repeating the basi
 operations of

a round four times. Ea
h round 
onsists of

{ Substitution

{ a Transposition of bits (Permutation)

{ a Key Mixing Step

This basi
 stru
ture is the Fiestel Network and the basi
 operations are

similar to those found in DES and in many modern 
iphers, in
luding Rijndael.

Thus, the experimentation performed on the SPN 
ipher with respe
t to linear


ryptanalysis is also appli
able in 
ase of standard and more pra
ti
al blo
k


iphers, without loss of generality.

The various blo
ks used in the blo
k 
ipher are detailed next.

Substitution: In the 
ipher, the 16 bit data blo
k data is subdivided into

four groups (sub-blo
ks). Ea
h sub-blo
k forms an input to a 4�4 S-box (a

substitution with 4 input and 4 output bits), whi
h 
an be implemented easily

with a table lookup of sixteen 4-bit values, indexed by the integer represented

by the 4 input bits. For the 
ipher, the same S-box is 
hosen for all the rounds

and is 
hosen from the S-boxes of DES. It is the �rst row of the �rst S-box.

In table 2, the most signi�
ant bit of the hexade
imal notation represents the

leftmost bit of the S-box in �gure 2.
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 S11 S12  S13 S14

S24

     subkey K    Mixing 1  through exoring

     subkey K    Mixing through exoring 4

C1  16.   .   .              Ciphertext                  .    .    .     C

     subkey K    Mixing through exoring 5

S21 S22 S23

S31 S32 S33 S34

S41 S42 S43 S 44

     subkey K    Mixing through exoring 2

     subkey K    Mixing through exoring

               
1P  16.   .   .              Plaintext                     .    .    .     P

 3

Fig. 2. The Stru
ture of GPig1
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Table 2. S-box Representation (in hexade
imal)

input 0 1 2 3 4 5 6 7 8 9 A B C D E F

output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Permutation: The permutation portion of a round is simply the transposition

of the bits or the permutation of the bit positions. The permutation of �gure 2

is given in table 3 (where the numbers represent bit positions in the blo
k, with

1 being the leftmost bit and 16 being the rightmost bit) and 
an be simply

des
ribed as: the i

th

input bit is 
onne
ted to the j

th

output bit (see �gure 2).

Table 3. Permutation

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Key Mixing: The key mixing is a
hieved in the blo
k 
ipher through bit-wise

ex
lusive-OR between the key bits asso
iated with a round (referred to as a

subkey) and the data blo
k input to a round. The subkey for a round is derived

from the master's key through a pro
ess known as the key s
hedule. In the


ipher, we shall assume that all the subkeys are independently generated and

are unrelated.

De
ryption: In order to de
rypt, data is essentially passed ba
kwards through

the network. However the S-boxes have to be bije
tive. Also, the subkeys have

to be applied in the reverse order for proper de
ryption.

3.2 The modi�ed SPN Cipher-GPig2

GPig2 is a similar blo
k 
ipher as GPig1 with the only di�eren
e being in the

key mixing step. Instead of exor operations bewteen the data of the i

th

round

(X

i

) and the i

th

round key (K

i

), the key mixing in GPig2 is performed through

addition modulo 2

16

. Thus, we repla
e the key mixing step of the i

th

round:

Y

i

= X

i

�K

i

with, Y

i

= (X

i

+K

i

)%2

16

, where + represents the arithmeti
 ad-

dition operation. The symbol % is the modulo operation, st 0 � Y

i

� 2

16

.

It is 
lear that the step is a reversible step, sin
e X

i

= (Y

i

�K

i

)%2

16

, where

� refers to signed arithmeti
 subtra
tion.

