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Abstra
t

The plateaued fun
tions have a big interest for the studying of bent

fun
tions and by the reason that many 
ryptographi
ally important

fun
tions are plateaued. In this paper we study the possible values

of the aÆne rank of spe
trum support for plateaued fun
tions. We


onsider for any positive integer h plateaued fun
tions with a spe
-

trum support of 
ardinality 4

h

(the 
ardinality must have su
h form),

give the bounds on the aÆne rank for su
h fun
tions and 
onstru
t

fun
tions where the aÆne rank takes all integer values from 2h till

2

h+1

� 2. We solve 
ompletely the problem for h = 2, namely, we

prove that the aÆne rank of any plateaued fun
tion with a spe
trum

support of 
ardinality 16 is 4, 5 or 6.

1 Introdu
tion and main de�nitions

We 
onsider F

2

n

, the ve
tor spa
e of n-tuples of elements from F

2

. An

n-variable Boolean fun
tion is a map from F

2

n

into F

2

. In this paper we

will denote a ve
tor from F

2

n

by a letter, whereas the 
omponent of this

ve
tor by the same letter equipped with low indi
es pointed to the number

of this 
omponent in a ve
tor. Ve
tors x

0

and x

00

are 
alled adja
ent in

the ith 
omponent if they di�er only in the ith 
omponent. We denote by

x

i

the ve
tor that di�ers from x only in the ith 
omponent, i = 1; : : : ; n.

The 
omponent x

i

is 
alled �
titious for a fun
tion f if for any ve
tors x

0

and x

00

adja
ent in the ith 
omponent we have f(x

0

) = f(x

00

). The Hamming

1



distan
e d(x

0

; x

00

) between two ve
tors x

0

and x

00

is the number of 
omponents

where ve
tors x

0

and x

00

di�er. For given fun
tion f from F

n

2

the minimum

of distan
es d(f; l) where l ranges over the set of all aÆne fun
tions on F

n

2

is 
alled the nonlinearity of f and denoted by nl(f). The subfun
tion of a

Boolean fun
tion f is the fun
tion f

0

obtained by a substitution of some


onstants 0 or 1 instead of some 
omponents in f .

It is well known that a fun
tion f on F

2

n


an be uniquely represented by

a polynomial (ANF) on F

2

whose degree in ea
h variable in ea
h term is at

most 1. Namely, f(x

1

; : : : ; x

n

) =

L

(a

1

;:::;a

n

)2F

n

2

g(a

1

; : : : ; a

n

)x

a

1

1

: : : x

a

n

n

, where g

is also a fun
tion on F

2

n

. This polynomial representation of f is 
alled the

algebrai
 normal form (brie
y, ANF) of the fun
tion and ea
h x

a

1

1

: : : x

a

n

n

is


alled a term in ANF of f . Sometimes the map f(x) ! g(x) is 
alled the

M�obius transform.

The algebrai
 degree of f , denoted by deg(f), is de�ned as the number of

variables in the longest term in ANF of f .

The weight wt(f) of a fun
tion f on F

n

2

is the number of ve
tors x from F

n

2

su
h that f(x) = 1. The fun
tion f is 
alled balan
ed if wt(f) = wt(f � 1) =

2

n�1

(i. e. the fun
tion takes the values 0 and 1 at the same number of

ve
tors.

Let x = (x

1

; : : : ; x

n

) and u = (u

1

; : : : ; u

n

) be ve
tors of length n over F

2

.

The inner produ
t of x and u is the fun
tion de�ned as

< x; u >=

n

X

i=1

x

i

u

i

where the operations are produ
ed over F

2

. By sum x + u of two ve
tors x

and u we understand their 
omponentwise addition over F

2

.

The Walsh transform of a Boolean fun
tion f is 
alled the integer valued

fun
tion on F

n

2

de�ned by the next way:

W

f

(u) =

X

x2F

n

2

(�1)

f(x)+<u;x>

:

For any u 2 F

n

2

the value W

f

(u) is 
alled the Walsh 
oeÆ
ient. We will


all the Walsh 
oeÆ
ients also the spe
tral 
oeÆ
ients, and the set of all

2

n

Walsh 
oeÆ
ients | the spe
trum of a Boolean fun
tion. Walsh 
oef-

�
ients satisfy the Inversion formula (�1)

f(x)

= 2

�n

P

u2F

n

2

W

f

(u)(�1)

<u;x>

and Parseval's identity

P

u2F

n

2

W

2

f

(u) = 2

2n

. The nonlinearity of a Boolean

fun
tion f is expressed via its Walsh 
oeÆ
ients by the next way: nl(f) =

2

n�1

�

1

2

max

u2F

n

2

jW

f

(u)j.
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The set S

f

of all ve
tors u su
h that W

f

(u) 6= 0 is 
alled the spe
trum

support of a fun
tion f .

The Boolean fun
tion is 
alled a bent fun
tion if the values of its Walsh


oeÆ
ients at all ve
tors are exa
tly �2

n=2

. Bent fun
tions exist for all even

n and do not exist for all odd n. A bent fun
tion is a fun
tion with maximum

possible nonlinearity 2

n�1

� 2

(n=2)�1

among all fun
tions of n variables for

even n. The Boolean fun
tion is 
alled plateaued if its Walsh 
oeÆ
ients take

exa
tly three possible values: 0 and �2




for some integer 
. The plateaued

fun
tions have a big interest for the studying of bent fun
tions (for example,

by the reason that the de
omposition of a bent fun
tion f = (x

i

+ 1)f

1

+

x

i

f

2

gives two plateaued fun
tions f

1

and f

2

) and by the reason that many


ryptographi
ally important fun
tions are plateaued (for example,m-resilient

fun
tions of n variables with maximum possible nonlinearity 2

n�1

� 2

m+1

).

For plateaued fun
tions denote �(x) = 2

�


W

f

(x). Then for any x 2 F

n

2

the

value �(x) 
an take only three possible values: 0, �1 and 1. The set S

f

of all

ve
tors u su
h that W

f

(u) 6= 0 is 
alled the spe
trum support of a plateaued

fun
tion. We denote the set of all ve
tors x su
h that �(x) = �1 by T

�

,

and the set of all ve
tors x su
h that �(x) = 1 by T

+

. From Parseval's

identity it follows immediately that the 
ardinality of a spe
trum support is

4

n�


. It is 
onvenient to 
onsider a bent fun
tion as the parti
ular 
ase of

a plateaued fun
tion for 
 = n=2 and jS

f

j = 2

n

that we will use below with

some stipulations. (Although often formally bent fun
tions are not referred

to plateaued fun
tions.) Plateaued fun
tions were investigated in di�erent

works, see, for example, [6, 7, 10℄.

For any u 2 F

2

n

the auto
orrelation 
oeÆ
ient of the fun
tion f at the

ve
tor u is de�ned as �

f

(u) =

P

x2F

2

n

(�1)

f(x)+f(x+u)

. The fun
tion D

u

f =

f(x) + f(x+ u) is 
alled the derivative of the fun
tion f in dire
tion u. The

ve
tor u 2 F

2

n

su
h that D

u

f � 
onst is 
alled the linear stru
ture of the

fun
tion f . It is easy to 
he
k that the linear stru
tures of a fun
tion f

form a linear spa
e in F

n

2

. The existen
e of a nontrivial linear stru
ture for

fun
tions is a 
ryptographi
 weakness in some 
ases (but not in all).

