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Abstract

We provide a construction for a group signature scheme that is provably secure in a universally com-
posable framework, within the standard model with trusted parameters. Our proposed scheme is fairly
simple and its efficiency falls within small factors of the most efficient group signature schemes with
provable security in any model (including random oracles). Security of our constructions require new
cryptographic assumptions, namely the Strong LRSW, EDH, and Strong SXDH assumptions. Evidence
for any assumption we introduce is provided by proving hardness in the generic group model.

Our second contribution is the first definition of security for group signatures based on the simulata-
bility of real protocol executions in an ideal setting that captures the basic properties of unforgeability,
anonymity, unlinkability, and exculpability for group signature schemes.

1 Introduction

Group signature schemes, introduced by Chaum and van Heyst [23], allow a member of a user group to
sign anonymously on behalf of the group, where a user’s anonymity may be revoked by a designated group
manager, in case of disputes.

The motivation of this paper is twofold. Our first motivation is to build a practical group signature
scheme provably secure under standard assumptions, in particular without resorting to the random oracle
model. Prior to this work, there was no group signature scheme known achieving this (with the exception of
the recent scheme by Boyen-Waters [16] which, however, fails to meet all required properties–we will later
discuss their scheme in more detail).

In this paper, we present a full group signature scheme provably secure under new number-theoretic
assumptions. Now, one might say that we trade the “assumption” that the Fiat-Shamir heuristic works
with proof of knowledge protocols for discrete logarithms (e.g., such as the Schnorr signature scheme)
with other possibly false assumptions. However, while one will probably never be able to prove that the
Fiat-Shamir heuristic is reasonable for some cases (on the contrary, many cases are known for which it is
unreasonable [33]), our new assumptions are algebraic and hence naturally much easier to analyze. Indeed,
as a first step towards their justification, we prove that they hold in the generic group model [40, 46]. We
hasten to point out that one can of course prove assumptions hard in the generic group model that are not
hard against an algebraically unrestricted adversary, and that the generic group model has some of the same
faults as random oracles [27]. Rather, a proof in the generic model should be considered a sanity check for
an complexity assumption.

In the light of the quest for a group signature scheme provably secure in the standard model, one can view
both schemes, the Boyen-Waters one and ours, as first steps in this direction. The Boyen-Waters scheme uses
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somewhat less complicated assumptions, but sacrifies some desirable properties while our scheme captures
these properties but makes more involved assumptions.

The second motivation of this paper is the definition of security in the reactive security or universally
composablility model [8, 42, 22, 43]. Let us expand here. The security of early schemes was defined in terms
of whether they satisfied a number of independent properties, and lacked a comprehensive view of adver-
sarial behavior. Indeed, as initially the set of features considered was insufficient, some proposed schemes
were subsequently broken. An important realization was the requirement that membership certificates be
the equivalent of group manager signatures, in order to prevent against attacks by arbitrary group member
coalitions [5]. Later, Bellare, Micciancio, and Warinschi [9] (BMW) introduced a security formalism based
on adversarial games that combined the several requirements of previous works into fewer ones (namely,
traceability and anonymity). However, the BMW formalization relies on the existence of a (trusted) key-
issuing entity that generates all keys in the system and distributes them to the group manager and group
members. As argued by Kiayias and Yung [36], BMW models aweakerprimitive than the group signatures
proposed by Chaum and van Heyst, since assuming a “tamper-proof” key setup conflicts with the goals
of many practical schemes. The BMW model has been extensively adapted (via incorporating exculpabil-
ity, changing the proof model to the random oracle setting and/or to dynamic groups) to allow for security
proofs of recently proposed group signature schemes, e.g., works by Boneh et al. [13] and Camenisch and
Lysyanskaya [19].

The first formal model to apply to the case of dynamic groups was introduced by Kiayias et al. [36, 35].
The formalization works in the random oracle model, not the standard model, but it captures closely the
security requirements of practical group signatures, and it can be readily applied to formally prove the
security of practical schemes. Indeed, [36] includes a security proof of a variant of the Ateniese et al.
scheme [4]. More recently, Bellare, Shi, and Zhang [11] have proposed a standard-model formalism for
dynamic groups, and constructed theoretical schemes based on black-box zero-knowledge primitives.

Simultaneously with this evolution of understanding in group signatures was the development of the uni-
versally composable (UC)/reactive framework [8, 42, 22, 43]. The UC/reactive framework enables proofs
of security of protocols that are valid under concurrent execution and in composition with other arbitrary
protocols. It has been shown that this framework is more powerful than a property based definitional ap-
proach as it captures all properties at the same time. Indeed, examples are known of schemes that satisfy
a property based defintion (i.e., each property individually) but not a UC/reactive framework definition that
requires the fullfilment of all the properties at the same time [22].

To date, it remained an open problem to introduce a UC/reactive security model for group signatures.
We introduce this definition in Section 2. It was carefully constructed to incorporate the original vision
of Chaum and van Heyst and its subsequent developments. Our definition implies many of the guarantees
of prior property-based definitions (e.g., [9, 11, 36, 35]). Two properties that we do not require are: (1)
membership revocation, and (2) anonymity even after exposure of a user’s secret key (forward anonymity),
as in BMW [9]. Regarding point (2), we mean that we provide anonymity only to honest users, i.e., users of
which the adversary does not know the secret key of which we believe is sufficient in practise. We emphasize
that our model does not require any trusted key-issuing entity and group member secrets are known only to
group members.

Note that our results are not in contradiction with the work of Datta et al. [26] on the impossibility of
realizing an ideal functionality for group signatures withperfect anonymity(i.e., the probability of guessing
the identity of one of two signers isexactly1/2) andperfect traceability(i.e., the probability of a dishonest
group manager violating exculpability isexactlyzero). Datta et al. admit that they only consider a strong
form of group signature, and indeed, their formulation of group signatures has a single entity generating all
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signing keys. They also require that the scheme remain secure even when all public parameters are chosen
by a potentially malicious group manager, i.e., they consider UC security in theplain model. In contrast,
our definition (and scheme) does not have a key issuing entity and will allow some global parameters to be
given to the group manager—e.g., bilinear map parameters. This is sometimes referred to as a UC model
with trusted parameters.

We now summarize the contributions of our paper.

1.1 Our Contribution and Comparison with Previous Work

Strong security model: We provide the first definition of security for group signature schemes as an ideal
functionality, and provide a construction of a practical and provably secure scheme within the new frame-
work. Static-membership versions of our group signature schemes are secure in the context of composition
and concurrent executions. The dynamic-membership version of our group signature scheme is similarly
secure, if the join protocol is restricted to sequential execution.

Better Efficiency: Our construction is the first in the standard model to provideconstanttime and space
efficiency with respect to the security parameter. Concurrently, and independently from us, Boyen and
Waters [16] proposed a scheme provably secure the standard model (under a different definition of security).
However, in their scheme the bit length of the signatures and the complexity of the signature and verification
algorithms areO((log n) · k), wheren is the number of group members andk is the security parameter. In
our scheme, all of these complexities will beO((log n) + k), where the(log n) term is there to guarantee
that there are enough unique secret keys for each user in the algebraic group. In practice,log n is smaller
thank, so our scheme is anO(k) scheme (i.e., constant in the security parameter).

CCA-anonymity: Our scheme achieves CCA anonymity, i.e., anonymity holds even when the adversary
continually has access to an open oracle (which, when queried on a signature, returns the signer’s iden-
tity). In constrast, the Boyen-Waters scheme achieves only CPA anonymity, where the adversary is not
allowed access to the oracle after receiving the challenge signature. Similarly as CCA security is the de
facto requirement for encryption schemes, we believe this is a vital property for group signatures.

Strong exculpability: We achieve exculpability, an important property originally proposed by Chaum and
van Heyst. In our scheme, a user’s secret key is chosen by the user, and we prove that group managers
cannot sign on behalf of honest users. The Boyen-Waters scheme lacks (strong) exculpability of users: In
their scheme, a trusted key-issuing entity generates and distributes users’ secret keys. Thus, this entity can
sign messages on behalf of the user, and thus holding usersaccountablefor any misbehavior is difficult.

Forward security: Our scheme does not achieve forward anonymity as defined in BMW [9] under the
full anonymity property where members remain untraceable even if their secret keys are exposed, but only
ordinary anonymity. The Boyen and Waters scheme does achieve forward anonymity.

General setting for bilinear mappings: We use curves with isomorphism-free paired groups, arguably the
most efficient, secure, and versatile setting for pairings-based cryptography (e.g., see Galbraith et. al. [31]).
In contrast, the Boyen-Waters scheme is restricted to symmetric bilinear mapping settings (supersingular
curves). Even more significantly, their scheme uses elliptic curve groups of composite order, and they
require that this order be hard to factor, implying it must be large (1024 bits or larger). Consequently, the
representation of every elliptic curve point is similarly large, which heavily impacts the performance of
cryptographic operations in these curves, as well as their bandwidth requirements.
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1.2 Overview of the Construction

We now provide intuition for understanding our construction, described in detail in Section 5. Our group
signature scheme has the standard protocols:Setup, Join, GroupSign, GroupVerify, andOpen. LetS =
(Gen,Sign, Verify) be an efficient signature scheme secure in the standard model. Let the group manager
have keypair(GPK ,GSK ) and a user have keypair(pk , sk), generated according toGen. Consider the
following scheme. During theJoin protocol, the group manager gives the user a certificate on her public
key: SignGSK (pk). To sign messagem as a group member, the user prepends her certificate and public key
to her signature: (SignGSK (pk), pk , Signsk (m)). This scheme is clearly unforgeable, but not anonymous.
In order to achieve anonymity, the certificate and user’s public key must be made unlinkably randomizable,
while the signature element must be instantiated using a key-private signature scheme. We actually have the
manager and user employ different signature schemes,S1 andS2.

S1 is based on the pairing-based signature scheme of Camenisch and Lysyanskaya [19] (CL); Specifi-
cally it uses the extension of this scheme (CL+) by Ateniese et al. [3]. Consider a bilinear map (pairing)
e : G1 × G2 → GT , defined on groups of prime orderp, with generatorsg, g̃, ĝ, respectively. Select
randoms, t ∈ Zp and setsk = (s, t) andpk = (g̃s, g̃t). To sign a messagem ∈ Z∗

p, choose random
a ∈ G1 and output the tuple(a, at, as+stm, am, amt). Verify signature(A,B,C,D,E) by checking that:
(1) e(A, g̃t) = e(B, g̃), (2) e(D, g̃t) = e(E, g̃), and (3)e(AE, g̃s) = e(C, g̃).

The user’s certificate is nothing more than ablind CL+ signature from the group manager on the user’s
secret keysk , i.e., the group member signssk without learning its value, a necessary condition for our
scheme to provide exculpability. Fortunately, the CL+ signature inherits an efficient blind-signature pro-
tocol from the original CL scheme. In the above, we instantiate the elements(SignGSK (pk), pk) with
CL+

GSK (sk) = (a, at, as+st(sk), ask , at(sk)), which is the group manager’s signature onsk which can be
thought of as including an obfuscated version of the user’s public key(a, ask ). As observed in [3], these sig-
natures can be unlinkably re-randomized by choosing a randomr ∈ Zp and computing(ar, atr, a{s+st(sk)}r,
askr, at(sk)r), assuming DDH is hard inG1. The user may therefore release a random-looking copy of her
certificate with each group signature.

We implementS2 with a new signature scheme (secure in the standard model) which is based on the
weaksignatures of Boneh and Boyen [13] (BB). By weak, we mean the Boneh-Boyen signature scheme
proven weak message attack secure, where the adversary must submit all challenge messages in advance of
learning the public key. The scheme works in a similar pairing setting as theCL+ signature. Select a random
sk ∈ Zp and a random generatorg ∈ G1 and outputpk = (g, gsk ). To sign a messagem ∈ {0, 1}log |p|,
outputA = g̃1/(sk+m). Verify by checking thate(gmpk , A) = e(g, g̃).

As a thought experiment, consider our group signature structure using weak BB signatures to implement
S2. The construction is(CL+

GSK (sk); BB sk (m)) = (a, at, as+st(sk), ask , at(sk); g̃1/(sk+m)) = (A, B,
C, D, E, F ), verifiable by checking theCL+ signature first and then testing ife(DAm, F ) = e(A, g̃).
Unfortunately, as the BB signatures are deterministic, it will be obvious when the same user signs the same
message a second time. This violates our privacy definition, so we modify this basic scheme to provide more
privacy and enable longer messages.

In their paper [13], Boneh and Boyen present one method for adapting the weak scheme to longer mes-
sages. In this paper, we present another method, which we denoteBB+, that is more suited to our purposes.
To sign a messagem ∈ Z∗

p, select a randomv ∈ Zp and output the tuple(gv, g̃1/(sk+v), g̃1/(v+m)). Verify
signature triple(A, B, C) by checking thate(A pk , B) = e(g, g̃) ande(Agm, C) = e(g, g̃). We arrive
at the construction(CL+

GSK (sk); BB+
sk (m)), or more exactly(a, at, as+st(sk), ask , at(sk); av, g̃1/(sk+v),

g̃1/(v+m)) for messagem ∈ Z∗
p, wherea ∈ G1 andv ∈ Zp are randomly chosen for each new signature.

