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Abstrat. The lassial tehnique to perform key mixing in blok i-

phers is through exlusive-or (exor). In this paper we show that when

the n-bit key is mixed in a blok ipher of size n bits via addition modulo

2

n

, the bias of the linear approximations falls exponentially fast. Exper-

imental results have been provided to show that suh a sheme annot

be ryptanalyzed using Linear Cryptanalysis.
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1 Introdution

Linear Cryptanalysis [1℄ is one of the most powerful and signi�ant attaks

appliable to symmetri key blok iphers. The blok iphers have to be designed

so that they provide resistane to Linear ryptanalysis (LC). Although some

design methodologies have been proposed, in [2{5℄, the systemati development

of blok iphers with resistane against linear ryptanalysis is still a hallenging

task.

Linear Cryptanalysis essentially deals with the probability of approximating

the input and output of non-linear funtions, used in the blok ipher with

linear expressions [6℄. The objetive of LC is to obtain the last round key of a R

round blok ipher from the linear approximations of (R�1) rounds. The linear

approximation is ahieved by ombining the smaller linear expressions with large

bias [6℄. The bias of the linear expression is obtained using the Piling-Up lemma

and has to be suitably high for the attak to suessfully reveal the last round

keys. From this lemma it is evident that for a linear expression with a large bias,

the biases of eah individual sub-expressions have to be signi�ant. If one of

them is negligible (almost zero), then the bias of the resultant expression is also

negligible (almost zero) and does not lead to a suessful linear ryptanalysis.

In Substitution-Permutation Network (SPN) like AES, DES the key mixing

step is performed by key exoring where the key bits are simply exored (that is

added without arry) with the data bits before eah round and after the last

round. In [7℄ the linear approximations of addition modulo 2

n

(with arry) was
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studied. The author derived an �(logn)-time algorithm to ompute the orrela-

tion of linear approximations of addition modulo 2

n

. The algorithm is optimal

and generates all linear approximations with a given non-zero orrelation oef-

�ient, and also determines the distribution of the orrelation oeÆients. The

present paper investigates if the replaement of key exoring step in an n bit

blok ipher with addition modulo 2

n

an redue the bias of linear expressions

in the ipher. Indeed some blok iphers like MARS [8℄, IDEA [9℄ use addition

modulo 2

n

inside their rounds. The present paper show both analytially and

experimentally that suh a key mixing operation an help to foil the powerful

linear ryptanalysis. In the present work the maximum bias of linear approxi-

mations of addition modulo 2

n

have been omputed. It has been shown that the

bias of linear approximations of the addition step falls exponentially fast with

the bit position. Finally, a SPN ipher named GPIG1 have been taken and su-

essfully ryptanalayzed using LC. Results have been presented to demonstrate

that when the key mixing is performed through modulo 2

n

addition (in blok

ipher GPIG2) LC fails to reveal the key.

In the next setion (setion 2) the maximum bias of linear approximations for

addition modulo 2

n

has been evaluated. Setion 3 presents the onstrution of

the blok iphers GPIG1 and GPIG2. Setion 4 shows theoretially that the bias

of sample linear approximations for GPIG2 is muh less ompared to those in

GPIG1. Setion 5 ompares the linear attak on GPIG1 with that over GPIG2

and demonstrates that GPIG2 is a stronger ipher. The work is onluded in

setion 6.

2 Best Linear Approximation of Addition modulo 2

n

Blok Ciphers use simple bit-wise exlusive OR between the key bits assoiated

with a round and the data blok input to a round. Also at the end there is a

key exoring step with a round key, so that a ryptanalyst annot easily work his

way bakwards.

Linear Cryptanalysis (LC) tries to take advantage of high probability o-

urenes of linear expressions involving plaintext bits, iphertext bits and subkey

bits. The basi idea is to approximate a portion of the ipher with an expression

that is linear, where linearity refers to a mod-2 bitwise exlusive or operation.

The approah in LC is to determine expressions of the form whih have a high

or low probability of ourene. Let us onsider an expression of the form:

< X

i

1

�X

i

2

� : : : X

i

u

> � < Y

j

1

� Y

j

2

: : :� Y

j

v

>= 0

where X

i

represents the i-th bit of the input X = [X

1

; X

2

; : : :℄ and Y

j

rep-

resents the j-th bit of the output Y = [Y

1

; Y

2

; : : :℄. This equation is representing

the exlusive OR of u input bits and v output bits.

