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Abstract

We provide a construction for a group signature scheme that is provably secure in a universally com-
posable framework, within the standard model with trusted parameters. Our proposed scheme is fairly
simple and its efficiency falls within small factors of the most efficient group signature schemes with
provable security in any model (including random oracles). Security of our constructions require new
cryptographic assumptions, namely the Strong LRSW, EDH, and Strong SXDH assumptions. Evidence
for any assumption we introduce is provided by proving hardness in the generic group model.

Our second contribution is the first definition of security for group signatures based on the simulata-
bility of real protocol executions in an ideal setting that captures the basic properties of unforgeability,
anonymity, unlinkability, and exculpability for group signature schemes.

1 Introduction

Group signature schemes, introduced by Chaum and van Heyst [23], allow a member of a user group to
sign anonymously on behalf of the group, where a user’'s anonymity may be revoked by a designated group
manager, in case of disputes.

The motivation of this paper is twofold. Our first motivation is to build a practical group signature
scheme provably secure under standard assumptions, in particular without resorting to the random oracle
model. Prior to this work, there was no group signature scheme known achieving this (with the exception of
the recent scheme by Boyen-Waters [16] which, however, fails to meet all required properties—we will later
discuss their scheme in more detail).

In this paper, we present a full group signature scheme provably secure under new number-theoretic
assumptions. Now, one might say that we trade the “assumption” that the Fiat-Shamir heuristic works
with proof of knowledge protocols for discrete logarithms (e.g., such as the Schnorr signature scheme)
with other possibly false assumptions. However, while one will probably never be able to prove that the
Fiat-Shamir heuristic is reasonable for some cases (on the contrary, many cases are known for which it is
unreasonable [33]), our new assumptions are algebraic and hence naturally much easier to analyze. Indeed,
as a first step towards their justification, we prove that they hold in the generic group model [40, 46]. We
hasten to point out that one can of course prove assumptions hard in the generic group model that are not
hard against an algebraically unrestricted adversary, and that the generic group model has some of the same
faults as random oracles [27]. Rather, a proof in the generic model should be considered a sanity check for
an complexity assumption.

In the light of the quest for a group signature scheme provably secure in the standard model, one can view
both schemes, the Boyen-Waters one and ours, as first steps in this direction. The Boyen-Waters scheme uses
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somewhat less complicated assumptions, but sacrifies some desirable properties while our scheme captures
these properties but makes more involved assumptions.

The second motivation of this paper is the definition of security in the reactive security or universally
composablility model [8, 42, 22, 43]. Let us expand here. The security of early schemes was defined in terms
of whether they satisfied a number of independent properties, and lacked a comprehensive view of adver-
sarial behavior. Indeed, as initially the set of features considered was insufficient, some proposed schemes
were subsequently broken. An important realization was the requirement that membership certificates be
the equivalent of group manager signatures, in order to prevent against attacks by arbitrary group member
coalitions [5]. Later, Bellare, Micciancio, and Warinschi [9] (BMW) introduced a security formalism based
on adversarial games that combined the several requirements of previous works into fewer ones (namely,
traceability and anonymity). However, the BMW formalization relies on the existence of a (trusted) key-
issuing entity that generates all keys in the system and distributes them to the group manager and group
members. As argued by Kiayias and Yung [36], BMW modelgeakerprimitive than the group signatures
proposed by Chaum and van Heyst, since assuming a “tamper-proof” key setup conflicts with the goals
of many practical schemes. The BMW model has been extensively adapted (via incorporating exculpabil-
ity, changing the proof model to the random oracle setting and/or to dynamic groups) to allow for security
proofs of recently proposed group signature schemes, e.g., works by Boneh et al. [13] and Camenisch and
Lysyanskaya [19].

The first formal model to apply to the case of dynamic groups was introduced by Kiayias et al. [36, 35].
The formalization works in the random oracle model, not the standard model, but it captures closely the
security requirements of practical group signatures, and it can be readily applied to formally prove the
security of practical schemes. Indeed, [36] includes a security proof of a variant of the Ateniese et al.
scheme [4]. More recently, Bellare, Shi, and Zhang [11] have proposed a standard-model formalism for
dynamic groups, and constructed theoretical schemes based on black-box zero-knowledge primitives.

Simultaneously with this evolution of understanding in group signatures was the development of the uni-
versally composable (UC)/reactive framework [8, 42, 22, 43]. The UC/reactive framework enables proofs
of security of protocols that are valid under concurrent execution and in composition with other arbitrary
protocols. It has been shown that this framework is more powerful than a property based definitional ap-
proach as it captures all properties at the same time. Indeed, examples are known of schemes that satisfy
a property based defintion (i.e., each property individually) but not a UC/reactive framework definition that
requires the fullfilment of all the properties at the same time [22].

To date, it remained an open problem to introduce a UC/reactive security model for group signatures.
We introduce this definition in Section 2. It was carefully constructed to incorporate the original vision
of Chaum and van Heyst and its subsequent developments. Our definition implies many of the guarantees
of prior property-based definitions (e.g., [9, 11, 36, 35]). Two properties that we do not require are: (1)
membership revocation, and (2) anonymity even after exposure of a user’s secret key (forward anonymity),
as in BMW [9]. Regarding point (2), we mean that we provide anonymity only to honest users, i.e., users of
which the adversary does not know the secret key of which we believe is sufficient in practise. We emphasize
that our model does not require any trusted key-issuing entity and group member secrets are known only to
group members.

Note that our results are not in contradiction with the work of Datta et al. [26] on the impossibility of
realizing an ideal functionality for group signatures wpirfect anonymityi.e., the probability of guessing
the identity of one of two signers exactlyl/2) andperfect traceability(i.e., the probability of a dishonest
group manager violating exculpability exactlyzero). Datta et al. admit that they only consider a strong
form of group signature, and indeed, their formulation of group signatures has a single entity generating all



signing keys. They also require that the scheme remain secure even when all public parameters are chosen
by a potentially malicious group manager, i.e., they consider UC security ipléiive model In contrast,
our definition (and scheme) does not have a key issuing entity and will allow some global parameters to be
given to the group manager—e.g., bilinear map parameters. This is sometimes referred to as a UC model
with trusted parameters

We now summarize the contributions of our paper.

1.1 Our Contribution and Comparison with Previous Work

Strong security model: We provide the first definition of security for group signature schemes as an ideal
functionality, and provide a construction of a practical and provably secure scheme within the new frame-
work. Static-membership versions of our group signature schemes are secure in the context of composition
and concurrent executions. The dynamic-membership version of our group signature scheme is similarly
secure, if the join protocol is restricted to sequential execution.

Better Efficiency: Our construction is the first in the standard model to providestanttime and space
efficiency with respect to the security parameter. Concurrently, and independently from us, Boyen and
Waters [16] proposed a scheme provably secure the standard model (under a different definition of security).
However, in their scheme the bit length of the signatures and the complexity of the signature and verification
algorithms are)((logn) - k), wheren is the number of group members ahds the security parameter. In

our scheme, all of these complexities will b¥(log n) + k), where the(logn) term is there to guarantee

that there are enough unique secret keys for each user in the algebraic group. In dractiée,smaller

thank, so our scheme is af(k) scheme (i.e., constant in the security parameter).

CCA-anonymity: Our scheme achieves CCA anonymity, i.e., anonymity holds even when the adversary
continually has access to an open oracle (which, when queried on a signature, returns the signer’s iden-
tity). In constrast, the Boyen-Waters scheme achieves only CPA anonymity, where the adversary is not
allowed access to the oracle after receiving the challenge signature. Similarly as CCA security is the de
facto requirement for encryption schemes, we believe this is a vital property for group signatures.

Strong exculpability: We achieve exculpability, an important property originally proposed by Chaum and

van Heyst. In our scheme, a user’s secret key is chosen by the user, and we prove that group managers
cannot sign on behalf of honest users. The Boyen-Waters scheme lacks (strong) exculpability of users: In
their scheme, a trusted key-issuing entity generates and distributes users’ secret keys. Thus, this entity can
sign messages on behalf of the user, and thus holding asessintablgfor any misbehavior is difficult.

Forward security: Our scheme does not achieve forward anonymity as defined in BMW [9] under the
full anonymity property where members remain untraceable even if their secret keys are exposed, but only
ordinary anonymity. The Boyen and Waters scheme does achieve forward anonymity.

General setting for bilinear mappings: We use curves with isomorphism-free paired groups, arguably the
most efficient, secure, and versatile setting for pairings-based cryptography (e.g., see Galbraith et. al. [31]).
In contrast, the Boyen-Waters scheme is restricted to symmetric bilinear mapping settings (supersingular
curves). Even more significantly, their scheme uses elliptic curve groups of composite order, and they
require that this order be hard to factor, implying it must be large (1024 bits or larger). Consequently, the
representation of every elliptic curve point is similarly large, which heavily impacts the performance of
cryptographic operations in these curves, as well as their bandwidth requirements.



1.2 Overview of the Construction

We now provide intuition for understanding our construction, described in detail in Section 5. Our group
sighature scheme has the standard proto&ssup, Join, GroupSign, GroupVerify, andOpen. Let S =

(Gen, Sign, Verify) be an efficient signature scheme secure in the standard model. Let the group manager
have keypai GPK, GSK) and a user have keypdipk, sk), generated according tGen. Consider the
following scheme. During thdoin protocol, the group manager gives the user a certificate on her public
key: Sign o9k (pk). To sign message: as a group member, the user prepends her certificate and public key

to her signature: fign o (pk), pk, Signg,(m)). This scheme is clearly unforgeable, but not anonymous.

In order to achieve anonymity, the certificate and user’s public key must be made unlinkably randomizable,
while the signature element must be instantiated using a key-private signature scheme. We actually have the
manager and user employ different signature schefesndSs;.

S is based on the pairing-based signature scheme of Camenisch and Lysyanskaya [19] (CL); Specifi-

cally it uses the extension of this scheme (GQlby Ateniese et al. [3]. Consider a bilinear map (pairing)
e : G; x Gy — Gr, defined on groups of prime order with generatorgy, g, g, respectively. Select
randoms,t € Z, and setsk = (s,t) andpk = (g% g"). To sign a messages € Z*, choose random
a € Gy and output the tupléa, a®, a* 5™ o™, a™). Verify signature(A, B, C, D, E) by checking that:
(D) e(4,3') = (B, ), (2) (D, §') = e(E, §), and (3)e(AE, §°) = ¢(C, §).

The user’s certificate is nothing more thahland CL™* signature from the group manager on the user’s
secret keysk, i.e., the group member signé without learning its value, a necessary condition for our
scheme to provide exculpability. Fortunately, the'Csignature inherits an efficient blind-signature pro-
tocol from the original CL scheme. In the above, we instantiate the elen(8iys ;gx (pk), pk) with
CLEgi (sk) = (a, at, a*+s4k) q%k qt(k)) which is the group manager’s signature gnwhich can be
thought of as including an obfuscated version of the user’s publi¢key”). As observed in [3], these sig-
natures can be unlinkably re-randomized by choosing a randerfi, and computinga”, a”, a{ststsk)}r,
a®*", a!*F)) assuming DDH is hard ifi;. The user may therefore release a random-looking copy of her
certificate with each group signature.

We implementS; with a new signature scheme (secure in the standard model) which is based on the
weaksignatures of Boneh and Boyen [13] (BB). By weak, we mean the Boneh-Boyen signature scheme
proven weak message attack secure, where the adversary must submit all challenge messages in advance of
learning the public key. The scheme works in a similar pairing setting aSiHesignature. Select a random
sk € Z, and a random generatgre G, and outputpk = (g, ¢**). To sign a message < {0, 1}1°8/Pl,
outputA = §/(k+m) Verify by checking that(g" pk, A) = e(g, §).

