
3C -

A Provably Secure Pseudorandom Function and Message

Authentication Code.

A New mode of operation for Cryptographic Hash Function ⋆

Praveen Gauravaram1 ⋆⋆, William Millan1, Juanma Gonzalez Neito1, Edward Dawson1

Information Security Institute (ISI), QUT, Australia.
p.gauravaram@isi.qut.edu.au,{b.millan,j.gonzaleznieto,e.dawson}@qut.edu.au

Abstract. We propose a new cryptographic construction called 3C, which works as a pseudoran-
dom function (PRF), message authentication code (MAC) and cryptographic hash function. The 3C-
construction is obtained by modifying the Merkle-Damg̊ard iterated construction used to construct
iterated hash functions. We assume that the compression functions of Merkle-Damg̊ard iterated con-
struction realize a family of fixed-length-input pseudorandom functions (FI-PRFs). A concrete security
analysis for the family of 3C- variable-length-input pseudorandom functions (VI-PRFs) is provided in
a precise and quantitative manner. The 3C- VI-PRF is then used to realize the 3C- MAC construction
called one-key NMAC (O-NMAC). O-NMAC is a more efficient variant of NMAC and HMAC in the
applications where key changes frequently and the key cannot be cached. The 3C-construction works as
a new mode of hash function operation for the hash functions based on Merkle-Damg̊ard construction
such as MD5 and SHA-1. The generic 3C- hash function is more resistant against the recent differential
multi-block collision attacks than the Merkle-Damg̊ard hash functions and the extension attacks do not
work on the 3C- hash function. The 3C-X hash function is the simplest and efficient variant of the
generic 3C hash function and it is the simplest modification to the Merkle-Damg̊ard hash function that
one can achieve. We provide the security analysis for the functions 3C and 3C-X against multi-block
collision attacks and generic attacks on hash functions. We combine the wide-pipe hash function with
the 3C hash function for even better security against some generic attacks and differential attacks. The
3C-construction has all these features at the expense of one extra iteration of the compression function
over the Merkle-Damg̊ard construction.

1 Introduction

In 1989, Damg̊ard [9] and Merkle [20] independently proposed a similar iterative structure to
construct collision resistant cryptographic hash functions. Since then, this design has been called
Merkle-Damg̊ard (MD) iterative structure. The design principle of this construction is

“If there exists a computationally collision free function f from m bits to t bits where m > t,
then there exists a computationally collision free function h mapping messages of arbitrary
polynomial lengths to t-bit strings.” [9]

It has been believed that the problem of designing a collision resistant hash function reduces to
the problem of designing a collision resistant compression function. It is known that, a compression
function secure against the fixed initial value (IV) collisions is necessary but not sufficient to
generate a secure hash function [19]. The multi-block differential collision attacks on the hash

⋆ This is a draft version of the work in progress. Any comments, suggestions and corrections via email are very much
appreciated and acknowledged in the final draft.

⋆⋆ Author (http://www.isrc.qut.edu.au/people/subramap) has been supported by the QUT-PRA and ISI top-up
funding

functions MD5, SHA-0 and SHA-1 [7,28,29] proves this insufficiency. These attacks show that these
iterated hash functions do not properly preserve the collision resistance property of the compression
function with its fixed IV. For details on the background information see [11].

f f f f

f f f f f
D
A
P

Merkle-Damg̊ard Iterated Hash Function

The 3C-construction

x1

x1

x2

x2

xt

xt

xt+1

xt+1

. . .

k

k

Z
Z

Fk(x)

FFk(x)(Z)

Fig. 1. The views of MD and 3C-construction

In this work, we propose a new variant to the Merkle-Damg̊ard iterative construction called
3C-construction. The keyed versions of the 3C and MD constructions are shown in Fig 1. The idea
of the 3C-construction has originated from the MAC constructions NMAC and HMAC based on
hash functions proposed by Bellare, Canetti and Krawczyk [2]. An important security feature of
the NMAC and HMAC functions is to have the extra application of the compression function and
hash function respectively to prevent extension attacks. The 3C construction uses the same concept
but in a different way. Our construction is named as 3C as it requires at least 3 executions of the
compression function to process arbitrary length messages. That is, to process a single message
block using 3C as a PRF, MAC or as a hash function 1, the compression function is executed
three times; first to process the message block, next to process the padded block (Merkle-Damg̊ard
strengthening) and finally the XOR accumulation of the intermediate chaining variables as shown
in Fig 1.

The salient features of the 3C-construction are listed below:

– 3C is a single construction, based on the fixed-length-input compression functions, which works
as a pseudorandom function (PRF), message authentication code (MAC) and a cryptographic
hash function.

– If the compression function is a family of fixed-length-input pseudorandom functions (FI-PRFs)
then the 3C-construction defines a family of variable-length-input pseudorandom functions (VI-
PRFs).

– A provably secure 3C-PRF works as a secure MAC without any additional modifications to the
construction.

1 In the hash function mode, 3C construction shown in Fig 1 would become 3C-X a variant of generic 3C hash
function (see Section 5)

2

– By replacing the key of the 3C-construction with an initial state (IV) (fixed IV) 2, the 3C-
construction works as a cryptographic hash function.

– The 3C-MAC function works as an effective variant to the NMAC function. We call this MAC
function O-NMAC (one-key NMAC). O-NMAC is a more efficient variant of NMAC and HMAC
in the applications where key changes frequently and the key cannot be cached.

– A variant of the O-NMAC function calls the hash function as a black-box serving as a variant
for HMAC.

– The features of the 3C-hash function are given in detail in Section 5 of the paper.

1.1 Motivation and Advantages

The primary motivation behind the proposal 3C is to show a single construction that works as a
PRF, MAC and as a hash function by slightly modifying the Merkle-Damg̊ard iterative structure as
shown in Fig 1. Our motivation is to show that while the consecutive iterations of the compression
function gives the speed advantage for a hash function or a MAC function that uses the compression
function, the way the compression function is iterated is important for the security of the hash
function or a MAC function. The significant advantages of the 3C construction from the perspective
of PRF, MAC and as a hash function are as follows:

As a PRF:

The 3C-PRF shows that if the compression function works as a FI-PRF family then one can
construct an efficient and secure VI-PRF family. The 3C-VI-PRF is more efficient than the VI-
PRF presented in [3] as their append cascade VI-PRF uses two keys compared to one key of the
3C-VI-PRF.

As a MAC:

By just assuming that the compression function as a PRF or as a MAC, one cannot guarantee a
secure MAC function by iterating it using the Merkle-Damg̊ard iterative principle due to extension
attacks. But the 3C-construction guarantees that by slightly updating the way the iterations of the
compression function are performed as shown in Fig 1. As said before, iterating the compression
function gives performance advantage whereas the method of iterating the compression function is
more important for the security of the final construction. It is a well known observation that any
PRF family is a secure MAC [4,5,12,13]. So, one can use the 3C-VI-PRF as a secure MAC function
and it works as an effective variant to the NMAC function [2]. Unlike NMAC, the 3C-MAC function
uses one key and is just as efficient. A hash variant to the 3C-MAC function works as a variant to
the HMAC function and is also just efficient.

As a Hash Function:

The 3C-construction shown in Fig 1 works as 3C-X, a new mode of operation for a hash
function. A generic 3C construction is shown in Section 5 of the paper and 3C-X works as a
simple variant for it. It should be noted that the current cryptanalytical techniques of converting
near-collisions to full collisions in the hash functions MD5 [29], SHA-0 [7] and SHA-1 [28] are
insufficient if one instantiates the 3C-construction using the compression functions of these hash
functions. In addition, the 3C-X construction prevents extension attacks in a more efficient way
than the wide-pipe and double-pipe hash functions [26] without increasing the size of the internal
state. The 3C structure offers better protection against multi-block collision attacks than the
constructions in [10].

2 Most hash functions specify the initial state and this initial state is termed as fixed IV [19]

3

Lucks [26] has proposed double-pipe and wide-pipe hash schemes that improve the resistance
against generic attacks in iterated hash functions [14]. One can alter the designs of Lucks in the
style of 3C-hash function improving the security of new constructions not only against multi-block
collision attacks but also against multicollision attacks [14] in iterated hash functions. The 3C-
X-hash function is the simplest possible nested mode of operation that one can get by modifying
the MD hash function. There has been a lot of work since the attacks on MD5, SHA-0 and SHA-1
in improving the compression functions of these hash functions to resist differential cryptanalysis.
See [15, 16, 27]. We note that one can use these strong collision resistant compression functions in
the 3C-X- to get extra protection against differential attacks.