In the present se
tion both GPig1 and GPig2 are analyzed under the light

of linear atta
k. In order to start with the analysis we �rst need to analyze the

S-box 
omponents and obtain linear approximations for the S-box, whi
h is the

same in both the 
iphers.
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4 Linear Cryptanalysis of GPig1 and GPig2

The linear approximations of the S-box is presented in [6, 10℄. We summarise

the result with a brief des
ription. As �gure 3 shows, the input bits of the S-

box are represented by X

1

; X

2

; X

3

; X

4

and the output by Y

1

; Y

2

; Y

3

; Y

4

. A linear

approximation involving the input bits is denoted by a

1

X

1

�a

2

X

2

�a

3

X

3

�a

4

X

4

,

where a

i

2 f0,1g. The approximation 
an be represented by a hexade
imal value

a

1

a

2

a

3

a

4

, where a

1

is the most signi�
ant bit. Similarly the linear approximation

involving the output bits, b

1

X

1

� b

2

X

2

� b

3

X

3

� b

4

X

4

, where b

i

2 f0,1g, is

denoted by the hexade
imal value b

1

b

2

b

3

b

4

. In order to obtain the probability of

a linear approximation, all the 16 possible input values for X are applied, and

the 
orresponding output values of Y are examined. The number of mat
hes

between the output Y and the linear approximation of the output is obtained

(N). Thus the bias is

N

16

�

1

2

.

2XX1 X3 X4

1 2 3 4Y Y Y Y

    S−Box

Fig. 3. S-box Mapping

For example, for the expression,

X

2

�X

3

= Y

1

� Y

3

� Y

4

,

it is observed that out of the 16 
ases, 12 is the number of mat
hes. Thus

the probability of the linear approximation is

12

16

=

3

4

and the bias is

3

4

�

1

2

=

1

4

.

A 
omplete enumeration of all the linear approximations of the S-box in the


ipher is given in table 4 [6℄. The entries of the table are �lled up with the values

N�8. Thus, the bias for a linear approximation is obtained by dividing an entry

in the table by 16. Hen
e, for the above example the input sum in hexade
imal

is 6 and the 
orresponding output sum is B. Thus the 
orresponding entry in

the table is +4 and therefore the bias is +

4

16

=

1

4

.
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Table 4. Linear Approximation Table (LAT) of S-box

Output Sum

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 +8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 -2 -2 0 0 -2 +6 +2 +2 0 0 +2 +2 0 0

2 0 0 -2 -2 0 0 -2 -2 0 0 +2 +2 0 0 -6 +2

I 3 0 0 0 0 0 0 0 0 +2 -6 -2 -2 +2 +2 -2 -2

n 4 0 +2 0 -2 -2 -4 -2 0 0 -2 0 +2 +2 -4 +2 0

p 5 0 -2 -2 0 -2 0 +4 +2 -2 0 -4 +2 0 -2 -2 0

u 6 0 +2 -2 +4 +2 0 0 +2 0 -2 +2 +4 -2 0 0 -2

t 7 0 -2 0 +2 +2 -4 +2 0 -2 0 +2 0 +4 +2 0 +2

8 0 0 0 0 0 0 0 0 -2 +2 +2 -2 +2 -2 -2 -6

S 9 0 0 -2 -2 0 0 -2 -2 -4 0 -2 +2 0 +4 +2 -2

u A 0 +4 -2 +2 -4 0 +2 -2 +2 +2 0 0 +2 +2 0 0

m B 0 +4 0 -4 +4 0 +4 0 0 0 0 0 0 0 0 0

C 0 -2 +4 -2 -2 0 +2 0 +2 0 +2 +4 0 +2 0 -2

D 0 +2 +2 0 -2 +4 0 +2 -4 -2 +2 0 +2 0 0 +2

E 0 +2 +2 0 -2 -4 0 +2 -2 0 0 -2 -4 +2 -2 0

F 0 -2 -4 -2 -2 0 +2 0 0 -2 +4 -2 -2 0 +2 0

4.1 Linear Approximations for the 
omplete Ciphers

The biases of the linear approximations have been obtained for the S-boxes of

the SPN networks. By 
on
atenating appropriate linear approximations of the S-

boxes, the linear approximations of the 
omplete 
ipher involving plaintext bits

and data bits from the output of the se
ond last round of S-boxes are obtained,

using the Piling-Up lemma. Following is an example of the 
al
ulation of the

bias of a linear approximation of both the 
iphers. It is evident from the results

that the bias of a linear approximation for GPig2 is mu
h lesser than that for

GPig1.