As a thought experiment, consider our group signature structure using weak BB signatures to implement
Sy. The construction i§ CLE gy (sk); BBg(m)) = (a, at, a*Ttk) g%k, gt(sk); gl/(sk+m)y = (A, B,

C, D, E, F), verifiable by checking th&’L* signature first and then testingdf DA™, F) = e(A, g).
Unfortunately, as the BB signatures are deterministic, it will be obvious when the same user signs the same
message a second time. This violates our privacy definition, so we modify this basic scheme to provide more
privacy and enable longer messages.

In their paper [13], Boneh and Boyen present one method for adapting the weak scheme to longer mes-
sages. In this paper, we present another method, which we dBBotethat is more suited to our purposes.

To sign a message € 7}, select a random € Z, and output the tuplég?, gt/ (sk+v), gl/(v+m)) - verify
signature triple(A4, B, C) by checking that(A pk, B) = e(g,g) ande(A g™, C) = e(g,g). We arrive
at the constructiof CL g (sk); BB}, (m)), or more exactly(a, af, a®+st(sk), qsk, qt(sk); qv, gl/(sk+v)
g'/(v+m)) for messagen € Z*, wherea € G, andv € Z,, are randomly chosen for each new signature.
At this point, we have described the entire construction, except for ho@plea algorithm works. The



simplest method is for the user to give the group manatyaciang valuej** during theJoin protocol. Later,
the group manager can open a signatute:’, as+5:(k) gk qt(sk); qv gl/(sk+v) gl/(v+m)y — (A B, C,

D, E; F, G, H) by testing ife(A, §°*) = e(D, §) for each user. Obviously, this algorithm runs linearly
in the number of group members. We improve on this result in Section 6, providing two altel@Qatve
algorithms. The first ha®(/n - k) complexity, for membership groups of sizeand security parametér
under the same cryptographic assumptions as the basic scheme. The second redlsges)te- k) under
an additional assumption.

Remark 1.1 (Security under concurrent executions.)The join protocol is the only protocol in our scheme
that requires sequential composition for security, because it involves a zero-knowledge proof of knowledge.
In Appendix B, we discuss some techniques for securely achieving limited forms of concurrency.

Remark 1.2 (Revocation.) Finding an elegant revocation mechanism is a pervasive problem among group
signature schemes. To revoke a user in our scheme, the group manager could publish thewciser’s
informationobtained during the join protocol. We explore more efficient alternatives in the full version.

Length of Signatures. The signatures produced by this scheme are short. In the following comparisons
we are going use the NIST suggested equivalence of 80-bit symmetric security with RSA-1024 and 128-bit
symmetric security with RSA-3072. For our schemes, we estimate the key sizes from our generic-model
security reductions to be 1/3 of the equivalent symmetric key size, i.e., 240 bits for 80-bit symmetric security
and 384 bits for 128-bit symmetric security. This 3:1 ratio should be also used to compare schemes based
on theg-Strong Diffie Hellman assumption, due to recent results by Cheon [24].

Assuming that the bitlength of elementsn is 241 (an extra bit is needed to indicate theoordinate
among two options), and that the curves implemented in the MIRACL library are used [44], the basic scheme
achieves roughly the same level of security as a 1024-bit RSA signature [13]. For these curves, the bitlengths
of elements iz, are roughly three times that &f; (more precisely 721 bits), and our scheme would take
approximately 2888 bits to represent a group signature, comprised of six eleméntsaumd two elements
in Gy. If the newer curves of embedding degree 12 are used [7], one could employ 385-bit groups (for
128-bit generic security) to achieve RSA-3072 security equivalence. These new curves have better ratios,
with log |G2|/log|G1| = 2. In this case, our signatures would take 3848 bits to be represented, about
25% larger than a plain RSA signature with the same security level. As mentioned before, this efficiency
is incomparable with that of Boyen and Waters [16], which (1) grow logarithmically with the number of
system members and (2) require elliptic curve group orders over a 1000 bits long.

Our scheme can be compared with the most efficient short group signatures secure in the random oracle
setting. For instance, the scheme by Boneh, Boyen, and Shacham [13], which achieves only CPA-anonymity,
would require about 2163 bits for the RSA-1024 security level (or about 1442 in the MNT settirg).
shorter scheme by Boneh and Shacham [15] requ&3 bits to achieve RSA024 comparable security.

2 Group Signature Security Definition

Notation: if P is a protocol between partiesand B, thenP(A(z), B(y)) denotes that!’s input isz and
B’s inputisy.

http://www.nsa.gov/ia/industry/crypto _elliptic _curve.cfm

Their paper provides the value 1533 bits instead of 2163, but this does not take into account the above mentioned results about
the concrete security of theStrong Diffie-Hellman assumption [24].

8Again, this value is larger than the one provided by the authors to account for the concrete seqtfitsony Diffie-Hellman.



A group signature scheme consists of the usual types of players: a group m@ndgerd a uset/;.
These players can execute the algorith@soupSetup, UserKeyGen, Join, GroupSign, GroupVerify,
Open, andVerifyOpen. We now specify the input-output specifications for these algorithms as well as
providing some informal intuition for what they do.

Let params be global parameters generated during a setup phase; igeatly.s is empty.

— TheGroupSetup(1¥, params) algorithm is a key generation algorithm for the group manggefr. It
takes as input the security parametémand outputs the key paipkgy,, skgm). (Assume thaskgy
contains thevarams, so we do not have to givenrams explicitly to the group manager again.)

— TheUserKeyGen(1*, params) algorithm is a key generation algorithm for a group menibewhich
outputs (pk;,, sky). (Assume thatsky, contains theparams, so we do not have to givparams
explicitly to the user again.)

— IntheJoin(U (pkgy,, sku), GM (pky, skga)) protocol, the uself joins the signatory group managed
by GM. The user’s output is a personalized group signing crede@ijabr an error messaggM’s
output is some informatiofi;, which will allow the group manager to revoke the anonymity of any
signatures produced By. The group manager maintains a datab@dger this revocation information,
to which it adds the recor(bk;,, Ty/).

— The GroupSign( sk, Ciy, m) algorithm allows group members to sign messages. It takes as input
the user’s secret kesky,, the user’s signing credentiél,, and an arbitrary string:. The output is a
group signature.

— The GroupVerify(pkgy,, m, o) algorithm allows to publicly verify that is a signature on message
m generated by some member of the group associated with group publig key

— TheOpen(skgn, D, m, o) algorithm allows the group manager, withgy( and databas®, to iden-
tify the group membet/ who was responsible for creating the signatwi@n message:. The output
is @ member identityk;, or an error message.

— In the VerifyOpen(GM (skgy, D, m, o, pk), V(pkgr,, m, o, pk)) protocol,GM convinces a verifier
that the user with public keyk was responsible for creating the signataren messagen. The
verifier outputs either 1 (accept) or O (reject).

In addition to supporting the above algorithms, a group signature scheme must aleordst and
secure Correctness is fairly straightforward. Informally, if an honest user dais with an honest group
manager, then neither will output an error message. If an honest usegromgSign, then the output will
be accepted by an honest verifier runnfBgoupVerify. If a signature passesroupVerify and a honest
manager run®pen, then the result will be accepted by an honest verifier runkerifyOpen.

2.1 The Group Signature Ideal Functionality, 7,

Our security model uses the ideal/real world model as in multiparty computation [20, 21, 22] and reactive
systems [42, 43] to capture the security properties of group signatures in a single definition.

In the real world, there are a number of parties who together execute some cryptographic protocol. A
number of these parties may be corrupted by the adverddnll corrupted parties are combined into this
single adversary). Each party receives its input and reports its output to the envirahinTérg environment
Z and the adversaryl may arbitrarily interact. In the ideal world, we have the same parties. As before,
each party receives its input and reports its output to the environment. However, instead of running a
cryptographic protocol, the parties provide their inputs to and receive their outputs from a trusted.party
The specification for how behaves is formalized as an ideal functionality.



We say that a cryptographic protocol securely implements an ideal functionality if for every real-world
adversary4 and every environmeng, there exists a simulat@®, which controls the same parties in the
ideal world as4 does in the real world, such that cannot distinguish whether it is interacting in the real
world with A or in the ideal world withS.

Group Signature Ideal Functionality. We now describeF,,. In addition to the environmerf, we
have two types of players: a group managét and userg{;. We work in thenon-adaptivesetting.

— Non-adaptive Setup: Each uset/; tells the functionalityF,, whether or not it is corrupted. Option-
ally, in this stage the global parameters are broadcast to all parties.

— GroupSetup: Upon receiving GM, “group setup’} from GM, send taS tuple (GM, “group setup”).

— UserKeyGen: Similarly, upon receivindi4;, “keygen”) from 4; inform S.

— Join: Upon receiving(U;, “enroll”) from U;, ask the group managém if &; may join the group.
The GM responds withres; € {0, 1}. Record the pai(l;, res;) in databaseé) and returnres; to U;.
Additionally, if the group manager is corrupted, then register a special user cgrkdpt-

— GroupSign: Upon receivingi;, “sign”, m), wherem is an arbitrary string, check tha; is a valid
member of the group by checking that the entryZipin D hasres; = 1. If not, deny the command.
Otherwise, tell the simulataf that GroupSign has been envoked on message If the GM is
corrupted, also tell the simulator the identity. Ask S for a signature indexd. Record the entry
(Ui, m, id) in databasd. and return the valuél to ;.

— GroupVerify: Upon receivingU;, “verify” , m, id) from U; (or GM), search databadefor an entry
containing message, and if one exists, return 1. Otherwise, return 0.

— Open: This ideal operation combines both Bgen andVerifyOpen cryptographic protocols. Upon
receiving(l;, “open”, m, id) from U;, search databask for an entry(l/;, m, id) for anyl;. Ask
gM ifit will allow F,, to openid for userl;. If GM agrees andll; # corruptgM, then output the
identity {;. Otherwise, outpud..

Let us provide some intuition for understanding this model. Informally, the properties that we capture
are unforgeability, anonymity, and exculpability. This definition is general enough to capture unforgeability
under adaptive chosen message attack [34] withequiring schemes to bstronglyunforgeable [2]. In a
strongly unforgeable scheme, a new signature on a previously signed message is considered a forgery; while
in the standard notion, a forgery must be on a new message.

The definition also captures the important exculpability property (i.e., even a rogue group manager
cannot frame an honest user). Indeed, the environmBentay instruct a user to sign any messages of
its choosing and may interact freely with the adversdry Our model, however, enforces that unless an
honest usel/; requested a signature on(i.e., sent*sign”, m) to ), then for all values oid, theOpen
command or{l4;, m, id) will return L.

Furthermore, there is a strong anonymity guarantee for a user: unless the group manager is corrupted,
the users remain anonymous. When the group manager is honest, the simulator must create signatures for
A knowing only the message contents, but not the identity of the honest user.

Finally, the definition ensures that, whenever the group manager is honest, he will be able to open all
group signatures. During th@pen command,F,s only asksS for permission to execute the opening if the
group manager is corrupted. Thus, if a user honestly runs the verification algorithm and accepts a signature
as valid, then this user may be confident that an hoG&s$twill later be able to open it, reveal the identity
of the original signer, and prove this to the user.

The above definition does not define membership revocation. However, it is not difficult to e&fend
to address revocation, and we plan to do so in the full version of the paper.



It is not hard to see that our definition implies prior many of the guarantees of the property-based def-
initions (e.g., [9, 11, 36, 35]). Two properties that we do not require are: (1) membership revocation, and
(2) anonymity even after exposure of a user secret key (forward anonymity), as in BMW [9]. While of
course both of these properties could be added easily to the model, our scheme does not statisfy them. Note,
however, that our definition (and scheme) does provide anonymity to (honest) users, i.e., users of which the
adversary is not privy of their secret keys. Finally, notice that our definition implies CCA anonymity, i.e.,
an anonymity property based definition where the adversary is allowed to query the open oracle even after
having been presented the challenge signature. This is in contrast to BMW model (and to the Boyen-Waters
group signature scheme) which provide only CPA anonymity, i.e., where the adversary is no longer allowed
access to the open oracle after seeing the challenge signature.

3 Preliminaries and Complexity Assumptions

Notation: The notationG = (g) means thay generates the groug.