Very recently, Coron et al. [8] have provided four hash functions (all are modifications to the
plain Merkle-Damg̊ard construction) that work as random oracles when the underlying compression
function works as a random oracle. We note that when the underlying compression function works as
a random oracle, the 3C-hash function works as a random oracle. The important point one should
note here is while the plain Damg̊ard construction [9] (from which most hash functions evolved
starting from MD4) is not a practical construction by itself, the 3C is a practical construction
which preserves the collision resistance of the compression function in a much better way compared
to the hash functions that followed the Damg̊ard construction.

1.2 Organization

The paper is organised as follows: In Section 2, notation and definitions are introduced. In Section 3,
the proof of security for the 3C-PRF is given followed by the security analysis of the 3C-MAC
function O-NMAC in Section 4. In Section 5, a generic 3C-construction as a hash function is
introduced and its variant 3C-X is analysed against multi-block collision attacks on the hash
functions. In Section 6, we explained how to combine 3C-X with the wide-pipe hash function
followed by concluding remarks in Section 7.

2 Standard Notation and Definitions

The notations and definitions of this paper shall follow the well established and sensible terminology
of [2, 3, 5].

2.1 Pseudorandom functions

Notation: If S is a set (resp. probability space) then x
$
← S denotes the operation of selecting a

message uniformly at random from S (resp. at random according to the underlying distribution of

S). If x is represented as blocks x1 . . . xn then x
$
← S means x1

$
← S; . . . ;xn

$
← S. There is always

an additional padded data block xn+1 appended to the message x containing the binary encoded
representation of length of the message x. Let MAPS(X,Y) be the set of all functions mapping from
set X to set Y and |x| denote the length of the message string x in bits. A block size of b bits (eg.
b = 512 bits as for SHA-1) is denoted as B = {0, 1}b.
Function Families and their pseudorandomness: A public finite function family F is a finite
set of functions and an associated set of keys with a probability distribution on them. All functions
in F are assumed to have the same domain and range. Let Dom(F) be the domain and Ran(F) be
the range of all functions in F .

4

Let {0, 1}k be the set of keys for some integer k called key length. Each key from the set {0, 1}k

names a function in F and the function corresponding to a key K is denoted as FK . Picking a

function g at random from F (denoted as g
$
← F) means picking a key K uniformly at random

from {0, 1}k (denoted as K
$
← {0, 1}k) and setting g = FK . Given a key, the corresponding function

can be computed efficiently on x and is denoted as FK(x) = F (K,x). Let Time(F) denote the
computation time of a program to compute FK(x) for a given K and x with |x| ≤ n.

In the keyed function families we consider, Ran(F) is fixed and equals the domain of the keys,
{0, 1}k . The domain Dom(F) can vary. However, the domains that vary over a particular block size
b are considered and hence domains will be of form: B (only one block of b bits), B∗ (arbitrary
finite length strings), Bl(l block strings) and B≤l (strings of at most l blocks).

A finite function family F is pseudorandom if the input-output behaviour of a random instance
FK = g of F “looks random” to someone who does not know the secret key K. This is formalized
via the notion of statistical tests [13] or distinguishers [3]. Formally, for such a test or distinguisher
D let

Advprf
F (D) = Pr

g
$
←F

[Dg = 1]− Pr
g

$
←MAPS

[Dg = 1]

with the probabilities taken over the choices of g and the coin tosses of D.

The security of family F as a pseudorandom function depends on the resources that D uses that
include running-time and number and length of oracle queries. The running time t includes the time

taken to execute g
$
← F , time taken to compute responses to oracle queries made by D and the

memory which includes the size of the description of D. The distinguisher D(t, q, l, ǫ) distinguishes
F from MAPS(X,Y) if it runs for time t, makes q oracle queries each of length at most l blocks

of b bits each and Advprf
F (D) ≤ ǫ where ǫ is called the distinguishing probability. In other words,

D(t, q, l, ǫ)-breaks F if D(t, q, l, ǫ) distinguishes F from MAPS(X,Y). The family F is said to be
(t, q, l, ǫ)-secure if there is no distinguisher that (t, q, l, ǫ)-breaks F .

2.2 Message authentication codes

Here we provide formal definition for message authentication codes (MACs) following [5]. We later
use these definitions to provide the concrete security analysis of the 3C-MAC function with respect
to the compression function.

A MAC is a family of functions defined as MAC : {0, 1}k × {0, 1}∗ → {0, 1}τ where {0, 1}∗ is
the domain which contains arbitrary strings of finite length that are authenticated using the MAC
function and {0, 1}τ is the length of the authentication tag Tag. The secret key K of length k is
shared between the sender and the receiver. When the sender wants to send the message M to the
receiver, it computes the tag Tag of M using the function MACK(M) = Tag and transmits the
pair (M,Tag) to the receiver. The receiver verifies the integrity and authenticity of the message M
by recomputing authentication tag MACK(M) 3.

The goal of a MAC scheme is to prevent forgery by an adversary that finds a message not seen
by the legitimate parties and its corresponding tag. The adversary obtains MACs of messages of its
choice by performing a chosen message attack or adaptive chosen message attack. The adversary
breaks the MAC if it can find a message M which is not part of its queries but from the same

3 In general, MAC schemes can involve using state information and random nonces instead of just appending the
tag. For concreteness we stick to simple stateless or deterministic MACs

5

domain as queries and its corresponding authentication tag MACK(M). Formally, the success of
an adversary A is measured by the following experiment:

Experiment Forge(MAC,A)

K
$
← {0, 1}k

(M,Tag)← AMACK(.)

If MACK(M) = Tag and M was not a query of A to its oracle then return 1 else return 0.

In the above experiment, AMACK(.) denotes that A is given oracle for MACK(.) which A can
call on any message of its choice. If A is successful then the experiment returns 1 else it retuns 0.
The success probability of the adversary is the probability with which it breaks MAC.

The security of a MAC scheme is quantified in terms of the success probability achievable as
a function of total number of queries q made in the experiment, running time t of the experiment
(which includes the time to choose the key and answer oracle queries, memory and size of the code
of the adversary’s algorithm) and the maximum length l of each query.

2.3 NMAC and HMAC functions

NMAC and HMAC [2] are the MAC functions proposed by Bellare et. al using cryptographic hash
functions. The NMAC function including its security proof was given in [2] and the function is
defined as follows:

NMACK(x) = fK1(FK2(x)). (1)

where two random and independent keys K1 and K2 each of length k are derived from the key K.

The security analysis [2] for the construction shown in (1) adopted the following methodology:

If there exists an algorithm that forges the MAC function NMAC with some significant probability
p, then one can explicitly show an algorithm that using the same resources finds collisions for
the underlying keyed iterated hash function with at least probability of p/2 and forges the keyed
compression function as a MAC with at least probability p/2.

HMAC is a “fixed IV” variant of NMAC and uses the hash function F as a black box. The
HMAC function that works on an arbitrary length message x is defined as:

HMACK(x) = FIV (K ⊕ opad, FIV (K ⊕ ipad, x)) (2)

HMAC is a particular case of NMAC and both can be related as HMACK(x) = NMACK1,K2(x)
where K1 = f(K⊕opad) and K2 = f(K⊕ipad), f is the compression function of the hash function,
opad and ipad are the repetitions of the bytes 0x36 and 0x5c as many times as needed to get a b-bit
block and K indicates the completion of the key K to a b-bit block by padding K with 0’s. The
security analysis provided for NMAC applies to HMAC under the assumption that the compression
function used to derive the keys K1 and K2 for HMAC works as a pseudorandom function [2].

2.4 The basic cascade construction

The basic cascade construction which originates from the collision resistant hash function con-
structions of Merkle [20] and Damg̊ard [9] is given below.

6

Let F be the compression function or family of functions mapping from {0, 1}b to {0, 1}k . Here
we consider keyed compression functions. A function from the family F is selected by a key K
chosen from the set of keys {0, 1}k . The output length of the compression function is same as the
key length k. The families F (1), F (2), F (3), . . . are defined as follows. The members of F (l) take
inputs which are at most l blocks long; that is, the domain of the family F (l) Dom(F (l)) = B≤l

and F (l) is the l-th iteration of F where l ∈N. Let n be the total number of data blocks excluding
the last padded block (n + 1th) processed by a function family ; i.e, n + 1 ≤ l. Then

F (l) is defined as follows assuming that all inputs are non-empty:

F (l)(K,x1, x2, . . . , xn) = F (F (l)(K,x1, x2, . . . , xn−1, xn), xn+1).

That is for n ≥ 1 and n ≤ l, F (l)(x1, . . . , xn, xn+1) is computed as follows:

K0 ← K
for(i = 1, . . . , n) do: Ki ← F (Ki−1, xi)
Output Kn

Note that F (l)(K,x1) = F (K,x1) = FK(x1).

The iterations of F are denoted with F (∗). That is F (∗)(K,x1, . . . , xn, xn+1)
def
= F

(n)
K (x1, . . . , xn, xn+1).