Let E be an arbitrary subset of F

n

2

. The rank of a set E is the dimension

of the subspa
e generated by E in F

n

2

. The aÆne rank of a set E is the

dimension of a smallest 
oset in F

n

2

that 
ontains E. The rank and the aÆne

rank of the spe
trum support of a Boolean fun
tion will be denoted by k

and k, respe
tively. For the brevity in this paper the aÆne rank and the

rank of a Boolean fun
tion shortly will be 
alled by its aÆne rank and rank,

respe
tively. It is easy to understand that k 2 fk; k � 1g. It is well known

(see, for example, [2℄) that the dimension of the set of linear stru
tures of

a fun
tion f is equal to n � k. If there exists the ve
tor u 2 F

2

n

su
h that

3



D

u

f � 1 then k = k+ 1. If su
h ve
tor does not exist then k = k.

For additional fa
ts about properties of Boolean fun
tions we refer to [8℄

and [9℄.

2 On aÆne transformations in F

n

2

The aÆne transformation in F

n

2

is the map x ! x

0

= Ax = xA

T

+ a where

A is a square nondegenerated matrix of order n over F

2

, and a is a ve
tor of

length n. The aÆne transformation is an automorphism F

n

2

that transfers all


osets to 
osets of the same dimension. If a = 0 then the aÆne transformation

is 
alled also linear.

The aÆne transformation of a fun
tion f de�ned on F

n

2

is the transfor-

mation f(x) ! f

0

(x) = f(Ax). If for fun
tions f and f

0

there exists an

aÆne transformation of a fun
tion that transfers f to f

0

then f and f

0

are


alled aÆne equivalent. If for fun
tions f and f

0

there exists the linear trans-

formation of a fun
tion that transfers f to f

0

then f and f

0

are 
alled linear

equivalent.

Lemma 1 Let f(x) ! f

0

(x) = f(Ax) be the aÆne transformation of a

fun
tion f de�ned on F

n

2

. Then W

f

0

(x)

(u) = (�1)

<a;uA

�1

>

�W

f

(uA

�1

).

Proof. By the formula for Walsh 
oeÆ
ients we have

W

f

0

(x)

(u) =

X

x2F

n

2

(�1)

f

0

(x)+<x;u>

=

X

x2F

n

2

(�1)

f(Ax)+<x;u>

=

X

x2F

n

2

(�1)

f(x)+<A

�1

x;u>

=

X

x2F

n

2

(�1)

f(x)+<x;uA

�1

>+<a;uA

�1

>

=

(�1)

<a;uA

�1

>

�

X

x2F

n

2

(�1)

f(x)+<x;uA

�1

>

= (�1)

<a;uA

�1

>

�W

f

(uA

�1

):

ut

Suppose that a Boolean fun
tion f is de�ned on F

n

2

. The aÆne transfor-

mation of a spe
trum of a fun
tion f is the transformationW

f

(x)! W

0

(x) =

W

f

(Ax). It is possible to show that 
oeÆ
ients W

0

(x) are Walsh 
oeÆ
ients

for some fun
tion f

0

that is not, generally speaking, aÆne equivalent to the

fun
tion f .

Lemma 2 Let W

f

(x)!W

0

(x) = W

f

(Ax) be the aÆne transformation of a

spe
trum of a fun
tion f de�ned on F

n

2

. Then 
oeÆ
ients W

0

(x) are Walsh


oeÆ
ients for some fun
tion f

0

, moreover f

0

(x) = f(xA

�1

)+ < a; xA

�1

>.
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Proof. Che
k that for all x 2 F

n

2

the sums in the inversion formula for

the hypotheti
 fun
tion f

0

(x) are �1. Denote

F (x) = 2

�n

X

u2F

n

2

W

0

(u)(�1)

<u;x>

:

We have

F (x) = 2

�n

X

u2F

n

2

W

0

(u)(�1)

<u;x>

= 2

�n

X

u2F

n

2

W

f

(Au)(�1)

<u;x>

=

2

�n

X

v2F

n

2

W

f

(v)(�1)

<A

�1

v;x>

= 2

�n

X

v2F

n

2

W

f

(v)(�1)

<v;xA

�1

>+<a;xA

�1

>

=

(�1)

<a;xA

�1

>

� 2

�n

X

v2F

n

2

W

f

(v)(�1)

<v;xA

�1

>

= (�1)

f(xA

�1

)+<a;xA

�1

>

:

Thus, for all x 2 F

n

2

we have F (x) = �1. Therefore the fun
tion f

0

(x) exists,

moreover, f

0

(x) = f(xA

�1

)+ < a; xA

�1

>. ut

The spe
trum of fun
tions f and f

0

that obtained one from another by

an aÆne transformation of a spe
trum are 
alled aÆne equivalent. The

spe
trum of fun
tions f and f

0

that obtained one from another by a lin-

ear transformation of a spe
trum are 
alled linear equivalent. Analogously,

the aÆne equivalen
e of fun
tions does not imply the aÆne equivalen
e of

their spe
tra. For example, by the reason that under the aÆne transfor-

mation of a fun
tion f the value wt(f) remains un
hanged. Nevertheless,

wt(f) = 2

n�1

�

1

2

W

f

(0), therefore, transferring by the aÆne transformation

of a spe
trum into 0 a ve
tor with another value of a Walsh 
oeÆ
ient we

will obtain the fun
tion that is not aÆne equivalent to f . At the same time

Lemmas 1 and 2 imply that the linear transformation of a spe
trum is the

linear transformation of a fun
tion, and vi
e versa.

Obviously, the aÆne transformation of a spe
trum of a plateaued fun
tion

f transfers it to a spe
trum of also plateaued fun
tion f

0

with the same 
ar-

dinality of a spe
trum support, and the aÆne transformation of a plateaued

fun
tion f transfers it to a plateaued fun
tion f

0

with the same 
ardinality

of a spe
trum support.

Lemma 3 Let f be a Boolean fun
tion de�ned on F

n

2

, moreover, the spe
-

trum support of this fun
tion lies in F

l

2


 (0 : : : 0

| {z }

n�l

). Then the fun
tion f

depends on variables x

l+1

, . . . , x

n

�
titiously. Let f

0

be a fun
tion on F

n

2

obtained from f by deleting of �
titious variables x

l+1

, . . . , x

n

. Then for any

u from F

l

2

we have W

f

0

(u) = 2

�(n�l)

W

f

(u 0 : : : 0

| {z }

n�l

).
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Proof. Let x and x

i

be an arbitrary pair of ve
tors adja
ent in the ith


omponent, i 2 fl + 1; : : : ; ng. By the inversion formula we have

(�1)

f(x)

� (�1)

f(x

i

)

= 2

�n

X

u2F

n

2

W

f

(u)

h

(�1)

<x;u>

� (�1)

<x

i

;u>

i

=

2

�n

X

u2F

l

2


(0 : : : 0

| {z }

n�l

)

W

f

(u)

h

(�1)

<x;u>

� (�1)

<x

i

;u>

i

= 0:

Therefore f(x) = f(x

i

), and, thus, the variables x

l+1

, . . . , x

n

are really

�
titious. Consider now the fun
tion f

0

on F

n

2

obtained from f be deleting

of �
titious variables x

l+1

, . . . , x

n

. For any its Walsh 
oeÆ
ient u 2 F

l

2

we

have

W

f

0

(u) =

X

x2F

l

2

(�1)

f

0

(x)+<x;u>

=

2

�(n�l)

X

x2F

n

2

(�1)

f(x)+<x;u0 : : : 0

| {z }

n�l

>

= 2

�(n�l)

W

f

(u 0 : : :0

| {z }

n�l

):

ut

Lemma 4 Let f be a Boolean fun
tion de�ned on F

n

2

. Let f

0

be a fun
tion

on F

n+1

2

de�ned as f

0

(x

1

, : : :, x

n

, x

n+1

) = f(x

1

; : : : ; x

n

) + x

n+1

. Then if u

is a ve
tor from F

n+1

2

that belongs to a spe
trum support of the fun
tion f

0

then u

n+1

= 1 and W

f

0

(u

1

; : : : ; u

n

; 1) = 2W

f

(u

1

; : : : ; u

n

).