Pairings: Let BilinearSetup be an algorithm that, on input the security paramgéfeoutputs the parameters
for a pairing asy = (p, G1, G2, Gr, g, §), whereG; = (g) andG, = (g). We follow the notation of Boneh,
Lynn, and Shacham [14]. Le&, Go, andGr all be (multiplicative) groups of prime order = O(2%),
where each element of each group has a unique binary representation. Furthermar&,let Go — Gr
be an efficienpairing, i.e., a mapping with the following properties: (Bilinearity) for alk G, g € G,
anda, b € Z,, e(9%, 3°) = e(g, §)*; and (Non-degeneracy) ifis a generator o, andj is a generator of
Ga, thene(g, g) generate& .

3.1 Complexity Assumptions

The security of our construction in Sectigh is based on the following assumptions about pairing groups.
In Appendix§D, we provide generic group proofs for EDH and Strong SXDH. A generic group proof for
Strong LRSW was previously given in [3].

Two criticisms could be made of these assumptions. The first could be that they are closely related to
specific security properties of the scheme. With regards to this, we point out that evewdrate assume
a specific property, such as unforgeability (which we don't do), security in our model would not follow.
Indeed, it is non-trivial to show that our assumptions imply that our scheme realizes our ideal functionality.
We also point out that the generic group proofs of these assumptions are highly non-trivial and required new
techniques, which may be useful elsewhere.

A second criticism could be that the assumptions are interactive and thus not black-box falsifiable [39].
However, we believe that our provided generic-model hardness proofs show that these assumptions are
reasonable: Violating them would result in the design of elliptic curve algorithms with better than generic
efficiency, a major cryptographic breakthrough with likely wider ramifications. In addition, our proofs
provide estimates for the key sizes required for particular security levels, making our security assumptions
indeed very concrete: The resultiity{p'/3)-generic security of our interactive assumptions (for elliptic
curve subgroups of ordel) puts them on a similar footing with related falsifiable assumptions, such as the
g-Strong Diffie-Hellman assumption [24].

Let BilinearSetup(1¥) — (p, G1, G2, Gr, g, ), whereG; = (g) andG, = (§), be public.

Assumption 1 (Symmetric External Diffie-Hellman (SXDH) [6, 3, 30]) The Decisional
Diffie-Hellman (DDH) problem is hard in bot&; and G,. This implies that there doot exist efficiently
computable isomorphisms: G; — Go or ¢’ : Gy — Gy.

8



Note that SXDH also subsumes a traditional Co-Gap assumption, i.e., the Co-CDH problem [14] is hard
in the pairing groups: Givety, g, g%, g¥), it is hard to computg®? or g*¥.

Good candidates for pairing groups where SXDH is hard are certain MNT curve implementations where
no efficient isomorphisms betweé&h andG, are known [6, 3, 47, 32, 30]. The asymmetric version of this
assumption, simply called XDH, only requires that DDH be har&{rn29, 45, 38, 13, 6].

The LRSW assumption is a discrete-logarithm assumption introduced in 1999 by Lysyanskaya et al. [37]
and used in many subsequent works. Recently, a stronger form of the LRSW assumptiomyptieshthe
SXDH assumptigrecalledStrong LRSVWwas introduced by Ateniese et al. [3].

Assumption 2 (Strong LRSW [3]) Let X, Y € G2, X = §*,Y = §¥. LetOx y (-) be an oracle that takes
as input a valuen € Z#, and outputs an LRSW-tuple, a®, a¥*¥*™) for a randoma € G;. Then for all

probabilistic polynomial-time adversarie4"”) and allm € Z,
PI'[I‘ £ Zp7y £ Zp7X = ng Y = §y7 (a’17 a2z, a3, a4, a5) = AOX’Y(gaga X7 Y) :
mEgQ A ag €Gy A ag=a? A az=a’""" A ag=al A as = a]*] < 1/poly(k),
whereQ is the set of queriegl makes tax y ().

The ¢-Strong Diffie-Hellman ¢-SDH) assumption, as introduced by Boneh and Boyen [12], states that:
for all probabilistic polynomial-time adversarig§ and allc € Z;;:

R ~ T x ~x ~(x ~1/(x+c
Prlz & Zp : A9,3, 9% .9, 5% ....5"") = (¢, g/ "T9)] < 1/poly(k).

We make an interactive version of this assumption. As we mentioned in the introduction, our efficiency
analysis takes into account Cheon'’s recent results [24} 8DH.

Assumption 3 (Extended Diffie-Hellman (EDH)) Letx € Z;. Let oracleO,(-) take inputc; € Z; and
produce outpui(gi, '/ (= v, gl/(vite)), for a randomu; € Z3. For all probabilistic polynomial-time
adversaries4, all v, c € Ly, and alla € G such thata # 1,

Prlz & 7, : A% (g,4%,3,5°) = (c,a,a”,a®, g/ @) g1/ 09 A e ¢ Q) < 1/poly(k)
whereQ is the set of queriegl makes to oracl€,(-).

The assumptions discussed so far are underlying the unforgeability of our group signature scheme. Its
anonymity is based on a single assumption: that SXDH holds even when the adversary is given oracle access
to additional information about the DDH instance.

Assumption 4 (Strong SXDH) Letg € Gy, § € Go, andx € Z,. LetO,(-) be an oracle that takes as
input m € Z and outputs(g®, /@ *v), gl/(v*m) for a randomv € Z. LetQ,(-) be an oracle that
takes the same input type and outputs g™, g"*, 1/ +v), g1/(w+m)) for a randomr, v € Z;. Then for all
probabilistic polynomial-time adversarie4(), and for randomly chosene G1, j € G, andz,y € Z,,

[Pr[A%=9(g, g%, ) = 1] — Pr[A=%¥ (g, 4", §) = 1]| < 1/poly (k).

In Theorem D.3, we show that Strong SXDH also has the same complexit$Bs$i for generic groups.
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4 Key Building Blocks: CL* and BB™ Signatures

As mentioned in Sectiogl, our group signature scheme is built out of two standard signature schemes
secure without random oracles. We review the important details now.

4.1 Camenisch-Lysyanskaya Signatures

Recall the basic Pedersen commitment scheme [41], in which the public parameters are@ gfq@uime
orderp, and two generatorg andh of G. To commit to the valuen < Z,, pick a random € Z, and set
C = PedCom(m;r) = ¢g™h".

The Camenisch-Lysyanskaya (CL) signature scheme is secure without random oracles under the LRSW
assumption [19]. CL signatures are also useful, because they support an efficient two-party protocol for
obtaining a CL signature on the value (message) committed to in a Pedersen commitment. The common
inputs areC' = PedCom(m; ) and the verification key of the signgk. The signer additionally knows the
corresponding signing kesk, while the receiver additionally knows andr. As a result of this protocol,
the receiver obtains the signaturg. (m), while the signer does not learn anything abeutFor our current
purposes, it will not mattehow this protocol actually works. Fortunately, a recent extension of the CL
signatures by Ateniese et al. [3], denoted'Cinherits this protocol.

CL T Signatures.Let the security parameter hé. The global parameters are the description of a pair-
ing params = (p, G1, Ga, G, g, §), whereG, = (g) andG, = (j), obtained by runningilinearSetup(1%).
Keypairs are of the formk = (g%, ') andsk = (s, t) € Z2.

— Signing: Choose random € Gy, output(a, at, a**!™ o™ a™') as the signature dmddenmessage
m € Z;‘,.

— Verification: On input a purported signatufel, B, C, D, E) accept that authenticates the message
hidden adog 4 (D) if and only if: (1)e(B, g) = e(4,3"), (2) e(D, ") = e(E, g), and (3)e(C, g) =
e(A,5°)e(E, §°).

— Re-Randomization: On input a signaturgéA, B, C, D, E), choose a random € Z; and output
(A", B",C",D" E").

CL™ signatures are secure assuming SXDH and Strong LRSW. As previously observed in [3], when
CL* signatures are set in pairing groups where SXDH is hard, this re-randomizatimfirigable We
formally argue this second point in Lemma A.2.

4.2 Boneh-Boyen Signatures

Recall the weak Boneh-Boyen (BB) signature scheme [12]. Let the security paraméfefTthe global pa-
rameters are the description of a pairingams = (p, G1, G2, G7) obtained by runningilinearSetup(1¥)
(here, we ignore the generators outputBijinearSetup). Keypairs are of the formk = (g, g%, §) and
sk € Zy,, for random generatorg € G; andg € G». To sign a messages € Zg, output the signa-
ture §'/(sk+m)  To verify signatures, accept if and only it(c, g**¢™) = e(g, §). Note that in this work
we reverse the roles @&, and G, from the original description in [12]. As in other implementation of
pairing-based schemes where distortion maps are not available, one chooses the role of each pairing group
to maximize the efficiency of one’s protocol.

This scheme was proven unforgeable only against weak chosen-message attack ugd&idkhas-
sumption [12], where the adversary must submit all of his signature queries in advance of the public key
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generation. Boneh and Boyen gave one method of modifying this weak scheme into an adaptively-secure
one [12]. We provide a second method, which is more suited to our purposes.

BB™ Signatures. The intuition here is that to issue a signature on a messageweak BB signature
undersk is issued on a one-time signing keyand then another weak BB signature undés issued on
messagen. The additional randomnessallows to prove adaptive security.

— Key generation: Same as before. (Although, now the same bases may be used for all keys.)

— Signing: On input a secret keyk and a message: € Z,, select a random € Z;, and output the
Signature(gr7§1/(sk+r)’gl/(r-ﬁ-m))_

— Verification: On input a public key(g, ¢°*, ), a message:, and a purported signatutel, B, C),
accept if and only if: (1x(g** A, B) = (g, §) and (2)e(Ag™, C) = e(g, ).

Lemma 4.1 The BB" signature scheme is existentially unforgeable under adaptive chosen-message attack
under the EDH assumption.

5 Our Basic Group Signature Construction

Notation: BB™ and CL", respectively, denote our Sectiga modifications of the Boneh-Boyen [12] and
Camenisch-Lysyanskaya [19] sighature schemes. When we Write Sz’gnggj{(m; a), we mean thatd

is a CL" signature under kefZSK on messagen using base:; that is, A = (a,a’, a* "5 o™, a™) for
GSK = (s,t). Similarly, when we writeA = SignP* (m; g, §), we mean that! is a BB signature under
key sk on messagen using bases$g, §); thatis,A = (g¥, §'/(sk*v)_ gl/(v*m)) for somev € Z,.

Let BilinearSetup(1¥) — params = (p, G1, G2, Gr, g, §), whereG; = (g) andG, = (3).

GroupSetup (1%, params): The group manager establishes the public parameters for the Pedersen com-
mitment scheme [41] and adds thosept@ams. Then, the group manager executés: ““* (1%, params)
to obtainGPK = (params,S = §°,7 = §') and GSK = (s, t).

UserKeyGen (1%, params): Each useid selects randomk € Z, and randomh € Gy, and outputs a
public keypk = (h, e(h, §)).

Join (U;(GPK, sk;), GM(pk,;, GSK)): In this interactive protocol, the user’s inputs are her secretskey
and the public key of the group managéPK . Likewise, the group manager receives as inGi$tK’ and
pk;. They interact as follows:

1. U; submits her public keyk, = (p1, p2) and tracing informatio®; = % to GM. If e(p1, Q;) # po
or sk; was already inD, GM aborts. ElsegM enters); in databaseD.

2. The user sends a commitmeAt= PedCom(sk;) to GM. The user an@iM run the CL protocol
(see Section 4.1) for obtainingM\'’s signature on the committed value contained in commitraent
GM picks a random € Z; and setsf; = g". Then,GM computesSigngg}(ski; f1) = (f2, f3) and
sends all three values to the user. If the CL signatyrefs, f3) does not verify for message;, the
user aborts.

3. The user provides a zero-knowledge proof that the committed vé&lueontained in commitment
is consistent with the public keyt,; and a zero-knowledge proof of knowledgeséf using any proof
technique that igxtractable (For more on such proofs, see Appendix B.)