If the bits are hosen randomly then the above approximated linear expres-

sion will hold with probability 1=2. If p

l

is the probability with whih the ex-

pression holds then the bias is de�ned as jp

l

� 1=2j.

Inorder to extrat the key bits the ryptanalyst forms linear approximations

for R � 1 rounds (if R is the total number of rounds) with large probability
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bias. Then the ryptanalyst attaks the last round subkeys or round keys. The

probability of various linear expressions are formed and are olleted using the

Piling-Up Lemma to form bigger equations. The lemma is stated underneath

without proof.

Lemma 1. [1℄ For n independent, random binary variables X

1

; X

2

; : : : ; X

n

,

with bias �

1

; �

2

; : : : ;

�

n

,

Pr(X

1

� : : :�X

n

= 0) = 1=2 + 2

n�1

n

Y

i=1

�

i

Thus if X

1

; X

2

; : : : ; X

n

are n linear approximations then the bias of the linear

approximation made out of these n equations is denoted by [6, 10℄:

�

1;2;:::;n

= 2

n�1

n

Y

i=1

�

i

Thus it is evident that if the bias of any of the linear approximation falls

then the bias of the resultant equation also redues. In the following theorems

we ompute the maximum bias of all possible linear approximations of addition

modulo 2

n

. Hene we obtain the best linear approximation of addition modulo

2

n

in order to perform LC. Subsequently the biases are used to perform Linear

Cryptanalysis (LC) against an SPN ipher, where the key is mixed using addition

modulo 2

n

. Results show that suh a ipher beomes stronger against Linear

Cryptanalysis.

Theorem 1. For given n-bit inputs x and k the output is denoted by another

n-bit number y=(x+k) mod 2

n

. The probability that eah output bit y[i℄ an be

denoted by the linear funtion x[i℄ � k[i℄ is denoted by p

i

, 0 � i < n. Then

p

i

= 1=2 + (1=2)

i+1

and 1=2 < p

i

� 1.

Proof. Let [i℄ denote the arry out from the addition of x and k after i bits,

(refer �gure 1). Clearly, y[0℄ = x[0℄� k[0℄, with probability 1. Thus p

0

= 1.

(i+1) i (i−1) 01

2. 0, 1, ... ,(i−1), i, (i+1), ... indicates the bit positions of y
1. The Output Register y which stores the sum of two registers x and k

3. c[i−1] indicates the carry out after the addition of (i−1) bits are complete

   c[i] c[i−1]

Fig. 1. The Output State of the sum
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Now, y[1℄ = x[1℄� k[1℄ when there is no arry [0℄, fed from the 0

th

bit.

Now, [0℄ = 0, with probability 3=4 and hene p

1

= 3=4.

Let, the event that the i

th

bit of y an be expressed as a linear expression

x[i℄ and k[i℄ has a probability p

i

. Similarly the (i+1)

th

an be linearly expessed

with a probability p

i+1

.

Now, we note the following fat. The (i+1)

th

bit annot be linearly expressed

if there is a arry from the i

th

bit, that is if [i℄=1.

This an be divided into two mutually exlusive ases. First the event say A,

[i� 1℄=0 and the addition of x[i℄ and y[i℄ generates a arry. Now, when [i� 1℄

= 0, then y[i℄ must have been linearly expressed (using the above fat) and the

probability by de�nition is p

i

. Thus the probability that A is true is 1=4:p

i

.

The other event B is the ase where [i� 1℄=1 and the addition of x[i℄ and

y[i℄ propagates the arry. The probability that B is true is 3=4:(1� p

i

).

Clearly if the event (A [ B) ours then the (i+ 1)

th

bit annot be linearly

expressed and the probability is by de�nition (1� p

i+1

).