Proof. Suppose that u 2 F

n+1

2

. Group in the sum

W

f

0

(u) =

X

x2F

n+1

2

(�1)

f(x)+<x;u>

into pairs ve
tors x and x

n+1

that di�er only in (n + 1)th 
omponent. Let

x

n+1

= 0 for the de�niteness. For these ve
tors f

0

(x) = f

0

(x

n+1

) + 1 holds.

If u

n+1

= 0 then < x; u >=< x

n+1

; u >. It follows (�1)

f

0

(x)+<x;u>

+

(�1)

f

0

(x

n+1

)+<x

n+1

;u>

= 0. Therefore, W

f

0

(u) = 0. If u

n+1

= 1 then <

x; u >=< x

n+1

; u > +1. It follows (�1)

f

0

(x)+<x;u>

+ (�1)

f

0

(x

n+1

)+<x

n+1

;u>

=

2 �(�1)

f

0

(x)+<x;u>

= 2 �(�1)

f(x

1

;:::;x

n

)+<(x

1

;:::;x

n

);(u

1

;:::;u

n

)>

. Therefore, W

f

0

(u) =

2W

f

(u

1

; : : : ; u

n

). ut

Lemmas 1, 2, 3 imply that the study of plateaued fun
tions on F

n

2

with a

spe
trum support of 
ardinality 4

h


an be redu
ed in some sense to the study

of plateaued fun
tions with a spe
trum support of the same 
ardinality 4

h

de�ned on F

k

2

. Moreover, if k > 2h then any plateaued fun
tion f

0

on F

n

2

6



with a spe
trum support of 
ardinality 4

h


an be obtained from some fun
tion

f on F

k

2

with a spe
trum support of the same 
ardinality 4

h

by adding of

n� k �
titious variables and implementing of some linear transformation of

a fun
tion. The same result 
an be a
hieved also in the 
ase if k = 2h and

W

f

0

(0) 6= 0 (in this 
ase the fun
tion f will be bent fun
tion). If k = 2h and

W

f

0

(0) = 0 then the mentioned linear transform of a fun
tion does not exist

but it is possible to use the aÆne transformation of a spe
trum or to take a

fun
tion f of k + 1 variables.

Note that the mentioned redu
tion 
an be insuÆ
ient if it is ne
essary

to investigate additional properties of fun
tions not preserved under aÆne

transformations (for example, 
orrelation immunity).

Point also to the next property that allows to avoid the separate 
onsid-

eration of the problem on possible values taken by a rank k.

Lemma 5 If there exists a plateaued fun
tion with a spe
trum support of


ardinality 4

h

and an aÆne rank taken the value k then there exist plateaued

fun
tions with a spe
trum support of the same 
ardinality 4

h

and ranks taken

both values k = k and k = k+ 1.

Proof. By Lemma 2 an aÆne transformation of a spe
trum support

of a plateaued fun
tion gives again the plateaued fun
tion with a spe
trum

support of the same 
ardinality and with the same aÆne rank. If by some

aÆne transformation to transfer to 0 one of ve
tors lain in the smallest 
oset


ontained S

f

then for the obtained fun
tion, obviously, k = k will be hold.

If to transfer to 0 a ve
tor that does not lie in the smallest 
oset 
ontained

S

f

then for the obtained fun
tion k = k+ 1 holds. If for the initial fun
tion

there do not exist ve
tors that do not belong to the smallest 
oset 
ontained

S

f

(i. e. if k is equal to the number of variables) then it is possible simply to

add a �
titious variable, and su
h ve
tors will appear whereas the fun
tion

will remain plateaued with the same 
ardinality of a spe
trum support. ut

All mentioned above follows that the aÆne rank is an important 
har-

a
teristi
s of plateaued fun
tions. It is obvious, that the aÆne rank of any

plateaued fun
tion with a spe
trum support of 
ardinality 4

h

is at least 2h

sin
e the smaller 
osets do not 
ontain 4

h

ve
tors. Any plateaued fun
tion

with a spe
trum support of 
ardinality 1 is an aÆne fun
tion and, obviously,

its aÆne rank is equal to 0. It is well known that the aÆne rank of any

plateaued fun
tion with a spe
trum support of 
ardinality 4 is equal to 2.

This fa
t was proved in [5℄ but it is evident that it was known mu
h more

early. The plateaued fun
tions with the spe
trum support of 
ardinality 16

(without the name of plateaued) were 
onsidered, in fa
t, in [4℄. In the work

[2℄ for the sub
lass of plateaued fun
tions with a spe
trum support of 
ar-

dinality 16 (more exa
tly, for 
ubi
 resilient fun
tions of order n� 4) it was

7



obtained the bound k � k � 9. In our paper we prove that the aÆne rank

of any plateaued fun
tion with a spe
trum support of 
ardinality 16 is equal

to 4, 5 or 6. Besides, we 
onsider for any positive integer h the plateaued

fun
tions with a spe
trum support of 
ardinality 4

h

, give the bounds on the

aÆne rank for su
h fun
tions and 
onstru
t fun
tions the aÆne rank of whi
h

takes all positive integer values from 2h till 2

h+1

� 2.

3 Auxiliary results

The next statement is well known (see, for example, the relation (2.16) in

[8℄). Earlier its proof was given in [3℄.

Lemma 6 Let f be a Boolean fun
tion on F

n

2

. Suppose that U is a linear

subspa
e of dimension l in F

n

2

, and U

?

is a spa
e orthogonal to U in F

n

2

. Let

v be an arbitrary ve
tor from F

n

2

. Then

X

u2U+v

W

f

(u) = 2

l

X

x2U

?

(�1)

f(x)+<x;v>

:

Lemma 7 [1℄ Let f be a plateaued fun
tion with a spe
trum support of


ardinality 4

h

de�ned on F

n

2

. Suppose

P

a2F

n

2

�(a) = 2

h

. Then

P

a2F

n

2

�(a) 2

f�2

h

; 2

h

g.

Proof. Take in Lemma 6 in the 
apa
ity of a subspa
e U whole F

n

2

.

In the notations of Lemma 6 we have W

f

(u) = �(u) � 2

n�h

, l = n. Then

U

?