. The group manager provides an extractable zero-knowledge prae§&f= (s, ).

. Next, the user locally computes the valygs= f* and f5 = f3*.

g1 b~
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6. At the end of this protocol, the user obtains the following membership certificate:

Ci=(f1,---, f5) = (a, at7 as‘*‘St(Ski)’ a3ki’ a(ski)t).

GroupSign (sk;, C;,m): A user with secret keyk; and membership certificate; = (f1,..., f5) may
sign a message: € Z,, as follows.

1. Re-randomize&’; using a random € Z,, i.e., computéa, ..., as) = (f],..., f).

2. ComputeSigni?+(m;a5,§) = (a¢, ar, ag).

3. Output the signaturfuy, . . ., ag) of the form(b, bt, b3+st(ski) pski plskilt pv gl/(skitv) g1/ (vtm)y,

GroupVerify (GPK,m,o): To verify thato = (ay, . .., ag) is a group signature om, do:

1. Checkthatay, as, as, a4, as) is a valid CL" signature for public key7 PK where thehiddenmessage
is the exponent ofi4 (basea;). Specifically, verify that: (1k(a1,7) = e(ag,§), (2) e(as,7T) =
e(as, ), and ()e(aras, S) = e(as, 9).

2. Check thafag, ar, ag) is a valid BB' signature for public keya,, a4, §) on messager. Specifically,
verify that: (1)e(asas, a7) = e(a1, §) and (2)e(asal’, ag) = e(ai, g).

3. If both checks pass, accept; otherwise, reject.

Open(GSK,m,o): On input any valid signature = (ay, ..., as) and tracing database, GM may run
the following algorithm to identify the signer. For each enfty € D, the group manager checks whether
e(aq,g) = e(ay,@;). If a match is found, theGM outputs; as the identity of the original signer.

VerifyOpen (GM(GSK,m, o, pk;, Q;),V(GPK,m,o, pk;)): First, GM checks thatr is a valid group
signature; that isGroupVerify(GPK, 0, m) = 1. Next, GM checks that/; is responsible for creating;
that is, using tracing informatio@; = §°* from databasé andpk, = (py, p2), test thate(py, Q;) = ps.
If both of these conditions hold, th&h\ proceeds to convince a verifier tHatwas responsible for. We
call this stepanonymity revocationHere, thegM provides a zero-knowledge proof of knowledge of a value
a € Gy (i.e., the tracing information fd;) such thak(p:, o) = pe ande(ai, o) = e(as, ) [1].

The revocation described above revokes the anonymity of a particular signature, howey&t, toeld
instead revoke the anonymity afl signatures belonging to uséf by publishing the tracing information
Q;. Then anyone can verify that the user with public k&y= (p1, p2) must be responsible by checking

that: (L)e(p1, Qi) = p2, and (2e(a1, Q;) = e(ay, §).

Theorem 5.1 In the plain model, the above group signature scheme reafigzefrom Sectior§2 under the
Strong LRSW, the EDH, and the Strong SXDH assumptions.

Proof of Theorem 5.1 appears in Appendix A.

6 Opening Signatures in Sublinear Time

The basicOpen algorithm described in Sectidib takesO(n - k) for a signing group of. members and
security parametek. Practically, this precludes this scheme from being used for many applications with
large groups. We provide several options to remedy this situation in Appendix C.

First, we present a®pen algorithm with complexityO(y/n - k) which can be extended to one with
complexityO((logn) - k) at the cost of group signatures becoming of §iélog n) - k). This improvement
requires no additional assumptions, but does add two eleme@ts(iresp.log n elements) to the signature
length. Next, we present@((logn) + k) Open algorithm. This increases the basic signature by three
elements iz and requires a slightly different anonymity assumption.
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A Security Proof of Basic Construction
We now prove Theorem 5.1 on the security of our basic construction.

Proof. Our goal is to show that for every adversatyand environmeng, there exists a simulat& such
that Z cannot distinguish whether it is interacting in the real world witlor the ideal world withS. The
proof is structured in two parts. First, for arbitrary fixedand Z, we describe a simulat&. Then, we
argue thatS satisfies our goal.
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Recall that the simulator interacts with the ideal functionakity on behalf of all corrupted parties in the
ideal world, and also simulates the real-world adversanpwards the environmens is given black-box
access tod. In our description$S will use A to simulate conversations with. Specifically,S will directly
forward all messages fromd to Z and fromZ to A.

The simulator will be responsible for handling several different operations within the group signature
system. The operations are triggered either by messagesAypto any of the corrupted parties in the ideal
system (and thus these messages are sefjtaowhen.A wants to send any messages to honest parties. In
our descriptionS will simulate the (real-world) honest parties of towards

Finally, we assume that when a signature is created, it becomes public information. Likewise, whenever
a signature is opened, the corresponding identity is announced to all. (However, each user may still require
individual proof from theGM that this identity is correct.)

Notation: The simulatorS may need to behave differently depending on which parties are corrupted.
There are two parties of interest: the group manager and a user. We adopt previous notation [17] for this: a
capital letter denotes that the corresponding party is not corrupted and a small letter denotes that it is. For
example, by “Case (Gu)” we refer to the case where the group manager is honest, but the user is corrupted.

We will refer to a user a#/; and a user’s public key ask,. We assume throughout that a party in
possession of one of these two identifiers is also in possession of the other.

We now describe how the simulatSrbehaves. Intuitively, when the group manager is corr&8piill
sign messages for whatever uggy; tells it. When the group manager is honest, howetesill be asked
to sign messages on behalf of unknown users and might later be asked to open them. In titisngthse,
sign all messages using the same secret key, which we detiotd hen, wheneves§ is told to open this
signature to a particular user later revealedAyy, it will fake the corresponding proof.

Non-Adaptive Setup: Each party thaf corrupts reports tcF,, that it is corrupted. The global parameters
BilinearSetup(1*) — (p, G1, G2, Gr, g,§) = params, whereG; = (g) andG, = (j), are broadcast
to all parties.

Simulation of the Real World’s Setup: The group manager has an associated key (@K, GSK).
Regardless of the honesty of the group manageets up any public parameters needed later for the
registration of a user’s key idoin (e.g., the hash function used in the Fischlin transformation).

Case (g): If the group manager is corrupted, tSeeceives the group ke PK from A.

Case (G): If the group manager is honest, tliemnins theGroupSetup algorithm to generate a group
public key GPK which it then gives tad. Note that in this cas€ knows the corresponding secrets
and the relation of the Pedersen commitment bases. (Although, an ideal group manager exists outside
of S, the simulator will internally act as a real-world manager towdrl
Simulation of Honest Parties’ Setup: Each party must have an associated key Qdir, sk;).
Case (u): If usety; is corrupted, theis receives the user’s public key:; from A.

Case (U): If4; is honest, the runs theUserKeyGen algorithm to generate a public key:; which
it then gives toA. (Although, ideal honest parties exist outsideSfthe simulator will internally
create real-world public keys for them.)

Simulation of the Join Protocol: In this operation, a user asks the group managerFyiaif it can join
the group and receives an answer bit.

Case (gu): If both the group manager and the user are corruptStders nothing.
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Case (Gu): The group manager is honest, but the user is corrupt. Aheil start by sendingS

the public keypk = (p1, p2) and tracing informatior) associated with some corrupt ugér S will
verify the tracing information by checking thetp;, Q) = p2. If this check does not pasS,returns

an error message to the corrupt user and endddimeprotocol. Otherwise$ stores the paifpk, Q)

in a databasé. Now S, acting as the honest group manager with knowledgé& 8K, executes
the remainder of the real-worltbin protocol with 4, exiting with an error message when necessary
according to the protocol. I does not output an error message, tlsesubmits {f;,“enroll”) to F .

Case (gU): The group manager is corrupt, but the user is hofestll be triggered in this case by
Fys asking if some honest uséf may enroll. S will internally simulate a real-world version &f;
towards.A using the key paiS generated fot/; during the user setup phase. Afstops before the
end of the protocol$ returns the answer “no” t@,,. If the CL* signature obtained h§ during step
2 of theJoin protocol verifies, theis records this certificate and returns “yes"&p,. Otherwise, it
returns “no”.

Case (GU): If both the group manager and the user are honest§ttiees nothing.

Simulation of the GroupSign Operation: Letid be a counter initialized to zero. In this operation, a user
anonymously obtains a signature on a messagé yiaWhen an honest member of the group requests
to sign a message:, F,, will forward (“sign”, m) to S. WhenA outputs a real-world signature,
will be responsible for translating it into the ideal world.

Here, we denote byk™* the special signing key th&t uses to sign all messages, &f honest parties
when the group manager is honest.

Case (u): The user is corrupt. Wheghoutputs a valid signature = (ay, ..., ag) on message:, S
testsifitis a (partial) re-randomization of any previous signature; that is, for all signébyres. , bs)
on message in L, test ifa; = by (this corresponds to the valgé/ (**+)). If any match is foundS
takes no further action.

However, when no match is found, must register the signature witf,;. To do so0,S must first
discover the signer of. For every registered use$, uses the tracing information in databaleo
check ife(a1, Q;) = e(a4, §). Suppose a match is found for sofje = 5.

1. If sk; = sk*, then the simulation has failed. aborts and outputs “Failure 2.

2. If sk; # sk*™ andl4; is honest, the simulation has failefi.aborts and outputs “Failure 3”.

3. If Y; is corrupted, theis records(lf;, o, m, id) in L, and send<4;, “sign”, m, id) on behalf of

corruptl(; to Fys. S increments the counted.

If no match for any registered user was found, then:

— Subcase (gu): The group manager being cor@ipgcords (corrupM, o, m, id) in L, chooses
an identityl/; at random among the corrupt users, and sebls“éign”, m, id) on behalf of
corruptgM to Fy,. S increments the counted.

— Subcase (Gu): If the group manager is honest, the simulation has f&iladorts and outputs
“Failure 4".

Case (gU): The group manager is corrupt, but the user is honest. Since the group manager is corrupt,
F4s additionally tellsS the identityl; of the honest user requesting a signature. THegenerates
a real-world group signature for the simulated/;, using that user’s certificate (obtained during
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Join) and that user’s secret key (whi¢hcreated during the user setup phasgyecords this entry
(U;, 0,m, id) in an internal databask. Finally, S provides.A with the real-world signaturér, m),
and returns the “ideal signature? to F,, and incrementsd.

Case (GU): Both the group manager and the user are honest. As stated &limvaggered by a
request (“sign’n) from F,,. This time the ideal-world identity of the honest user is not known to
S. However,S still needs to provided with somegroup signature, thus it proceeds as followss.
generates a real-world group signaturesing the secret ke SK of the group manager (which
created during the group setup phase) and the secret key of the first honest group rienbitoetr

it simulates towardsd (which S also created during the user setup phase). Since all signatures are
considered public information§ must forward the valuets, m) to A. As before,S records the
entry (7,0, m, id) in an internal database. Finally, S returns the “ideal signatureld to F,, and
incrementsid.

Simulation of the GroupVerify Operation: The simulator does not take any action on this operatidn.
will be able to verify all real-world signatures within its view itself. FurthermdfFg, verifies signa-
tures for honest users without informigg

Simulation of the Open Operation: The simulator is triggered on this operation in a variety of ways.
There are two parties to consider: the group manager and the user requesting the opening (i.e., the
verifier).

On the request (“openg, m) from a real-world corrupted uses, first runs its ideal-worldsroup-
Sign algorithm for receiving o, m) from A.

Case (gu): Both the group manager and the verifier are corruftddes nothing.