At this point, we have described the entire construction, except for how theOpen algorithm works. The
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simplest method is for the user to give the group manager atracing valuẽgsk during theJoin protocol. Later,
the group manager can open a signature(a, at, as+st(sk), ask , at(sk); av, g̃1/(sk+v), g̃1/(v+m)) = (A, B, C,
D, E; F , G, H) by testing ife(A, g̃sk ) = e(D, g̃) for each user. Obviously, this algorithm runs linearly
in the number of group members. We improve on this result in Section 6, providing two alternativeOpen
algorithms. The first hasO(

√
n · k) complexity, for membership groups of sizen and security parameterk,

under the same cryptographic assumptions as the basic scheme. The second reduces to((log n) + k) under
an additional assumption.

Remark 1.1 (Security under concurrent executions.)The join protocol is the only protocol in our scheme
that requires sequential composition for security, because it involves a zero-knowledge proof of knowledge.
In Appendix B, we discuss some techniques for securely achieving limited forms of concurrency.

Remark 1.2 (Revocation.)Finding an elegant revocation mechanism is a pervasive problem among group
signature schemes. To revoke a user in our scheme, the group manager could publish that user’stracing
informationobtained during the join protocol. We explore more efficient alternatives in the full version.

Length of Signatures. The signatures produced by this scheme are short. In the following comparisons
we are going use the NIST suggested equivalence of 80-bit symmetric security with RSA-1024 and 128-bit
symmetric security with RSA-3072.1 For our schemes, we estimate the key sizes from our generic-model
security reductions to be 1/3 of the equivalent symmetric key size, i.e., 240 bits for 80-bit symmetric security
and 384 bits for 128-bit symmetric security. This 3:1 ratio should be also used to compare schemes based
on theq-Strong Diffie Hellman assumption, due to recent results by Cheon [24].

Assuming that the bitlength of elements inG1 is 241 (an extra bit is needed to indicate they-coordinate
among two options), and that the curves implemented in the MIRACL library are used [44], the basic scheme
achieves roughly the same level of security as a 1024-bit RSA signature [13]. For these curves, the bitlengths
of elements inG2 are roughly three times that ofG1 (more precisely 721 bits), and our scheme would take
approximately 2888 bits to represent a group signature, comprised of six elements inG1 and two elements
in G2. If the newer curves of embedding degree 12 are used [7], one could employ 385-bit groups (for
128-bit generic security) to achieve RSA-3072 security equivalence. These new curves have better ratios,
with log |G2|/ log |G1| = 2. In this case, our signatures would take 3848 bits to be represented, about
25% larger than a plain RSA signature with the same security level. As mentioned before, this efficiency
is incomparable with that of Boyen and Waters [16], which (1) grow logarithmically with the number of
system members and (2) require elliptic curve group orders over a 1000 bits long.

Our scheme can be compared with the most efficient short group signatures secure in the random oracle
setting. For instance, the scheme by Boneh, Boyen, and Shacham [13], which achieves only CPA-anonymity,
would require about 2163 bits for the RSA-1024 security level (or about 1442 in the MNT setting).2 A
shorter scheme by Boneh and Shacham [15] requires1682 bits to achieve RSA-1024 comparable security.3

2 Group Signature Security Definition

Notation: if P is a protocol between partiesA andB, thenP (A(x), B(y)) denotes thatA’s input isx and
B’s input isy.

1http://www.nsa.gov/ia/industry/crypto elliptic curve.cfm
2Their paper provides the value 1533 bits instead of 2163, but this does not take into account the above mentioned results about

the concrete security of theq-Strong Diffie-Hellman assumption [24].
3Again, this value is larger than the one provided by the authors to account for the concrete security ofq-Strong Diffie-Hellman.
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A group signature scheme consists of the usual types of players: a group managerGM and a userUi.
These players can execute the algorithms:GroupSetup, UserKeyGen, Join, GroupSign, GroupVerify,
Open, andVerifyOpen. We now specify the input-output specifications for these algorithms as well as
providing some informal intuition for what they do.

Let params be global parameters generated during a setup phase; ideallyparams is empty.

– TheGroupSetup(1k, params) algorithm is a key generation algorithm for the group managerGM. It
takes as input the security parameter1k and outputs the key pair(pkGM, skGM). (Assume thatskGM
contains theparams, so we do not have to giveparams explicitly to the group manager again.)

– TheUserKeyGen(1k, params) algorithm is a key generation algorithm for a group memberU , which
outputs(pkU , skU ). (Assume thatskU contains theparams, so we do not have to giveparams
explicitly to the user again.)

– In theJoin(U(pkGM, skU ),GM(pkU , skGM)) protocol, the userU joins the signatory group managed
by GM. The user’s output is a personalized group signing credentialCU , or an error message.GM’s
output is some informationTU which will allow the group manager to revoke the anonymity of any
signatures produced byU . The group manager maintains a databaseD for this revocation information,
to which it adds the record(pkU , TU ).

– The GroupSign(skU ,CU ,m) algorithm allows group members to sign messages. It takes as input
the user’s secret keyskU , the user’s signing credentialCU , and an arbitrary stringm. The output is a
group signatureσ.

– TheGroupVerify(pkGM,m, σ) algorithm allows to publicly verify thatσ is a signature on message
m generated by some member of the group associated with group public keypkGM.

– TheOpen(skGM, D,m, σ) algorithm allows the group manager, withskGM and databaseD, to iden-
tify the group memberU who was responsible for creating the signatureσ on messagem. The output
is a member identitypkU or an error message.

– In theVerifyOpen(GM(skGM, D,m, σ, pk),V(pkGM,m, σ, pk)) protocol,GM convinces a verifier
that the user with public keypk was responsible for creating the signatureσ on messagem. The
verifier outputs either 1 (accept) or 0 (reject).

In addition to supporting the above algorithms, a group signature scheme must also becorrect and
secure. Correctness is fairly straightforward. Informally, if an honest user runsJoin with an honest group
manager, then neither will output an error message. If an honest user runsGroupSign, then the output will
be accepted by an honest verifier runningGroupVerify. If a signature passesGroupVerify and a honest
manager runsOpen, then the result will be accepted by an honest verifier runningVerifyOpen.

2.1 The Group Signature Ideal Functionality,Fgs

Our security model uses the ideal/real world model as in multiparty computation [20, 21, 22] and reactive
systems [42, 43] to capture the security properties of group signatures in a single definition.

In the real world, there are a number of parties who together execute some cryptographic protocol. A
number of these parties may be corrupted by the adversaryA (all corrupted parties are combined into this
single adversary). Each party receives its input and reports its output to the environmentZ. The environment
Z and the adversaryA may arbitrarily interact. In the ideal world, we have the same parties. As before,
each party receives its input and reports its output to the environment. However, instead of running a
cryptographic protocol, the parties provide their inputs to and receive their outputs from a trusted partyT .
The specification for howT behaves is formalized as an ideal functionality.
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We say that a cryptographic protocol securely implements an ideal functionality if for every real-world
adversaryA and every environmentZ, there exists a simulatorS, which controls the same parties in the
ideal world asA does in the real world, such thatZ cannot distinguish whether it is interacting in the real
world withA or in the ideal world withS.

Group Signature Ideal Functionality. We now describeFgs. In addition to the environmentZ, we
have two types of players: a group managerGM and usersUi. We work in thenon-adaptivesetting.

– Non-adaptive Setup: Each userUi tells the functionalityFgs whether or not it is corrupted. Option-
ally, in this stage the global parameters are broadcast to all parties.

– GroupSetup: Upon receiving(GM, “group setup”) from GM, send toS tuple(GM, “group setup”).
– UserKeyGen: Similarly, upon receiving(Ui, “keygen”) from Ui inform S.
– Join: Upon receiving(Ui, “enroll”) from Ui, ask the group managerGM if Ui may join the group.

TheGM responds withres i ∈ {0, 1}. Record the pair(Ui, res i) in databaseD and returnres i to Ui.
Additionally, if the group manager is corrupted, then register a special user corrupt-GM.

– GroupSign: Upon receiving(Ui, “sign”,m), wherem is an arbitrary string, check thatUi is a valid
member of the group by checking that the entry forUi in D hasres i = 1. If not, deny the command.
Otherwise, tell the simulatorS that GroupSign has been envoked on messagem. If the GM is
corrupted, also tell the simulator the identityUi. Ask S for a signature indexid . Record the entry
(Ui,m, id) in databaseL and return the valueid to Ui.

– GroupVerify: Upon receiving(Ui, “verify” ,m, id) from Ui (or GM), search databaseL for an entry
containing messagem, and if one exists, return 1. Otherwise, return 0.

– Open: This ideal operation combines both theOpen andVerifyOpen cryptographic protocols. Upon
receiving(Ui, “open”,m, id) from Ui, search databaseL for an entry(Uj , m, id) for anyUj . Ask
GM if it will allow Fgs to openid for userUi. If GM agrees andUj 6= corrupt-GM, then output the
identityUj . Otherwise, output⊥.

Let us provide some intuition for understanding this model. Informally, the properties that we capture
are unforgeability, anonymity, and exculpability. This definition is general enough to capture unforgeability
under adaptive chosen message attack [34] withoutrequiring schemes to bestronglyunforgeable [2]. In a
strongly unforgeable scheme, a new signature on a previously signed message is considered a forgery; while
in the standard notion, a forgery must be on a new message.

The definition also captures the important exculpability property (i.e., even a rogue group manager
cannot frame an honest user). Indeed, the environmentZ may instruct a user to sign any messages of
its choosing and may interact freely with the adversaryA. Our model, however, enforces that unless an
honest userUi requested a signature onm (i.e., sent(“sign”,m) toFgs), then for all values ofid , theOpen
command on(Ui,m, id) will return⊥.

Furthermore, there is a strong anonymity guarantee for a user: unless the group manager is corrupted,
the users remain anonymous. When the group manager is honest, the simulator must create signatures for
A knowing only the message contents, but not the identity of the honest user.

Finally, the definition ensures that, whenever the group manager is honest, he will be able to open all
group signatures. During theOpen command,Fgs only asksS for permission to execute the opening if the
group manager is corrupted. Thus, if a user honestly runs the verification algorithm and accepts a signature
as valid, then this user may be confident that an honestGM will later be able to open it, reveal the identity
of the original signer, and prove this to the user.

The above definition does not define membership revocation. However, it is not difficult to extendFgs

to address revocation, and we plan to do so in the full version of the paper.
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It is not hard to see that our definition implies prior many of the guarantees of the property-based def-
initions (e.g., [9, 11, 36, 35]). Two properties that we do not require are: (1) membership revocation, and
(2) anonymity even after exposure of a user secret key (forward anonymity), as in BMW [9]. While of
course both of these properties could be added easily to the model, our scheme does not statisfy them. Note,
however, that our definition (and scheme) does provide anonymity to (honest) users, i.e., users of which the
adversary is not privy of their secret keys. Finally, notice that our definition implies CCA anonymity, i.e.,
an anonymity property based definition where the adversary is allowed to query the open oracle even after
having been presented the challenge signature. This is in contrast to BMW model (and to the Boyen-Waters
group signature scheme) which provide only CPA anonymity, i.e., where the adversary is no longer allowed
access to the open oracle after seeing the challenge signature.

3 Preliminaries and Complexity Assumptions

Notation: The notationG = 〈g〉 means thatg generates the groupG.

Pairings: Let BilinearSetup be an algorithm that, on input the security parameter1k, outputs the parameters
for a pairing asγ = (p,G1,G2,GT , g, g̃), whereG1 = 〈g〉 andG2 = 〈g̃〉. We follow the notation of Boneh,
Lynn, and Shacham [14]. LetG1,G2, andGT all be (multiplicative) groups of prime orderp = Θ(2k),
where each element of each group has a unique binary representation. Furthermore, lete : G1 ×G2 → GT

be an efficientpairing, i.e., a mapping with the following properties: (Bilinearity) for allg ∈ G1, g̃ ∈ G2,
anda, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab; and (Non-degeneracy) ifg is a generator ofG1 andg̃ is a generator of
G2, thene(g, g̃) generatesGT .

3.1 Complexity Assumptions

The security of our construction in Section§5 is based on the following assumptions about pairing groups.
In Appendix§D, we provide generic group proofs for EDH and Strong SXDH. A generic group proof for
Strong LRSW was previously given in [3].

Two criticisms could be made of these assumptions. The first could be that they are closely related to
specific security properties of the scheme. With regards to this, we point out that even if wewereto assume
a specific property, such as unforgeability (which we don’t do), security in our model would not follow.
Indeed, it is non-trivial to show that our assumptions imply that our scheme realizes our ideal functionality.
We also point out that the generic group proofs of these assumptions are highly non-trivial and required new
techniques, which may be useful elsewhere.