Thus, (1�p

i+1

) = P (A[B) = P (A)+P (B) (beause A and B are mutually

exlusive)

= 1=4:p

i

+ 3=4:(1� p

i

)

or, p

i+1

=1=4 + p

i

=2

Using the reurrene relation we have

p

i+1

=1=4+ p

i

=2

=1=4 + 1=2(1=4+ p

i�1

=2)

=1=4[1 + 1=2℄ + (1=2)

2

p

i�1

Thus ontinnuing we have

p

i+1

=1=4[1 + (1=2) + (1=2)

2

+ : : :+ (1=2)

i

℄ + (1=2)

i+1

p

0

=1=2[1 + (1=2)

i+1

℄, sine p

0

= 1

Thus, p

i

= 1=2[1 + (1=2)

i

℄ = 1=2 + (1=2)

i+1

.

Using the equation we have p

0

= 1; p

1

= 3=4; p

2

= 5=8; p

3

= 9=16 and so on.

Clearly, 1=2 < p

i

� 1.

Therefore, the bias of the linear approximation relating to the i

th

bit position

is (p

i

� 1=2) = 1=2

i+1

and hene falls exponentially fast with i.

In the following theorems we ompute the maximum value of the biases of all

possible linear approximations of the sum bits. We show in the following theorem

that the bias annot be more than 1=2

i+1

.

Theorem 2. For given n-bit inputs x and k the output is denoted by another

n bit number y = (x + k) mod 2

n

. The largest bias of a linear approximation of

y[i℄ is (1=2)

i+1

.

Proof. It is evident that, y[i℄ = x[i℄� k[i℄� [i� 1℄, where [i� 1℄ is the arry in

of the i

th

bit of the addition. The arry in is the non-linear part of the equation.

Thus in order to obtain various linear approximations for the non-linear part

linear approximations have to be found out for the arry in term. Eah possible

approximation of [i℄, denoted by L[i℄ will give rise to di�erent biases whih are

equal to the bias of a linear approximation of y[i℄.
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The equation for [0℄ = x[0℄k[0℄, whih is a boolean funtion for two variables.

Likewise, [1℄ = majority(x[1℄; k[1℄; [0℄)

= majority(x[1℄; k[1℄; x[0℄k[0℄)

= x[1℄k[1℄� x[1℄x[0℄k[0℄� k[1℄x[0℄k[0℄.

Thus [1℄ is a boolean funtion of four variables.

Likewise, [i℄ is a boolean funtion for 2(i+ 1) variables.

The maximum non-linearity for an m variable boolean funtion, where m

is even, is 2

m�1

� 2

m=2�1

. Hene, the probability of math for the best linear

approximation of a boolean funtion operating on an even number of variables

is: 1�

2

m�1

�2

m=2�1

2

m

=

1

2

+ 2

�(m=2+1)

.

Thus, the probability of mathing for the best linear approximation for [i℄

is 1=2 + 2

�(i+2)

, substituting m = 2(i+ 1).

The output y[i℄ = x[i℄� k[i℄� [i� 1℄ an thus be approximated by a linear

equation, y

0

[i℄ = x[i℄�k[i℄�L[i�1℄, where L[i�1℄ is the best linear approximation

for [i� 1℄.

Hene, the largest probability with whih a linear approximation an math

y[i℄ is 1=2+2

�(i�1+2)

= 1=2+2

�(i+1)

. Thus, the largest bias of a linear approx-

imation for y[i℄ is (1=2)

i+1

.

From the above results it is evident that:

Corollary 1. The best linear approximation for s[i℄ is a[i℄ � k[i℄, where the

probability of math is 1=2 + 2

�(i+1)

and hene the bias is 2

�(i+1)

.

So, if the key-mixing step in the blok ipher is an addition modulo 2

n

step,

the probability of any linear expression relating to the key elements may be

estimated using the above result and the Piling-Up lemma. If the resulting linear

expression involves any partiular bit position, say the i

th

bit of the key, the

bias of the resulting equation is lesser than (1=2)

i+1

and as the following table

suggests the biases beome negligible very fast.

The bias of the linear expression relating the key bits have been omputed

using the above expression and tabulated in table 1.