Case (gU): The group manager is corrupted, but the verifier is hofigstasksS (as the corrupted
group manager) if it may open the ideal-world tuglé, m, id). (Recall that ifi4; = corruptgM,
thenF,, refuses to open the signature)searches its databagefor an entry(l;, o, m, id), where

o is a real-world signature om for some uset/;. Since theid’s are unique, only one such entry
will exist. Next, S, acting as an honest, real-world verifier towaddengagesa4 in the VerifyOpen
protocol with common inputl{;, m, o). If S, as an honest verifier, does not accept this proof, then
S tells 7y, to refuse to open this signature.dfaccepts this verification frond andif; = U;, then

S tells F,5 to open the signature. Finally, & accepts this verification and y& # U/;, then our
simulation has failedS aborts and outputs “Failure 1"

Case (Gu): The group manager is honest, but the verifier is corrupted. Since the verifier is corrupted,
it may ask about the openings of any signatures it likes. (For example, it may re-randomize a valid
signature, etc.) Supposé, acting as a corrupt verifier, requests an openingrans{). The first

thing thatS does is to check it is a valid group signature (according to the real-world verification
algorithm) onm under the group public ke PK . If it is not, thenS returns an error message, to

A. Otherwise S proceeds.

Now, S must figure out which user, if any, is responsibledoiFirst,S uses its tracing database to test
if any registered user is responsible far Specifically foro = (ay,. .., ag) and tracing information
Qj, S checks ife(a1, Q;) = e(as, g).

If o opens to some registered uggr then there are three cases.

1. U; is corrupted. This is not considered a forge§yhonestly runs the real-worlderifyOpen
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protocol with.A on common input§l(;, m, o). This transaction can be completely simulated by
S without involving F,.

2. U; is honest, andk; = sk*. Here,S needs to further differentiate i is a forgery or merely a
re-randomization of a previous signature. (Observe that the first part of our signatures may be re-
randomized.) To do thisS searches databadeand complies a list of all entrigg, o;, m, id;)
containing message:. Next, S checks whethes = (ay,...,as) is derived from any; =
(b1, - ., bsg;) by checking ifay = by ;.

(a) If S finds a match for some entry then it sends the request (“open?, id;) to Fgs.
SupposeF, returns the identity/,. Now, S must prove this opening td. S did not know
who the ideal-world signer was at the time it createdndersk™ (recall that our simulator
creates all signatures usisg*), thus it must now fake a real-worlMerifyOpen opening
towardsA. Thatis,S mustopenr = (a1, . .., ag) to useid, with pk, = (hy, e(hg, §)*F*).

S simulates the interactiveéerifyOpen proof as follows [1]. Letpk, = (p1,p2). Recall
that this is proof of knowledge of a value € G, such thak(p;, o) = pp ande(a, o) =
e(as, g)-

i. A selects arandom challenges Z, and send§’ = PedCom(c) to S.

ii. Sselectsarandom e Z, and sendst;,t2) = (e(p],g),e(al,g)) to A.

iii. A sends: along with the opening of commitmeat

iv. S verifies thatC opens ta: and, if so, sends = (§°%+)°§" to A.

v. Aaccepts if and only if: (13(p1,s) = (p2)°t1 and (2)e(a1, s) = e(a4, §)t2.

(b) If S does not find a match for any entiythen.4 has succeeded in a forgery against user
U; with sk; = sk™. The simulation failsS aborts and outputs “Failure 2”.

3. Uj is honest, andk; # sk*. S immediately knows is a forgery, becausg signs for all honest
users with the keyk*. The simulation failsS aborts and outputs “Failure 3”.

If o does not open to any registered user, temas succeeded in creating a valid group signature for
anon-registered user. That s, for all tracing informatigrknown toS and lettingoe = (ay, ..., as),
we havee(ai, Q;) # e(aq, ). In this caseS aborts and outputs “Failure 4”.

Case (GU): Both the group manager and the verifier are haSekies nothingsS will not even know
that this transaction has taken place.

This ends our description of simulatér. It remains to show tha$ works; that is, under the Strong
LRSW, the EDH, and the Strong SXDH assumptions, the simulator will not abort, except with negligible
probability, and that the environment will not be able to distinguish between the real and ideal worlds.

Claim A.1 Conditioned on the fact tha8 never aborts Z cannot distinguish between the real world and
the ideal world under the Strong LRSW, the EDH, and the Strong SXDH assumptions.

Proof. To see this, let us explore each operation. First, we observe tlabumpSetup andUserKeyGen,
the simulatoxS performs all key generation operations as the respective players in the real world would do.
The simulator never deviates from the actions of any honest player diwingand it need not take any
action duringGroupVerify. In the real world, anyone may verify a signature autonomously. The remaining
operations to consider at&roupSign andVerifyOpen.

Let us begin withGroupSign. In this operationS only needs to take action when it must translate an
honest party ideal-world signature into a real-world signature, or a corrupted party real-world signature into

18



an ideal-world one. When the user is corrupt8dubmits “sign” requests fad whenever it outputs a new
signature. There is nothing here fdrto observe.

When the user is honest, however, thiemust generate real-world signatures towardisWhen the
group manager is corrupted, th&i, tells S which user is signing the message, and tSusay perfectly
generate a real-world signature fdr S is only forced to deviate in case (GU) when it must simulate both
the honest group manager and honest signer towdrdehe problem is thaf does not know which user
is requesting a signature on some messagdhus S always signs with the same honest user kky.

By Lemma A.2, we know that neithed nor Z can distinguish between this homogeneous, ideal-world
distribution of signatures and the heterogeneous, real-world distribution.

Now, it remains to consideverifyOpen. In this operationS only takes action when one of the two
parties is corrupted. In the case (g¥)behaves exactly as an honest verifier would towadd¢hat is,S
finds the (single} associated witlid, and acts as an honest verifier towartlsWe will later argue that it
does not abort, due to Failure 1, in this step.

The case (Gu), however, is more complicated. Supgsaséeing asked byl to open(m, o). If o opens
to a corrupted user or does not open to any registered usetSthehaves exactly as an hongdt would.
However, what happens wheropens to an honest user? We will later argue ghistnot forced to abort due
to Failures 2, 3, or 4. Even conditioned on this fattyill almost always be forced to deviate since it signed
using keysk™ for all honest users and now must open the signatures to whichever honesk pattgtates.
SupposeS is told to opers = (a4, ..., ag) to some honest usef;, wheresk; # sk*, thenS must fake the
VerifyOpen protocol towardA. S succeeds in doing this, in the usual way, by requitihgp commit to his
challenge and then resettingafter seeing the challenge. That is, after seeigZ,, S chooses a random
values € G, and computeg; = e(p1,s)/p5 andty = e(ay, s)/e(aq, §)¢, wherepk, = (p1,p2). Now
S rewinds A to right after it sent a commitment g then sendst;, t2), receivesc with a valid opening,
and returns the responselndeed,S only fails in this step in the unlikely event that is able to break the
binding property of the Pedersen commitments (i.e., CDB{ih

O

This concludes our proof of Claim A.1. It remains to show that, except with negligible probablility,
will not abort. Recall thaS may abort under the following conditions:

e Failure 1: A breaks exculpabilityWe argue that it is not possible for a dishonest group manager to
falsely open a signature; i.e4 is not able to successfully complete terifyOpen protocol withS
on common inputis;, m, o) wherel; is not the real signer. Here, the simulation fails, becakige
will only open signatures honestly.

We now argue that, for a givevlerifyOpen instance(;, m, o), an adversary that can cause Failure

1 with probabilitye can be used to break the Co-CDH assumption with probabiitie — 1/p)2.
(Recall from Section 3.1 that Co-CDH is implied by the Strong SXDH assumption.) On Co-CDH
input (g, g, g*, g¥), the goal is to computg” and the simulator proceeds as follows.

1. Step 1:Sinitiates theverifyOpen protocol with.A on input(i;, m, o), settingpk; = (g%, e(¢**, §¥)),
for randomz € Z,, and computing as a valid signature om for the user withsk™*.
2. Step 2:S commits to all zeros, a8' = PedCom(0/P)).

3. Step 3: After receivindty, t2) from A, S using its knowledge of the relation of the Pedersen
public parameters to fake the openings as:

— selects a random challenge < Z,, opensC' to c¢1, and obtains4’s response; .
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— rewinds A, selects a different random challengee Z,, opensC to c, and obtains4’s
responses.

4. Step 4:S computes and outputs; /s3)'/(¢1=¢2) (which hopefully corresponds ).

In Step 1, the adversary cannot tell that it was given a signature u#ddnstead ofsk; due to
Lemma A.2. The fake openings in Step 4 are perfectly indistinguishable from an honest opening due
to the perfect hiding property of Pedersen commitments. If b@thtz2), c1, s1) and((t1, t2), co, s2)

are valid transcripts, the§ outputsg®¥ in Step 4 with probability> (¢ — 1/p)2. Our bound of

(¢ — 1/p)? comes from the well-known Reset Lemma [10], where the advantagenss given as

and the size of the challenge sepis

Failure 2: A creates a forgery against the honest user with. A produces signature = (a1, ..., ag)
and message: s.t. GroupVerify(GPK, o,m) = 1, o opens td{* (i.e.,e(a1, Q*) = e(aq, §)), and
yetS never gaved this user’s signature om. This scenario occurs with only negligible probability
under the EDH assumption, regardless of whether the group manager is corrupted.

Recall that EDH takes as inpyy, g%, g, g*) together with access to orade,(-) that takes input
¢ € Zy and produces outpyy®, 3'/(**v), g1/("+9)) for a randomw € Z7. The goal is to produce a

1 1
tuple(c, a,a’, g=+v, gv+<) foranya € G; and any, ¢ € Z; such that was not queried to the oracle.

Let r be the number of honest users in the system. Whencceeds with probability, thenB solves
the EDH problem with probability /7. B proceeds as follows:

1. Setup:B must establish the global parameters and key generation.

(a) Output(g, g) as the public parameters for the group signature scheme; BAd = (8,T) =
(g%, ") on behalf of the group manager.diM is corrupt, GPK is given toS by A. Setup
all remaining keys and parameters&would normally do.

(b) Guess which of the honest usersl will attack. Give this uset/* the public keypk™ =
(¢",e(g",g")), forrandomr € Z,. (Logically this assigns the user’s secret key/ds= x.)

(c) Obtain group certificates for all honest uséfsfakes the proof of knowledge ak™* using
any of the techniques discussed in Sectioddn(). Finally, B submits thecorrecttracing
information,Q* = §**" = §*, for this user.

(d) If the group manager is corrupt, extract the group k&K = (s,t) during the proof of
knowledge.

2. Signing:When A requests a signature from a user not associatedswith= z, sign as normal.
Now, when.A asks for a group signature em € Z;, from the honest user associated with secret
key sk* = x, do:

(a) Query oracleg),.(m) to get output f1, f2, f3).

(b) Selectarandom € Z,. Use GSK = (s,t), to output the group signature omas

(grv gtr’ gsr(gac)str’ (ga?)r7 (gx)trv f{a f27 f3)

3. Opening:B honestly executes théerifyOpen protocol with A.

4. Output: SupposeA produces a valid signatueé = (aq, . . ., ag) foranewmessagen’ € Z,, for
the user with keyk* = 2. ThenBB outputs(m’, a1, a4, ag, az, ag) to solve the EDH problem.
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Itis easy to observe th#t perfectly simulates the group signature world for5 has probabilityl /7
of choosing which honest usgt will forge against. Thus, whed succeeds with probability, then
B solves the EDH problem with probability/ 7.

e Failure 3:.A creates a forgery against a user with; # sk*. Proof that this failure occurs with only
negligible probability follows directly from that of Failure 2. Indeed has strictly less information
at its disposal; that is4 never sees real signatures under key.

e Failure 4: A4 creates a valid signature for a non-registered usetrthis case,A produces a signature-
message pailo, m) such thaGroupVerify( GPK, o, m) = 1 and yet it cannot be opened 5yto any
registered user. We now argue that this is not possible under the Strong LRSW assumption, except
with negligible probability. Suppose we are given g, §°, §*) as the Strong LRSW inpuit.

Instead of runningsroupSetup, let the public parameters § € params and the public keyGPK =
(5,T) = (3°,3"). During theUserKeyGen operation, for any honest uset$ queries the Strong
LRSW oracleOg 7 on a randonsk; € Z, to obtain a membership certificate, at, as sk, for
anya € Gj. (ThIS tuple is, in fact, a CL signature a#; [19].) S now usessk; as the secret key for
this honest user.