Note that the size of the message blocks is at least twice as large as the size of the key. For example,
for the compression function of SHA-1, B = 512 bits and k = 160 bits and for the compression
function of SHA-256, B = 512 bits and k = 256 bits.

3 The 3C-pseudorandom function family

The basic cascade construction F (∗) preserves the pseudorandomness of the compression function
F . This can be proved using the notion of prefix-free distinguishers [3]. The set of queries that a
prefix-free distinguisher D asks always form a prefix-free set. The following theorem was proved
in [3].

Theorem 1 Let F be a function family with Dom(F) = B, Ran(F) = {0, 1}k and key length is
k. Suppose F is (t′, q, 1, ǫ′)-secure and let l ≥ 1. Then F (∗) is (t, q, l, ǫ′′)-secure against prefix-free
distinguishers, where

t = t′ − cq(l + k + b).(Time(F) + log q);

ǫ′′ ≤ qlǫ′

and c is a small specific constant whose value can be determined from the proof [3].

In the basic cascade construction F (∗), the prefix-freeness can be ensured by appropriately encoding
the queries; for example by prepending the length of the query to each query in an appropriate
way. A machine evaluating such a pseudorandom function needs to store the entire input to find
the length of the input before processing the input. But this has a serious limitation when it is
used as a MAC function since MAC functions should be able to process arbitrary length data
with high speed. A solution to this problem was proposed in [3] using an append cascade(ACSC)

construction which is defined as F acsc
K.d (x)

def
= F

F
(∗)
K

(x)
(d) where d is the extra key material of length

δ appended to the message. Proof of security for this scheme was given under the assumption that
d is “unpredictable” by the distinguisher.

7

Now we propose the 3C-construction which works as an alternative and improved solution to
the ACSC construction. Later, the 3C-construction and its variant are used as MAC variants for
NMAC and HMAC functions and by replacing the key in the 3C-construction with a fixed public
initial value (IV), it is used as a cryptographic hash function.

If F (∗) is the basic cascade construction family based on F taking inputs of length at most l
blocks (including the padded block) and is indexed by the k bit key K returning a k bits of output
then we define the 3C-construction based on F as:

F3C
K (x)

def
= F

F
(∗)
K

(x)
(Z), (3)

where Z = u1 ⊕ u2 ⊕ . . . ⊕ un ⊕ un+1 =
∑n+1

i=1 ⊕ui. That is, Z is the XOR operation of all of the
intermediate chaining variables ui for i = 1, . . . , n + 1. The padding of Z is denoted by Z. That is,
Z = PAD(

∑n+1
i=1 ⊕ui) We call this as chain-XOR block which is fed as input to the outer function

F which is keyed using the data dependent key F
(∗)
K (x) after all the blocks in the message x are

processed. In other words, first process the message x in an iterated manner over the function F
(∗)
K

which itself is based on FK and use this as the key to process the chain-XOR block Z which is
fed as input to the external application F . It should be noted that the padding is performed twice

for the 3C-construction; once for the basic cascade construction F
(∗)
K and next on Z to get the

chain-XOR block. For a given FI-PRF or compression function family F , we assume that the value
Z is random and unpredictable since all of its terms are outputs of FI-PRFs.

The construction is called 3C as it requires at least three applications of the compression
function to process the message and three being the least when there is only one block that needs
to be processed. For example, when there is only one message block, the first application of the
compression function processes that single block, the second application processes the padded block
and the third application processes the block due to the XOR accumulation of the chaining values.
Special cases are covered in the remarks.

Informally, in order to break F 3C
K , one has to generate queries such that, when translated to F ,

one query has to be a prefix of another. In order for this to happen, the latter query has to contain
Z of any one of the previous queries as a substring. Note that the term “substring” originates
from [3]. A substring here means a contiguous sequence of bits of Z that share an edge at the front
with the latter query. Without loss of generality we may assume that Z of size k is unpredictable
and the probability for this event to happen is exponentially small in k.

The unpredictability property of Z, in turn, depends on the security of the F 3C construction and
here we provide rigorous security analysis. Our analysis assumes, for simplicity, that the padding of
the message is handled appropriately using well known padding technique for hash functions such
as SHA-1 [1]. A similar assumption was made in proving the security of NMAC and HMAC [2].

Theorem 2 Let F be a function family with Dom(F) = B = {0, 1}b used in constructing the family
F (∗) which is (t′, q, l, ǫ′′)-secure against prefix-free distinguishers. Then F 3C is (t, q, l, ǫ)-secure where
t = t′ − cq Time(F) log k and ǫ ≤ ǫ′′ + blq2−k.

Proof of Theorem 2

Let X and Y be the domain and range of the finite family F (∗) constructed from the FI-PRF F .

Let R
def
= MAPS(X,Y). Note that the domain and range of F 3C is also X and Y except that it

uses one iteration more than F (∗) constructed from F .

8

We construct an algorithm U which is given a black-box access to a prefix-free distinguisher D2

with ǫ2
def
= AdvR

F 3C(D2). Now U defines a distinguisher D1
def
= UD2 with ǫ1

def
= AdvR

F (∗)(D1).

A function g is chosen at random either from F (∗) or from R. The distinguisher D1 with oracle
access to the function g runs D2. The distinguisher D2 makes each query x. The distinguisher D1

having oracle access to the function g, answers the queries of D2 by computing Z after all the
message blocks are processed including the padded block and then answers the query x of D2 with
g(x,Z) = FF ∗

K
(x)(Z) where comma indicates the concatenation. The distinguisher D1 allocates

memory dynamically depending on the number of queries to store the Z values for all queries. If
any of the queries of D2 contain any of the stored values of Z as a substring then output bit ‘1’
which means that g is pseudorandom. Else, output whatever D2 outputs.

For the concrete analysis, let

P2,R = Pr
g

$
←R

[Dg
2 = 1]

P2,F = Pr
g

$
←F 3C

[Dg
2 = 1]

P1,R = Pr
g

$
←R

[Dg
1 = 1]

P1,F = Pr
g

$
←F (∗)

[Dg
1 = 1]

Now, if g, the oracle of D1, is taken at random from R, then the answers given by D1 to
D2’s queries are those of a random function. That is, any two different queries are answered by

independently chosen values from the range Y . In addition, if g
$
← F (∗) then the answers given by

D1 to D2’s queries are those of a function g
$
← F 3C.

Now we have,

P2,F − P2,R = ǫ2

When g
$
← R, the maximum probability that any one of D2’s queries contain Z as a substring

is that of an unpredictable value in {0, 1}k appearing as a substring in a given set of q strings each
of length b.l. This probability is less than or equal to blq2−k. Thus, we have P1,R ≤ P2,R + blq2−k.
Moreover, whenever D2 outputs ‘1’, D1 outputs ‘1’ as well. Thus P1,F ≥ P2,F . Finally, we get

ǫ1 = P1,F − P1,R ≥ P2,F − (P2,R + blq2−k)

=⇒ ǫ1 ≥ ǫ2 − blq2−k

Replacing ǫ1 with ǫ′′ and ǫ2 with ǫ, we get ǫ ≤ ǫ′′ + blq2−k ⊓⊔
Now finally, we get the following result by combining the results of Theorems 1 and 2.

Corollary 1. Let F be a function family with domain Dom(F) = B = {0, 1}b, range Ran(F) =
{0, 1}b and key length k. Suppose F is (t′, q, 1, ǫ′)-secure and let l ≥ 1. Then F 3C is (t, q, l, ǫ)-secure
where

t = t′ − cq((k + b + l + logk) Time(F) + (k + l + b)logq)
ǫ ≤ lqǫ′ + blq2−k. ⊓⊔

Remarks:

9

1. From the above proof, the main result is as follows: If F was (t′, q, 1, ǫ′)-secure then F (∗) is
(t, q, l, ǫ′′)-secure, for t comparable to t′ and ǫ′′ ≤ qlǫ′. If F was (t′, q, 1, ǫ′)-secure then F 3C

is (t, q, l, ǫ)-secure, for t comparable to t′ and ǫ ≤ qlǫ′ + blq2−k. Clearly, the probability of
a successful attack against the family F 3C is larger than the probability of successful attack
against the underlying family F by roughly a factor of ql. A numerical example showing the
tightness of the reduction is given below with some reasonable data.

2. NUMERICAL EXAMPLE. Suppose k = 160 bits and b = 29 and we use F 3C over a random
function family of the same domain. Let l = 220 blocks and q = 264. Then for an ideal FI-PRF
F , ǫ′ ≈ q/2−k [3,6]. Then there will be a practical method of distinguishing F 3C from a random
function family using the same resources as follows . ǫ′ = 1.262 × 10−29 and ǫ′′ = 2.44 × 10−4

and ǫ ≤ 2.44 × 10−4 + 29.220.264.2−160 = 2.44 × 10−4 + 2−67 ≈ 2.44 × 10−4. Consequently, no
adversary will be able after having performed the above test, to distinguish F 3C from a random
function with advantage as large as 2.44 × 10−4.