Table 1. Biases of Linear Approximations Involving Key Bits

Key Bit #

Position 0 1 2 3 4 5 6 7 8 9 10

Bias 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0079 0.0039 0.0020 0.0010 0.0004

We see that the bias of the linear approximations involving the key bits falls

ver fast. With an expeted key size of 128 the bias of the linear approximations

is almost zero (negligible) beyond a bit position of six (marked in table 1). This

fat makes the �nding of linear approximations in the ipher with a large bias a

more diÆult task. Disovering the key through Linear Cryptanalysis beomes

improbable.
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In order to observe the e�ets of key mixing through addition on linear rypt-

analysis we onstrut two SPN iphers, GPig1 and GPig2. GPig2 di�ers from

GPig1 in the fat that the key mixing is performed through addition modulo 2

n

.

First, the onstrution of the two blok iphers are highlighted in the following

setion.

3 Constrution of the SPN Ciphers : GPig1 and GPig2

In this setion we present the onstrution of Substitution-Permutation net-

works, GPig1 and GPig2, whih is subsequently ryptanalyzed using linear rypt-

analysis. The ipher, named GPig1, has been hosen from the tutorial presented

in [10, 6℄. The ipher GPig1 is essentially a traditional SPN blok ipher, where

the key mixing is performed by exoring between the data and the round keys.

GPig1 is modi�ed into another ipher and named GPig2, the only modi�ation

in the latter ipher being that the key mixing step is performed through addi-

tion modulo 2

n

. In subsequent setions linear ryptanalysis against the modi�ed

ipher has been ompared with that of the original ipher to demonstrate the

bene�t of the hange.

3.1 The Substitution-Permutation Network-GPig1

In �gure 2 the unmodi�ed blok ipher GPig1 is illustrated. The ipher takes a

16-bit input blok and proesses the blok by repeating the basi operations of

a round four times. Eah round onsists of

{ Substitution

{ a Transposition of bits (Permutation)

{ a Key Mixing Step

This basi struture is the Fiestel Network and the basi operations are

similar to those found in DES and in many modern iphers, inluding Rijndael.

Thus, the experimentation performed on the SPN ipher with respet to linear

ryptanalysis is also appliable in ase of standard and more pratial blok

iphers, without loss of generality.

The various bloks used in the blok ipher are detailed next.

Substitution: In the ipher, the 16 bit data blok data is subdivided into

four groups (sub-bloks). Eah sub-blok forms an input to a 4�4 S-box (a

substitution with 4 input and 4 output bits), whih an be implemented easily

with a table lookup of sixteen 4-bit values, indexed by the integer represented

by the 4 input bits. For the ipher, the same S-box is hosen for all the rounds

and is hosen from the S-boxes of DES. It is the �rst row of the �rst S-box.

In table 2, the most signi�ant bit of the hexadeimal notation represents the

leftmost bit of the S-box in �gure 2.
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 S11 S12  S13 S14

S24

     subkey K    Mixing 1  through exoring

     subkey K    Mixing through exoring 4

C1  16.   .   .              Ciphertext                  .    .    .     C

     subkey K    Mixing through exoring 5

S21 S22 S23

S31 S32 S33 S34

S41 S42 S43 S 44

     subkey K    Mixing through exoring 2

     subkey K    Mixing through exoring

               
1P  16.   .   .              Plaintext                     .    .    .     P

 3

Fig. 2. The Struture of GPig1
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Table 2. S-box Representation (in hexadeimal)

input 0 1 2 3 4 5 6 7 8 9 A B C D E F

output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Permutation: The permutation portion of a round is simply the transposition

of the bits or the permutation of the bit positions. The permutation of �gure 2

is given in table 3 (where the numbers represent bit positions in the blok, with

1 being the leftmost bit and 16 being the rightmost bit) and an be simply

desribed as: the i

th

input bit is onneted to the j

th

output bit (see �gure 2).

Table 3. Permutation

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Key Mixing: The key mixing is ahieved in the blok ipher through bit-wise

exlusive-OR between the key bits assoiated with a round (referred to as a

subkey) and the data blok input to a round. The subkey for a round is derived

from the master's key through a proess known as the key shedule. In the

ipher, we shall assume that all the subkeys are independently generated and

are unrelated.

Deryption: In order to derypt, data is essentially passed bakwards through

the network. However the S-boxes have to be bijetive. Also, the subkeys have

to be applied in the reverse order for proper deryption.