= f0g. Therefore,

X

u2F

n

2

W

f

(u) = 2

n

(�1)

f(0)

:

For the fun
tion f it follows

X

u2F

n

2

�(u) = 2

h

(�1)

f(0)

2 f�2

h

; 2

h

g:

ut

Lemma 8 Let f be a plateaued fun
tion with a spe
trum support of 
ardi-

nality 4

h

de�ned on F

n

2

. Suppose

P

a2F

n

2

�(a) = 2

h

. Let H be an (n � 1)-

dimensional 
oset in F

n

2

. Then

P

a2H

�(a) 2 f0; 2

h

g.

8



Proof. In the notations of Lemma 6 we have W

f

(u) = �(u) � 2

n�h

,

l = n � 1. Therefore, Lemma 6 follows that

P

a2H

�(a) 2 f�2

h

; 0; 2

h

g. If the

sum is equal to �2

h

then

P

a2F

n

2

nH

�(a) = 2

h+1

that is impossible a

ording to

what has been said above. ut

The next statement is also well known (see, for example, Theorem 2.89

in [8℄).

Lemma 9 Let f be a Boolean fun
tion on F

n

2

. Suppose that U is a linear

subspa
e of dimension l in F

n

2

, and U

?

is a spa
e orthogonal to U in F

n

2

.

Then

X

u2U

W

2

f

(u) = 2

l

X

v2U

?

�

f

(v):

Lemma 10 Let f be a Boolean fun
tion on F

n

2

, n � 1. Then wt(f) is odd

if and only if deg(f) = n.

Proof is obvious (see, for example, Corollary 1 in [9℄). ut

Lemma 11 Let f be a Boolean fun
tion on F

n

2

, f 6� 
onst. Then 2

n�deg(f)

�

wt(f) � 2

n

� 2

n�deg(f)

.

Proof is obvious (see, for example, Lemma 5.6 in [8℄ or Lemma 3 in [9℄).

ut

Lemma 12 [6℄ Let f be a plateaued Boolean fun
tion on F

n

2

with a spe
trum

support of 
ardinality 4

h

. Then deg(f) � h + 1.

Proof. Walsh 
oeÆ
ients of the fun
tion f take values from the set

f0;�2

n�h

g. Consider the longest term x

i

1

x

i

2

: : : x

i

s

in the polynomial of the

fun
tion f (if there exist some longest terms then take one of them arbitrary).

It is possible to assume that s � 2, in the opposite 
ase the statement of

Lemma is automati
ally true. Use Lemma 6. Take in the 
apa
ity of U the

linear subspa
e U = fx 2 F

n

2

j x

i

1

= 0; : : : ; x

i

s

= 0g of dimension l = n � s,

take 0 as the ve
tor v. Then by Lemma 10 the orthogonal spa
e U

?


ontains

odd number of ve
tors x su
h that f(x) = 1. Therefore the sum

P

x2U

?

(�1)

f(x)

is not divided by 4 for s � 2. Hen
e, in the equality

X

u2U

W

f

(u) = 2

n�s

X

x2U

?

(�1)

f(x)

the left part is divided by 2

n�h

whereas the right part is not divided by

2

n�s+2

. It follows n�h < n� s+2. Taking into a

ount that all 
oeÆ
ients

are integer we obtain s � h+ 1, as was to be proved. ut

9



Lemma 13 Let f be a plateaued Boolean fun
tion on F

n

2

with a spe
trum

support of 
ardinality 4

h

. Suppose that H is an (n� 1)-dimensional 
oset in

F

n

2

. Then either

P

u2H

j�(u)j = 0, or

P

u2H

j�(u)j = 4

h

, or 2

h

�

P

u2H

j�(u)j �

4

h

� 2

h

.

Proof. Let at �rst that H is a linear subspa
e in F

n

2

. Then H

?

= f0; vg

for some nonzero v 2 F

n

2

. Obviously, �

f

(0) = 2

n

. By Lemma 9 we have

4

n�h

X

u2H

j�(u)j = 2

n�1

(2

n

+�

f

(v)) = 4

n

� 2

n

wt(D

v

f):

By Lemma 12 the inequality deg(f) � h + 1 holds. The fun
tion D

v

f is

the derivative of the fun
tion f , therefore, deg(D

v

f) � h. If D

v

f � 0 then

P

u2H

j�(u)j = 4

h

. If D

v

f � 1 then

P

u2H

j�(u)j = 0. If D

v

f 6� 
onst then by

Lemma 11 we have 2

n�h

� wt(D

v

f) � 2

n

�2

n�h

. It follows 2

h

�

P

u2H

j�(u)j �

4

h

� 2

h

, as was to be proved. For the 
oset F

n

2

nH the same three 
ases take

pla
e by the proved above and Parseval's identity. ut

Lemma 14 Let f

1

, f

2

be Boolean fun
tions on F

n

2

, and let f be a Boolean

fun
tion on F

n+1

2

, moreover, f(xx

n+1

) = (x

n+1

+ 1)f

1

(x) + x

n+1

f

2

(x). Then

W

f

(u0) = W

f

1

(u) +W

f

2

(u) and W

f

(u1) = W

f

1

(u)�W

f

2

(u).

This Lemma is very well known. In fa
t, the Fast Walsh Transform is

based on its appli
ation. ut

4 On aÆne rank of Boolean fun
tions with

spe
trum support of 
ardinality 16

In all statements of this se
tion we suppose that f is a plateaued Boolean

fun
tion on F

n

2

and jS

f

j = 16. In this 
ase 
 = n�2. By Lemma 7 one of two


ases takes pla
e: jT

+

j = 10, jT

�

j = 6, or jT

+

j = 6, jT

�

j = 10. Taking into

a

ount that for all u the relation W

f

(u) = �W

f+1

(u) holds, it is possible

without loss of generality to assume jT

+

j = 10, jT

�

j = 6, that we will do

in the remained part of this se
tion. Thus, we have jS

f

j = 16, jT

+

j = 10,

jT

�

j = 6.

Our aim is to prove the next theorem.

Theorem 1. Let f be a plateaued fun
tion, jS

f

j = 16. Then for the aÆne

rank k of the spe
trum support S

f

the inequality k � 6 holds.

The proof of Theorem 1 will be obtained by the proofs of several lemmas.

10



Suppose that the aÆne rank of the spe
trum support S

f

is k, and the

aÆne rank of T

�

is k

�

. Obviously, 3 � k

�

� 5. It is easy to see that by

means of some aÆne transformation in F

n

2

it is possible to embed the smallest


oset 
ontaining the spe
trum support S

f

into F

k

2


 (0 : : : 0

| {z }

n�k

) su
h that some

k

�

+ 1 ve
tors from T

�

will be transferred to the ve
tors (0; 0; 0; : : : ; 0),

(1; 0; 0; : : : ; 0), (0; 1; 0; : : : ; 0), . . . , (0; 0; : : : ; 0; 1

| {z }

k

�

; 0; : : : ; 0). Note that after

su
h transformation all ve
tors from T

�

will be transferred to the ve
tors

that have all zeroes in all 
omponents i, i > k

�

. Note that the aÆne trans-

formation of the spe
trum des
ribed above, generally speaking, is not an

aÆne transformation of a fun
tion f , but we do not need this. It is suÆ-


ient for us that the Boolean fun
tion obtained as a result of this map will

be plateaued with the same set of absolute values of Walsh 
oeÆ
ients, and

the same values k and k

�

. By Lemma 3 all variables from (k + 1)th till

nth in the obtained fun
tion will be �
titious. Deleting them and dividing

all Walsh 
oeÆ
ients by 2

n�k

, by Lemmas 2 and 3 we obtain a plateaued

fun
tion de�ned on F

k

2

with a spe
trum support of the same 
ardinality 16.