WhenS is asked to executéoin with anhonestuser,S simply finds the corresponding CL signature

and uses it to output the certificate, at, a®*5(s%:) aski qt(ski)), WhenS is asked to executdoin

with a corrupteduser,S extracts the user's secret ke&] using any of the techniques discussed in
Section 5 Join), queries the Strong LRSW oracle on ingdt, and uses the oracle’s output to create

a valid certificate for this corrupt user. Now, the adversary can sign any message for a corrupt user,
andsS can honestly respond to a@roupSign call for an honest user.

Suppose that Failure 1 has occurred durfifegifyOpen, meaning that4d output a signature =
(a1, ...,ag) such that the following relations hold:

e(ar,T) = e(az,7), e(as,T) =e(as,§), e(aras,S) = e(as,q)

and yetS did notqueryOg 7 on the corresponding secret key; that is, forséllknown toS, we have
a{’” # a4. Then,S may output(ay, as, as, as, as) to break the Strong LRSW assumption.

Combining Claim A.1 with the above arguments tSawill not abort, except with negligible probability,
concludes our main proof.
O

We end by proving a Lemma used in the above proof. Intuitively, this Lemma captures the anonymity
of our signatures. In the below, the values . .., u, may be thought of as the secret keysrafiifferent
honest users.

Lemma A.2 (Anonymity of Signatures) Suppose we have the group signature parameters from Section 5;
that is, security parametet”, params, and GPK. Suppose., .. .,u, are random elements &,. Let
Ou,.,...u, (-, ) be an oracle that takes as input a messagec Ly and an indext < i < 7, and outputs a
group signaturgay, . . ., ag) onm with user secret key;. Then, under the Strong SXDH assumptions, for
all probabilistic polynomial-time adversaried, the following value is negligible ik:

Pr [AO“W? """ v (params, GPK , {pk; }iej1 7)) = 1]—
Pr[.Ao“lv“l """ “1(params, GPK , {pki}ie[lﬁ) 1}
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Proof. First, if A can distinguish between oracles, ..., andOy, 4, ... .., then we can create an adver-
saryB3 that can distinguish between orac@g, ., andO,, ,,. Next, we show that adversa/can be used
to break the Strong SXDH assumption. OveralldiBucceeds with probability, then we can break Strong
SXDH with probability> ¢ /7.

Stage OneFirst, we make the simple hybrid argument that givénwhich can distinguish the signatures

of 7 distinct honest users from those of a single user, we can create an advgtkatycan distinguish the
signatures of only 2 distinct users from those of a single user. Indeed, by the hybrid argument, we know that
if A distinguishes with probability, then for some < ¢ < 7, A can distinguish with probability- ¢/
between the oracle instantiated with;'s followed byr — ¢ different seeds and the oracle instantiated with

£+ 1 uq’s followed by — £ — 1 different values. The obvious reduction follows; that is, the two oracles of

B will be applied to this hybrid point foid. B will then return whatever answet does.

Stage TwoNow, we show thaf3 can be used to create another advergattyat breaks Strong SXDH. On
Strong SXDH input(g, ¢*, §), the adversarg proceeds as follows:

1. Generate group public ke¢PK as(S,T) = (3°, §') for randoms, t € Zy. Give GPK to B; store
GSK = (s,t). (Remember, anonymity only makes sense when the group manager is honest, so the
adversary does not get to set these keys.)

2. Query@, on arandom input, disregard all output exc@pth?) for someh € G;.

3. Generate the two user keys g8, = (g,¢(g%, g)) for userit; and pk, = (h,e(hY,g)) for user
Us. Give pky, pk, to B. (This first key could be re-randomized away from the public parameters by
choosing a random € Z, and settingpk; = (¢", e(¢",g)"). This has no effect on the remainder,
and for clarity we omit it.)

4. WhenB requests a signature for indéx {1,2} onm € Z}, if i = 1, useO,(-) to do:

() QueryO,(m) to obtain the outputg®, /@), gl/(*+™), wherev € Z} is a fresh random
value chosen by the oracle. Denote this outputfas. . ., fs)-

(b) Using GSK = (s,t), compute the remaining parts of the group signatyte:= ¢', f3 =
9°(9")*, fa = ¢*, andfs = (g")".

(c) Selectarandom € Z, and return the signatufe”, f3, f3, f1, f5, f§, f7. f3)-

If i =2, use oraclé),(-) to do:

() QueryQy(m) to obtain the outputa, a, a?, 5/ +v) gl/(v+m)) ‘wherea € G, andv € Z; are
fresh random values chosen by the oracle. Denote this outgut a&, fs, . - ., fs).

(b) Using GSK = (s,t), compute the remaining parts of the group signatyte:= af, f3 =
a®(a®)%t, andfs = (a¥)t.

(c) Return the signaturgfy, ..., fs).

5. Eventually,B will attempt to distinguish whether he’s been talking to ora@le, or oracleO, ,. If B
says that he’s been talking to oracke ., then output 1 corresponding te *= y”. Otherwise, output
0 corresponding toz #£ y".
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It is easy to see that the stage 2 simulation is perfect; the output is always correct and perfectly distributed.
Indeed,C and B will succeed with identical probabilities. This concludes our proof. We find that if.&ny

can break the anonymity of our signatures with probabiityhen.A can be used to break Strong SXDH

with probability at least /7, wherer is the number of honest users in the system. O

B Towards a Concurrent Join Protocol

In Section 5, we specified that the group manager runsldiire protocol sequentially with the different
users. The reason for this is technical, i.e., to prove security we require that the users’ secrats keys
areextractable To this end we require the users to commit to their secret key and then prove knowledge
of them. If one uses the standard proof of knowledge protocol for the latter, extracting the users’ secret
keys requires rewinding of the users. It is well known that if these proofs of knowledge protocols are run
concurrently with many users, then extracting all the secret keys can take time exponential in the number of
users. There are, however, alternatives which allow for concurrent execution of these proofs and thus also
of the Join protocol.

First of all, one could require the group manager to run the protocol concurrently only with a limited
numbers of users, i.e., by defining time intervals within which the group manager runs the protocol concur-
rently with a logarithmic number of users and enforcing a time-out if a protocol does not finish within this
time interval. This solution would not give a group signature scheme that can be concurrently composed
with other schemes.

Solutions that would allow for concurrent executions come from applying one of the various transforma-
tions of a standard proof of knowledge protocol ¥&protocol) into one that can be executed concurrently.

1. Common random reference strirjssuming that the parties have a common random reference string
available, one can interpret this as the key for an encryption scheme such that the corresponding secret
key is not know to any party. Alternatively, one could have a (distributed) trusted third party generate
such a public key (cf. [25]). Then, the users would be required to verifiably encrypt their secret key
sk; under this reference public key (e.g., using the techniques of Camenisch anéuidga®j). For
extraction of the secret keys in the security proof, the reference string would need to be patched such
that the simulator knows the reference decryption key and thus can extract the users’ secret keys by
simple decryption.

2. Non-concurrent setup phas@/hen having a common random reference string or a trusted third party
is impractical, each user can instead generate their own public key and then prove knowledge of the
corresponding secret key in a setup phase where non-concurrent execution can be guaranteed (e.g,
because the user’s part is run by an isolated smart card). Then, duridgithprotocol, the user
would verifiably encrypt her secret kay; underher ownpublic keypk;.

3. Assuming random oracles fdoin only. A third alternative that comes to mind, in the random oracle
model, is to apply Fischlin's results [28]. Fischlin recently presented a transformation for turning any
standard proof of knowledge (&f-protocol) into a non-interactive proof in the random oracle model
that supports an online extractor (i.e., no rewinding).

The parameters required for any of these options (e.g., the hash function for option (c)) are assumed to
be global information outside the control of the group manager.
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C Open Algorithm with O(y/n - k) Complexity from Trees.

As before, le(p, G1, G2, Gr, g, §), whereG, = (g) andG, = (g), be the global parameters for the bilinear
groups.

The intuition here is that group members are logically divided into a 2-level tree; then to revoke the
anonymity of a signature, the group manager first locates the correct branch and then the correct leaf (user)
for that branch. For a balanced tree, this results in a search tirdk\of. Now we present the details.
During theJoin protocol, the group manager secretly assigns each user to ogie/ofogical branches.
Each branch is associated with a unique ID as a valdes Z;. Now, the group manager and the user
run a protocol such that at the end the user obtains & €ignature on the pair of message#, ID)
without learning its branch identityD and the group manager does not learn the user’s secretkkey
Following Camenisch and Lysyanskaya [19] this'Céignature would be of the following form fa¥ PK =
(g%,3', 3%, %), GSK = (s,t,z), and some: € Gy:

(a17 e a7) _ (a’ at’ as—&—st(slc)—f—stz([D), aslc’at(

sk)’aID,atz(ID))

This CL* signature would be used as the user’s certificate. Let the user submit tracing inforatien

§°*3 during theJoin protocol as before. Then to open a group signature, the group manager now does: For
each branch identityD;, check ife(ag, §) = e(a1,§)P+; then for each member of the matching branch,
check ife(as, §) = e(a1,Q;). Under the DDH assumption i68;, a user’s branch identity remains hidden

from everyone except the group manager, so full anonymity is preserved. By the Strong LRSW assumption,
a user cannot change which branch he is associated with, and thus the group manager will be able to find
him (i.e., open the signature).

Theorem C.1 In the plain model, the above extension to the Se¢oscheme realizes,; from Sectiorg2
under the the Strong LRSW, the EDH, and the Strong SXDH assumptions.

In practice, one can achieve a “constant time” open algorithm by having less branches per node but more
levels. Assume we want to be able to han2ilé members. Then we could ha2é’ branches and a tree
depth of4. This would result is a scheme where signature would have an addiicelaments (i.e., this
would double the length of the signature) the group manager would need to do &0Tskponentations
(to walk through the first three levels) and24 pairings (to find the group member) to open a signature.
Furthermore, th&072 exponentations could be considerably sped-up by giving all branches of the same
node the same (but random) ID except the lgsbits. Given that opening signatures is an exceptional
event, we believe such a scheme would be practical.

Open Algorithm with O((logn) + k) Complexity from Encryption. The intuition here is to have the
signer include an encryption of her identity under the group manager’s encryption key as part of every
signature. The trick is to do this in such a way that tberectnesof the encryption is publicly-verifiable,
and yet, theanonymityof the signer is preserved.

Let (eGPK, eGSK') be Elgamal encryption keys generated by the group manager, wbéiE < 7,
andeGPK = §°¢K. Then in addition to a regular signature from Secténa user would add a version
of Elgamal encryption of their identity as the last three items:

. . ~ Fl l ~
(Sign Gk (sk; @), Sign5Pt (m; a, ), Enc,dpi" " (sk;a,9))
= ((I, at’ a’s+8t(5k)a aSka at(Sk)a av’ gl/(sk—i—v) ) gl/(v—‘rm)’ acv 98k+ca (EGPK)C) :
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To verify the signaturer = (ay, ..., a11), in addition to the usual Ct and BB checks, a verifier must
be sure that the ciphertext is correctly formed by checking thate((), a19) = e(aq4, g)e(ag, g) and (2)
e(ag, eGPK) = e(a1,a11).

Now, to the key point: the group manager may, at any time, open the signature by simply decrypting
the last portion aso/(a11)"/¢“5% = 3, which reveals the user’s identity. Recall that the group manager
obtains this samtracing informationfrom the user during théoin protocol.

Theorem C.2 In the plain model, the above extension to the Se¢oscheme realizes,; from Sectior§2
under the Strong LRSW, the EDH, and (an extension of) the Strong SXDH assumptions.

The extension of the Strong SXDH assumption mentioned above requires changes to(@udk3,
from Definition 4 in Sectior§3. Specifically, we change the oracles as follows: Select a @&l € G-
at random and give as input the adversary. Q&t-) be an oracle that takes as inpute Z, and outputs
(9", g™, g™, gt/ @tv), gt/ (vtm) gre gskte eGPK®) for a randony, v, ¢ € Z3. Then, we say that on input
(9,9%, 9, eGPK), the adversary cannot distinguish access to ordcles ), Oy (+)) from (O(-), O (-)).