A second criticism could be that the assumptions are interactive and thus not black-box falsifiable [39].
However, we believe that our provided generic-model hardness proofs show that these assumptions are
reasonable: Violating them would result in the design of elliptic curve algorithms with better than generic
efficiency, a major cryptographic breakthrough with likely wider ramifications. In addition, our proofs
provide estimates for the key sizes required for particular security levels, making our security assumptions
indeed very concrete: The resultingΩ(p1/3)-generic security of our interactive assumptions (for elliptic
curve subgroups of orderp) puts them on a similar footing with related falsifiable assumptions, such as the
q-Strong Diffie-Hellman assumption [24].

Let BilinearSetup(1k)→ (p,G1,G2,GT , g, g̃), whereG1 = 〈g〉 andG2 = 〈g̃〉, be public.

Assumption 1 (Symmetric External Diffie-Hellman (SXDH) [6, 3, 30]) The Decisional
Diffie-Hellman (DDH) problem is hard in bothG1 andG2. This implies that there donot exist efficiently
computable isomorphismsψ : G1 → G2 or ψ′ : G2 → G1.
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Note that SXDH also subsumes a traditional Co-Gap assumption, i.e., the Co-CDH problem [14] is hard
in the pairing groups: Given(g, g̃, gx, g̃y), it is hard to computẽgxy or gxy.

Good candidates for pairing groups where SXDH is hard are certain MNT curve implementations where
no efficient isomorphisms betweenG1 andG2 are known [6, 3, 47, 32, 30]. The asymmetric version of this
assumption, simply called XDH, only requires that DDH be hard inG1 [29, 45, 38, 13, 6].

The LRSW assumption is a discrete-logarithm assumption introduced in 1999 by Lysyanskaya et al. [37]
and used in many subsequent works. Recently, a stronger form of the LRSW assumption whichimplies the
SXDH assumption, calledStrong LRSW, was introduced by Ateniese et al. [3].

Assumption 2 (Strong LRSW [3]) LetX,Y ∈ G2, X = g̃x, Y = g̃y. LetOX,Y (·) be an oracle that takes
as input a valuem ∈ Z∗

p, and outputs an LRSW-tuple(a, ax, ay+yxm) for a randoma ∈ G1. Then for all

probabilistic polynomial-time adversariesA(·) and allm ∈ Z∗
p,

Pr[x R← Zp, y
R← Zp, X = g̃x, Y = g̃y, (a1, a2, a3, a4, a5)← AOX,Y (g, g̃,X, Y ) :

m 6∈ Q ∧ a1 ∈ G1 ∧ a2 = ax
1 ∧ a3 = ay+yxm

1 ∧ a4 = am
1 ∧ a5 = amx

1 ] < 1/poly(k),

whereQ is the set of queriesA makes toOX,Y (·).

Theq-Strong Diffie-Hellman (q-SDH) assumption, as introduced by Boneh and Boyen [12], states that:
for all probabilistic polynomial-time adversariesA, and allc ∈ Z∗

p:

Pr[x R← Zp : A(g, g̃, gx, . . . , g(xq), g̃x, . . . , g̃(xq)) = (c, g̃1/(x+c))] < 1/poly(k).

We make an interactive version of this assumption. As we mentioned in the introduction, our efficiency
analysis takes into account Cheon’s recent results [24] onq-SDH.

Assumption 3 (Extended Diffie-Hellman (EDH)) Let x ∈ Z∗
p. Let oracleOx(·) take inputci ∈ Z∗

p and

produce output(gvi , g̃1/(x+vi), g̃1/(vi+ci)), for a randomvi ∈ Z∗
p. For all probabilistic polynomial-time

adversariesA, all v, c ∈ Z∗
p, and alla ∈ G1 such thata 6= 1,

Pr[x R← Zp : AOx(g, gx, g̃, g̃x) = (c, a, ax, av, g̃1/(x+v), g̃1/(v+c)) ∧ c 6∈ Q] < 1/poly(k)

whereQ is the set of queriesA makes to oracleOx(·).

The assumptions discussed so far are underlying the unforgeability of our group signature scheme. Its
anonymity is based on a single assumption: that SXDH holds even when the adversary is given oracle access
to additional information about the DDH instance.

Assumption 4 (Strong SXDH) Let g ∈ G1, g̃ ∈ G2, andx ∈ Zp. LetOx(·) be an oracle that takes as
input m ∈ Z∗

p and outputs(gv, g̃1/(x+v), g̃1/(v+m)) for a randomv ∈ Z∗
p. LetQy(·) be an oracle that

takes the same input type and outputs(gr, gry, grv, g̃1/(y+v), g̃1/(v+m)) for a randomr, v ∈ Z∗
p. Then for all

probabilistic polynomial-time adversariesA(·), and for randomly choseng ∈ G1, g̃ ∈ G2, andx, y ∈ Zp,

|Pr[AOx,Qx(g, gx, g̃) = 1]− Pr[AOx,Qy(g, gx, g̃) = 1]| < 1/poly(k).

In Theorem D.3, we show that Strong SXDH also has the same complexity asq-SDH for generic groups.
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4 Key Building Blocks: CL+ and BB+ Signatures

As mentioned in Section§1, our group signature scheme is built out of two standard signature schemes
secure without random oracles. We review the important details now.

4.1 Camenisch-Lysyanskaya Signatures

Recall the basic Pedersen commitment scheme [41], in which the public parameters are a groupG of prime
orderp, and two generatorsg andh of G. To commit to the valuem ∈ Zp, pick a randomr ∈ Zp and set
C = PedCom(m; r) = gmhr.

The Camenisch-Lysyanskaya (CL) signature scheme is secure without random oracles under the LRSW
assumption [19]. CL signatures are also useful, because they support an efficient two-party protocol for
obtaining a CL signature on the value (message) committed to in a Pedersen commitment. The common
inputs areC = PedCom(m; r) and the verification key of the signerpk . The signer additionally knows the
corresponding signing keysk , while the receiver additionally knowsm andr. As a result of this protocol,
the receiver obtains the signatureσsk (m), while the signer does not learn anything aboutm. For our current
purposes, it will not matterhow this protocol actually works. Fortunately, a recent extension of the CL
signatures by Ateniese et al. [3], denoted CL+, inherits this protocol.

CL+ Signatures.Let the security parameter be1k. The global parameters are the description of a pair-
ingparams = (p,G1,G2,GT , g, g̃), whereG1 = 〈g〉 andG2 = 〈g̃〉, obtained by runningBilinearSetup(1k).
Keypairs are of the formpk = (g̃s, g̃t) andsk = (s, t) ∈ Z2

p.

– Signing: Choose randoma ∈ G1, output(a, at, as+stm, am, amt) as the signature onhiddenmessage
m ∈ Z∗

p.
– Verification: On input a purported signature(A,B,C,D,E) accept thatσ authenticates the message

hidden aslogA(D) if and only if: (1) e(B, g̃) = e(A, g̃t), (2) e(D, g̃t) = e(E, g̃), and (3)e(C, g̃) =
e(A, g̃s)e(E, g̃s).

– Re-Randomization: On input a signature(A,B,C,D,E), choose a randomr ∈ Z∗
p and output

(Ar, Br, Cr, Dr, Er).

CL+ signatures are secure assuming SXDH and Strong LRSW. As previously observed in [3], when
CL+ signatures are set in pairing groups where SXDH is hard, this re-randomization isunlinkable. We
formally argue this second point in Lemma A.2.

4.2 Boneh-Boyen Signatures

Recall the weak Boneh-Boyen (BB) signature scheme [12]. Let the security parameter be1k. The global pa-
rameters are the description of a pairingparams = (p,G1,G2,GT ) obtained by runningBilinearSetup(1k)
(here, we ignore the generators output byBilinearSetup). Keypairs are of the formpk = (g, gsk , g̃) and
sk ∈ Z∗

p, for random generatorsg ∈ G1 and g̃ ∈ G2. To sign a messagem ∈ Z∗
p, output the signa-

ture g̃1/(sk+m). To verify signatureσ, accept if and only ife(σ, gskgm) = e(g, g̃). Note that in this work
we reverse the roles ofG1 andG2 from the original description in [12]. As in other implementation of
pairing-based schemes where distortion maps are not available, one chooses the role of each pairing group
to maximize the efficiency of one’s protocol.

This scheme was proven unforgeable only against weak chosen-message attack under theq-SDH as-
sumption [12], where the adversary must submit all of his signature queries in advance of the public key
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generation. Boneh and Boyen gave one method of modifying this weak scheme into an adaptively-secure
one [12]. We provide a second method, which is more suited to our purposes.

BB+ Signatures. The intuition here is that to issue a signature on a messagem, a weak BB signature
undersk is issued on a one-time signing keyv, and then another weak BB signature underv is issued on
messagem. The additional randomnessv allows to prove adaptive security.

– Key generation: Same as before. (Although, now the same bases may be used for all keys.)
– Signing: On input a secret keysk and a messagem ∈ Z∗

p, select a randomr ∈ Z∗
p, and output the

signature(gr, g̃1/(sk+r), g̃1/(r+m)).
– Verification: On input a public key(g, gsk , g̃), a messagem, and a purported signature(A,B,C),

accept if and only if: (1)e(gskA,B) = e(g, g̃) and (2)e(Agm, C) = e(g, g̃).

Lemma 4.1 The BB+ signature scheme is existentially unforgeable under adaptive chosen-message attack
under the EDH assumption.

5 Our Basic Group Signature Construction

Notation: BB+ and CL+, respectively, denote our Section§4 modifications of the Boneh-Boyen [12] and
Camenisch-Lysyanskaya [19] signature schemes. When we writeA = SignCL+

GSK (m; a), we mean thatA
is a CL+ signature under keyGSK on messagem using basea; that is,A = (a, at, as+stm, am, amt) for
GSK = (s, t). Similarly, when we writeA = SignBB+

sk (m; g, g̃), we mean thatA is a BB+ signature under
key sk on messagem using bases(g, g̃); that is,A = (gv, g̃1/(sk+v), g̃1/(v+m)) for somev ∈ Z∗

p.
Let BilinearSetup(1k)→ params = (p,G1,G2,GT , g, g̃), whereG1 = 〈g〉 andG2 = 〈g̃〉.

GroupSetup (1k, params): The group manager establishes the public parameters for the Pedersen com-
mitment scheme [41] and adds those toparams. Then, the group manager executesGenCL+(1k, params)
to obtainGPK = (params,S = g̃s, T = g̃t) andGSK = (s, t).

UserKeyGen (1k, params): Each userU selects randomsk ∈ Z∗
p and randomh ∈ G1, and outputs a

public keypk = (h, e(h, g̃)sk ).

Join (Ui(GPK , sk i),GM(pk i,GSK )): In this interactive protocol, the user’s inputs are her secret keysk i

and the public key of the group managerGPK . Likewise, the group manager receives as inputGSK and
pk i. They interact as follows:

1. Ui submits her public keypk i = (p1, p2) and tracing informationQi = g̃sk i toGM. If e(p1, Qi) 6= p2

or sk i was already inD, GM aborts. Else,GM entersQi in databaseD.
2. The user sends a commitmentA = PedCom(sk i) to GM. The user andGM run the CL protocol

(see Section 4.1) for obtainingGM’s signature on the committed value contained in commitmentA.
GM picks a randomr ∈ Z∗

p and setsf1 = gr. Then,GM computesSignCL+
GSK (sk i; f1) = (f2, f3) and

sends all three values to the user. If the CL signature(f1, f2, f3) does not verify for messagesk i, the
user aborts.

3. The user provides a zero-knowledge proof that the committed valuesk i contained in commitmentA
is consistent with the public keypk i and a zero-knowledge proof of knowledge ofsk i using any proof
technique that isextractable. (For more on such proofs, see Appendix B.)

4. The group manager provides an extractable zero-knowledge proof ofGSK = (s, t).
5. Next, the user locally computes the valuesf4 = f sk i

1 andf5 = f sk i
2 .
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6. At the end of this protocol, the user obtains the following membership certificate:

Ci = (f1, . . . , f5) = (a, at, as+st(sk i), ask i , a(sk i)t).

GroupSign (sk i, Ci,m): A user with secret keysk i and membership certificateCi = (f1, . . . , f5) may
sign a messagem ∈ Z∗

p as follows.

1. Re-randomizeCi using a randomr ∈ Zp, i.e., compute(a1, . . . , a5) = (f r
1 , . . . , f

r
5 ).

2. ComputeSignBB+
sk i

(m; a5, g̃) = (a6, a7, a8).
3. Output the signature(a1, . . . , a8) of the form(b, bt, bs+st(sk i), bsk i , b(sk i)t, bv, g̃1/(sk i+v), g̃1/(v+m)).