3. The ACSC construction [3] uses two independent keys; one of size k acting as IV for the
compression function and the other key of small size (not specified in [3]) δ as a data block. It
is unsure how close δ to the size k of the key K (which is 160 bits for the compression function
of SHA-1). This is not the case with the F 3C construction. The second key which is generated
within the construction due to the pseudorandomness of the compression functions is also of
size k.

4. In addition, when the ACSC construction [3] is used as a MAC function it is susceptible to
the divide and conquer and slice-by-slice trial key recovery attacks [23–25] which apply to the
envelope MAC schemes. In fact, having no constraints on the size of the trail key would make
these attacks more efficient on the ACSC MAC function if the size of the trial key is very small
(as stated in [3]) and does not equal the size k of the key K. Note that this is not the case
with the F 3C construction when it is used as a MAC function (O-NMAC) due to the extra
application of the compression function (see Section 4 for details).

5. The security proof given above considers the message of arbitrary length which implicitly con-
siders short messages. That is, someone may want to process just a 1-bit message which along
with padding can fit in a single block. Even in such a case, a separate block is added to pad that
1-bit message (Merkle-Damg̊ard strengthening) where the padded block represents the length of
the 1-bit message. So, the total number of compression function computations to process short
messages is also three. This may be a slight drawback of this construction from the efficiency
point of view when it is used to process very short messages. As far as we know, many real-time
applications require processing of at least one block of data.

4 3C PRF as a MAC function

PRFs make secure MACs and the security reduction is standard [4, 5, 12, 13]. Hence, one can
simply use F 3C construction based on the compression function as a secure MAC function. We
call this 3C-MAC function as “O-NMAC”, One-key NMAC. Nevertheless, for completeness, here
we show that the reductions from O-NMAC to F 3C VI-PRF family and then from O-NMAC to
FI-PRF family F are almost tight and security hardly degrades at all. Here we use the definitions
of Section 2.

Theorem 3 Let F 3C construction as a MAC called O-NMAC : {0, 1}k × {0, 1}∗ → {0, 1}k be a
VI-PRF family and q, t, l ≥ 1. Then

10

Advmac
O-NMAC(q, t) ≤ Advprf

3C(q, t′) + 2−k

where t′ = t + O(lqk) and l is the maximum number of b-bit blocks in a query.

The proof of Theorem 3 appears in Appendix A.

Now we provide a theorem, using Theorem 2 and Theorem 3, which shows that if F is a FI-PRF
family or a compression function then O-NMAC is a secure MAC.

Theorem 4 Let F : {0, 1}k × {0, 1}b → {0, 1}k be a FI-PRF family. Then

Advmac
O-NMAC(q, t) ≤ Advprf

F (q, t′) + (blq + 1)2−k

where t′ = t + O(lqk) + cq((k + b + l + logk) Time(F) + (k + l + b)logq)

The proof of Theorem 4 appears in Appendix B.
In the following sections, we define O-NMAC and its variant HMAC-1.

4.1 The O-NMAC function

Here we give an algorithm for O-NMAC following the terminology provided for NMAC in Sec-
tion 2.3.

If K is a random key of length l to the iterated hash function F , then the MAC function
O-NMAC on an arbitrary size message x (split into blocks x1, . . . , xn including the padded block
xn+1) works as follows:

O-NMACK(x) = fFK(x)(Z) (4)

f f f ff

P
A
D

x1 x2 xn xn+1

K

Z

Z

Fig. 2. The O-NMAC construction

The message x to be authenticated using O-NMAC is processed using the hash function F iterated
over the compression function f with the secret key K keyed as IV. A standard padding technique
(appending x with a bit 1 and some 0’s followed by the binary encoded representation of |x|) is
used for F to pad inputs to an exact multiple of the block length of b bits. In particular, we use the
Merkle-Damg̊ard strengthening for the padding of the message x where there is always an extra
block xn+1 having the binary encoded representation of |x|.

In O-NMAC, all the chaining variables are XORed resulting in chain XOR Z and Z after
padding is fed as an input to the external application f which is keyed using the data dependent
key FK(x). The chain XOR Z is padded using the standard padding technique (appending Z) with
a bit 1 and some 0’s followed by the binary encoded representation of |Z|) to make it a block of b
bits. This is denoted with PAD operation in Fig 2. That is, PAD(Z) = Z.

11

4.2 Structural analysis of O-NMAC

In this section, we show the security analysis on the structure of O-NMAC to see whether any
cancellation attacks are possible on the structure due to the usage of XOR operation by testing
some properties as below. This applies to 3C PRF as well.

1. XORing data blocks: Consider the case of processing one block (or less than one block)
messages x1 and x2 using O-NMAC with the key K. Then O-NMAC is defined as:

O-NMACK(x1) = fFK(x1,xpad1)(Z1) (5)

O-NMACK(x2) = fFK(x2,xpad2)(Z2) (6)

where Z1 = FK(x1) ⊕ FFK(x1)(xpad1) and Z2 = FK(x2) ⊕ FFK(x2)(xpad2); xpad1 and xpad2 are
padded blocks for messages x1 and x2 respectively due to the Merkle-Damg̊ard strengthening.
Assume |x1| = |x2|. Then xpad1 = xpad2.
Now consider the case of Z1⊕Z2. This implies FK(x1)⊕FFK(x1)(xpad1)⊕FK(x2)⊕FFK(x2)(xpad1).
Clearly, there are no XOR cancellations in this case as for some good compression function,
FK(x1) 6= FK(x2) implying FFK(x1)(xpad1) 6= FFK(x2)(xpad1). This can be generalised to any
number of distinct data blocks.

2. XORing data blocks with first block fixed: This is a special case of the above case.
Consider processing of two block messages x1, x2 and x1, x

′
2 with their first block x1 fixed where

comma denotes the concatenation. As in the above case, assume |x1, x2| = |x1, x
′
2|. Then Z1⊕Z2

implies FK(x1) ⊕ FFK(x1)(x2) ⊕ FFK(x1,x2)(xpad1) ⊕ FK(x1) ⊕ FFK(x1)(x
′
2) ⊕ FFK(x1,x′

2)
(xpad1).

This implies FFK(x1)(x2)⊕FFK(x1,x2)(xpad1)⊕FFK(x1)(x
′
2)⊕FFK(x1,x′

2)
(xpad1). Clearly this case

has now become equivalent to the above case and can be generalised to any number of blocks.

4.3 A fixed IV variant of O-NMAC

Now we introduce a variant of O-NMAC which calls the hash function “as is” like HMAC and we
call this variant as HMAC-1. Let F be the iterated and key-less hash function initialized with its
usual IV. The function HMAC-1 that works on inputs x of arbitrary length using a single random
string K of length k (like for O-NMAC) is defined as follows:

HMAC-1K(x) = FIV (FIV (K,x), Z) (7)

f ff f fZPAD ff

A
P

D

x1 x2 xn xn+1K

IV

Z

Z

Fig. 3. The HMAC-1 construction

where K is the completion of the key K with 0’s appended to a full b-bit block-size of the com-
pression function, comma represents concatenation. The PAD operation represents the standard

12

padding operation of the hash function. That is PAD(Z) = Z. The operation ZPAD denotes
padding with zeros to make the k-bit chaining variable to a b-bit data block. The cost involved in
the computation of HMAC and HMAC-1 is the same (see Section 4.4).

4.4 Comparison with NMAC, HMAC and ACSC Constructions

Table 1 shows the comparison of O-NMAC and HMAC-1 with NMAC, HMAC and ACSC 4 con-
structions in several aspects. The performance of MAC schemes is compared in terms of number
of calls to the compression function (CF) of the hash function (HF) to process N blocks of data
(there will be an extra block for padding).

Table 1. Comparison among MAC schemes

MAC scheme # of calls to CF No. of keys Security Reduction Best key-recovery complexity

NMAC N + 2 2 CF: secure MAC; HF:weakly CRHF ≈ 2k1 + 2k2

HMAC N + 4 1 CF: secure MAC, PRF; HF:weakly CRHF 2k

ACSC N + 1 2 CF: family of FI-PRFs ≤ 2k + 2δ

O-NMAC N + 2 1 CF: family of FI-PRFs 2k

HMAC-1 N + 4 1 CF: family of FI-PRFs 2k

Obviously, one main advantage of our MAC functions over NMAC is that they just require
management of a single l-bit long key K compared to managing two keys (each of length l) in
NMAC that even do not provide security of their combined key length against key-recovery [2] due
to the divide and conquer key recovery attack [23–25] on NMAC.