Thus, without loss of generality in the remained part of this se
tion we will


onsider just su
h a spe
trum support.

Lemma 15 Let H be a (k � 1)-dimensional 
oset in F

k

2

. Then

P

a2H

�(a) 2

f0; 4g.

Proof. The statement of Lemma is a parti
ular 
ase of Lemma 8. ut

Lemma 16 [2℄ Let H be a (k�1)-dimensional 
oset in F

k

2

. Then H 
ontains

4, 6, 8, 10 or 12 ve
tors from S

f

.

Proof. By Lemma 15 the 
oset H 
ontains even number of ve
tors from S

f

.

The 
ases 2 and 14 are impossible by Lemma 13. If H 
ontains 16 ve
tors

from S

f

then S

f

is 
ontained in H; if H 
ontains 0 ve
tors from S

f

then S

f

is 
ontained in F

k

2

n H. The both last 
ases are impossible sin
e F

k

2

is the

smallest 
oset that 
ontains the spe
trum support S

f

. ut

Our aim is to prove that k � 6. Assume the 
onverse. Suppose that

k � 7. We will prove that this is impossible.

We form the matrix M of size 16� 7. In the rows of M we write �rst 7


omponents of the ve
tors from S

f

(in the 
ase k > 7 we omit all 
omponents

after 7th). In �rst 10 rows ofM we write ve
tors from T

+

, and in last 6 rows

of M we write ve
tors from T

�

. The left k

�


olumns of M we 
all the left

side of M , the remained 7� k

�


olumns we 
all the right side of M .
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

I 0

0 : : : 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Denote by 


i

the 
olumns from the left side ofM , and by x

i

the variables


orrespondent to these 
olumns. Denote by Æ

j

the 
olumns from the right

side ofM and by y

j

the variables 
orrespondent to these 
olumns. We denote

by 


+

i

and Æ

+

j

the sub
olumns 
ontained upper 10 elements of 
olumns 


i

and

Æ

j

, respe
tively.

Lemma 17 For any set Æ

j

1

, . . . , Æ

j

s

, 1 � s � 7 � k

�

, of di�erent 
olumns

from the right side of M we have wt(Æ

+

j

1

+ : : :+ Æ

+

j

s

) = 4.

Proof. Denote H = f(x; y) 2 F

k

2

j y

j

1

+ : : : + y

j

s

= 0g. The hyperplane H


ontains all 6 ve
tors of T

�

, therefore by Lemma 15 the hyperplane H must


ontain 6 or 10 ve
tors from T

+

, but if H 
ontains 10 ve
tors from T

+

then

H 
ontains S

f

. This is impossible sin
e k is the dimension of the smallest 
at


ontained S

f

. Therefore H 
ontains 12 ve
tors from S

f

, and F

n

2

nH 
ontains

exa
tly 4 ve
tors from S

f

. ut

Lemma 18 There exist at most 3 
olumns satisfying the 
ondition of Lemma

17. Without loss of generality it is possible to 
hoose these 
olumns as

Æ

+

1

= (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

T

, Æ

+

2

= (0; 0; 0; 0; 1; 1; 0; 0; 1; 1)

T

, Æ

+

3

=

(0; 0; 0; 1; 0; 1; 0; 1; 0; 1)

T

.

Proof. It is easy to 
he
k that the ve
tors Æ

+

1

, Æ

+

2

, Æ

+

3

given above 
an be


hosen without the loss of generality. Suppose that it is possible to add

some ve
tor Æ

+

4

to this set. For 


1

; 


2

; 


3

2 f0; 1g denote Æ

+

(


1

; 


2

; 


3

) =




1

Æ

+

1

+ 


2

Æ

+

2

+ 


3

Æ

+

3

. Consider the sum

S =

X




1

;


2

;


3

2f0;1g

d(Æ

+

4

; Æ

+

(


1

; 


2

; 


3

)):

Note that for any row from 4th till 10th exa
tly 4 of 8 ve
tors Æ

+

(


1

; 


2

; 


3

)

have one in this row. Therefore S = 28+8w

0

= 32 where w

0

is the number of

ones in rows 1{3 in Æ

+

4

. It follows that w

0

= 0:5 but w

0

is an integer number.

This 
ontradi
tion proves Lemma 18. ut
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Lemma 19 The right side of the matrix M 
ontains at most 3 
olumns.

Proof. It follows from Lemmas 17 and 18. ut

Lemma 19 follows that the 
ase k

�

= 3 is impossible. The remained 
ases

are k

�

= 4 and k

�

= 5.

Lemma 20 Let 


i

be a 
olumn from the left side of the matrix M . Suppose

that 


i


ontains 1 one and 5 zeroes in low 6 rows. Then wt(


+

i

) = 5.

Proof. Denote H = f(x; y) 2 F

k

2

j x

i

= 0g. By the hypothesis of Lemma

the hyperplane H 
ontains exa
tly 5 ve
tors of T

�

, therefore by Lemma 15

the hyperplane H must 
ontain 5 or 9 ve
tors from T

+

, but if H 
ontains

9 ve
tors from T

+

then H 
ontains exa
tly 14 ve
tors from S

f

. This is

impossible by Lemma 16. It follows that wt(


+

i

) = 5. ut

Lemma 21 Let 


i

be a 
olumn from the left side of the matrix M . Suppose

that 


i


ontains 2 ones and 4 zeroes in low 6 row. Then wt(


+

i

) 2 f2; 6g.

Proof. Denote H = f(x; y) 2 F

k

2

j x

i

= 0g. The hyperplane H 
ontains

exa
tly 4 ve
tors from T

�

, therefore by Lemma 15 the hyperplane H must


ontain 4 or 8 ve
tors from T

+

. It follows that wt(


+

i

) = 2 or 6. ut

Consider now separately the 
ases k

�

= 4 and k

�

= 5.

Case k

�

= 5.

In this 
ase the right side of the matrix M 
ontains two 
olumns. By

Lemma 18 without loss of generality we 
an assume that these 
olumns are

Æ

1

= (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

T

, Æ

2

= (0; 0; 0; 0; 1; 1; 0; 0; 1; 1)

T

. Without loss

of generality we 
an assume that the matrix M has the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � � 0 0

� � � � � 0 0

� � � � � 0 0

� � � � � 0 0

� � � � � 0 1

� � � � � 0 1

� � � � � 1 0

� � � � � 1 0

� � � � � 1 1

� � � � � 1 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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By Lemma 20 we have that all 
olumns 


+

i

, i = 1; 2; 3; 4; 5, 
ontain exa
tly

5 ones.

Lemma 22 Let k

�

= 5. Then for 1 � i

1

< i

2

� 5, we have d(


+

i

1

; 


+

i

2

) 2

f2; 6g.