GroupVerify (GPK ,m, σ): To verify thatσ = (a1, . . . , a8) is a group signature onm, do:

1. Check that(a1, a2, a3, a4, a5) is a valid CL+ signature for public keyGPK where thehiddenmessage
is the exponent ofa4 (basea1). Specifically, verify that: (1)e(a1, T ) = e(a2, g̃), (2) e(a4, T ) =
e(a5, g̃), and (3)e(a1a5,S) = e(a3, g̃).

2. Check that(a6, a7, a8) is a valid BB+ signature for public key(a1, a4, g̃) on messagem. Specifically,
verify that: (1)e(a4a6, a7) = e(a1, g̃) and (2)e(a6a

m
1 , a8) = e(a1, g̃).

3. If both checks pass, accept; otherwise, reject.

Open(GSK ,m, σ): On input any valid signatureσ = (a1, . . . , a8) and tracing databaseD, GM may run
the following algorithm to identify the signer. For each entryQi ∈ D, the group manager checks whether
e(a4, g̃) = e(a1, Qi). If a match is found, thenGM outputsUi as the identity of the original signer.

VerifyOpen (GM(GSK ,m, σ, pk i, Qi),V(GPK ,m, σ, pk i)): First, GM checks thatσ is a valid group
signature; that is,GroupVerify(GPK , σ,m) = 1. Next,GM checks thatUi is responsible for creatingσ;
that is, using tracing informationQi = g̃sk i from databaseD andpk i = (p1, p2), test thate(p1, Qi) = p2.
If both of these conditions hold, thenGM proceeds to convince a verifier thatUi was responsible forσ. We
call this stepanonymity revocation. Here, theGM provides a zero-knowledge proof of knowledge of a value
α ∈ G2 (i.e., the tracing information forUi) such thate(p1, α) = p2 ande(a1, α) = e(a4, g̃) [1].

The revocation described above revokes the anonymity of a particular signature, however, theGM could
instead revoke the anonymity ofall signatures belonging to userUi by publishing the tracing information
Qi. Then anyone can verify that the user with public keypk = (p1, p2) must be responsible by checking
that: (1)e(p1, Qi) = p2, and (2)e(a1, Qi) = e(a4, g̃).

Theorem 5.1 In the plain model, the above group signature scheme realizesFgs from Section§2 under the
Strong LRSW, the EDH, and the Strong SXDH assumptions.

Proof of Theorem 5.1 appears in Appendix A.

6 Opening Signatures in Sublinear Time

The basicOpen algorithm described in Section§5 takesO(n · k) for a signing group ofn members and
security parameterk. Practically, this precludes this scheme from being used for many applications with
largegroups. We provide several options to remedy this situation in Appendix C.

First, we present anOpen algorithm with complexityO(
√
n · k) which can be extended to one with

complexityO((log n) ·k) at the cost of group signatures becoming of sizeO((log n) ·k). This improvement
requires no additional assumptions, but does add two elements inG1 (resp.log n elements) to the signature
length. Next, we present aO((log n) + k) Open algorithm. This increases the basic signature by three
elements inG1 and requires a slightly different anonymity assumption.
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A Security Proof of Basic Construction

We now prove Theorem 5.1 on the security of our basic construction.

Proof. Our goal is to show that for every adversaryA and environmentZ, there exists a simulatorS such
thatZ cannot distinguish whether it is interacting in the real world withA or the ideal world withS. The
proof is structured in two parts. First, for arbitrary fixedA andZ, we describe a simulatorS. Then, we
argue thatS satisfies our goal.
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Recall that the simulator interacts with the ideal functionalityFgs on behalf of all corrupted parties in the
ideal world, and also simulates the real-world adversaryA towards the environment.S is given black-box
access toA. In our description,S will useA to simulate conversations withZ. Specifically,S will directly
forward all messages fromA toZ and fromZ toA.

The simulator will be responsible for handling several different operations within the group signature
system. The operations are triggered either by messages fromFgs to any of the corrupted parties in the ideal
system (and thus these messages are sent toS) or whenA wants to send any messages to honest parties. In
our description,S will simulate the (real-world) honest parties of towardsA.

Finally, we assume that when a signature is created, it becomes public information. Likewise, whenever
a signature is opened, the corresponding identity is announced to all. (However, each user may still require
individual proof from theGM that this identity is correct.)

Notation: The simulatorS may need to behave differently depending on which parties are corrupted.
There are two parties of interest: the group manager and a user. We adopt previous notation [17] for this: a
capital letter denotes that the corresponding party is not corrupted and a small letter denotes that it is. For
example, by “Case (Gu)” we refer to the case where the group manager is honest, but the user is corrupted.

We will refer to a user asUi and a user’s public key aspk i. We assume throughout that a party in
possession of one of these two identifiers is also in possession of the other.

We now describe how the simulatorS behaves. Intuitively, when the group manager is corrupt,S will
sign messages for whatever userFgs tells it. When the group manager is honest, however,S will be asked
to sign messages on behalf of unknown users and might later be asked to open them. In this case,S will
sign all messages using the same secret key, which we denotesk∗. Then, wheneverS is told to open this
signature to a particular user later revealed byFgs, it will fake the corresponding proof.

Non-Adaptive Setup: Each party thatS corrupts reports toFgs that it is corrupted. The global parameters
BilinearSetup(1k)→ (p,G1,G2,GT , g, g̃) = params, whereG1 = 〈g〉 andG2 = 〈g̃〉, are broadcast
to all parties.

Simulation of the Real World’s Setup: The group manager has an associated key pair(GPK , GSK ).
Regardless of the honesty of the group manager,S sets up any public parameters needed later for the
registration of a user’s key inJoin (e.g., the hash function used in the Fischlin transformation).

Case (g): If the group manager is corrupted, thenS receives the group keyGPK fromA.

Case (G): If the group manager is honest, thenS runs theGroupSetup algorithm to generate a group
public keyGPK which it then gives toA. Note that in this caseS knows the corresponding secrets
and the relation of the Pedersen commitment bases. (Although, an ideal group manager exists outside
of S, the simulator will internally act as a real-world manager towardA.)

Simulation of Honest Parties’ Setup: Each party must have an associated key pair(pk i, sk i).

Case (u): If userUi is corrupted, thenS receives the user’s public keypk i fromA.

Case (U): IfUi is honest, thenS runs theUserKeyGen algorithm to generate a public keypk i which
it then gives toA. (Although, ideal honest parties exist outside ofS, the simulator will internally
create real-world public keys for them.)

Simulation of the Join Protocol: In this operation, a user asks the group manager, viaFgs, if it can join
the group and receives an answer bit.

Case (gu): If both the group manager and the user are corrupt, thenS does nothing.
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Case (Gu): The group manager is honest, but the user is corrupt. Then,A will start by sendingS
the public keypk = (p1, p2) and tracing informationQ associated with some corrupt userUi. S will
verify the tracing information by checking thate(p1, Q) = p2. If this check does not pass,S returns
an error message to the corrupt user and ends theJoin protocol. Otherwise,S stores the pair(pk , Q)
in a databaseD. Now S, acting as the honest group manager with knowledge ofGSK , executes
the remainder of the real-worldJoin protocol withA, exiting with an error message when necessary
according to the protocol. IfS does not output an error message, thenS submits (Ui,“enroll”) to Fgs.

Case (gU): The group manager is corrupt, but the user is honest.S will be triggered in this case by
Fgs asking if some honest userUi may enroll.S will internally simulate a real-world version ofUi

towardsA using the key pairS generated forUi during the user setup phase. IfA stops before the
end of the protocol,S returns the answer “no” toFgs. If the CL+ signature obtained byS during step
2 of theJoin protocol verifies, thenS records this certificate and returns “yes” toFgs. Otherwise, it
returns “no”.

Case (GU): If both the group manager and the user are honest, thenS does nothing.

Simulation of the GroupSign Operation: Let id be a counter initialized to zero. In this operation, a user
anonymously obtains a signature on a message viaFgs. When an honest member of the group requests
to sign a messagem, Fgs will forward (“sign”, m) to S. WhenA outputs a real-world signature,S
will be responsible for translating it into the ideal world.

Here, we denote bysk∗ the special signing key thatS uses to sign all messages, forall honest parties
when the group manager is honest.

Case (u): The user is corrupt. WhenA outputs a valid signatureσ = (a1, . . . , a8) on messagem, S
tests if it is a (partial) re-randomization of any previous signature; that is, for all signatures(b1, . . . , b8)
on messagem in L, test ifa7 = b7 (this corresponds to the valuẽg1/(sk+v)). If any match is found,S
takes no further action.

However, when no match is found,S must register the signature withFgs. To do so,S must first
discover the signer ofσ. For every registered user,S uses the tracing information in databaseD to
check ife(a1, Qi) = e(a4, g̃). Suppose a match is found for someQi = g̃sk i .

1. If sk i = sk∗, then the simulation has failed.S aborts and outputs “Failure 2”.

2. If sk i 6= sk∗ andUi is honest, the simulation has failed.S aborts and outputs “Failure 3”.

3. If Ui is corrupted, thenS records(Ui, σ,m, id) in L, and sends (Ui, “sign”, m, id ) on behalf of
corruptUi toFgs. S increments the counterid .

If no match for any registered user was found, then:

– Subcase (gu): The group manager being corrupt,S records (corrupt-GM, σ,m, id) inL, chooses
an identityUi at random among the corrupt users, and sends (Ui, “sign”, m, id ) on behalf of
corrupt-GM toFgs. S increments the counterid .

– Subcase (Gu): If the group manager is honest, the simulation has failed.S aborts and outputs
“Failure 4”.

Case (gU): The group manager is corrupt, but the user is honest. Since the group manager is corrupt,
Fgs additionally tellsS the identityUi of the honest user requesting a signature. ThenS generates
a real-world group signatureσ for the simulatedUi, using that user’s certificate (obtained during
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Join) and that user’s secret key (whichS created during the user setup phase).S records this entry
(Ui, σ,m, id) in an internal databaseL. Finally, S providesA with the real-world signature(σ,m),
and returns the “ideal signature”id toFgs and incrementsid .

Case (GU): Both the group manager and the user are honest. As stated above,S is triggered by a
request (“sign”,m) from Fgs. This time the ideal-world identity of the honest user is not known to
S. However,S still needs to provideA with somegroup signature, thus it proceeds as follows.S
generates a real-world group signatureσ using the secret keyGSK of the group manager (whichS
created during the group setup phase) and the secret key of the first honest group membersk∗ that
it simulates towardsA (which S also created during the user setup phase). Since all signatures are
considered public information,S must forward the values(σ,m) to A. As before,S records the
entry (?, σ,m, id) in an internal databaseL. Finally, S returns the “ideal signature”id to Fgs and
incrementsid .

Simulation of the GroupVerify Operation: The simulator does not take any action on this operation.A
will be able to verify all real-world signatures within its view itself. Furthermore,Fgs verifies signa-
tures for honest users without informingS.

Simulation of the Open Operation: The simulator is triggered on this operation in a variety of ways.
There are two parties to consider: the group manager and the user requesting the opening (i.e., the
verifier).

On the request (“open”,σ, m) from a real-world corrupted user,S first runs its ideal-worldGroup-
Sign algorithm for receiving(σ,m) fromA.

Case (gu): Both the group manager and the verifier are corrupted.S does nothing.

Case (gU): The group manager is corrupted, but the verifier is honest.Fgs asksS (as the corrupted
group manager) if it may open the ideal-world tuple(Ui,m, id). (Recall that ifUi = corrupt-GM,
thenFgs refuses to open the signature.)S searches its databaseL for an entry(Uj , σ,m, id), where
σ is a real-world signature onm for some userUj . Since theid ’s are unique, only one such entry
will exist. Next,S, acting as an honest, real-world verifier towardA, engagesA in theVerifyOpen
protocol with common input (Ui,m, σ). If S, as an honest verifier, does not accept this proof, then
S tellsFgs to refuse to open this signature. IfS accepts this verification fromA andUi = Uj , then
S tells Fgs to open the signature. Finally, ifS accepts this verification and yetUi 6= Uj , then our
simulation has failed.S aborts and outputs “Failure 1”.

Case (Gu): The group manager is honest, but the verifier is corrupted. Since the verifier is corrupted,
it may ask about the openings of any signatures it likes. (For example, it may re-randomize a valid
signature, etc.) SupposeA, acting as a corrupt verifier, requests an opening on (m,σ). The first
thing thatS does is to check ifσ is a valid group signature (according to the real-world verification
algorithm) onm under the group public keyGPK . If it is not, thenS returns an error message,⊥, to
A. Otherwise,S proceeds.

Now,S must figure out which user, if any, is responsible forσ. First,S uses its tracing database to test
if any registered user is responsible forσ. Specifically forσ = (a1, . . . , a8) and tracing information
Qj , S checks ife(a1, Qj) = e(a4, g̃).

If σ opens to some registered userUj , then there are three cases.