Similarly, when one uses the ACSC construction as a MAC, the sender and receiver of the
message have to generate the random secret key along with the shared key K every time they wish
to communicate. In O-NMAC, that equivalent secret value Z of size k bits is generated “within”
the function and there is no need for the communicating parties to generate and share any other
key. Moreover, it was specified in [3] that the size of the second key of the ACSC construction is
pretty small but was not clear whether it has the same size as k which, for example, is 160 bits for
the keyed compression function of SHA-1.

It should be noted that from the implementation point of view, HMAC requires two extra
computations over NMAC which is significant when it is used to authenticate short data streams.
It was noted [2] that an implementation can avoid this extra processing by storing the keys K1

and K2 (see Section 2.3) as the keys to the NMAC function. This is not the case when the keys
vary frequently and an implementation of HMAC cannot avoid this extra over-head by caching the
keys when they vary frequently. In such a scenario, the keys K1 and K2 need to be generated first
and this is accomplished using the compression functions of hash functions such as MD5 and SHA-
1 as pseudorandom functions. This would involve two computations of the compression function
followed by keying them as IVs for the NMAC function. Here comes the advantage of O-NMAC
which just requires a single key. It requires generation of a single key unlike two keys for NMAC.

4 Note that the intention behind introducing ACSC construction in [3] was to show that the iterations of the
compression function preserve pseudorandomness of the compression function but not to show ACSC as a secure
MAC. Here we treat it as a secure MAC for comparison

13

In addition, HMAC-1 does not have to use fixed constants opad and ipad like HMAC. From the
perspective of number of calls to the compression function, the cost of HMAC-1 is same as that of
HMAC. But in reality, it may be slightly slower than HMAC due to the extra little effort involved
in computing Z.

4.5 Applicability of attacks on our MAC functions

One can ask whether the assumption on the compression function can be weakened still producing
a secure O-NMAC. Although we cannot answer this question in a formal way, here we provide the
security analysis of our constructions in relation to the attacks on MAC schemes based on hash
functions independent of the concrete security analysis we have provided before. In this analysis,
one can assume the compression function of our functions to be a secure MAC or a weakly-collision
resistant compression function. These assumptions on the underlying functions were made in the
concrete security analysis of NMAC. Note that a secure MAC implies that the MAC function is
both collision resistant and one-way for someone who does not know the secret key [22].

– Extension and key-less collision attacks on hash functions
It is well-known that by just assuming that the compression function as a secure MAC one
cannot guarantee that the iterated construction Fk(x) is also a secure MAC due to extension
attacks [2]. In O-NMAC and HMAC-1, this attack is prevented by the application of the outer
compression function.

An off-line collision attack on the plain hash function leads to collisions on the secret suffix
MAC scheme FIV (x||k) where the secret key k is appended to the message [23]. An attacker
first finds collisions for two distinct messages x and x′ using IV of the hash function such that
FIV (x) = FIV (x′). Then the attacker requests the oracle of FIV (x||k) the MAC value of x and
shows this as the MAC value for the message x′. Note that the attacker cannot find offline
collisions in O-NMAC and HMAC-1 as it cannot interact with the legitimate owner of the key.
As we will discuss below, though the birthday attacks of finding collisions in hash functions leads
to collisions in the iterated MAC schemes, they are not practical for message digest lengths like
224 or 256 bits.

– Birthday and key recovery attacks

The birthday attacks that find collisions in cryptographic hash functions can be applied to MAC
schemes based on iterated functions [3,23]. These attacks apply to NMAC, HMAC, CBC-MAC
and our MAC schemes as well. We note that they are the best known forgery attacks on our
schemes with the fact that one has to make sure that collisions occur not only in the cascade
chain but also in the accumulation chain. Nevertheless, these attacks are impractical when
one uses the compression functions of hash functions such as SHA-256 [1] as it is infeasible
to find collisions using birthday attack on these compression functions. This shows that the
actual assumptions required by our analysis might be weaker than the pseudorandomness of the
compression function. In addition, birthday attacks on keyless hash functions are more efficient
than those on MACs based on hash functions as attacks on the latter require interaction with
the owner of the key to produce MAC values on a large number of chosen messages with no
parallelization.
These birthday attacks that produce forgery on MAC schemes are extended in the form of
“slice by slice trail key recovery” attack [24,25] to extract the trail key of some versions of the
envelope MAC schemes [17, 21]. This attack does not apply to NMAC, HMAC and our MAC

14

functions as it requires the trail key to be split across the blocks which is not applicable to
these constructions. Finally, the divide and conquer key recovery attack [23–25] on the envelope
scheme F (k1, x, k2) (which applies to NMAC as well [2]) serves to show that the use of a single
k-bit key in our constructions does not weaken the functions against exhaustive key search.

5 A new mode of operation for the MD hash function

The generic 3C hash function construction is shown in Fig 4. This construction has a function
f ′ iterated in the accumulation chain and compression function f iterated in the cascade chain
as in the MD construction. The function f ′ is a generic function which can be instantiated with
the compression function f used in the cascade chain. We call the generic 3C hash function with
f ′ = f also as 3C. The advantage of 3C over the wide-pipe hash function is the reusage of the
compression function used in the cascade chain in the accumulation chain which makes it easy to
deploy. Note that the wide-pipe hash function requires a complete new compression function design
with an internal state at least twice that of the hash value. Our 3C hash function also maintains
an internal state of size twice that of the size of the hash value in a different way as shown in Fig 4.
Implementation of such a construction is trivial for functions with well-structured code like SHA-1
and MD5. In Fig 4, ZPAD denotes the padding of intermediate chaining values with 0’s to make
them a block size suitable for the compression function in the accumulation chain.

The generic 3C-hash function preserves the collision resistance property of the compression
function in a “better way” compared to the hash functions such as SHA-0, SHA-1 and MD5 de-
pending on the instantiation of f ′. That is, one can use the 3C-hash function using the compression
functions of MD5, SHA-0 and SHA-1 or improved versions to them [15, 16, 27]. We note that the
current techniques of finding near-collisions for the intermediate message blocks is necessary but
not sufficient to get a multi-block collision attack on the 3C-hash function. This is not the case
with the currently broken hash functions MD5 and SHA-1 where near-collisions after processing
the first message block are converted to full collisions after processing the second message block.
The 3C-hash function uses Merkle-Damg̊ard strengthening to pad the messages. While there has
been active research in strengthening the compression functions of widely used hash functions MD5
and SHA-1 [15,16,27], this research focuses on strengthening the Merkle-Damg̊ard construction as
practically as possible so that collision resistance of the compression function is extended to its
iterations.

The 3C hash function is less efficient compared to the MD based hash functions though it is as
efficient as wide-pipe or double-pipe hash functions. Hence, instead of using the function f for the
accumulation process in the accumulation chain, one can use a less complex version of the function
f (for example half the complexity of f) to make the construction more efficient than the one with
f ′ = f . But XOR operation is about as fast as one can get and achieves n− 1 resiliency which no
non-linear function can do. In addition, instantiating f ′ with the XOR operation makes the generic
3C hash function as the simplest efficient modification to the Merkle-Damg̊ard construction. We
call this specific case as the 3C-X hash function.

The following are some of the features of the 3C-X hash function:

1. The 3C-X-hash function is the least modification which one can attain by modifying the Merkle-
Damg̊ard hash functions without posing much penalty on the performance of the hash function.

15

f f f

f’

ZPAD

f

ZPAD

f’ f’

ZPAD

A
D

P

g

replacemen

M1 M2 ML−1

E

ML

IV

Z Z

Fig. 4. The generic 3C-hash function

f f f

P
A
D

f g

M1 M2 ML−1

E

ML

IV

Z

Z

Fig. 5. The 3C-X-hash function

2. While the Damg̊ard construction [9], for example, is not practical by itself, one of the motivations
behind 3C-X is to design a practical hash function which follows the design motivation of
Damg̊ard construction a bit closely than the current dedicated hash functions in the light of
recent multi-block collision attacks [7, 28,29].

3. To process a single message block, the 3C-X-hash function requires three iterations of the
compression function. One for the message block, one for the padded block and the final one
for the block due to the XOR accumulation of internal memory as shown in Fig 5.

4. It is possible to use the cryptanalytical techniques used to find collisions in the hash functions
MD5 [29], SHA-0 [7] and SHA-1 [28] on the 3C-X-hash function when it uses the compression
function of these hash functions under the condition that collisions should occur at both the
chains in the 3C-X-hash function (Theorem 5). Such a condition is not required to find multi-
block collisions on the MD based hash functions.

5. It much more difficult to achieve a simultaneous collision in both the chains of 3C using the cur-
rent multi-block collision attack techniques compared to 3C-X which is a necessary requirement
for collisions in these constructions.

6. Extension attacks do not work on the 3C-hash function due to the application of the additional
compression function. Note that 3C does not perform double hashing unlike the proposals
in [10].