In the following example, U

i

(V

j

) represents the 16-bit blo
k of bits at the

input (output) of the round i S-boxes and U

i;j

(V

i;j

) represent the j

th

bit of blo
k

U

i

(V

j

) (where the bits are numbered from 1 to 16 from left to right in �gure 2).

In 
ase of GPig1 the 16-bit blo
k key for the i

th

round , K

i

, is ex
lusive-ORed

at the input to round i. However, K

5

is the key ex
lusive-ORed at the output of

round 4. In the 
ase of GPig2, instead of ex
lusive-OR, as already pointed out,

the key bits are added modulo 2

n

to the data blo
ks.

Example 1. Comparision of the probability biases of linear approximations for

the �rst 3 rounds of GPig1 and GPig2

Sample Linear Approximation: U

4;6

�U

4;8

�U

4;14

�U

4;16

�P

5

�P

7

�P

8

= 0

GPig1:

In order to obtain the linear approximation for the �rst two rounds we 
on-

sider the following linear expressions:

1. V

1;6

= U

1;5

� U

1;7

� U

1;8

, with bias

1

4
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2. U

1;5

= P

5

�K

1;5

, with bias

1

2

3. U

1;7

= P

7

�K

1;7

, with bias

1

2

4. U

1;8

= P

8

�K

1;8

, with bias

1

2

5. U

2;6

= V

2;6

� V

2;8

, with bias �

1

4

6. U

2;6

= V

1;6

�K

2;6

, with bias

1

2

The 
on
atenation of the above expression leads to the following approxima-

tion:

V

2;6

� V

2;8

� P

5

� P

7

� P

8

�K

1;5

�K

1;7

�K

1;8

�K

2;6

= 0 (1)

The Piling-Up Lemma predi
ts that the bias of equation 1 is equal to

�

1

= 2

5

(

1

4

1

2

1

2

1

2

(�

1

4

)

1

2

) =�

1

8

.

Similarly, in order to obtain the linear approximation for the third round we


onsider the following expressions:

1. U

3;6

= V

2;6

�K

3;6

, with bias

1

2

2. U

3;14

= V

2;8

�K

3;14

, with bias

1

2

3. U

3;6

= V

3;6

� V

3;8

, with bias �

1

4

4. U

3;14

= V

3;14

� V

3;6

, with bias �

1

4

Combining the equations we arrive at the expression:

V

3;6

� V

3;8

� V

3;14

� V

3;16

� V

2;6

�K

3;6

� V

2;8

�K

3;14

= 0 (2)

, with a bias of �

2

= 2

3

(

1

2

1

2

(�

1

4

)(�

1

4

)) = +

1

8

.

Combining equation 1 and equation 2 we get the expression:

V

3;6

�V

3;8

�V

3;14

�V

3;16

�P

5

�P

7

�P

8

�K

1;5

�K

1;7

�K

1;8

�K

2;6

�K

3;6

�K

3;14

= 0

(3)

The following expressions:

1. U

4;6

= V

3;6

�K

4;6

2. U

4;8

= V

3;14

�K

4;8

3. U

4;14

= V

3;8

�K

4;14

4. U

4;16

= V

3;16

�K

4;16

, ea
h having a bias of

1

2

, are 
ombined with equation 3 to �nally obtain:

U

4;6

� U

4;8

� U

4;14

� U

4;16

� P

5

� P

7

� P

8

�

X

K

= 0 (4)

,where

P

K

= K

1;5

�K

1;7

�K

1;8

�K

2;6

�K

3;6

�K

3;14

�K

4;6

�K

4;8

�K

4;14

�

K

4;16

.

Hen
e, using Piling-Up Lemma the bias of the equation is:

�

3

= 2

5

(�

1

�

2

(

1

2

4

)) = 2

5

((�

1

8

)(

1

8

)(

1

2

4

)) = �

1

32

.

Now, sin
e

P

K

is �xed (that is either 0 or 1 depending on the key bits), the

linear approximation
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U

4;6

� U

4;8

� U

4;14

� U

4;16

� P

5

� P

7

� P

8

= 0 (5)

holds with probability

1

2

�

1

32

=

15

32

. or 1�

15

32

, depending on whether

P

K

is

0 or 1.