1. Uj is corrupted. This is not considered a forgery.S honestly runs the real-worldVerifyOpen
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protocol withA on common inputs(Uj ,m, σ). This transaction can be completely simulated by
S without involvingFgs.

2. Uj is honest, andsk j = sk∗. Here,S needs to further differentiate ifσ is a forgery or merely a
re-randomization of a previous signature. (Observe that the first part of our signatures may be re-
randomized.) To do this,S searches databaseL and complies a list of all entries(?, σi,m, id i)
containing messagem. Next, S checks whetherσ = (a1, . . . , a8) is derived from anyσi =
(b1,i, . . . , b8,i) by checking ifa7 = b7,i.

(a) If S finds a match for some entryi, then it sends the request (“open”,m, id i) to Fgs.
SupposeFgs returns the identityUx. Now,S must prove this opening toA. S did not know
who the ideal-world signer was at the time it createdσ undersk∗ (recall that our simulator
creates all signatures usingsk∗), thus it must now fake a real-worldVerifyOpen opening
towardsA. That is,S must openσ = (a1, . . . , a8) to userUx with pkx = (hx, e(hx, g̃)skx).
S simulates the interactiveVerifyOpen proof as follows [1]. Letpkx = (p1, p2). Recall
that this is proof of knowledge of a valueα ∈ G2 such thate(p1, α) = p2 ande(a1, α) =
e(a4, g̃).

i. A selects a random challengec ∈ Zp and sendsC = PedCom(c) to S.

ii. S selects a randomr ∈ Zp and sends(t1, t2) = (e(pr
1, g̃), e(a

r
1, g̃)) toA.

iii. A sendsc along with the opening of commitmentC.

iv. S verifies thatC opens toc and, if so, sendss = (g̃skx)cg̃r toA.

v. A accepts if and only if: (1)e(p1, s) = (p2)ct1 and (2)e(a1, s) = e(a4, g̃)ct2.

(b) If S does not find a match for any entryi, thenA has succeeded in a forgery against user
Uj with sk j = sk∗. The simulation fails.S aborts and outputs “Failure 2”.

3. Uj is honest, andsk j 6= sk∗. S immediately knowsσ is a forgery, becauseS signs for all honest
users with the keysk∗. The simulation fails.S aborts and outputs “Failure 3”.

If σ does not open to any registered user, thenA has succeeded in creating a valid group signature for
a non-registered user. That is, for all tracing informationQi known toS and lettingσ = (a1, . . . , a8),
we havee(a1, Qi) 6= e(a4, g̃). In this case,S aborts and outputs “Failure 4”.

Case (GU): Both the group manager and the verifier are honest.S does nothing.S will not even know
that this transaction has taken place.

This ends our description of simulatorS. It remains to show thatS works; that is, under the Strong
LRSW, the EDH, and the Strong SXDH assumptions, the simulator will not abort, except with negligible
probability, and that the environment will not be able to distinguish between the real and ideal worlds.

Claim A.1 Conditioned on the fact thatS never aborts,Z cannot distinguish between the real world and
the ideal world under the Strong LRSW, the EDH, and the Strong SXDH assumptions.

Proof. To see this, let us explore each operation. First, we observe that inGroupSetup andUserKeyGen,
the simulatorS performs all key generation operations as the respective players in the real world would do.
The simulator never deviates from the actions of any honest player duringJoin and it need not take any
action duringGroupVerify. In the real world, anyone may verify a signature autonomously. The remaining
operations to consider areGroupSign andVerifyOpen.

Let us begin withGroupSign. In this operation,S only needs to take action when it must translate an
honest party ideal-world signature into a real-world signature, or a corrupted party real-world signature into
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an ideal-world one. When the user is corrupted,S submits “sign” requests forA whenever it outputs a new
signature. There is nothing here forA to observe.

When the user is honest, however, thenS must generate real-world signatures towardsA. When the
group manager is corrupted, thenFgs tellsS which user is signing the message, and thusS may perfectly
generate a real-world signature forA. S is only forced to deviate in case (GU) when it must simulate both
the honest group manager and honest signer towardsA. The problem is thatS does not know which user
is requesting a signature on some messagem; thusS always signs with the same honest user keysk∗.
By Lemma A.2, we know that neitherA nor Z can distinguish between this homogeneous, ideal-world
distribution of signatures and the heterogeneous, real-world distribution.

Now, it remains to considerVerifyOpen. In this operation,S only takes action when one of the two
parties is corrupted. In the case (gU),S behaves exactly as an honest verifier would towardsA; that is,S
finds the (single)σ associated withid , and acts as an honest verifier towardsA. We will later argue that it
does not abort, due to Failure 1, in this step.

The case (Gu), however, is more complicated. SupposeS is being asked byA to open(m,σ). If σ opens
to a corrupted user or does not open to any registered user, thenS behaves exactly as an honestGM would.
However, what happens whenσ opens to an honest user? We will later argue thatS is not forced to abort due
to Failures 2, 3, or 4. Even conditioned on this fact,S will almost always be forced to deviate since it signed
using keysk∗ for all honest users and now must open the signatures to whichever honest partyFgs dictates.
SupposeS is told to openσ = (a1, . . . , a8) to some honest userUi, wheresk i 6= sk∗, thenS must fake the
VerifyOpen protocol towardA. S succeeds in doing this, in the usual way, by requiringA to commit to his
challenge and then resettingA after seeing the challenge. That is, after seeingc ∈ Zp, S chooses a random
values ∈ G2 and computest1 = e(p1, s)/pc

2 and t2 = e(a1, s)/e(a4, g̃)c, wherepk i = (p1, p2). Now
S rewindsA to right after it sent a commitment toc, then sends(t1, t2), receivesc with a valid opening,
and returns the responses. Indeed,S only fails in this step in the unlikely event thatA is able to break the
binding property of the Pedersen commitments (i.e., CDH inG1).

2

This concludes our proof of Claim A.1. It remains to show that, except with negligible probability,S
will not abort. Recall thatS may abort under the following conditions:

• Failure 1:A breaks exculpability.We argue that it is not possible for a dishonest group manager to
falsely open a signature; i.e.,A is not able to successfully complete theVerifyOpen protocol withS
on common input(Ui,m, σ) whereUi is not the real signer. Here, the simulation fails, becauseFgs

will only open signatures honestly.

We now argue that, for a givenVerifyOpen instance(Ui,m, σ), an adversary that can cause Failure
1 with probabilityε can be used to break the Co-CDH assumption with probability≥ (ε − 1/p)2.
(Recall from Section 3.1 that Co-CDH is implied by the Strong SXDH assumption.) On Co-CDH
input (g, g̃, gx, g̃y), the goal is to computẽgxy and the simulator proceeds as follows.

1. Step 1:S initiates theVerifyOpen protocol withA on input(Ui,m, σ), settingpk i = (gz, e(gzx, g̃y)),
for randomz ∈ Zp, and computingσ as a valid signature onm for the user withsk∗.

2. Step 2:S commits to all zeros, asC = PedCom(0|p|).

3. Step 3: After receiving(t1, t2) from A, S using its knowledge of the relation of the Pedersen
public parameters to fake the openings as:

– selects a random challengec1 ∈ Zp, opensC to c1, and obtainsA’s responses1.
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– rewindsA, selects a different random challengec2 ∈ Zp, opensC to c2, and obtainsA’s
responses2.

4. Step 4:S computes and outputs(s1/s2)1/(c1−c2) (which hopefully corresponds tõgxy).

In Step 1, the adversary cannot tell that it was given a signature undersk∗ instead ofsk i due to
Lemma A.2. The fake openings in Step 4 are perfectly indistinguishable from an honest opening due
to the perfect hiding property of Pedersen commitments. If both((t1, t2), c1, s1) and((t1, t2), c2, s2)
are valid transcripts, thenS outputsg̃xy in Step 4 with probability≥ (ε − 1/p)2. Our bound of
(ε− 1/p)2 comes from the well-known Reset Lemma [10], where the advantage ofA was given asε
and the size of the challenge set isp.

• Failure 2:A creates a forgery against the honest user withsk∗. A produces signatureσ = (a1, . . . , a8)
and messagem s.t. GroupVerify(GPK , σ,m) = 1, σ opens toU∗ (i.e., e(a1, Q

∗) = e(a4, g̃)), and
yetS never gaveA this user’s signature onm. This scenario occurs with only negligible probability
under the EDH assumption, regardless of whether the group manager is corrupted.

Recall that EDH takes as input(g, gx, g̃, g̃x) together with access to oracleOx(·) that takes input
c ∈ Z∗

p and produces output(gx, g̃1/(x+v), g̃1/(v+c)) for a randomv ∈ Z∗
p. The goal is to produce a

tuple(c, a, av, g̃
1

x+v , g̃
1

v+c ) for anya ∈ G1 and anyv, c ∈ Z∗
p such thatc was not queried to the oracle.

Let τ be the number of honest users in the system. WhenA succeeds with probabilityε, thenB solves
the EDH problem with probabilityε/τ . B proceeds as follows:

1. Setup:B must establish the global parameters and key generation.

(a) Output(g, g̃) as the public parameters for the group signature scheme, andGPK = (S̃, T̃ ) =
(g̃s, g̃t) on behalf of the group manager. IfGM is corrupt,GPK is given toS byA. Setup
all remaining keys and parameters asS would normally do.

(b) Guess which of theτ honest usersA will attack. Give this userU∗ the public keypk∗ =
(gr, e(gr, g̃x)), for randomr ∈ Zp. (Logically this assigns the user’s secret key assk∗ = x.)

(c) Obtain group certificates for all honest users;B fakes the proof of knowledge ofsk∗ using
any of the techniques discussed in Section 5 (Join). Finally,B submits thecorrect tracing
information,Q∗ = g̃sk

∗
= g̃x, for this user.

(d) If the group manager is corrupt, extract the group keyGSK = (s, t) during the proof of
knowledge.

2. Signing:WhenA requests a signature from a user not associated withsk∗ = x, sign as normal.
Now, whenA asks for a group signature onm ∈ Z∗

p from the honest user associated with secret
key sk∗ = x, do:

(a) Query oracleOx(m) to get output(f1, f2, f3).
(b) Select a randomr ∈ Zp. UseGSK = (s, t), to output the group signature onm as

(gr, gtr, gsr(gx)str, (gx)r, (gx)tr, f r
1 , f2, f3).

3. Opening:B honestly executes theVerifyOpen protocol withA.

4. Output:SupposeA produces a valid signatureσ′ = (a1, . . . , a8) for anewmessagem′ ∈ Z∗
p for

the user with keysk∗ = x. ThenB outputs(m′, a1, a4, a6, a7, a8) to solve the EDH problem.
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It is easy to observe thatB perfectly simulates the group signature world forA. B has probability1/τ
of choosing which honest userA will forge against. Thus, whenA succeeds with probabilityε, then
B solves the EDH problem with probabilityε/τ .

• Failure 3:A creates a forgery against a user withsk j 6= sk∗. Proof that this failure occurs with only
negligible probability follows directly from that of Failure 2. Indeed,A has strictly less information
at its disposal; that is,A never sees real signatures under keysk j .

• Failure 4:A creates a valid signature for a non-registered user.In this case,A produces a signature-
message pair(σ,m) such thatGroupVerify(GPK , σ,m) = 1 and yet it cannot be opened byS to any
registered user. We now argue that this is not possible under the Strong LRSW assumption, except
with negligible probability. Suppose we are given(g, g̃, g̃s, g̃t) as the Strong LRSW input.

Instead of runningGroupSetup, let the public parametersg, g̃ ∈ params and the public keyGPK =
(S̃, T̃ ) = (g̃s, g̃t). During theUserKeyGen operation, for any honest users,S queries the Strong
LRSW oracleOS̃,T̃ on a randomsk i ∈ Zp to obtain a membership certificate(a, at, as+st(sk i)), for
anya ∈ G1. (This tuple is, in fact, a CL signature onsk i [19].) S now usessk i as the secret key for
this honest user.

WhenS is asked to executeJoin with anhonestuser,S simply finds the corresponding CL signature
and uses it to output the certificate(a, at, as+st(sk i), ask i , at(sk i)). WhenS is asked to executeJoin
with a corrupteduser,S extracts the user’s secret keysk j using any of the techniques discussed in
Section 5 (Join), queries the Strong LRSW oracle on inputsk j , and uses the oracle’s output to create
a valid certificate for this corrupt user. Now, the adversary can sign any message for a corrupt user,
andS can honestly respond to anyGroupSign call for an honest user.

Suppose that Failure 1 has occurred duringVerifyOpen, meaning thatA output a signatureσ =
(a1, . . . , a8) such that the following relations hold:

e(a1, T̃ ) = e(a2, g̃), e(a4, T̃ ) = e(a5, g̃), e(a1a5, S̃) = e(a3, g̃)

and yetS did notqueryOS̃,T̃ on the corresponding secret key; that is, for allsk i known toS, we have

ask i
1 6= a4. Then,S may output(a1, a2, a3, a4, a5) to break the Strong LRSW assumption.