3.2 The modi�ed SPN Cipher-GPig2

GPig2 is a similar blok ipher as GPig1 with the only di�erene being in the

key mixing step. Instead of exor operations bewteen the data of the i

th

round

(X

i

) and the i

th

round key (K

i

), the key mixing in GPig2 is performed through

addition modulo 2

16

. Thus, we replae the key mixing step of the i

th

round:

Y

i

= X

i

�K

i

with, Y

i

= (X

i

+K

i

)%2

16

, where + represents the arithmeti ad-

dition operation. The symbol % is the modulo operation, st 0 � Y

i

� 2

16

.

It is lear that the step is a reversible step, sine X

i

= (Y

i

�K

i

)%2

16

, where

� refers to signed arithmeti subtration.

In the present setion both GPig1 and GPig2 are analyzed under the light

of linear attak. In order to start with the analysis we �rst need to analyze the

S-box omponents and obtain linear approximations for the S-box, whih is the

same in both the iphers.
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4 Linear Cryptanalysis of GPig1 and GPig2

The linear approximations of the S-box is presented in [6, 10℄. We summarise

the result with a brief desription. As �gure 3 shows, the input bits of the S-

box are represented by X

1

; X

2

; X

3

; X

4

and the output by Y

1

; Y

2

; Y

3

; Y

4

. A linear

approximation involving the input bits is denoted by a

1

X

1

�a

2

X

2

�a

3

X

3

�a

4

X

4

,

where a

i

2 f0,1g. The approximation an be represented by a hexadeimal value

a

1

a

2

a

3

a

4

, where a

1

is the most signi�ant bit. Similarly the linear approximation

involving the output bits, b

1

X

1

� b

2

X

2

� b

3

X

3

� b

4

X

4

, where b

i

2 f0,1g, is

denoted by the hexadeimal value b

1

b

2

b

3

b

4

. In order to obtain the probability of

a linear approximation, all the 16 possible input values for X are applied, and

the orresponding output values of Y are examined. The number of mathes

between the output Y and the linear approximation of the output is obtained

(N). Thus the bias is

N

16

�

1

2

.

2XX1 X3 X4

1 2 3 4Y Y Y Y

    S−Box

Fig. 3. S-box Mapping

For example, for the expression,

X

2

�X

3

= Y

1

� Y

3

� Y

4

,

it is observed that out of the 16 ases, 12 is the number of mathes. Thus

the probability of the linear approximation is

12

16

=

3

4

and the bias is

3

4

�

1

2

=

1

4

.

A omplete enumeration of all the linear approximations of the S-box in the

ipher is given in table 4 [6℄. The entries of the table are �lled up with the values

N�8. Thus, the bias for a linear approximation is obtained by dividing an entry

in the table by 16. Hene, for the above example the input sum in hexadeimal

is 6 and the orresponding output sum is B. Thus the orresponding entry in

the table is +4 and therefore the bias is +

4

16

=

1

4

.
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Table 4. Linear Approximation Table (LAT) of S-box

Output Sum

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 +8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 -2 -2 0 0 -2 +6 +2 +2 0 0 +2 +2 0 0