Proof. DenoteH = f(x; y) 2 F

k

2

j x

i

1

+x

i

2

= 0g. The hyperplane H 
ontains

exa
tly 4 ve
tors from T

�

, therefore by Lemma 15 the hyperplane H must


ontain 4 or 8 ve
tors from T

+

. It follows that d(


+

i

1

; 


+

i

2

) = wt(


+

i

1

+ 


+

i

2

) 2

f2; 6g. ut

Lemma 23 Let k

�

= 5. Then for any i 2 f1; 2; 3; 4; 5g, 


1

; 


2

2 f0; 1g, we

have d(


+

i

; 


1

Æ

+

1

+ 


2

Æ

+

2

) = 5.

Proof. Denote H = f(x; y) 2 F

k

2

j x

i

+ 


1

y

1

+ 


2

y

2

= 0g. The hyperplane H


ontains exa
tly 5 ve
tors from T

�

, therefore by Lemma 15 the hyperplane

H must 
ontain 5 or 9 ve
tors from T

+

. But if H 
ontains 9 ve
tors from T

+

,

then H 
ontains exa
tly 14 ve
tors from S

f

. This is impossible by Lemma

16. It follows that d(


+

i

; 


1

Æ

+

1

+ 


2

Æ

+

2

) = wt(


+

i

+ 


1

Æ

+

1

+ 


2

Æ

+

2

) = 5. ut

Lemma 24 Let k

�

= 5. Then for any i, i 2 f1; 2; 3; 4; 5g, the 
olumn 


+

i


ontains exa
tly 2 ones in rows 1{4, exa
tly 1 one in rows 5; 6, exa
tly 1 one

in rows 7; 8, exa
tly 1 one in rows 9; 10.

Proof. If 


+

i


ontains 0 ones in rows 9; 10 then d(


+

i

; Æ

+

1

) = d(


+

i

; Æ

+

2

) = 5

follows that 


+

i


ontains only ones in rows 5; 6; 7; 8. But in this 
ase d(


+

i

; Æ

+

1

+

Æ

+

2

) = 1 that 
ontradi
ts to Lemma 23. If 


+

i


ontains 2 ones in rows 9; 10

then d(


+

i

; Æ

+

1

) = d(


+

i

; Æ

+

2

) = 5 follows that 


+

i


ontains only zeroes in rows

5; 6; 7; 8. But in this 
ase d(


+

i

; Æ

+

1

+ Æ

+

2

) = 9 that 
ontradi
ts to Lemma 23.

Therefore 


+

i


ontains exa
tly 1 one in rows 9; 10. It follows that 


+

i


ontains

exa
tly 1 one in rows 7; 8, exa
tly 1 one in rows 5; 6 and exa
tly 2 ones in

rows 1{4. ut

Lemma 25 The 
ase k

�

= 5 is impossible.

Proof. There exist 3 pairs of opposite ve
tors of the length 4 with exa
tly 2

ones. Therefore there exist two 
olumns 


i

1

and 


i

2

, i

1

6= i

2

, in the left side of

M that are either the same or the opposite inside of �rst 4 rows. Let 


i

3

be

some other 
olumn in the left side of M , i

1

6= i

3

, i

2

6= i

3

. Then from Lemma

24 it is easy to see that every group of rows (1{4), (5; 6), (7; 8), (9; 10) gives

to the sum S = d(


+

i

1

; 


+

i

2

) + d(


+

i

1

; 


+

i

3

) + d(


+

i

2

; 


+

i

3

) the 
ontribution divided

by 4. Therefore the sum S is divided by 4. On the other hand, by Lemma 22

all terms in S are 
ongruent 2 modulo 4. Therefore S is 
ongruent 2 modulo

4 too. This 
ontradi
tion proves the Lemma. ut

Thus, we have proved that the 
ase k

�

= 5 is impossible.
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Case k

�

= 4.

In this 
ase the right side of the matrixM 
ontains exa
tly three 
olumns.

By Lemma 18 without loss of generality we 
an assume that these 
olumns

are Æ

1

= (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

T

, Æ

2

= (0, 0, 0, 0, 1, 1, 0, 0, 1, 1)

T

,

Æ

3

= (0; 0; 0; 1; 0; 1; 0; 1; 0; 1)

T

. Without loss of generality we 
an assume that

the matrix M has the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 1

� � � � 0 1 0

� � � � 0 1 1

� � � � 1 0 0

� � � � 1 0 1

� � � � 1 1 0

� � � � 1 1 1

� � � � 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Let 


1

; 


2

; 


3

2 f0; 1g. Denote Æ

+

(


1

; 


2

; 


3

) = 


1

Æ

+

1

+ 


2

Æ

+

2

+ 


3

Æ

+

3

.

Lemma 26 Let k

�

= 4. Then any 
olumn 


i

in the left side of the matrix

M 
an not have zero in 11th row.

Proof. Suppose that some 
olumn 


i

have zero in 11th row. Then by

Lemma 20 we have wt(


+

i

) = 5. By the same way like to the proof of

Lemma 23 it is possible to show that for any 


1

; 


2

; 


3

2 f0; 1g we have

d(


+

i

; Æ

+

(


1

; 


2

; 


3

)) = 5. Consider the sum

S =

X




1

;


2

;


3

2f0;1g

d(


+

i

; Æ

+

(


1

; 


2

; 


3

)):

Note that for any row from 4th till 10th exa
tly 4 of 8 ve
tors Æ

+

(


1

; 


2

; 


3

)

have one in this row. Therefore S = 28 + 8w

0

= 40 where w

0

is the number

of ones in 


i

in rows from 1st till 3rd. It follows that w

0

= 1:5 but w

0

is an

integer number. This 
ontradi
tion proves Lemma 26. ut

Lemma 26 follows that without loss of generality the 11th row of M is

(1111000) and the matrix M has the form
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 1

� � � � 0 1 0

� � � � 0 1 1

� � � � 1 0 0

� � � � 1 0 1

� � � � 1 1 0

� � � � 1 1 1

1 1 1 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Lemma 27 Let k

�

= 4. Then for any 1 � i

1

< i

2

� 4 we have d(


+

i

1

; 


+

i

2

) 2

f2; 6g.

Proof. DenoteH = f(x; y) 2 F

k

2

j x

i

1

+x

i

2

= 0g. The hyperplane H 
ontains

exa
tly 4 ve
tors from T

�

, therefore by Lemma 15 the hyperplane H must


ontain 4 or 8 ve
tors from T

+

. It follows that d(


+

i

1

; 


+

i

2

) 2 f2; 6g. ut

Lemma 28 Let k

�

= 4. Then any 
olumn 


i

in the left side of the matrix

M has exa
tly 2 ones in rows from 1st till 3rd and 
oin
ides with a ve
tor

Æ

+

(


1

; 


2

; 


3

) in rows from 4th till 10th for some 


1

; 


2

; 


3

2 f0; 1g.

Proof. By Lemma 21 we have wt(


+

i

) 2 f2; 6g. By the same way it is

possible to show that for any 


1

; 


2

; 


3

2 f0; 1g we have d(


+

i

; Æ

+

(


1

; 


2

; 


3

)) 2

f2; 6g.