Combining Claim A.1 with the above arguments thatS will not abort, except with negligible probability,
concludes our main proof.

2

We end by proving a Lemma used in the above proof. Intuitively, this Lemma captures the anonymity
of our signatures. In the below, the valuesu1, . . . , uτ may be thought of as the secret keys ofτ different
honest users.

Lemma A.2 (Anonymity of Signatures) Suppose we have the group signature parameters from Section 5;
that is, security parameter1k, params, andGPK . Supposeu1, . . . , uτ are random elements ofZp. Let
Ou1,...,uτ (·, ·) be an oracle that takes as input a messagem ∈ Z∗

p and an index1 ≤ i ≤ τ , and outputs a
group signature(a1, . . . , a8) onm with user secret keyui. Then, under the Strong SXDH assumptions, for
all probabilistic polynomial-time adversariesA, the following value is negligible ink:

Pr [AOu1,u2,...,uτ (params,GPK , {pk i}i∈[1,τ ]) = 1]−
Pr[AOu1,u1,...,u1 (params,GPK , {pk i}i∈[1,τ ]) = 1

]
.

21



Proof. First, ifA can distinguish between oraclesOu1,u2,...,uτ andOu1,u1,...,u1 , then we can create an adver-
saryB that can distinguish between oraclesOu1,u2 andOu1,u1 . Next, we show that adversaryB can be used
to break the Strong SXDH assumption. Overall, ifA succeeds with probabilityε, then we can break Strong
SXDH with probability≥ ε/τ .

Stage One.First, we make the simple hybrid argument that givenA, which can distinguish the signatures
of τ distinct honest users from those of a single user, we can create an adversaryB that can distinguish the
signatures of only 2 distinct users from those of a single user. Indeed, by the hybrid argument, we know that
if A distinguishes with probabilityε, then for some1 ≤ ` ≤ τ , A can distinguish with probability≥ ε/τ
between the oracle instantiated with` u1’s followed byτ − ` different seeds and the oracle instantiated with
`+ 1 u1’s followed byτ − `− 1 different values. The obvious reduction follows; that is, the two oracles of
B will be applied to this hybrid point forA. B will then return whatever answerA does.

Stage Two.Now, we show thatB can be used to create another adversaryC that breaks Strong SXDH. On
Strong SXDH input(g, gx, g̃), the adversaryC proceeds as follows:

1. Generate group public keyGPK as(S̃, T̃ ) = (g̃s, g̃t) for randoms, t ∈ Zp. GiveGPK to B; store
GSK = (s, t). (Remember, anonymity only makes sense when the group manager is honest, so the
adversary does not get to set these keys.)

2. QueryQy on a random input, disregard all output except(h, hy) for someh ∈ G1.

3. Generate the two user keys aspk1 = (g, e(gx, g̃)) for userU1 and pk2 = (h, e(hy, g̃)) for user
U2. Givepk1, pk2 to B. (This first key could be re-randomized away from the public parameters by
choosing a randomr ∈ Zp and settingpk1 = (gr, e(gx, g̃)r). This has no effect on the remainder,
and for clarity we omit it.)

4. WhenB requests a signature for indexi ∈ {1, 2} onm ∈ Z∗
p, if i = 1, useOx(·) to do:

(a) QueryOx(m) to obtain the output(gv, g̃1/(x+v), g̃1/(v+m)), wherev ∈ Z∗
p is a fresh random

value chosen by the oracle. Denote this output as(f6, . . . , f8).
(b) Using GSK = (s, t), compute the remaining parts of the group signature:f2 = gt, f3 =

gs(gx)st, f4 = gx, andf5 = (gx)t.
(c) Select a randomr ∈ Z∗

p, and return the signature(gr, f r
2 , f r

3 , f r
4 , f r

5 , f r
6 , f7, f8).

If i = 2, use oracleOy(·) to do:

(a) QueryQy(m) to obtain the output(a, ay, av, g̃1/(y+v), g̃1/(v+m)), wherea ∈ G1 andv ∈ Z∗
p are

fresh random values chosen by the oracle. Denote this output as(f1, f4, f6, . . . , f8).
(b) Using GSK = (s, t), compute the remaining parts of the group signature:f2 = at, f3 =

as(ax)st, andf5 = (ay)t.
(c) Return the signature(f1, . . . , f8).

5. Eventually,B will attempt to distinguish whether he’s been talking to oracleOx,x or oracleOx,y. If B
says that he’s been talking to oracleOx,x, then output 1 corresponding to “x = y”. Otherwise, output
0 corresponding to “x 6= y”.
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It is easy to see that the stage 2 simulation is perfect; the output is always correct and perfectly distributed.
Indeed,C andB will succeed with identical probabilities. This concludes our proof. We find that if anyA
can break the anonymity of our signatures with probabilityε, thenA can be used to break Strong SXDH
with probability at leastε/τ , whereτ is the number of honest users in the system. 2

B Towards a Concurrent Join Protocol

In Section 5, we specified that the group manager runs theJoin protocol sequentially with the different
users. The reason for this is technical, i.e., to prove security we require that the users’ secrets keyssk i

areextractable. To this end we require the users to commit to their secret key and then prove knowledge
of them. If one uses the standard proof of knowledge protocol for the latter, extracting the users’ secret
keys requires rewinding of the users. It is well known that if these proofs of knowledge protocols are run
concurrently with many users, then extracting all the secret keys can take time exponential in the number of
users. There are, however, alternatives which allow for concurrent execution of these proofs and thus also
of theJoin protocol.

First of all, one could require the group manager to run the protocol concurrently only with a limited
numbers of users, i.e., by defining time intervals within which the group manager runs the protocol concur-
rently with a logarithmic number of users and enforcing a time-out if a protocol does not finish within this
time interval. This solution would not give a group signature scheme that can be concurrently composed
with other schemes.

Solutions that would allow for concurrent executions come from applying one of the various transforma-
tions of a standard proof of knowledge protocol (orΣ-protocol) into one that can be executed concurrently.

1. Common random reference string.Assuming that the parties have a common random reference string
available, one can interpret this as the key for an encryption scheme such that the corresponding secret
key is not know to any party. Alternatively, one could have a (distributed) trusted third party generate
such a public key (cf. [25]). Then, the users would be required to verifiably encrypt their secret key
sk i under this reference public key (e.g., using the techniques of Camenisch and Damgård [18]). For
extraction of the secret keys in the security proof, the reference string would need to be patched such
that the simulator knows the reference decryption key and thus can extract the users’ secret keys by
simple decryption.

2. Non-concurrent setup phase.When having a common random reference string or a trusted third party
is impractical, each user can instead generate their own public key and then prove knowledge of the
corresponding secret key in a setup phase where non-concurrent execution can be guaranteed (e.g,
because the user’s part is run by an isolated smart card). Then, during theJoin protocol, the user
would verifiably encrypt her secret keysk i underher ownpublic keypk i.

3. Assuming random oracles forJoin only. A third alternative that comes to mind, in the random oracle
model, is to apply Fischlin’s results [28]. Fischlin recently presented a transformation for turning any
standard proof of knowledge (orΣ-protocol) into a non-interactive proof in the random oracle model
that supports an online extractor (i.e., no rewinding).

The parameters required for any of these options (e.g., the hash function for option (c)) are assumed to
be global information outside the control of the group manager.
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C Open Algorithm with O(
√

n · k) Complexity from Trees.

As before, let(p,G1,G2,GT , g, g̃), whereG1 = 〈g〉 andG2 = 〈g̃〉, be the global parameters for the bilinear
groups.

The intuition here is that group members are logically divided into a 2-level tree; then to revoke the
anonymity of a signature, the group manager first locates the correct branch and then the correct leaf (user)
for that branch. For a balanced tree, this results in a search time of2k

√
n. Now we present the details.

During theJoin protocol, the group manager secretly assigns each user to one of
√
nk logical branches.

Each branch is associated with a unique ID as a valueID ∈ Z∗
p. Now, the group manager and the user

run a protocol such that at the end the user obtains a CL+ signature on the pair of messages(sk , ID)
without learning its branch identityID and the group manager does not learn the user’s secret keysk .
Following Camenisch and Lysyanskaya [19] this CL+ signature would be of the following form forGPK =
(g̃s, g̃t, g̃z, g̃tz), GSK = (s, t, z), and somea ∈ G1:

(a1, . . . , a7) = (a, at, as+st(sk)+stz(ID), ask , at(sk), aID , atz(ID))

This CL+ signature would be used as the user’s certificate. Let the user submit tracing informationQj =
g̃skj during theJoin protocol as before. Then to open a group signature, the group manager now does: For
each branch identityID i, check ife(a6, g̃) = e(a1, g̃)IDi ; then for each member of the matching branch,
check ife(a4, g̃) = e(a1, Qj). Under the DDH assumption inG1, a user’s branch identity remains hidden
from everyone except the group manager, so full anonymity is preserved. By the Strong LRSW assumption,
a user cannot change which branch he is associated with, and thus the group manager will be able to find
him (i.e., open the signature).

Theorem C.1 In the plain model, the above extension to the Section§5 scheme realizesFgs from Section§2
under the the Strong LRSW, the EDH, and the Strong SXDH assumptions.

In practice, one can achieve a “constant time” open algorithm by having less branches per node but more
levels. Assume we want to be able to handle240 members. Then we could have210 branches and a tree
depth of4. This would result is a scheme where signature would have an additional8 elements (i.e., this
would double the length of the signature) the group manager would need to do at most3072 exponentations
(to walk through the first three levels) and1024 pairings (to find the group member) to open a signature.
Furthermore, the3072 exponentations could be considerably sped-up by giving all branches of the same
node the same (but random) ID except the last10 bits. Given that opening signatures is an exceptional
event, we believe such a scheme would be practical.

Open Algorithm with O((log n) + k) Complexity from Encryption. The intuition here is to have the
signer include an encryption of her identity under the group manager’s encryption key as part of every
signature. The trick is to do this in such a way that thecorrectnessof the encryption is publicly-verifiable,
and yet, theanonymityof the signer is preserved.

Let (eGPK , eGSK ) be Elgamal encryption keys generated by the group manager, whereeGSK ∈ Zp

andeGPK = g̃eGSK . Then in addition to a regular signature from Section§5, a user would add a version
of Elgamal encryption of their identity as the last three items:(

SignCL+
GSK (sk ; a), SignBB+

sk (m; a, g̃), EncElgamal+
eGPK (sk ; a, g̃)

)
=

(
a, at, as+st(sk), ask , at(sk), av, g̃1/(sk+v), g̃1/(v+m), ac, g̃sk+c, (eGPK )c

)
.
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To verify the signatureσ = (a1, . . . , a11), in addition to the usual CL+ and BB+ checks, a verifier must
be sure that the ciphertext is correctly formed by checking that: (1)e(a1, a10) = e(a4, g̃)e(a9, g̃) and (2)
e(a9, eGPK ) = e(a1, a11).

Now, to the key point: the group manager may, at any time, open the signature by simply decrypting
the last portion asa10/(a11)1/eGSK = g̃sk , which reveals the user’s identity. Recall that the group manager
obtains this sametracing informationfrom the user during theJoin protocol.

Theorem C.2 In the plain model, the above extension to the Section§5 scheme realizesFgs from Section§2
under the Strong LRSW, the EDH, and (an extension of) the Strong SXDH assumptions.

The extension of the Strong SXDH assumption mentioned above requires changes to oraclesO andQ,
from Definition 4 in Section§3. Specifically, we change the oracles as follows: Select a valueeGPK ∈ G2

at random and give as input the adversary. LetO′
x(·) be an oracle that takes as inputm ∈ Z∗

p and outputs
(gr, grx, grv, g̃1/(x+v), g̃1/(v+m), grc, g̃sk+c, eGPK c) for a randomr, v, c ∈ Z∗

p. Then, we say that on input
(g, gx, g̃, eGPK ), the adversary cannot distinguish access to oracles(O′

x(·), O′
y(·)) from (O′

x(·), O′
x(·)).

The proof of Theorem D.3 that Strong SXDH is hard in generic groups can be modified to cover this
extended version as well.

D Generic Security of the New Assumptions

To provide more confidence in our scheme, we prove lower bounds on the complexity of our assumptions
for generic groups [40, 46].

Let us begin by recalling the basics. We follow the notation and general outline of Boneh and Boyen [12].
In the generic group model, elements of the bilinear groupsG1,G2, andGT are encoded as unique random
strings. Thus, the adversary cannot directly test any property other than equality. Oracles are assumed to
perform operations between group elements, such as performing the group operations inG1,G2, andGT .
The opaque encoding of the elements ofG1 is defined as the functionξ1 : Zp → {0, 1}∗, which maps all
a ∈ Zp to the string representationξ1(a) of ga ∈ G1. Likewise, we haveξ2 : Zp → {0, 1}∗ for G2 and
ξT : Zp → {0, 1}∗ for GT . The adversaryA communicates with the oracles using theξ-representations of
the group elements only.