2 0 0 -2 -2 0 0 -2 -2 0 0 +2 +2 0 0 -6 +2

I 3 0 0 0 0 0 0 0 0 +2 -6 -2 -2 +2 +2 -2 -2

n 4 0 +2 0 -2 -2 -4 -2 0 0 -2 0 +2 +2 -4 +2 0

p 5 0 -2 -2 0 -2 0 +4 +2 -2 0 -4 +2 0 -2 -2 0

u 6 0 +2 -2 +4 +2 0 0 +2 0 -2 +2 +4 -2 0 0 -2

t 7 0 -2 0 +2 +2 -4 +2 0 -2 0 +2 0 +4 +2 0 +2

8 0 0 0 0 0 0 0 0 -2 +2 +2 -2 +2 -2 -2 -6

S 9 0 0 -2 -2 0 0 -2 -2 -4 0 -2 +2 0 +4 +2 -2

u A 0 +4 -2 +2 -4 0 +2 -2 +2 +2 0 0 +2 +2 0 0

m B 0 +4 0 -4 +4 0 +4 0 0 0 0 0 0 0 0 0

C 0 -2 +4 -2 -2 0 +2 0 +2 0 +2 +4 0 +2 0 -2

D 0 +2 +2 0 -2 +4 0 +2 -4 -2 +2 0 +2 0 0 +2

E 0 +2 +2 0 -2 -4 0 +2 -2 0 0 -2 -4 +2 -2 0

F 0 -2 -4 -2 -2 0 +2 0 0 -2 +4 -2 -2 0 +2 0

4.1 Linear Approximations for the omplete Ciphers

The biases of the linear approximations have been obtained for the S-boxes of

the SPN networks. By onatenating appropriate linear approximations of the S-

boxes, the linear approximations of the omplete ipher involving plaintext bits

and data bits from the output of the seond last round of S-boxes are obtained,

using the Piling-Up lemma. Following is an example of the alulation of the

bias of a linear approximation of both the iphers. It is evident from the results

that the bias of a linear approximation for GPig2 is muh lesser than that for

GPig1.

In the following example, U

i

(V

j

) represents the 16-bit blok of bits at the

input (output) of the round i S-boxes and U

i;j

(V

i;j

) represent the j

th

bit of blok

U

i

(V

j

) (where the bits are numbered from 1 to 16 from left to right in �gure 2).

In ase of GPig1 the 16-bit blok key for the i

th

round , K

i

, is exlusive-ORed

at the input to round i. However, K

5

is the key exlusive-ORed at the output of

round 4. In the ase of GPig2, instead of exlusive-OR, as already pointed out,

the key bits are added modulo 2

n

to the data bloks.

Example 1. Comparision of the probability biases of linear approximations for

the �rst 3 rounds of GPig1 and GPig2

Sample Linear Approximation: U

4;6

�U

4;8

�U

4;14

�U

4;16

�P

5

�P

7

�P

8

= 0

GPig1:

In order to obtain the linear approximation for the �rst two rounds we on-

sider the following linear expressions:

1. V

1;6

= U

1;5

� U

1;7

� U

1;8

, with bias

1

4
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2. U

1;5

= P

5

�K

1;5

, with bias

1

2

3. U

1;7

= P

7

�K

1;7

, with bias

1

2

4. U

1;8

= P

8

�K

1;8

, with bias

1

2

5. U

2;6

= V

2;6

� V

2;8

, with bias �

1

4

6. U

2;6

= V

1;6

�K

2;6

, with bias

1

2

The onatenation of the above expression leads to the following approxima-

tion:

V

2;6

� V

2;8

� P

5

� P

7

� P

8

�K

1;5

�K

1;7

�K

1;8

�K

2;6

= 0 (1)

The Piling-Up Lemma predits that the bias of equation 1 is equal to

�

1

= 2

5

(

1

4

1

2

1

2

1

2

(�

1

4

)

1

2

) =�

1

8

.

Similarly, in order to obtain the linear approximation for the third round we

onsider the following expressions:

1. U

3;6

= V

2;6

�K

3;6

, with bias

1

2

2. U

3;14

= V

2;8

�K

3;14

, with bias

1

2

3. U

3;6

= V

3;6

� V

3;8

, with bias �

1

4

4. U

3;14

= V

3;14

� V

3;6

, with bias �

1

4

Combining the equations we arrive at the expression:

V

3;6

� V

3;8

� V

3;14

� V

3;16

� V

2;6

�K

3;6

� V

2;8

�K

3;14

= 0 (2)

, with a bias of �

2

= 2

3

(

1

2

1

2

(�

1

4

)(�

1

4

)) = +

1

8

.

Combining equation 1 and equation 2 we get the expression:

V

3;6

�V

3;8

�V

3;14

�V

3;16

�P

5

�P

7

�P

8

�K

1;5

�K

1;7

�K

1;8

�K

2;6

�K

3;6

�K

3;14

= 0

(3)

The following expressions:

1. U

4;6

= V

3;6

�K

4;6

2. U

4;8

= V

3;14

�K

4;8

3. U

4;14

= V

3;8

�K

4;14

4. U

4;16

= V

3;16

�K

4;16

, eah having a bias of

1

2

, are ombined with equation 3 to �nally obtain:

U

4;6

� U

4;8

� U

4;14

� U

4;16

� P

5

� P

7

� P

8

�

X

K

= 0 (4)

,where

P

K

= K

1;5

�K

1;7

�K

1;8

�K

2;6

�K

3;6

�K

3;14

�K

4;6

�K

4;8

�K

4;14

�

K

4;16

.