Suppose that wt(


+

i

) = 2. If 


+

i

does not 
ontain both its ones in rows

from 1st till 3rd then it is easy to �nd some 


1

; 


2

; 


3

2 f0; 1g su
h that

the ve
tor Æ

+

(


1

; 


2

; 


3

) 
ontains exa
tly 1 one in two rows where 


+

i

has

ones. Then we have d(


+

i

; Æ

+

(


1

; 


2

; 


3

)) = 4 that is impossible. Therefore




+

i


ontains both ones in rows from 1st till 3rd and 
oin
ides with the ve
tor

Æ

+

(0; 0; 0) in rows from 4th till 10th, i. e. 


+

i

has the desired form.

Now suppose that wt(


+

i

) = 6. Consider the sum

S =

X




1

;


2

;


3

2f0;1g

d(


+

i

; Æ

+

(


1

; 


2

; 


3

)):

16



Note that for any row from the group (4{10) exa
tly 4 of 8 ve
tors Æ

+

(


1

; 


2

; 


3

)

have one in this row. Therefore S = 28 + 8w

0

where w

0

is the number of

ones in rows from 1st till 3rd in 


i

. If for any 


1

; 


2

; 


3

2 f0; 1g we have

d(


+

i

; Æ

+

(


1

; 


2

; 


3

)) = 6 then S = 48 and w

0

= 2:5, but w

0

is an integer

number. Therefore there exists the set of values 


1

; 


2

; 


3

2 f0; 1g su
h that

d(


+

i

; Æ

+

(


1

; 


2

; 


3

)) = 2. Denote Æ

+

(


1

; 


2

; 


3

) by Æ

+

0

. Then wt(


+

i

+ Æ

+

0

) = 2

and for any 


1

; 


2

; 


3

2 f0; 1g we have d(


+

i

+ Æ

+

0

; Æ

+

(


1

; 


2

; 


3

)) 2 f2; 6g. As it

was pointed out in the beginning of this proof the ve
tor 


+

i

+ Æ

+

0

must have

exa
tly 2 ones in rows from 1st till 3rd, and only zeroes in rows from 4th till

10th. Hen
e, the ve
tor 


+

i

has exa
tly 2 ones in rows from 1st till 3rd and


oin
ides with the ve
tor Æ

+

0

in rows from 4th till 10th. ut

Lemma 29 The 
ase k

�

= 4 is impossible.

Proof. By Lemma 28 all 
olumns 


i

in the left side of M have exa
tly

2 ones in rows from 1st till 3rd. The left side of M 
ontains 4 
olumns,

therefore there exist 
olumns 


i

1

and 


i

2

, 1 � i

1

< i

2

� 4 that 
oin
ide

in rows from 1st till 3rd. In rows from 4th till 10th the 
olumns 


i

1

and




i

2


oin
ide by Lemma 28 with some ve
tors Æ

+

(


0

1

; 


0

2

; 


0

3

) and Æ

+

(


00

1

; 


00

2

; 


00

3

),

respe
tively. By Lemma 17 we have d(Æ

+

(


0

1

; 


0

2

; 


0

3

); Æ

+

(


00

1

; 


00

2

; 


00

3

)) 2 f0; 4g.

It follows d(


+

i

1

; 


+

i

2

) 2 f0; 4g that 
ontradi
ts to Lemma 27. ut

All 
ases are 
onsidered. Theorem 1 is proved.

Thus, we obtained that the aÆne rank of a plateaued fun
tion with a

spe
trum support of 
ardinality 16 
an not take another values with the

ex
eption of 4, 5 and 6. The fun
tions with su
h parameters are known and

their examples were given, for example, in [2℄. We will not give examples

in this se
tion separately. These examples will be 
onstru
ted in the next

se
tion in the framework of a general 
onstru
tion.

5 Bounds on aÆne rank of plateaued fun
-

tions with arbitrary 
ardinality of spe
trum

support

Lemma 30 Suppose that there exists a plateaued fun
tion with a spe
trum

support of 
ardinality 4

h

and the aÆne rank k. Then for any positive integer

s satis�ed inequalities k + 2 � s � 2k + 2 there exists a plateaued fun
tion

with a spe
trum support of 
ardinality 4

h+1

and the aÆne rank s.

Proof. If there exists a plateaued fun
tion with a spe
trum support of


ardinality 4

h

and the aÆne rank k then by Lemmas 2 and 3 starting with

17



this fun
tion by means of an aÆne transformation of a spe
trum and following

deleting of �
titious variables it is possible to obtain the plateaued fun
tion

f on F

k

2

with a spe
trum support of 
ardinality 4

h

, moreover, this spe
trum

support of f will 
ontain the zero ve
tor as well as all ve
tors of weight

1. Consider the fun
tion f

1

(x

1

; : : : ; x

s

) = f(x

s�k

; : : : ; x

s�1

) + x

s

on F

s

2

(the

variables x

1

, : : :, x

s�k�1

will be �
titious for the fun
tion f

1

). By Lemmas 3

and 4 the fun
tion f

1

will be plateaued again with the same 
ardinality of a

spe
trum support, moreover, to all ve
tors from S

f

in the spe
trum support

of S

f

1

it will be assigned s � k � 1 zeroes from the left side, and it will be

assigned one from the right side. The linear subspa
e of dimension k in F

k

2


ontained S

f

passing to the fun
tion f

1

will transfer to the 
oset of dimension

k in F

s

2


ontained S

f

1

whi
h is not a linear spa
e. Therefore the rank of the

fun
tion f

1

is equal to k + 1. Note that the spe
trum support S

f

1


ontains

the next ve
tors: all ve
tors of weight 2 with ones in the 
omponents i and s,

i = s�k; : : : ; s�1, and also the ve
tor of weight 1 with one in the 
omponent

s. Form the fun
tion

f

2

(x

1

; : : : ; x

s

) = f

1

(x

s

; : : : ; x

1

)

on F

s

2

renaming all variables of f

1

in reverse order. It is 
lear that the fun
tion

f

2

has the properties, analogous to the properties of the fun
tion f

1

. The

spe
trum support S

f

2


ontains among others the next ve
tors: all ve
tors of

weight 2 with ones in the 
omponents 1 and i, i = 2; : : : ;k+ 1, and also the

ve
tor of weight 1 with one in the 
omponent 1. Note that all ve
tors from

S

f

1

have zero in the �rst 
omponent whereas all ve
tors from S

f

2

have one in

the �rst 
omponent. Therefore the sets S

f

1

and S

f

2

in F

s

2

do not interse
t.

Form the fun
tion

f

0

(x

1

; : : : ; x

s+1

) = (x

s+1

+ 1)f

1

(x

1

; : : : ; x

s

) + x

s+1

f

2

(x

1

; : : : ; x

s

)

on F

s+1

2

. By Lemma 14 for any u 2 F

s

2

we have W

f

0

(u0) = W

f

1

(u)+W

f

2

(u),

W

f

(u1) = W

f

1

(u) �W

f

2

(u). As it was pointed out above, the sets S

f

1

and

S

f

2

in F

s

2

do not interse
t. Therefore any ve
tor u from S

f

1

or S

f

2

in F

s

2

will

give exa
tly two ve
tors u0 and u1 
ontained in the spe
trum support S

f

0

of

the fun
tion f

0

on F

s+1

2

, moreover, the values of nonzero Walsh 
oeÆ
ients

of the fun
tion f

0

will be the same as the values of nonzero Walsh 
oeÆ
ients

of the fun
tions f

1

and f

2

. Thus, the 
ardinality of S

f

0

is equal to 4

h+1

, and

the fun
tion f

0

is also a plateaued fun
tion.