We achieve the same asymptotic complexity bound for EDH as was shown forq-SDH.

Theorem D.1 (EDH is Hard in Generic Groups) Let A be an algorithm that solves the EDH problem
in the generic group model, making a total ofqG queries to the oracles computing the group action in
G1,G2,GT , the oracle computing the bilinear pairinge, and oracleOx(·). If x ∈ Z∗

p and ξ1, ξ2, ξT are
chosen at random, then the probabilityε that AOx(p, ξ1(1), ξ1(x), ξ2(1), ξ2(x)) outputs(c, ξ1(r), ξ1(r ·
x), ξ1(r · v), ξ2( 1

x+v ), ξ2( 1
v+c)) with c ∈ Z∗

p not previously queried toOx, is bounded by

ε ≤ (qG + 4)2(8q + 8)
p

= O

(
q3G
p

)
.

Proof. Consider an algorithmB that interacts withA in the following game.
B maintains three lists of pairsL1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i =

0, . . . , τ2 − 1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1}, such that, at stepτ in the game, we haveτ1 + τ2 +
τT = τ + 4. The only twist between our setup and that of Boneh and Boyen is that we will let theF1,i, F2,i

andFT,i’s be rational functions(i.e, fractions whose numerators and denominators are polynomials); and
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all polynomials are multivariate polynomials inZp[x, . . . ] where additional variables will be dynamically
added. Theξ1,i, ξ2,i, andξT,i are set to unique random strings in{0, 1}∗. Of course, we start the EDH game
at stepτ = 0 with τ1 = 2, τ2 = 2, andτT = 0. These correspond to the polynomialsF1,0 = F2,0 = 1 and
F1,1 = F2,1 = x, and the random stringsξ1,0, ξ1,1, ξ2,0, ξ2,1.
B begins the game withA by providing it with the4 stringsξ1,0, ξ1,1, ξ2,0, ξ2,1. Now, we describe the

oraclesA may query.

Group action: A inputs two group elementsξ1,i andξ1,j , where0 ≤ i, j < τ1, and a request to multi-
ply/divide. B setsF1,τ1 ← F1,i ± F1,j . If F1,τ1 = F1,u for someu ∈ {0, . . . , τ1 − 1}, thenB sets
ξ1,τ1 = ξ1,u; otherwise, it setsξ1,τ1 to a random string in{0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}. Finally, B
returnsξ1,τ1 to A, adds(F1,τ1 , ξ1,τ1) to L1, and incrementsτ1. Group actions forG2 andGT are
handled the same way.

Pairing: A inputs two group elementsξ1,i andξ2,j , where0 ≤ i < τ1 and0 ≤ j < τ2. B setsFT,τT
←

F1,i · F2,j . If FT,τT
= FT,u for someu ∈ {0, . . . , τT − 1}, thenB setsξT,τT

= ξT,u; otherwise,
it setsξT,τT

to a random string in{0, 1}∗ \ {ξT,0, . . . , ξT,τT−1}. Finally,B returnsξT,τT
to A, adds

(FT,τT
, ξT,τT

) toLT , and incrementsτT .

OracleOx(·): Let τv be a counter initialized to 1.A inputsc in Z∗
p, followed byB choosing a newvariable

vτv and settingF1,τ1 ← vτv . If F1,τ1 = F1,u for someu ∈ {0, . . . , τ1 − 1}, thenB setsξ1,τ1 = ξ1,u;
otherwise, it setsξ1,τ1 to a random string in{0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}. B sendsξ1,τ1 toA, adding
(F1,τ1 , ξ1,τ1) toL1.

Next, B setF2,τ2 ← 1/(x + vτv) andF2,τ2+1 ← 1/(vτv + m). For j ∈ {0, 1}, if F2,τ2+j =
F2,u for someu ∈ {0, . . . , τ2 − 1 + j}, thenB setsξ2,τ2+j = ξ2,u; otherwise, it setsξ2,τ2+j to a
random string in{0, 1}∗ \ {ξ2,0, . . . , ξ2,τ2−1+j}. B sends(ξ2,τ2 , ξ2,τ2+1) to A, adding(F2,τ2 , ξ2,τ2)
and(F2,τ2+1, ξ2,τ2+1) toL2.

Finally,B adds one toτ1, two toτ2, and one toτv.

We assume SXDH holds in(G1,G2,GT ) and therefore no ismorphism oracles exist.
EventuallyA stops and outputs a tuple of elements(c, ξ1,a, ξ1,b, ξ1,k, ξ2,d, ξ2,f ), where0 ≤ a, b, k < τ1

and0 ≤ d, f < τ2. To later test the correctness ofA’s output within the framework of this game,B computes
the polynomials:

FT,∗ =
(
F1,k

F1,a
+ x

)
· F2,d − 1. (1)

FT,◦ =
(
F1,k

F1,a
+ c

)
· F2,f − 1. (2)

Intuitively, this correspond to the equalities “e(hxhv, g̃1/(x+v)) = e(h, g̃) = e(hvhc, g̃1/(v+c))”, where
h denotes the element ofG1 represented byξ1,a, hv denotes the element ofG1 represented byξ1,k, g̃1/(x+v)

denotes the element ofG2 represented byξ2,d, andg̃1/(v+c) denotes the element ofG2 represented byξ2,f .
Analysis ofA’s Output. ForA’s response toalwaysbe correct, then it must be the case thatFT,∗(x) =

FT,◦(x) = 0 for any value ofx. We now argue that it isimpossiblefor A to achieve this. Each output
polynomial must be some linear combination of polynomials corresponding to elements available toA in
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the respective groups:

F1,a = a0 + a1x+
q∑

i=1

a2,ivi (3)

F1,b = b0 + b1x+
q∑

i=1

b2,ivi (4)

F1,k = k0 + k1x+
q∑

i=1

k2,ivi (5)

F2,d = d0 + d1x+
q∑

i=1

d2,i

x+ vi
+

q∑
i=1

d3,i

vi + ci
(6)

F2,f = f0 + f1x+
q∑

i=1

f2,i

x+ vi
+

q∑
i=1

f3,i

vi + ci
(7)

whereq is the number of queries to oracleQx. Now, we know, by definition, thatF1,b/F1,a = x, thus one
can verify, using equations (3) and (4), thata1 = a2,i = 0 andF1,a = a0 is a constant.

Notation: For readability of our later analysis, we denote the following values, whereconstantvalues
y0 = b0/a0, y1 = b1/a0 + 1, y2,i = b2,i/a0:

Y = (F1,k/a0 + x) = y0 + y1x+
q∑

i=1

y2,ivi (8)

Z = (F1,k/a0 + c) = c+ y0 + (y1 − 1)x+
q∑

i=1

y2,ivi (9)

We also give names to the following frequently-used products:

P =
q∏

j=1

(x+ vj) and Pi6=j =
q∏

i6=j

(x+ vj) (10)

Q =
q∏

j=1

(vj + cj) and Qi6=j =
q∏

i6=j

(vj + cj) (11)

(12)

Using our above notation, consider the polynomialsF2,∗ andFT,◦ from equations (1) and (2) when both
sides are multiplied byPQ and we substitute in equations (6), (7), (8), and (9). For someconstantsdi and
fi, the new polynomials:

PQFT,∗ = 0 = d0Y PQ+ d1xY PQ+
q∑

i=1

d2,iY Pi6=jQ+
q∑

i=1

d3,iY PQi6=j − PQ (13)

PQFT,◦ = 0 = f0ZPQ+ f1xZPQ+
q∑

i=1

f2,iZPi6=jQ+
q∑

i=1

f3,iZPQi6=j − PQ (14)

Now, we inspect equations (13) and (14). We consider two cases.
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Case 1: y1 = 0. Then we haveZ = c + y0 − x +
∑q

i=1 y2,ivi. Now, we inspect the terms of equation
(14). We deduce thatf1 = 0, because it is the only term containingxq+2

∏q
i=1 vi. Then,f0 = 0,

because it is the only term containingxq+1
∏q

i=1 vi. Next, eachf3,i = 0, because they have unique
termsxq+1

∏
i6=j vj . We are left with0 =

∑q
i=1 f2,iZPi6=jQ − PQ. We divide byQ, and the result

is 0 =
∑q

i=1 f2,iZPi6=j −P . It follows then that at least onef2,i must be non-zero for the equation to
be solvable; denote the first non-zerof2,i asf2,β .

Now, suppose some constanty2,i 6= 0 in Z, meaning thatZ contains avi term. If β 6= i, then
y2,iZPi6=j contains a unique termv2

i

∏
i6=j 6=α vj that cannot be canceled. Thus,y2,i = 0, and further-

moref2,i, for all i 6= β. Now we are left with the equation0 = f2,β(c+ y0 − x+ y2,βvβ)Pβ 6=j − P ,
we divide outPβ 6=j and observe thatf2,β = −1, to get0 = −(c+ y0 − x+ y2,βvβ)− (x+ vβ).

Now, sincec, y0, y2,β are all constants andvβ is a variable, we conclude thaty2,β = 1 andc = −y0.
That means thatY = y0 + vβ , wherey0 6= 0. Plugging back into equation (13), we haved1 = 0
due to uniquexq+1 term, then it must be the case thatd0 = 0 due toxqvβ

∏q
i=1 vi. Next, it must be

thatd3,i = 0 for all i 6= β due to uniquexqv2
β

∏
j 6=i6=β vj . Next, we see that terms corresponding to

d3,βY PQβ 6=j = d3,β(y0 + vβ)PQβ 6=j andPQ are the only two left with axq term; thus,d3,β 6= 0.
Further, cancelling the termxq

∏q
i=1 vi from PQ requires thatd3,1 = 1. Thus, we find that to cancel

all relatedxq terms, it must be thatc = cβ. Sincec, which represents the message corresponding to
A’s signature, is an old value, this is not a valid forgery.

Case 2: y1 6= 0. NowY contains anx term, and we inspect equation (13). We deduce thatd1 = 0, because
it is the only term containingxq+2

∏q
i=1 vi. Then,d0 = 0, because it is the only term containing

xq+1
∏q

i=1 vi. Next, eachd3,i = 0, because they have unique termsxq+1
∏

i6=j vj . We are left with
0 =

∑q
i=1 d2,iY Pi6=jQ−PQ. We divide byQ, and the result is0 =

∑q
i=1 d2,iY Pi6=j−P . To satisfy

this equation, for somed2,i, we must haved2,i 6= 0. We denote this valued2,β .

From this point, we proceed in a fashion similar to case 1. By inspecting the above equation, we
find thaty0 = 0, and for alli 6= β, y2,i = 0, otherwise there exist unique terms: e.g.,vβ

∏q
β 6=j vj .

Furthermore,d2,βy1 = 1, since thexq term ofP has coefficient 1. And,d2,βy2,β = 1, since the∏q
i=1 vi term of P has coefficient 1. So,y1 = y2,β = 1/d2,β and we plug intoZ asZ = c +

(1/d2,β − 1)x+ vβ/d2,β .

From equation (14), we have thatf1 = 0 due toxq+1
∏q

i=1 vi, f0 = 0 due tovβx
q
∏q

i=1 vi. For all
i 6= β, f3,i = 0, otherwise unique termsv2

βx
q
∏

i6=j 6=β vj appear. Given that allf3,i = 0 except for
f3,β , it follows all f2,i = 0 except forf2,β due to unique terms containingv3

i for i 6= β. Thus, we
now have the equation0 = f2,βZPβ 6=jQ + f3,βZPQβ 6=j − PQ. We divide byPβ 6=jQβ 6=j to obtain
0 = f2,βZ(vβ + cβ) + f3,βZ(x+ vβ)− (x+ vβ)(vβ + cβ).

Now, supposed2,β = 1 and thusZ = (c+ vβ). Then we know thatf3,β = 1 to cancel the termxvβ ;
this forcesf2,β = 0 because thev2

β term is already canceled in whole by thef3,β component. Thus, it
is immediate thatc = cβ , which is not a valid forgery.

On the other hand, supposed2,β 6= 1 and thusZ contains anx term. Then, we know thatf3,β = 0,
because itsx2 term would be unique. This forcesc = 0 because otherwise the constant termf2,βccβ
would be unique. However,c must be an element inZ∗

p, and thus this is also not a valid forgery.

Thus, we conclude thatA’s success dependssolelyon his luck when the variables are instantiated.
Analysis of B’s Simulation. At this point B chooses a randomx∗ ∈ Z∗

p. B now tests (in equa-
tions 15,16,17) if its simulation was perfect; that is, if the instantiation ofx by x∗ doesnot create any
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equality relation among the polynomials that was not revealed by the random strings provided toA. B also
tests (in equations 18, 19) whether or notA’s output was correct. Thus,A’s overall success is bounded by
the probability that any of the following holds:

F1,i(x∗)− F1,j(x∗) = 0, for somei, j such thatF1,i 6= F1,j , (15)
F2,i(x∗)− F2,j(x∗) = 0, for somei, j such thatF2,i 6= F2,j , (16)
FT,i(x∗)− FT,j(x∗) = 0, for somei, j such thatFT,i 6= FT,j , (17)

FT,∗(x∗) = 0, (18)
FT,◦(x∗) = 0. (19)

We observe thatFT,∗ andFT,◦ are non-trivial polynomials of degree at most≤ 2q+2. Each polynomial
F1,i andF2,i has degree at most1 and2q + 1, respectively.