Hene, using Piling-Up Lemma the bias of the equation is:

�

3

= 2

5

(�

1

�

2

(

1

2

4

)) = 2

5

((�

1

8

)(

1

8

)(

1

2

4

)) = �

1

32

.

Now, sine

P

K

is �xed (that is either 0 or 1 depending on the key bits), the

linear approximation
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U

4;6

� U

4;8

� U

4;14

� U

4;16

� P

5

� P

7

� P

8

= 0 (5)

holds with probability

1

2

�

1

32

=

15

32

. or 1�

15

32

, depending on whether

P

K

is

0 or 1.

Thus, the bias of the linear expression (equation 5) has a magintude of

1

32

.

Next, we ompute the bias of the linear expression in the ase of the ipher

GPig2.

GPig2:

In order to obtain the bias of the linear approximation a similar alulation

is performed.

The biases of the linear approximations of the S-boxes are idential for both

the iphers. Only the biases of the linear expressions involving the key bits

are di�erent for GPig2 and are omputed using Theorems 2 and 3. We �rst

enumerate the linear expressions involving the key bits and the orresponding

biases:

1. U

1;5

= P

5

�K

1;5

, with bias

1

2

6

2. U

1;7

= P

7

�K

1;7

, with bias

1

2

8

3. U

1;8

= P

8

�K

1;8

, with bias

1

2

9

4. U

2;6

= V

1;6

�K

2;6

, with bias

1

2

7

Thus, the bias of equation 1 in ase of GPig2 is :

�

1

0

= 2

5

(

1

4

1

2

6

1

2

8

1

2

9

(�

1

4

)

1

2

7

) =�

1

2

29

.

In order to obtain the linear approximation for round 3, the linear expression

involving the key bits are:

1. U

3;6

= V

2;6

�K

3;6

, with bias

1

2

7

2. U

3;14

= V

2;8

�K

3;14

, with bias

1

2

15

Thus the bias of equation 2 beomes:

�

2

0

= 2

3

(

1

2

7

1

2

15

(�

1

4

)(�

1

4

)) =

1

2

23

.

In order to arrive at the �nal expression (equation 3), the expressions involv-

ing the key bits of round 4 are

1. U

4;6

= V

3;6

�K

4;6

, with bias

1

2

7

2. U

4;8

= V

3;14

�K

4;8

, with bias

1

2

9

3. U

4;14

= V

3;8

�K

4;14

, with bias

1

2

15

4. U

4;16

= V

3;16

�K

4;16

, with bias

1

2

17

Thus, the bias of equation 5 is:

�

3

0

= 2

5

(�

1

0

�

2

0

1

2

7

1

2

9

1

2

15

1

2

17

) = 2

5

((�

1

2

29

)(

1

2

23

)(

1

2

48

)) =

1

2

95

� 0.

The above example demonstrates that when the key mixing step in the SPN

blok ipher is performed with the help of addition modulo 2

n

, the bias of the

linear expressions are almost zero, and thus annot be used in linear ryptanal-

ysis.

In the following setion we perform a linear attak on both the iphers,

GPig1 and GPig2 and evaluate the strength of the seond ipher against the

ryptanalysis.
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5 Experimental Extration of Key Bits

In this setion it is experimentally shown that GPig1 is suessfully ryptana-

lyzed using the linear expression, mentioned in the example. It is also demon-

strated that for GPig2 suh an attak does not work. The reason being, in order

for linear ryptanalysis to be suessful the bias of (R� 1) round linear expres-

sions (approximations) for an R round blok ipher has to be large. However,

in the ase of GPig2 the biases of linear expressions falls very fast to zero and

hene suh equations annot be exploited in a onventional linear attak.

5.1 Experimental Setup

The proedure adopted to evaluate the last round keys are as follows:

1. A large number (10; 000) of ipher-texts are obtained by enrypting plain-

texts i,e we generate 10; 000 known plaintext/ iphertext pairs.