In the following section, we provide the security analysis of the generic 3C hash function followed
by the impact of such analysis when one instantiates f ′ with XOR function and with f in the
subsequent remarks.

5.1 Security analysis of 3C hash function

16

Security analysis for the 3C hash function can be given in several ways based on the assump-
tions on the compression function f . By assuming that the function f as a random oracle, one
can show that the 3C works as a random oracle following the assumptions and proof techniques
of [8]. In such a case, any application proven secure assuming the hash function as a random or-
acle would remain secure if one plugs in 3C assuming that the underlying compression function
works as a random oracle. But, assuming the compression function as a random oracle is a stronger
assumption than the collision resistance. We will give the security analysis for the 3C and 3C-X
hash functions from the perspective of recent multi-block collision attacks [7,28,29] followed by the
analysis of 3C against Joux multicollision attacks. It should be noted that these two attacks are
different; while a multicollision attack is a generic attack, multi-block collision attack works on the
weaknesses in the compression functions of the hash function trying to find collisions for the hash
function using near-collisions or pseudo IVs [11]. Multicollisions may involve multi-block collisions
anyway. In such a case, the number of possible collisions on the hash function are less compared to
the number given by Joux attack [14] as the latter attack requires a collision on every compression
function processed. Anyhow, we separate these two attacks in our analysis on our hash functions.

Security analysis of the generic 3C against multi-block collision attacks:
The possible ways of finding collisions to the 3C hash function F are listed here. We consider two
messages M 6= N with lengths L and L′ (including padding) respectively such that F (M) = F (N).
The messages M and N are expanded to sequences (M1, . . . ,ML) 6= (N1, . . . , NL′) where the last
data blocks are the padded blocks containing the lengths of the messages. FM

i and FN
j denote the

internal hash values obtained while computing F (M) and F (N).

Definition 1. Consider the 3C hash function F . The terminal and internal collisions on the
function F are defined as follows:

1. Terminal/Final collisions: They involve one of the following cases:

– FM
L 6= FN

L′ and ZL 6= ZL′ but g(FM
L , ZL) = g(FN

L′ , ZL′)
– FM

L = FN
L′ and ZL 6= ZL′ but g(FM

L , ZL) = g(FN
L′ , ZL′)

– FM
L 6= FN

L′ and ZL = ZL′ but g(FM
L , ZL) = g(FN

L′ , ZL′)

2. Internal collisions: FM
L = FN

L′ and ZL = ZL′ , which implies g(FM
L , ZL) = g(FN

L , ZL′). �

Definition 2. Consider the 3C hash function F . An internal collision on the cascade chain implies
a collision for f . That is,

(FM
i ,Mi) 6= (FN

i , Ni) with f(FM
i ,Mi) = f(FN

i , Ni). �

In this analysis, we treat multi-block collisions on the cascade chain as internal collisions on the
cascade chain. Internal collisions on the cascade chain can become terminal collisions if FM

L = FN
L′

and ZL 6= ZL′ but g(FM
L , ZL) = g(FN

L′ , ZL′) (see Definition 1). We call the first point (resp. final
point) in the cascade chain where an internal multi-block collision has occurred as initial multi-block
collision (resp.final multi-block collision).
As pointed out [11], any two pseudo IVs (not necessarily near-collisions) would give a multi-block
collision in the Merkle-Damg̊ard hash function. For our analysis of the 3C hash function we stick
to multi-block collisions due to near-collisions. One can give a formal definition for near-collisions
in an arbitrary number of ways rather than using hamming distance between collisions [11]. Since
no one knows the exact requirement for two chaining values to be nearly collided values, we use
the term “related-collisions” instead of “near-collisions”.

17

Definition 3. If F (M) and F (N) are the digests of two different messages M and N using the
hash function F then F (M) and F (N) are related-collisions if F (M) = T (F (N)) for some fixed
non-trivial function T . The related-collisions come under the category of internal collisions. �

Theorem 5 Let F be the 3C hash function designed using a compression function f . Let M and
N be two distinct messages. To transform a related collision on the cascade chain to a multi-block
full collision on the hash function F , it is necessary to have a collision in the accumulation chain
either at the point of initial multi-block collision or at the point of final multi-block collision in the
cascade chain.

Proof of Theorem 5:

Assume |M | = |N |. Let M and N are represented as blocks M1, . . . ,ML and N1, . . . , NL where
last blocks are the padded blocks. Consider the first related-collision on the tth data block in the
cascade chain (there can be many related collisions in the cascade chain as explained below). That
is, F (Mt) = T (F (Nt)) (from Definition 3).

Let u1 and v1 be the outputs of the first message blocks of the messages M and N and u1 6= v1.
Let ui and vi be the chaining values of the accumulation chain for the two messages M and N
respectively where i ∈ {2, . . . , L}. Then for i = 2 to L, ui = ui−1 ⊕ f(ui−1,Mi) and i = 2 to L,
vi = vi−1 ⊕ f(vi−1, Ni).

Assume a terminal collision on F with uL 6= vL and FM
L = FN

L , g(FM
L , uL) = g(FN

L , vL). Since
FM

L = FN
L , there should have been an internal multi-block collision (since u1 6= v1) on the cascade

chain after processing the tth data block and before the application of the function g due to the
related collision on the tth data block in the cascade chain.

For a multi-block internal collision on the cascade chain, the related collision in the cascade
chain on the tth data block (it is also possible for some related collisions to take place after the
tth data block before a full collision) should have given a full collision after processing any of the
blocks i ∈ {t + 1, . . . , L}. This also implies that ui 6= vi for i ∈ {t, . . . , L− 1} as uL 6= vL. Without
loss of generality, one can also see that ui 6= vi for i ∈ {2, . . . , t− 1}.

Therefore, for an internal multi-block collision on the cascade chain to be transformed to a full
collision on the hash function F , it is necessary that the collision to F be a non-terminal collision.
That is, uL must equal vL. Note that FM

L equals FN
L due to an internal multi-block collision on

the cascade chain which is based on a related-collision on the tth block. For uL to equal vL, there
should have been a collision at some point on the accumulation chain. Assuming that the chaining
values of two messages M and N affect the accumulation chain at least until the blocks that result
in an internal multi-block collision, it is necessary that the accumulation chains collide either at
the initial multi-block collision point or at the final multi-block collision point on the cascade chain
to have a full collision for F .

With the above reasoning, for the condition F (M) = F (N) to be satisfied for the hash function
F , having F (Mt) = T (F (Nt)) is not sufficient. One must also get a collision on the accumulation
chain as its accumulation is used as input to the last compression function. So a collision at the
same point in both the chains would definitely transform an internal multi-block collision to a
full collision on the hash function F . A collision on the accumulation chain at the point of final
multi-block collision would also transform to a full collision on the hash function F . Anyhow, the
later case depends on the messages being chosen by the attacker to carry the initial multi-block

18

collision until a collision has been found on the accumulation chain.

Assume an initial internal multi-block collision on the t + 1th block due to F (Mt) = T (F (Nt).

For F (Mt) = T (F (Nt))⇒ F (M) = F (N) to be satisfied, the following is a necessary and sufficient
condition.

f ′(F (Mt+i), ut+j) = f ′(F (Nt+i), vt+j) where i, j ∈ {1, . . . , L}

Hence to transform a related collision on the cascade chain to a multi-block full collision on the
hash function F , it is necessary to have a collision in the accumulation chain of F either at the
point of initial multi-block collision or at the point of final multi-block collision. �

Remarks:

1. The above analysis assumes |M | = |N |. In such a case, ML = NL. On such equal length messages
collisions without the padding clearly lead to collisions with padding. But if |M | 6= |N | then
ML 6= NL. In this case, one has to make sure that the compression functions that process
the padded blocks ML and NL would still result in a collision for F though there were prior
collisions before processing the padded blocks. This applies to Merkle-Damg̊ard construction as
well.

2. Note that the analysis described above considers multi-block collisions as internal collisions.
Collisions could occur on the final compression function with no internal collisions at all. These
collisions come under the category of terminal collisions (see Definition 1).

3. The above analysis assumes terminal collisions due to only one case; uL 6= vL and FM
L = FN

L ,
g(FM

L , uL) = g(FN
L , vL). One can also show the analysis by considering the others two cases of

Definition 1.

4. The practical implication of the above theorem depends on the strengths of the functions used
for f ′ in the accumulation chain and f in the cascade chain of the 3C-hash function.

– If the function f ′ is the simple XOR operation, then the necessary and sufficient condition
for a collision on 3C-X from the proof is F (Mt+i) ⊕ ut+j = F (Nt+i) ⊕ vt+j where i, j ∈
{1, . . . , L}.