Thus, the bias of the linear expression (equation 5) has a magintude of

1

32

.

Next, we 
ompute the bias of the linear expression in the 
ase of the 
ipher

GPig2.

GPig2:

In order to obtain the bias of the linear approximation a similar 
al
ulation

is performed.

The biases of the linear approximations of the S-boxes are identi
al for both

the 
iphers. Only the biases of the linear expressions involving the key bits

are di�erent for GPig2 and are 
omputed using Theorems 2 and 3. We �rst

enumerate the linear expressions involving the key bits and the 
orresponding

biases:

1. U

1;5

= P

5

�K

1;5

, with bias

1

2

6

2. U

1;7

= P

7

�K

1;7

, with bias

1

2

8

3. U

1;8

= P

8

�K

1;8

, with bias

1

2

9

4. U

2;6

= V

1;6

�K

2;6

, with bias

1

2

7

Thus, the bias of equation 1 in 
ase of GPig2 is :

�

1

0

= 2

5

(

1

4

1

2

6

1

2

8

1

2

9

(�

1

4

)

1

2

7

) =�

1

2

29

.

In order to obtain the linear approximation for round 3, the linear expression

involving the key bits are:

1. U

3;6

= V

2;6

�K

3;6

, with bias

1

2

7

2. U

3;14

= V

2;8

�K

3;14

, with bias

1

2

15

Thus the bias of equation 2 be
omes:

�

2

0

= 2

3

(

1

2

7

1

2

15

(�

1

4

)(�

1

4

)) =

1

2

23

.

In order to arrive at the �nal expression (equation 3), the expressions involv-

ing the key bits of round 4 are

1. U

4;6

= V

3;6

�K

4;6

, with bias

1

2

7

2. U

4;8

= V

3;14

�K

4;8

, with bias

1

2

9

3. U

4;14

= V

3;8

�K

4;14

, with bias

1

2

15

4. U

4;16

= V

3;16

�K

4;16

, with bias

1

2

17

Thus, the bias of equation 5 is:

�

3

0

= 2

5

(�

1

0

�

2

0

1

2

7

1

2

9

1

2

15

1

2

17

) = 2

5

((�

1

2

29

)(

1

2

23

)(

1

2

48

)) =

1

2

95

� 0.

The above example demonstrates that when the key mixing step in the SPN

blo
k 
ipher is performed with the help of addition modulo 2

n

, the bias of the

linear expressions are almost zero, and thus 
annot be used in linear 
ryptanal-

ysis.

In the following se
tion we perform a linear atta
k on both the 
iphers,

GPig1 and GPig2 and evaluate the strength of the se
ond 
ipher against the


ryptanalysis.
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5 Experimental Extra
tion of Key Bits

In this se
tion it is experimentally shown that GPig1 is su

essfully 
ryptana-

lyzed using the linear expression, mentioned in the example. It is also demon-

strated that for GPig2 su
h an atta
k does not work. The reason being, in order

for linear 
ryptanalysis to be su

essful the bias of (R� 1) round linear expres-

sions (approximations) for an R round blo
k 
ipher has to be large. However,

in the 
ase of GPig2 the biases of linear expressions falls very fast to zero and

hen
e su
h equations 
annot be exploited in a 
onventional linear atta
k.

5.1 Experimental Setup

The pro
edure adopted to evaluate the last round keys are as follows:

1. A large number (10; 000) of 
ipher-texts are obtained by en
rypting plain-

texts i,e we generate 10; 000 known plaintext/ 
iphertext pairs.