The proof of Theorem D.3 that Strong SXDH is hard in generic groups can be modified to cover this
extended version as well.

D Generic Security of the New Assumptions

To provide more confidence in our scheme, we prove lower bounds on the complexity of our assumptions
for generic groups [40, 46].

Let us begin by recalling the basics. We follow the notation and general outline of Boneh and Boyen [12].
In the generic group model, elements of the bilinear graepss2, andGr are encoded as unique random
strings. Thus, the adversary cannot directly test any property other than equality. Oracles are assumed to
perform operations between group elements, such as performing the group operation&in andG .
The opaque encoding of the elementsGafis defined as the functiofy : Z, — {0,1}*, which maps all
a € Z, to the string representatiadi(a) of ¢* € G;. Likewise, we have, : Z, — {0,1}* for G, and
&r 2y — {0,1}* for Gr. The adversaryl communicates with the oracles using theepresentations of
the group elements only.

We achieve the same asymptotic complexity bound for EDH as was showrSiDH.

Theorem D.1 (EDH is Hard in Generic Groups) Let .A be an algorithm that solves the EDH problem
in the generic group model, making a total @f queries to the oracles computing the group action in
G1, G2, Gr, the oracle computing the bilinear pairing and oracleO,(-). If x € Z; and &, &, &7 are
chosen at random, then the probabilitythat A% (p, & (1), &1 (z), &2(1), &2(x)) outputs(c, & (r), & (r -
x),&1(r - v), fg(ﬁ), fg(%ﬂ)) with ¢ € Zy, not previously queried t@,, is bounded by

. < (96 +4)°(Ba+8) _ (qé)
p p

Proof. Consider an algorithi that interacts with4 in the following game.
B maintains three lists of pairs; = {(F1,,&14) : @ = 0,...,71 — 1}, Lo = {(F2;,624) 1 i =
0,...,2—1}, Ly = {(Fr;,&r;) : i = 0,..., 70 — 1}, such that, at stepin the game, we have + 7 +
77 = 7 + 4. The only twist between our setup and that of Boneh and Boyen is that we will Iét thé™ ;
and Fr;'s berational functions(i.e, fractions whose numerators and denominators are polynomials); and
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all polynomials are multivariate polynomials #y, [z, . . .| where additional variables will be dynamically
added. Thé&; ;, & ;, andér; are set to unique random strings{ioy 1}*. Of course, we start the EDH game
at stepr = 0 with m = 2, » = 2, andrr = 0. These correspond to the polynomi#lsy = F>o = 1 and
F171 = F271 =z, and the random Strin@io, §171, 52,0, 5271.

B begins the game withl by providing it with the4 stringséi o, £1,1, 62,0, £2,1. Now, we describe the
oraclesA may query.

Group action: A inputs two group element§ ; and¢; ;, where0 < 4,5 < 71, and a request to multi-
ply/divide. B setsF ,, — Fi; + Fy ;. If Fy,, = Fy, for someu € {0,...,7 — 1}, thenB sets
&4, = &1 Otherwise, it setg; ,, to a random string i{0,1}* \ {&10,...,&.n—1}. Finally, B
returnsé; -, to A, adds(Fi -,&1,-,) to Ly, and increments;. Group actions fofG, andGr are
handled the same way.

Pairing: A inputs two group element§ ; and&, j, where0 < ¢ < 7 and0 < j < 7. B setsFr ., «
Fy; - Fyj. If Fr,, = Fr, forsomeu € {0,...,7r — 1}, thenB sets¢r ., = {r.,; otherwise,
it setsér, -, to a random string i{0,1}* \ {{70,...,&r+—1}. Finally, B returnsér .. to A, adds
(Frrpy €7,77) tO Ly, and incrementsy.

Oracle O,(+): Letr, be a counter initialized to 14 inputsc in Z?, followed by 5 choosing a newariable
vy, and settingty -, «— v, . If F1 ;, = Fi, forsomeu € {0,..., 71 — 1}, thenB sets{; -, = &1.4;
otherwise, it set§; ,, to a random string if0, 1}* \ {&1.0,...,&1,n—1}. B sends; -, to A, adding
(Fl,ﬁ s §177—1) to Ll.

Next, B setF,,, «— 1/(z + vy) and Fs .41 «— 1/(v;, + m). Forj € {0,1}, if Fyryj =
F,, for someu € {0,...,7» — 1+ j}, thenB setsé, -, ; = &2,; Otherwise, it setg, ,,,; to a
random string in{0, 1}* \ {&0,...,& 14} B sends(&s r,, &2 41) t0 A, adding(Fs -, 2.5,)
and(F277-2+1, 6277-2+1) to Ls.

Finally, B adds one ta, two tor,, and one ta,.

We assume SXDH holds ifz1, G2, Gr) and therefore no ismorphism oracles exist.

Eventually.A stops and outputs a tuple of eleme(tst o, 1.6, {115 2,45 §2,7), Whered < a, b,k < 7
ando < d, f < 7. To later test the correctness.dk output within the framework of this gamB,computes
the polynomials:

F

Fr, = ( Lk +x> Fpg— 1. (1)
Fl,a
F

Fr, = (l’k + c> Iy p— 1. (2
Fl,a

Intuitively, this correspond to the equalities(h*h, g1/ (*+v)) = e(h, §) = e(h¥he, g1/ (*+9))”, where
h denotes the element 6f; represented bg ,, h¥ denotes the element 6F; represented by, 5., g/ (**?)
denotes the element 6f, represented by, 4, andg'/(vt¢) denotes the element &F, represented by ;.
Analysis of A’'s Output. For.A’s response talwaysbe correct, then it must be the case that, (x) =
Fro(z) = 0 for any value ofz. We now argue that it ismpossiblefor A to achieve this. Each output
polynomial must be some linear combination of polynomials corresponding to elements availabie to
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the respective groups:

q
Fiq=ap+aix+ E as ;v;
i=1

q
Fl,b =by+ b1z + Z bgﬂ'?}i
i=1

q
Fl,k =ko+ ki + Z ]{2,2'1}1‘
=1

1 dyy 1 ds
F27d2d0+d1$+27’+27’

— r + v; — V; + ¢;
=1 =1

q q
2,1 3,4
Fop=fo+ hiz+) s +> fsi
i=1 =1

— T+ v; Vi + ¢

(©)

(4)

(5)

(6)

(7)

wheregq is the number of queries to oraalg,. Now, we know, by definition, thak' ;,/F , = x, thus one

can verify, using equations (3) and (4), that= a2 ; = 0 andFy , = ao is a constant.

Notation: For readability of our later analysis, we denote the following values, wt@nstantvalues

Yo = bo/ao,y1 = b1/ao + 1,42 = bz i/ao:

q
Y = (Fig/ao+ o) = yo + iz + Y yov;
=1

q
Z = (Fig/ag+c)=c+yo+ (1 — Dz + Z?ﬁ,ivi
i=1
We also give names to the following frequently-used products:

q q
P = H(m—i—v]—) and H;g] :H(I+Uj)

j=1 i)
q q
Q=1[w+c) and Qizj=[](vj+¢))
j=1 i]

(8)

(9)

(10)

(11)

(12)

Using our above notation, consider the polynomidls andFr, from equations (1) and (2) when both
sides are multiplied by’@ and we substitute in equations (6), (7), (8), and (9). For scomstantsi; and

fi, the new polynomials:

q q
PQPr, =0=dYPQ+diaYPQ+> do;YP2;Q+ Y ds3;YPQizj — PQ

i=1 i=1

q q
PQPro=0= foZPQ+ f1aZPQ+Y_ f2iZPi2jQ+ > f2.ZPQiz; — PQ

=1 =1

Now, we inspect equations (13) and (14). We consider two cases.
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Case l:y; = 0. Then we haveZ = ¢ +yo — = + >_7_, y2,uv;. Now, we inspect the terms of equation
(14). We deduce thaf; = 0, because it is the only term containing™ [[7_, v;. Then,f, = 0,
because it is the only term containing™ []/_, v;. Next, eachf;; = 0, because they have unique
termsz4t! [1;z; v;- We are left with0 = 37, f2,ZP;2;Q — PQ. We divide byQ, and the result
is0 =31, fo,ZP.+; — P. It follows then that at least ong ; must be non-zero for the equation to
be solvable; denote the first non-zefkg as f> 3.

Now, suppose some constayi; # 0 in Z, meaning thatZ contains av; term. If 3 # ¢, then
Y2,iZ P,j contains a unique terny [1i£20 v; that cannot be canceled. Thys, = 0, and further-
more f5 ;, for all i # 3. Now we are left with the equatidh= f, 3(c + yo — = + y2 3vg) P3z; — P,

we divide outPs.; and observe that, 3 = —1,t0 getd = —(c + yo — x + y2,8v3) — (x + vg).

Now, sincec, yo, y2 5 are all constants ang is a variable, we conclude thgt 3 = 1 andc = —yp.
That means that” = yy + vg, wherey, # 0. Plugging back into equation (13), we havge = 0

due to uniquer?*! term, then it must be the case thigt= 0 due tox?vg [TL; v;. Next, it must be
thatds; = 0 for all ¢ # 3 due to uniquez:qvg H##ﬁ vj. Next, we see that terms corresponding to
d3 gY PQp+j = d3 3(yo + v3)PQpx; and PQ are the only two left with a? term; thusds g # 0.
Further, cancelling the teraf? [[?_, v; from PQ requires thatls ; = 1. Thus, we find that to cancel

all relatedz? terms, it must be that = cg. Sincec, which represents the message corresponding to
A’s signature, is an old value, this is not a valid forgery.

Case 2: y; # 0. NowY contains arx term, and we inspect equation (13). We deducedhat 0, because
it is the only term containing¢™ [, v;. Then,d, = 0, because it is the only term containing
a9t TP, vi. Next, eachly; = 0, because they have unique term¥d " [],_; v;. We are left with
0=>7,dy;YP,;Q—PQ. Wedivide byQ, and the resulti® = Y7 | d ;Y P,.; — P. To satisfy
this equation, for somé, ;, we must havel, ; # 0. We denote this valué, .

From this point, we proceed in a fashion similar to case 1. By inspecting the above equation, we
find thatyy = 0, and for alli # 3, y2; = 0, otherwise there exist unique terms: ezg;,H%#j ;.
Furthermoreds gy = 1, since thex? term of P has coefficient 1. Andd, gy2 3 = 1, since the
[T/, vi term of P has coefficient 1. Soy; = y23 = 1/d2 and we plug intoZ asZ = ¢ +
(1/dyp — 1)z + vg/dp.

From equation (14), we have thft = 0 due tox4™ [T%_, v;, fo = 0 due tovgz? [[{_, v;. For all
i # B, f3. = 0, otherwise unique terms;z 1], ;.5 v; appear. Given that ajfs; = 0 except for
f3,5, it follows all f; = 0 except forfs 5 due to unique terms containing for i # 3. Thus, we
now have the equatioh = f> 32 P3+;Q + f3 32 PQs+; — PQ. We divide byPg.;(Qs-; to obtain
0= fo3Z(vs+cp) + fspZ(x +vg) — (x+vs)(vs + cp).

Now, supposel; 3 = 1 and thusZ = (c + vg). Then we know thafs; 3 = 1 to cancel the termug;
this forcesf, 3 = 0 because the% term is already canceled in whole by tfig; component. Thus, it
is immediate that = c3, which is not a valid forgery.

On the other hand, suppoggs # 1 and thusZ contains anc term. Then, we know thafs; 3 = 0,
because its:? term would be unique. This forces= 0 because otherwise the constant tefimcc;
would be unique. Howevet,must be an element i, and thus this is also not a valid forgery.