– Assume a multi-block collision on the cascade chain of the 3C-X hash function with a
complexity of 2t. For example, if the function f is a compression function of SHA-0, then
from [7], a 4-block collision can be found on the cascade chain with t = 51. To transform
such a collision attack on the cascade chain on to 3C-X, the total complexity would be
2t ± 2t′ where 2t′ is the complexity of finding a collision in the accumulation chain and
2t′ > 0 or 2t′ ≤ 0. Here 2t′ = 0 implies a collision on both the chains of 3C-X without
having to add extra number of blocks after a collision on the cascade chain. If 2t′ > 0 then
additional number of blocks are appended to the collided blocks on the cascade chain to
get a multi-block full collision on 3C-X. This implies that extending the collision resistance
of the function f in a slightly better way compared to the MD based hash function such
as SHA-0. Note that if the attacker tries to find collisions on 3C-X aiming 2t′ ≤ 0, the
attacker is most likely trying to improve the collision search on the cascade chain itself
which is basically MD construction. For example, assume f in 3C-X as the compression
function of MD5 which is not resistant against 2-block collisions [29]. Now the attacker
aiming for a collision on 3C-X-MD5, either gets a collision on the first block or second
block. A first block collision implies a collision to the compression function with the fixed
IV. Since the attacker has less control on the accumulation chain compared to the messages

19

that she chooses to get collisions on the cascade chain, this case might be difficult compared
to the case with 2t′ ≥ 0.

– Now consider the 3C hash function (i.e f ′ = f). This makes achieving a simultaneous
collision in both the chains much harder than achieving one in the cascade chain. The reason
is, the attacker has very less control on the inputs to the function f in the accumulation
chain than when f ′ in the accumulation chain is a XOR operation. Assume again that the
function f in both the chains to be the compression function of SHA-0. To convert the
current multi-block collision attack on SHA-0 [7] with a complexity of 2t = 251 on to the
3C hash function, the attacker has to perform one of the following:
• Make sure to relate the collisions in both the chains starting from the first compression

function to have a simultaneous collision at the end. This would be much harder as the
attacker has very less control on the inputs to the function f in the accumulation chain.
The complexity of such an attack as in the above case, would be 2t +2t′ where the value
of t′ depends on the cryptanalytical technique used by the attacker and it should be
less than 2n/2, otherwise it would be a birthday attack on the accumulation chain (see
below).
• Append extra number of same blocks to the collided chaining values on the cascade

chain until a collision is found on the accumulation chain. This is similar to performing
birthday attack on the accumulation chain testing every message block on the function
f in the cascade chain. We conjecture that the total complexity of such an attack would
be about 2t + 2n/2. If the function f is the compression function of SHA-0, then the
total complexity of finding a collision on 3C using the current techniques [7] is 251 + 280

which is much larger than performing birthday attack on 3C as a black-box with the
complexity 280.

From this discussion, one can easily see that the best away to find collisions on 3C is to
find collisions on the cascade chain for the fixed IV instead of using related-collisions. The
hash functions MD5, SHA-0 and SHA-1 are resistant against fixed IV collision attacks but
not against pseudo or near-collisions. Hence one can use the fixed-IV collision resistant
compressions functions in the 3C hash function.

5.2 Security analysis of 3C against multicollision attacks

Joux [14] has shown the weakness of Merkle-Damg̊ard construction by constructing multicollisions
for the hash functions where D different messages map to a single digest. This generic D = 2d-
collision attack requires all intermediate hash values to be equal (of course there are some general-
izations [14]). This attack applies to the 3C hash function as well. This implies that a collision on
every compression function in the cascade chain would result in a collision at the subsequent point
in the accumulation chain. From this perspective, if the compression function of 3C is modeled as
a random oracle, as an upper bound on the security of 3C, the complexity of the total attack is
O(d ∗ 2n/2) where n is the size of the chaining values and the hash value. But this attack technique
is valid on the condition that all the intermediate hash values in the accumulation chain and in
the cascade chain are equal. This is valid for any specific case of generic 3C hash function such as
3C-X and 3C itself.

One can combine any instantiation of the generic 3C hash function with the wide-pipe hash
function [26] to improve the resistance against both multi-block collision and multicollision attacks.
The 3C-X hash function combined with the wide-pipe hash function is shown in Section 6.

20

5.3 Security analysis of 3C against D-way (2nd) preimage attacks

Joux [14] pointed out that one can use multicollision attack technique as a tool to find D-way (2nd)
preimages for an MD hash function. For a given hash value Y ∈ {0, 1}n, the attacker first finds 2d

collisions on d-block messages M1, . . . ,M2d

with Hd = H(M1) = . . . = H(M2d

). Then she finds
the block Md+1 such that f(Hd,Md+1) = Y . The total complexity of the attack is O(d ∗2n/2 +2n).
For a 2nd preimage attack with the target message M , just set Y = H(M).

We note that such an attack technique used to find D-way (2nd) preimages for the MD hash
function for a given hash value does work on any instantiation of the 3C hash function. For
example on 3C-X, the attacker first finds D collisions on d-block messages M1, . . . ,M2d

with
Hd = H(M1) = . . . = H(M2d

) with a complexity of O(d∗2n/2). Then she finds the block Md+1 such
that the execution of last two compression functions would result in the given digest Y . The later
task takes time O(2n+1). Hence the total cost to find D preimages for 3C-X is O(d ∗ 2n/2 + 2n+1).
The same attack on 3C would take time O(d∗2n/2 +3∗2n) as for every iteration of f in the cascade
chain there exists a corresponding iteration of f in the accumulation chain. For a D 2nd pre-image
attack with the target message M , just set Y = F (M).

5.4 Comparison with other hash function proposals

Ferguson and Schneier proposed a scheme [10] which is basically the NMAC construction with
secret keys replaced by the initial states of the hash functions to prevent extension attacks. The
scheme is as follows: FIV (FIV (x)). It is obvious that Joux multicollision attack [14] applies to their
hash function as the application of extra compression function does not prevent extending the
multicollisions of the inner function to the total hash function. The complexity of such an attack
like on the MD hash is again at most O(d.2n/2).

The technique used to find D collisions can be extended to find D-way (2nd) preimages on their
scheme. The attack works as follows:

1. The attacker first finds 2d colliding D-block messages M1, . . . ,M2d with Fd = F (M1) = . . . =
F (M2d). Finding D collisions for the function FIV takes about time d.2n/2.

2. For a given hash value Y (|Y |=n), the attacker then finds the preimage (the data block) of the
external compression function using the IV and the hash value Y in time O(2n). Let that block
be Y ′. Assuming that a b-bit compression function is used for the hash function FIV (FIV (.)),
there would be |b− n| number of padding bits (pad) in Y ′. Let Y ′ = t||pad.

3. The attacker then finds a message block Md+1, such that f(Fd,Md+1) = t. This takes about
the time of O(2n).

So the total complexity of the attack is O(d.2n/2 + 2n+1). For a D 2nd pre-image attack with the
target message M , just set Y = F (M). Note that this construction involves double hashing (two
fixed IVs) whereas 3C involves single hashing as there is only one instantiation of the hash function
with one fixed IV.
Lucks [26] has proposed wide-pipe and double-pipe hash designs as failure-tolerant hash functions
showing that these two new designs provide more resistance against generic attacks [14, 18]. Sim-
ilarly, the 3C-hash function can be seen as another failure-tolerant hash function. The wide-pipe
hash design requires a compression function which is stronger than the hash function itself. This
is not the case with the 3C-hash function. All these functions resist the straight-forward extension
attacks as long as their respective design criteria is satisfied; for example, the size of the internal
state in the wide-pipe hash should be at least twice that of the size of the hash value.

21

6 Combining the 3C hash function with other designs

One can convert any instantiation of 3C-hash function to the style of wide-pipe and double-pipe
designs and vice-versa thus enhancing the protection of the hybrid structure against differential
cryptanalysis and also against generic attacks.

A
D

P g
x1 x2 xn xn+1

IV
f ′

f ′f ′f ′f ′

f ′′

Z

Z

Fig. 6. The 3C-X wide-pipe hash function

For example, Fig 5 shows the combination of 3C-X and the wide-pipe design. It uses two compres-
sion functions defined as follows:

f ′ : {0, 1}w × {0, 1}m → {0, 1}w and f ′′ : {0, 1}w → {0, 1}n

g : {0, 1}w × {0, 1}m → {0, 1}n

The salient feature of this hybrid construction is that it provides more resistance against multi-
collision attacks and multi-block collision attacks. We call this construction as the 3C-X-wide-pipe
hash function. While the security analysis against the multi-block collision attacks follows from the
3C- hash function, the analysis against multicollision attacks follows from [26].