2. The attaker onsiders the linear approximation (mentioned in the example)

of the �rst 3 rounds of the iphers. To restate the expression is:

U

4;6

� U

4;8

� U

4;14

� U

4;16

� P

5

� P

7

� P

8

= 0 (6)

The terms U

4;6

, U

4;8

and U

4;14

a�ets the S-boxes S

42

and S

44

. Hene, the

attaker guesses (K

5;5

; : : : ;K

5;8

) and (K

5;13

; : : : ;K

5;16

). In ase of GPig1 he

exors them with the iphertext bits to obtain (V

5;5

; : : : ; V

5;16

). Then he per-

forms the inverse of the S-Box operations to obtain the values of U

4;6

, U

4;8

and U

4;14

. If their values satisfy equation 6 then a ount is inremented for

the guessed key bits (K

5;5

; : : : ;K

5;8

;K

5;13

; : : : ;K

5;16

). The partial subkey

whih has the ount whih di�ers greatest from half the number of plain-

text/ iphertext samples (50; 000) is assumed to represent the orret values

of the guessed key bits. An inorret subkey is assumed to be equivalent to

a random guess to the bits of the linear expression and this holds with prob-

ability lose to 1=2. The same attak is also performed on GPig2. Only we

assume that the attaker knows the values of the key bits (K

5;9

; : : : ;K

5;12

).

Thus here he guesses the partial keys (K

5;5

; : : : ;K

5;8

;K

5;13

; : : : ;K

5;16

) and

subtrats the key bits from the iphertext to arrive at the required values

of (V

5;5

; : : : ; V

5;16

) and �nally the values of U

4;6

, U

4;8

and U

4;14

. The rest of

the attak is similar. This gives a best ase senario to the attaker.

From, the table we see that the attak works �ne for GPig1, where the orret

subkey bits (last round) keys (K

5;5

; : : : ;K

5;8

;K

5;13

; : : : ;K

5;16

) = [2,4℄ leads

to the largest bias of 0:0308 and is thus deteted. The bias is also lose to

the alulated bias of 1=32=0:03125.

However the same attak on GPig2 shows that the bias of the expression for

the orret key bits [2,4℄ is only 0:0010 whih is less than the biases of the in-

orret key bits. The result implies that the probability of linear expressions

to hold in ase of GPig2 is muh lose to 1=2 and is thus very hard to dif-

ferentiate from a random guess. Thus GPig2 o�ers a muh better resistane
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to linear ryptanalysis than GPig1. Also note that in the experimentation

it was observed that the highest bias (0:0139) oured for a key bit = E9,

whih is an inorret key.

Table 5. Experimental Results for Linear Attak

Partial SubKey Bias Partial SubKey Bias

[K

5;5

; ::; K

5;8

; ::; K

5;13

℄ XOR ADD [K

5;5

; ::; K

5;8

; ::; K

5;13

℄ XOR ADD

1C 0.0023 0.0027 2A 0.0099 0.0030

1D 0.0042 0.0084 2B 0.0053 0.0044

1E 0.0013 0.0006 2C 0.0060 0.0120

1F 0.0055 0.0034 2D 0.0107 0.0034

20 0.0011 0.0023 2E 0.0074 0.0061

21 0.0061 0.0053 2F 0.0024 0.0012

22 0.0028 0.0049 30 0.0137 0.0002

23 0.0075 0.0067 31 0.0151 0.0043

24 0.0308 0.0010 32 0.0104 0.0048

25 0.0156 0.0079 33 0.0151 0.0010

26 0.0148 0.0022 34 0.0090 0.0025

27 0.0011 0.0003 35 0.0130 0.0048

28 0.0266 0.0009 36 0.0078 0.0034

29 0.0107 0.0046 37 0.0025 0.0020

Max Bias for XOR: 0.0308 for the orret Key 24H

Max Bias for Add: 0.0139 for an inorret Key E9H

6 Conlusion

In the present paper the onventional key mixing have been altered from exor to

addition modulo 2

n

. The largest bias of linear approximations for the output bit

of suh a key mixing have been omputed. Both theoretially and experimentally

it has been demonstrated that suh a modi�ation makes the ipher strong

against Linear Cryptanalysis.
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