Thus, we conclude thad's success dependslelyon his luck when the variables are instantiated.
Analysis of B's Simulation. At this point B chooses a random™ € Z;. B now tests (in equa-
tions 15,16,17) if its simulation was perfect; that is, if the instantiation: &fy +* doesnot create any
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equality relation among the polynomials that was not revealed by the random strings providles tdso
tests (in equations 18, 19) whether or p&$ output was correct. Thusi’s overall success is bounded by
the probability that any of the following holds:

Fyi(z*) — Fy1 j(z*) =0, forsomei,j such thatF ; # F ;, (15)
Fy;i(z*) — Fy j(«*) =0, forsomei, j such thatFy; # F j, (16)
Fri(xz*) — Fr;(z*) =0, forsomei,;jsuchthatFr; # Fr;, a7
Fr.(z*) =0, (18)
Fro(z*) =0 (19)

We observe that’r ., andFr , are non-trivial polynomials of degree at mest2q + 2. Each polynomial
Fy; andF;; has degree at mostand2q + 1, respectively.
For fixed: and j, the first case occurs with probability 1/p; the second occurs with probability
< (2¢+1)/p; and the third occurs with probabilitg (2¢+2)/p. (We already take into account multiplying
out the denominators of any rational polynomials.) Finally, the fourth and fifth cases happen with probability
< (2¢ + 2)/p. Now summing over al(z, j) pairs in each case, we bountls overall success probability

e< (B)a+(3) 2+ (7) 82+ 72(2?2) . Sincer, + 72+ 71 < q¢ +4, we end withe < (g¢ +4)2(8¢ +

8)/p) = O(at:/p)- O
The following corollary is immediate.

Corollary D.2 Any adversary that breaks the EDH assumption with constant probabitity0 in generic
groups of orderp such thaty < o(¥/p) requiresQ(\/ep/q) generic group operations.

We now turn our attention from a computational to a decisional problem. Recall from Section 2
that the Strong SXDH assumption involves oraclg(-) that take as input a value € Z; and returns
(g, gt/ @tv), gt/(v+m)) for v € Z randomly chosen by the oracle, and an or&gjé-) that takes the same
type of input and returnga, a?, a?, g1/ W+v) gt/(vtm)) fora € G, andv € Z, chosen randomly by the
oracle. These random values are freshly chosen at each invocation of the oracle.

Theorem D.3 (Strong SXDH is Hard in Generic Groups) Letx € Z%, b € {0,1}, and¢y, &2, &7 be cho-

sen at random. Also, # = 1, sety = z, but if b = 0, then sety to be a value selected randomly from

Zy; \ x. Let A be an algorithm that solves the Strong SXDH problem in the generic group model, making
a total of q; queries to the oracles computing the group actiorGin G2, G, the oracle computing the
bilinear pairing e, and the two oracle®),(-) and Q,(-) as described above. Then the probabilitghat
A(p,&1(1),&1(2), &(1)) = bis bounded by

1 3)%(3 1 3
5§7+(qG+ )(qa):7+0 @\
2 P 2 D

Proof. B maintains the listd.;, Lo, and Ly as in the proof of Theorem D.1. (Consider thetb#s not yet
set.) At stepr in the game, we now havg + » + 7 = 7 + 3, where at- = 0, we setr; = 2, » = 1, and
77 = 0. These correspond to the polynomiélsy = F»o = 1 andFy ; = z. B also selects unique, random
strings¢; 0, §1,1, andéa .

B begins the game withl by providing it with the stringg o, £1,1, andé 0. A may, at any time, make
the group action or pairing queries as in the proof of Theorem JA.thay additionally query the following
two oracles. Let,, = 1 andr,, = 1 be counters.
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Oracle O,(-): A inputsm in Z}, followed by B3 choosing a newariablev,, and settingf'; -, < v.,. If
F\ . = Fy, for someu € {0,...,71 — 1}, thenB sets¢; ., = &1, otherwise, it setg; -, to a
random string i{0, 1}* \ {{1.0,...,&1,n—1}. B sends; -, to A, adding(Fi -,,&1.7,) to L.

Next, B setF, ., «— 1/(x + vs,) and Fy 1,41 «— 1/(vy, +m). Forj € {0,1}, if Forqj =
Fy, for someu € {0,...,7» — 1+ j}, thenB sets, -, ; = &2,; Otherwise, it setg, -, ; to a
random string in{0, 1}* \ {&20,...,&, 14} B sends(&s r,, &2 ,41) to A, adding(Fs -, &2.5,)
and (s, 1,82,m+1) t0 Lo.

Finally, B adds one to1, two to7,, and one ta,.

Oracle Qy(-): B responds similarly, except that it chooses newiablesr,, andw,,, and setsF; , «
Trws Flo41 < 1oy - Y, Flimyv2 17 - ey, Fogy — 1/(y + wr, ), andFQ,Tz-i-l — 1/(ws, +m).
At the end,5 adds three tay, two to, and one tar,.

Eventually.A stops and outputs a gudss: {0, 1}.

Analysis of A’s Output. First, we argue that, providdgis simulation is perfect, the bif is independent
of b; that is,.4 cannotoutput a string such that the corresponding polynomialwsaysequal whenr = y
(b = 1) and non-zero otherwisé & 0). We show this for each grou@,, G2, andGy. Showing this for
G is the hardest case. Here, we sum over all expressions contaioiing

Group Gy: The polynomials corresponding to elementsGip that the adversary can compute as a linear
combination of elements in its view are:

Fl’a:a0+a1-:c—&—ag’rvi—i—ag’j-rj+a47j-rj-y—|—a5,j~rj-wj (20)

wherei = 1to 7, andj = 1tor,. ForFy , = 0, botha; anda, ; must be zero whetheris replaced
by x or not; otherwise those terms cannot be canceled. The remaining polynomial does not contain
the variables: or y.

Group Gs: The polynomials corresponding to elementsGig that the adversary can compute as a linear
combination of elements in its view are:

b1, n bo i n b3 ; n by,
T+ v; v; +my; Y+ wj w; + my

Fop = by + (21)
wherei = 1to 7, j = 1tor, and eachn;,m; € Z; was chosen by the adversary. Suppose
F», = 0. We multiply out the denominators in equation (21) to obtain:

Fjy, = bo(x+vi)(vi +mi)(y + wy)(w; + my)+
bl,i(Uz‘ +m;)(y + wj)(wj + mj) + bgﬂ'(l‘ +v)(y + wj)(wj + mj)+ (22)
bsj(x + vi) (vi + mi)(w; +my) + baj(x + vi)(vi +ms) (y + wy)

Now, forFl;2 = 0, regardless of whether we substitutéor y, we see thal; = 0, otherwise the term
zv;yw; (or z?v;w;) cannot be canceled. Similarly, ; = 0 because of the unique summangy (or
z%v;), which makes, ; = 0 because of the summangw,. Then,b; ; = 0 because of the summand
zyw; (or z*w;), which makes, ; = 0 because of the summamgiujz. We are left with the constant
zero.
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Group Gr: The polynomials corresponding to elementin that the adversary can compute as a linear
combination of elements in its view are:

e=> Fia-Fayp. (23)

Now, a simple expansion dfr . has thirty terms. Suppose we clear the denominatofg-in= 0 by
multiplying out by (z + v;)(v; + m;)(y + w;)(w; + m;), then we have

Fr.=Y Fia- Fj (24)

Now, each of the terms if , is unique and; ,» contains the following unique summan@s; yw;,
VY, viw;, TYw;, viw ) (Here, the summandgw] andulw are actually not unique, but since they
also do not contaim ory, it will not matter.) Multiplying these key components out and dropping the
subscript for clarity, we obtain:

Flo= eolwm) 4+ a@m)  + o) 4 o)+ eud)
+ cs(vwzty) +  cg(vay) + cr(v?wz)  + cs(wrly) + co(vw?ax)
+ cao(Wwzy) + en(0®2?y) + cp@w)  + cslowzy) + ca(v?w?)
+ cs(vwzyz)  + clveyz)  + cr(vwz)  + as(wzyz)  + co(vw?z)
+ czo(vw:cy z) 4+ ean(vay?z) + cp(0®wyz) + coz(wry?z) 4+ coa(vw?yz)
+ ceos(vwlryz) +  cos(vwzyz) 4+ car(vPw?z) 4 cos(wiryz) +  cag(vw?z)

Now, we are only interested in differences in the polynorﬂiﬁL wheny is replaced byt or not. For
clarity, we drop all terms containing neithemory, resulting inco = ¢4 = ¢12 = ¢14 = ¢17 = ¢19 =
co7 = cog = 0. We substitute: = y to obtain.

Fpl.= co(vwz?) + c1(vz?) + +  c3(wa?) +
+  cs(vwa?) + cg(va?) + cr(v?wz) 4+ cg(wad) +  co(vw?a)
+ co(wr?) 4+ e (v?ad) + + ciz(vwz?)  +
+ es(vwr?z)  + cgvrz)  + + cs(wr?z)  +
+ coolvwrdz) 4+ cor(vadz + co(vPwrz) + coz(wazdz) 4+ cos(vw?az)
+  eos(vw?a?z) +  cog(vwatz) + +  cog(w?a?2)

(26)

We want to know if there are any two terms that are symbolically equal wheny and not otherwise.
Scanning the above, we see that the only non-unique terms are in positions 0 and 13, and in positions
15 and 26. Looking back to equation (25), we see bwh positions 0 and 13 correspond to term
vwzy, and thatoth positions 15 and 26 correspond to tevmzyz. Obviously, these terms will be

the same regardless of the substitutior: dbr y. Since all other terms are unique, we conclude that

the adversary’s only chance of distinguishing comes from a lucky instantiation of these variables.

Analysis of B's Simulation. At this point3 chooses random values, y*, {v}}ie(1,r,]» 1w} a1,
{ri}aep o) € Z;- B's simulation is perfect, and therefore reveals nothingltaboutb, provided that none
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of the following non-trivial equality relations hold:

Fl,i(x*v y*a {v:l}a {w:(l}v {le}) - Fl,j(‘r*a y*v {7}2}, {w:;}a {T;}) =0: (27)
for somes, j, such thatfy ; # F7 ;,

Fl,i(x*a z*, {’U:;,}’ {w2}7 {7"2}) - Fl,j(x*v x*, {Ufi}a {wz}v {T;}) =0: (28)
for somei, j, such thaty ; # Fi ;,

FZ,i(x*) y*a {UZ}a {/wZ}’ {T:(l}) - FQJ(I*a y*v {U;kl}a {wzkl}a {Tzkl}) =0: (29)
for somei, j, such thaty ; # F ;,

FQ,i(x*a Z‘*, {U:Z}a {’UJ;}, {r;kl}) - F2,j(x*7 .%'*, {Uzkl}v {’LU:;}, {T;;}) =0: (30)
for somei, j, such thatfy ; # F» ;,

FTJ(JZ'*, y*7 {U2}7 {w2}7 {TZ}) - FT,j(x*a y*v {UZ}v {wz(l}a {7”‘2}) =0: (31)
for somei, j, such thatt’r; # Ir;,

FT,i(x*a l'*, {02}7 {w;kl}’ {r;kl}) - FT,j('r*a LU*, {v;kl}a {w;}a {TZ}) =0: (32)

for somei, j, such thatt’r; # Fr ;.

For fixedi andj, the probability of the first and second cases occurring are no morefhpamvhere
this results from the maximum degree of equation (20). For fixadd j, the probability of the third and
fourth cases occurring are no more thayp, where this results from the maximum degree of equation (22).
Finally, for the fifth and sixth cases, the probability is at ntst/p, where this results from the maximum
degree of equation (24).

Therefore, by summing over afi, j) pairs in each case, we bountls overall success probability
e <2(%)242(3) 2+2(77) 22, Sincen +n+7r < gg+3, we end withe < (ga+3)*(2+96+246)/p =
O(¢&/p)- O

The following corollary is immediate. Here = ¢ — %; that is,~ is the adversary’s advantage beyond
guessing.

Corollary D.4 Any adversary that breaks the Strong SXDH assumption with constant probahiity in
generic groups of ordep requiresQ)( &/~p) generic group operations.
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