2. The atta
ker 
onsiders the linear approximation (mentioned in the example)

of the �rst 3 rounds of the 
iphers. To restate the expression is:

U

4;6

� U

4;8

� U

4;14

� U

4;16

� P

5

� P

7

� P

8

= 0 (6)

The terms U

4;6

, U

4;8

and U

4;14

a�e
ts the S-boxes S

42

and S

44

. Hen
e, the

atta
ker guesses (K

5;5

; : : : ;K

5;8

) and (K

5;13

; : : : ;K

5;16

). In 
ase of GPig1 he

exors them with the 
iphertext bits to obtain (V

5;5

; : : : ; V

5;16

). Then he per-

forms the inverse of the S-Box operations to obtain the values of U

4;6

, U

4;8

and U

4;14

. If their values satisfy equation 6 then a 
ount is in
remented for

the guessed key bits (K

5;5

; : : : ;K

5;8

;K

5;13

; : : : ;K

5;16

). The partial subkey

whi
h has the 
ount whi
h di�ers greatest from half the number of plain-

text/ 
iphertext samples (50; 000) is assumed to represent the 
orre
t values

of the guessed key bits. An in
orre
t subkey is assumed to be equivalent to

a random guess to the bits of the linear expression and this holds with prob-

ability 
lose to 1=2. The same atta
k is also performed on GPig2. Only we

assume that the atta
ker knows the values of the key bits (K

5;9

; : : : ;K

5;12

).

Thus here he guesses the partial keys (K

5;5

; : : : ;K

5;8

;K

5;13

; : : : ;K

5;16

) and

subtra
ts the key bits from the 
iphertext to arrive at the required values

of (V

5;5

; : : : ; V

5;16

) and �nally the values of U

4;6

, U

4;8

and U

4;14

. The rest of

the atta
k is similar. This gives a best 
ase s
enario to the atta
ker.

From, the table we see that the atta
k works �ne for GPig1, where the 
orre
t

subkey bits (last round) keys (K

5;5

; : : : ;K

5;8

;K

5;13

; : : : ;K

5;16

) = [2,4℄ leads

to the largest bias of 0:0308 and is thus dete
ted. The bias is also 
lose to

the 
al
ulated bias of 1=32=0:03125.

However the same atta
k on GPig2 shows that the bias of the expression for

the 
orre
t key bits [2,4℄ is only 0:0010 whi
h is less than the biases of the in-


orre
t key bits. The result implies that the probability of linear expressions

to hold in 
ase of GPig2 is mu
h 
lose to 1=2 and is thus very hard to dif-

ferentiate from a random guess. Thus GPig2 o�ers a mu
h better resistan
e
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to linear 
ryptanalysis than GPig1. Also note that in the experimentation

it was observed that the highest bias (0:0139) o

ured for a key bit = E9,

whi
h is an in
orre
t key.

Table 5. Experimental Results for Linear Atta
k

Partial SubKey Bias Partial SubKey Bias

[K

5;5

; ::; K

5;8

; ::; K

5;13

℄ XOR ADD [K

5;5

; ::; K

5;8

; ::; K

5;13

℄ XOR ADD

1C 0.0023 0.0027 2A 0.0099 0.0030

1D 0.0042 0.0084 2B 0.0053 0.0044

1E 0.0013 0.0006 2C 0.0060 0.0120

1F 0.0055 0.0034 2D 0.0107 0.0034

20 0.0011 0.0023 2E 0.0074 0.0061

21 0.0061 0.0053 2F 0.0024 0.0012

22 0.0028 0.0049 30 0.0137 0.0002

23 0.0075 0.0067 31 0.0151 0.0043

24 0.0308 0.0010 32 0.0104 0.0048

25 0.0156 0.0079 33 0.0151 0.0010

26 0.0148 0.0022 34 0.0090 0.0025

27 0.0011 0.0003 35 0.0130 0.0048

28 0.0266 0.0009 36 0.0078 0.0034

29 0.0107 0.0046 37 0.0025 0.0020

Max Bias for XOR: 0.0308 for the 
orre
t Key 24H

Max Bias for Add: 0.0139 for an in
orre
t Key E9H

6 Con
lusion

In the present paper the 
onventional key mixing have been altered from exor to

addition modulo 2

n

. The largest bias of linear approximations for the output bit

of su
h a key mixing have been 
omputed. Both theoreti
ally and experimentally

it has been demonstrated that su
h a modi�
ation makes the 
ipher strong

against Linear Cryptanalysis.
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