7 Conclusion

In this paper we proposed a construction called 3C which works as a PRF, MAC and as a new
mode of operation for cryptographic hash function. As a PRF function, our construction offers
better security than the append cascade (ACSC) pseudorandom function without having to use
two keys. As a MAC function, the 3C construction (O-NMAC) works as an effective variant to
the NMAC function. Significant security advantages of the 3C-construction are obtained when it is
used as a hash function. A generic 3C hash function was proposed and its variant 3C-X is dealt in
the paper. The 3C hash function provides more resistance against multi-block collision attacks than
the hash functions based on Merkle-Damg̊ard construction and the best way to find collisions on
3C is to find collisions for the compression function with the fixed IV. When 3C is combined with
the wide-pipe hash function, the net hybrid combination offers more resistance against different
forms of attacks on hash functions. While this a draft version, we will update the paper with more
features in the next version considering some of the recent attacks on hash functions.

Acknowledgements:

Many thanks to Kapali Viswanathan for his encouragement and valuable insights on this work.
Thanks for advising us to look at Bellare, Canetti and Krawczyk’s seminal work [2, 3]. Many
thanks to Colin Boyd for organizing the Crypto Reading Group at ISI for every two weeks which
has been very useful in getting opinions from the fellow researchers on some of the related papers
on which this work is based on.

22

References

1. National Institute of Standards and Technology (NIST) , Computer Systems Laboratory. Secure Hash Standard.
Federal Information Processing Standards Publication (FIPS PUB) 180-2, August 2002.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication. In Neal
Koblitz, editor, Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 18–22 August 1996. Full version of the paper is available at "http://www-cse.

ucsd.edu/users/mihir/papers/hmac.html".
3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The cascade construction

and its concrete security. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS’96 (Burlington, VT, October 14-16, 1996), pages 514–523. IEEE Computer Society, IEEE Computer
Society Press, 1996.

4. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Cipher Block Chaining. In Yvo G. Desmedt,
editor, Advances in Cryptology - Crypto 94, volume 839 of Lecture Notes in Computer Science, pages 341–358.
Springer Verlag, 1994.

5. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message authentication
code. Journal of Computer System Sciences, 61(3):362–399, 2000.

6. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message authentication
code. Journal of Computer and System Sciences, 61(3):362–399, 2000.

7. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and William Jalby. Collisions of
SHA-0 and Reduced SHA-1. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 36–57. Springer, 2005.

8. Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud, and Prashant Puniya. Merkle-damgard revisited: How
to construct a Hash Function. In Victor Shoup, editor, Advances in Cryptology—CRYPTO ’05, volume 3621 of
Lecture Notes in Computer Science, pages 430–448. Springer, 2005, 14–18 August 2005.

9. Ivan Damgard. A design principle for hash functions. In Gilles Brassard, editor, Advances in Cryptology:
CRYPTO 89, volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer-Verlag, 1989.

10. Niels Ferguson and Bruce Schneier. Practical Cryptography, chapter Hash Functions, pages 83–96. John Wiley
& Sons, 2003.

11. Praveen Gauravaram, William Millan, and Juanma Gonzalez Nieto. Some thoughts on collision attacks in the
hash functions MD5, SHA-0 and SHA-1. Cryptology ePrint Archive, Report 2005/391, 2005. http://eprint.

iacr.org/.
12. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of random functions

(extended abstract). In G. R. Blakley and David Chaum, editors, Advances in Cryptology: Proceedings of
CRYPTO 84, volume 196 of Lecture Notes in Computer Science, pages 276–288. Springer-Verlag, 1985, 19–
22 August 1984.

13. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM,
33(4):792–807, October 1986.

14. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In Matt
Franklin, editor, Advances in Cryptology-CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 306–316, Santa Barbara, California, USA, August 15–19 2004. Springer.

15. Charanjit S. Jutla and Anindya C. Patthak. Is SHA-1 conceptually sound? Cryptology ePrint Archive, Report
2005/350, 2005. http://eprint.iacr.org/.

16. Charanjit S. Jutla and Anindya C. Patthak. A simple and provably good code for SHA message expansion.
Cryptology ePrint Archive, Report 2005/247, 2005. http://eprint.iacr.org/.

17. Burt Kaliski and Matt Robshaw. Message authentication with MD5. CryptoBytes, 1(1):5–8, Spring 1995.
18. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less than 2n work. In Victor

Shoup, editor, Advances in Cryptology—CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science, pages
474–490. Springer, 2005, 14–18 August 2005.

19. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography, chapter
Hash Functions and Data Integrity, pages 321–383. The CRC Press series on discrete mathematics and its
applications. CRC Press, 1997.

20. Ralph Merkle. One way hash functions and DES. In Gilles Brassard, editor, Advances in Cryptology: CRYPTO 89,
volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer-Verlag, 1989.

21. Philip W. Metzger and William A. Simpson. RFC 1828: IP authentication using keyed MD5, August 1995.
Status: PROPOSED STANDARD.

23

22. Bart Preneel. Analysis and design of Cryptographic Hash Functions. PhD thesis, Katholieke Universiteit Leuven,
1993.

23. Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast MACs from hash functions. In Don
Coppersmith, editor, Advances in Cryptology—CRYPTO ’95, volume 963 of Lecture Notes in Computer Science,
pages 1–14. Springer-Verlag, 27–31 August 1995.

24. Bart Preneel and Paul C. van Oorschot. On the security of two MAC algorithms. In Ueli Maurer, editor,
Advances in Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes in Computer Science, pages 19–32.
Springer-Verlag, 12–16 May 1996.

25. Bart Preneel and Paul C. van Oorschot. On the Security of Iterated Message Authentication Codes. IEEE
Transactions on Information Theory, 45(1):188–199, 1999.

26. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. To appear in AsiaCrypt’2005. For an
earlier version of this paper see Report 2004/253 at http://eprint.iacr.org/.

27. Michael Szydlo and Yiqun Lisa Yin. Collision-Resistant usage of MD5 and SHA-1 via Message Preprocessing.
Cryptology ePrint Archive, Report 2005/248, 2005. http://eprint.iacr.org/.

28. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup, edi-
tor, Advances in Cryptology—CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science, pages 17–36.
Springer, 2005, 14–18 August 2005.

29. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 19–35.
Springer, 2005.

A Proof of Theorem 3

In this proof we use the exact security definition given for MACs in Section 2.2. Let A be any
adversary attacking O-NMAC, making q MAC generation queries to the oracle in experiment
Forge(O-NMAC,A) with “running time” at most t (for definitions see Section 2.2). Note that the
domain of O-NMAC is of arbitrary finite length. Let domain of O-NMAC be at most l blocks with
each block containing b bits. Let MAPS(l, k) be a family of all functions.

We design a distinguisher B that distinguishes O-NMAC from MAPS(l, k) as follows:

Advprf
O-NMAC(B) ≥ Advmac

O-NMAC(A)− 2−k (8)

The distinguisher B is given an oracle for a function g : {0, 1}l → {0, 1}k . It will run in time t′

and make at most q queries to its oracle, with the time measured as discussed in Section 2.1.
It was assumed that the oracle in Experiment Forge(MAC,A) is invoked at most q times. Note

that the integer q includes in its count the message M that A outputs as its forgery. This means
that the total number of queries made by A to its oracle is one less than q. Now we give an algorithm
for B which will run A, providing it an environment in which A’s oracle queries are answered by
B.

Distinguisher B
Initialize an empty set S as: S ← ∅
Run A
For (j = 1, . . . q − 1)
When A sends its oracle some query Mi: reply g(Mi) to A; S ← S ∪Mi

End For
A outputs the pair (M,Tag)
if g(M) = Tag and M /∈ S return 1
else return 0
Until A stops.

24

The security analysis is given as follows:

Pr
g

$
← O-NMAC

[Bg = 1] = Advmac
O-NMAC(A) (9)

Pr
g

$
← MAPS

[Bg = 1] ≤ 2−k (10)

In (8), the function g is an instance of O-NMAC. The simulation that A gets from B is exactly
that of the experiment Forge(O-NMAC,A). B returns 1 only when A makes a successful forgery,
thus we have (8).
In (9), A is in an environment where a random function is used to compute MACs. Since g is a
random function, Pr[g(M) = Tag] is 2−k, thus we have (9).

Finally, (7) is obtained by substituting (8) and (9) into the definition of Advprf
O-NMAC(B).

B Proof of Theorem 4

We prove Theorem 4 first by applying Theorem 3 and then Corollary 1.
From Theorem 3 we have,

Advmac
O-NMAC(q, t) ≤ Advprf

hfb(q, t′) + 2−k (11)

From Corollary 1 we have,

Advprf
hfb(q, t) ≤ Advprf

F (q, t′) + blq2−k (12)

Combining Theorem 3 and Corollary 1 we get,

Advmac
O-NMAC(q, t) ≤ Advprf

F (q, t′) + (blq + 1)2−k

where t′ = t + O(lqk) + cq((k + b + l + logk)Time(F) + (k + l + b)logq). ⊓⊔

25