For fixed i and j, the first case occurs with probability≤ 1/p; the second occurs with probability
≤ (2q+1)/p; and the third occurs with probability≤ (2q+2)/p. (We already take into account multiplying
out the denominators of any rational polynomials.) Finally, the fourth and fifth cases happen with probability
≤ (2q + 2)/p. Now summing over all(i, j) pairs in each case, we boundA’s overall success probability
ε ≤

(
τ1
2

)
1
p +

(
τ2
2

)2q+1
p +

(
τT
2

)2q+2
p + 2(2q+2)

p . Sinceτ1 + τ2 + τT ≤ qG +4, we end withε ≤ (qG +4)2(8q+
8)/p) = O(q3G/p). 2

The following corollary is immediate.

Corollary D.2 Any adversary that breaks the EDH assumption with constant probabilityε > 0 in generic
groups of orderp such thatq < o( 3

√
p) requiresΩ(

√
εp/q) generic group operations.

We now turn our attention from a computational to a decisional problem. Recall from Section 2
that the Strong SXDH assumption involves oracleOx(·) that take as input a valuem ∈ Z∗

p and returns
(gv, g̃1/(x+v), g̃1/(v+m)) for v ∈ Z∗

p randomly chosen by the oracle, and an oracleQy(·) that takes the same
type of input and returns(a, ay, av, g̃1/(y+v), g̃1/(v+m)), for a ∈ G1 andv ∈ Z∗

p chosen randomly by the
oracle. These random values are freshly chosen at each invocation of the oracle.

Theorem D.3 (Strong SXDH is Hard in Generic Groups) Letx ∈ Z∗
p, b ∈ {0, 1}, andξ1, ξ2, ξT be cho-

sen at random. Also, ifb = 1, sety = x, but if b = 0, then sety to be a value selected randomly from
Z∗

p \ x. LetA be an algorithm that solves the Strong SXDH problem in the generic group model, making
a total of qG queries to the oracles computing the group action inG1,G2,GT , the oracle computing the
bilinear pairing e, and the two oraclesOx(·) andQy(·) as described above. Then the probabilityε that
A(p, ξ1(1), ξ1(x), ξ2(1)) = b is bounded by

ε ≤ 1
2

+
(qG + 3)2(3qG)

p
=

1
2

+O

(
q3G
p

)
.

Proof. B maintains the listsL1, L2, andLT as in the proof of Theorem D.1. (Consider the bitb as not yet
set.) At stepτ in the game, we now haveτ1 + τ2 + τT = τ + 3, where atτ = 0, we setτ1 = 2, τ2 = 1, and
τT = 0. These correspond to the polynomialsF1,0 = F2,0 = 1 andF1,1 = x. B also selects unique, random
stringsξ1,0, ξ1,1, andξ2,0.
B begins the game withA by providing it with the stringsξ1,0, ξ1,1, andξ2,0. A may, at any time, make

the group action or pairing queries as in the proof of Theorem D.1.Amay additionally query the following
two oracles. Letτv = 1 andτw = 1 be counters.
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OracleOx(·): A inputsm in Z∗
p, followed byB choosing a newvariablevτv and settingF1,τ1 ← vτv . If

F1,τ1 = F1,u for someu ∈ {0, . . . , τ1 − 1}, thenB setsξ1,τ1 = ξ1,u; otherwise, it setsξ1,τ1 to a
random string in{0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}. B sendsξ1,τ1 toA, adding(F1,τ1 , ξ1,τ1) toL1.

Next, B setF2,τ2 ← 1/(x + vτv) andF2,τ2+1 ← 1/(vτv + m). For j ∈ {0, 1}, if F2,τ2+j =
F2,u for someu ∈ {0, . . . , τ2 − 1 + j}, thenB setsξ2,τ2+j = ξ2,u; otherwise, it setsξ2,τ2+j to a
random string in{0, 1}∗ \ {ξ2,0, . . . , ξ2,τ2−1+j}. B sends(ξ2,τ2 , ξ2,τ2+1) to A, adding(F2,τ2 , ξ2,τ2)
and(F2,τ2+1, ξ2,τ2+1) toL2.

Finally,B adds one toτ1, two toτ2, and one toτv.

OracleQy(·): B responds similarly, except that it chooses newvariablesrτw andwτw , and setsF1,τ1 ←
rτw , F1,τ1+1 ← rτw · y, F1,τ1+2 ← rτw · wτw , F2,τ2 ← 1/(y + wτw), andF2,τ2+1 ← 1/(wτw +m).
At the end,B adds three toτ1, two toτ2, and one toτw.

EventuallyA stops and outputs a guessb′ ∈ {0, 1}.
Analysis ofA’s Output. First, we argue that, providedB’s simulation is perfect, the bitb′ is independent

of b; that is,A cannotoutput a string such that the corresponding polynomial isalwaysequal whenx = y
(b = 1) and non-zero otherwise (b = 0). We show this for each groupG1, G2, andGT . Showing this for
GT is the hardest case. Here, we sum over all expressions containingi or j.

Group G1: The polynomials corresponding to elements inG1 that the adversary can compute as a linear
combination of elements in its view are:

F1,a = a0 + a1 · x+ a2,i · vi + a3,j · rj + a4,j · rj · y + a5,j · rj · wj (20)

wherei = 1 to τv andj = 1 to τw. ForF1,a = 0, botha1 anda4,j must be zero whethery is replaced
by x or not; otherwise those terms cannot be canceled. The remaining polynomial does not contain
the variablesx or y.

Group G2: The polynomials corresponding to elements inG2 that the adversary can compute as a linear
combination of elements in its view are:

F2,b = b0 +
b1,i

x+ vi
+

b2,i

vi +mi
+

b3,j

y + wj
+

b4,j

wj +mj
(21)

wherei = 1 to τv, j = 1 to τw, and eachmi,mj ∈ Z∗
p was chosen by the adversary. Suppose

F2,b = 0. We multiply out the denominators in equation (21) to obtain:

F ′
2,b = b0(x+ vi)(vi +mi)(y + wj)(wj +mj)+

b1,i(vi +mi)(y + wj)(wj +mj) + b2,i(x+ vi)(y + wj)(wj +mj)+
b3,j(x+ vi)(vi +mi)(wj +mj) + b4,j(x+ vi)(vi +mi)(y + wj)

(22)

Now, forF ′
b,2 = 0, regardless of whether we substitutex for y, we see thatb0 = 0, otherwise the term

xviywj (or x2viwj) cannot be canceled. Similarly,b1,i = 0 because of the unique summandxviy (or
x2vi), which makesb2,i = 0 because of the summandv2

iwj . Then,b3,j = 0 because of the summand
xywj (or x2wj), which makesb4,j = 0 because of the summandviw

2
j . We are left with the constant

zero.
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Group GT : The polynomials corresponding to elements inGT that the adversary can compute as a linear
combination of elements in its view are:

FT,c =
∑

F1,a · F2,b. (23)

Now, a simple expansion ofFT,c has thirty terms. Suppose we clear the denominators inFT,c = 0 by
multiplying out by(x+ vi)(vi +mi)(y + wj)(wj +mj), then we have

F ′
T,c =

∑
F1,a · F ′

2,b. (24)

Now, each of the terms inF1,a is unique andF ′
2,b contains the following unique summands(xviywj ,

xviy, v
2
iwj , xywj , viw

2
j ). (Here, the summandsv2

iwj andviw
2
j are actually not unique, but since they

also do not containx or y, it will not matter.) Multiplying these key components out and dropping the
subscript for clarity, we obtain:

F ′′
T,c = c0(vwxy) + c1(vxy) + c2(v2w) + c3(wxy) + c4(vw2)

+ c5(vwx2y) + c6(vx2y) + c7(v2wx) + c8(wx2y) + c9(vw2x)
+ c10(v2wxy) + c11(v2x2y) + c12(v3w) + c13(vwxy) + c14(v2w2)
+ c15(vwxyz) + c16(vxyz) + c17(v2wz) + c18(wxyz) + c19(vw2z)
+ c20(vwxy2z) + c21(vxy2z) + c22(v2wyz) + c23(wxy2z) + c24(vw2yz)
+ c25(vw2xyz) + c26(vwxyz) + c27(v2w2z) + c28(w2xyz) + c29(vw3z)

(25)

Now, we are only interested in differences in the polynomialF ′′
T,c wheny is replaced byx or not. For

clarity, we drop all terms containing neitherx nory, resulting inc2 = c4 = c12 = c14 = c17 = c19 =
c27 = c29 = 0. We substitutex = y to obtain.

F ′′′
T,c = c0(vwx2) + c1(vx2) + + c3(wx2) +

+ c5(vwx3) + c6(vx3) + c7(v2wx) + c8(wx3) + c9(vw2x)
+ c10(v2wx2) + c11(v2x3) + + c13(vwx2) +
+ c15(vwx2z) + c16(vx2z) + + c18(wx2z) +
+ c20(vwx3z) + c21(vx3z) + c22(v2wxz) + c23(wx3z) + c24(vw2xz)
+ c25(vw2x2z) + c26(vwx2z) + + c28(w2x2z)

(26)

We want to know if there are any two terms that are symbolically equal whenx = y and not otherwise.
Scanning the above, we see that the only non-unique terms are in positions 0 and 13, and in positions
15 and 26. Looking back to equation (25), we see thatboth positions 0 and 13 correspond to term
vwxy, and thatbothpositions 15 and 26 correspond to termvwxyz. Obviously, these terms will be
the same regardless of the substitution ofx for y. Since all other terms are unique, we conclude that
the adversary’s only chance of distinguishing comes from a lucky instantiation of these variables.

Analysis ofB’s Simulation. At this pointB chooses random valuesx∗, y∗, {v∗d}d∈[1,τv ], {w∗
d}d∈[1,τw],

{r∗d}d∈[1,τw] ∈ Z∗
p. B’s simulation is perfect, and therefore reveals nothing toA aboutb, provided that none
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of the following non-trivial equality relations hold:

F1,i(x∗, y∗, {v∗d}, {w∗
d}, {r∗d})− F1,j(x∗, y∗, {v∗d}, {w∗

d}, {r∗d}) = 0 :
for somei, j, such thatF1,i 6= F1,j ,

(27)

F1,i(x∗, x∗, {v∗d}, {w∗
d}, {r∗d})− F1,j(x∗, x∗, {v∗d}, {w∗

d}, {r∗d}) = 0 :
for somei, j, such thatF1,i 6= F1,j ,

(28)

F2,i(x∗, y∗, {v∗d}, {w∗
d}, {r∗d})− F2,j(x∗, y∗, {v∗d}, {w∗

d}, {r∗d}) = 0 :
for somei, j, such thatF2,i 6= F2,j ,

(29)

F2,i(x∗, x∗, {v∗d}, {w∗
d}, {r∗d})− F2,j(x∗, x∗, {v∗d}, {w∗

d}, {r∗d}) = 0 :
for somei, j, such thatF2,i 6= F2,j ,

(30)

FT,i(x∗, y∗, {v∗d}, {w∗
d}, {r∗d})− FT,j(x∗, y∗, {v∗d}, {w∗

d}, {r∗d}) = 0 :
for somei, j, such thatFT,i 6= FT,j ,

(31)

FT,i(x∗, x∗, {v∗d}, {w∗
d}, {r∗d})− FT,j(x∗, x∗, {v∗d}, {w∗

d}, {r∗d}) = 0 :
for somei, j, such thatFT,i 6= FT,j .

(32)

For fixedi andj, the probability of the first and second cases occurring are no more than2/p, where
this results from the maximum degree of equation (20). For fixedi andj, the probability of the third and
fourth cases occurring are no more thanτ2/p, where this results from the maximum degree of equation (22).
Finally, for the fifth and sixth cases, the probability is at most2τ2/p, where this results from the maximum
degree of equation (24).

Therefore, by summing over all(i, j) pairs in each case, we boundA’s overall success probability
ε ≤ 2

(
τ1
2

)
2
p +2

(
τ2
2

)
τ2
p +2

(
τT
2

)
2τ2
p . Sinceτ1+τ2+τT ≤ qG+3, we end withε ≤ (qG+3)2(2+qG+2qG)/p =

O(q3G/p). 2

The following corollary is immediate. Hereγ = ε − 1
2 ; that is,γ is the adversary’s advantage beyond

guessing.

Corollary D.4 Any adversary that breaks the Strong SXDH assumption with constant probabilityγ > 0 in
generic groups of orderp requiresΩ( 3

√
γp) generic group operations.
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