The said above follows that S

f

0


ontains all ve
tors of weight 2 with ones

in the 
omponents 1 and i, i = 2; : : : ;k+1, all ve
tors of weight 2 with ones

in the 
omponents i and s, i = s � k; : : : ; s � 2; s � 1; s + 1, and also the

ve
tors of weight 1 with one in the 
omponents 1, s. It is easy to see that the

18



rank of the system of ve
tors pointed out above is equal to s+ 1. Therefore

the rank of the fun
tion f

0

on F

s+1

2

is equal to s + 1. At the same time for

any ve
tor from S

f

0

the sum of values of 1st and sth 
omponents is equal to

1. Therefore S

f

belongs to the hyperplane H = fx 2 F

s+1

2

j x

1

+x

s

= 1g, and

the aÆne rank of the fun
tion f

0

is smaller than s + 1 but it is not smaller

than the rank of the fun
tion f

0

minus 1. It follows that the aÆne rank of

the fun
tion f

0

is equal to s. Thus, the desired fun
tion is 
onstru
ted. ut

Theorem 2. For any positive integer k satis�ed inequalities 2h � k � 2

h+1

�

2 there exists a plateaued fun
tion with a spe
trum support of 
ardinality 4

h

and the aÆne rank k.

Proof. The proof is by indu
tion on h. For h = 1 the value k 
an be only 2.

The example of su
h fun
tion is, for example, bent fun
tion x

1

x

2

on F

2

2

. (If

we do not want to 
onsider bent fun
tion as a plateaued fun
tion then add

to it a �
titious variable.) If the statement of Theorem holds for h then its

validity for h+ 1 follows immediately from Lemma 30. ut

Corollary. The aÆne rank of a plateaued fun
tion with a spe
trum support

of 
ardinality 16 
an take only values 4, 5 and 6.

Proof. The upper bound k � 6 is proved in Theorem 1. The lower bound

k � 4 is obvious. The existen
e of fun
tions with k = 4; 5; 6 follows from

Theorem 2. Note that examples of su
h fun
tions were given in [2℄. ut

A trivial upper bound for the aÆne rank k of a plateaued fun
tion with a

spe
trum support of 
ardinality 4

h

is k � 4

h

� 1. Here we give an improved

bound.

Theorem 3. Let f be a plateaued fun
tion, jS

f

j = 4

h

. Then for the aÆne

rank k of a spe
trum support S

f

the inequality k � 2

2h�1

� 2

h�1

+ h holds.

Proof. We will follow the way, analogous to the proof of Theorem 1. By

Lemma 8 we have jT

+

j; jT

�

j 2 f2

2h�1

+ 2

h�1

; 2

2h�1

� 2

h�1

g. Without loss

of generality we 
an assume that jT

+

j = 2

2h�1

+ 2

h�1

, jT

�

j = 2

2h�1

� 2

h�1

.

Suppose that the aÆne rank of a spe
trum support S

f

is equal to k, and

the aÆne rank of T

�

is equal to k

�

. Obviously, k

�

� 2

2h�1

� 2

h�1

� 1.

It is easy to see that by means of some aÆne transformation in F

n

2

it is

possible to embed the smallest 
oset 
ontained the spe
trum support S

f

into

F

k

2


(0 : : : 0

| {z }

n�k

) su
h that some k

�

+1 ve
tors from T

�

will transfer to the ve
tors

(0; 0; 0; : : : ; 0), (1; 0; 0; : : : ; 0), (0; 1; 0; : : : ; 0), . . . , (0; 0; : : : ; 0; 1

| {z }

k

�

; 0; : : : ; 0). The

Boolean fun
tion obtained as a result of this transformation will be plateaued

with the same set of absolute values of Walsh 
oeÆ
ients, and with the same

values of k and k

�

. By Lemma 3 the variables from (k+1)th till nth in the

obtained fun
tions will be �
titious. Deleting them and dividing all Walsh


oeÆ
ients by 2

n�k

we obtain by Lemmas 2 and 3 a plateaued fun
tion
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de�ned on F

k

2

with a spe
trum support of the same 
ardinality 2

h

. Thus,

without loss of generality in the remained part of this se
tion we will 
onsider

just su
h a spe
trum support.

Form the matrix M of size 4

h

� k. In the rows of M we write all ve
tors

from S

f

. In the �rst 2

2h�1

+2

h�1

rows ofM we write ve
tors from T

+

, and in

the last 2

2h�1

�2

h�1

rows ofM we write ve
tors from T

�

. The left k

�


olumns

ofM we 
all the left side of M , the remained k�k

�


olumns we 
all the right

side of M . The equality jT

�

j = 2

2h�1

� 2

h�1

follows k

�

� 2

2h�1

� 2

h�1

� 1.

Denote by Æ

j

the 
olumns from the right side of M , and by y

j

| the

variables 
orresponded to these 
olumns. Denote by Æ

+

j

the sub
olumns


ontained upper 2

2h�1

+ 2

h�1

elements of 
olumns Æ

j

, respe
tively.

Lemma 31 For any set Æ

j

1

, . . . , Æ

j

s

, 1 � s � k � k

�

, of di�erent 
olumns

from the right side of M the equality wt(Æ

+

j

1

+ : : :+ Æ

+

j

s

) = 2

h

holds.

Proof. Denote H = f(x; y) 2 F

k

2

j y

j

1

+ : : : + y

j

s

= 0g. The hyperplane H


ontains all 2

2h�1

�2

h�1

ve
tors of T

�

, therefore by Lemma 8 the hyperplane

H must 
ontain 2

2h�1

�2

h�1

or 2

2h�1

+2

h�1

ve
tors from T

+

, but ifH 
ontains

2

2h�1

+ 2

h�1

ve
tors from T

+

then H 
ontains S

f

. This is impossible, sin
e

k is the dimension of the smallest 
oset 
ontained S

f

. Therefore H 
ontains

4

h

� 2

h

ve
tors from S

f

, and F

n

2

nH 
ontains exa
tly 2

h

ve
tors from S

f

. ut

Lemma 32 The right side of the matrix M 
ontains at most h+1 
olumns.

Proof. Suppose that the right side of the matrix M 
ontains m 
olumns

Æ

1

, : : :, Æ

m

. For 


1

; : : : ; 


m

2 f0; 1g denote Æ

+

(


1

; : : : ; 


m

) = 


1

Æ

+

1

: : : + 


m

Æ

+

m

.

Consider the sum

S =

X




1

;:::;


m

2f0;1g

wt(Æ

+

(


1

; : : : ; 


m

)):

Any term in S, besides the term that 
orresponds to zero ve
tor, is equal to

2

h

by Lemma 31. Denote by r the number of rows among upper 2

2h�1

+2

h�1

rows of the matrix M that 
ontain at least 1 one in the right side of the

matrix M . Note that if a row from the upper 2

2h�1

+ 2

h�1

rows of M


ontains at least 1 su
h one then exa
tly 2

m�1

from 2

m

� 1 nonzero ve
tors

Æ

+

(


1

; : : : ; 


3

) have one in this row. Therefore S = 2

h

(2

m

� 1) = r � 2

m�1

. It

follows r = 2

h+1

� 2

h�m+1

. The value r is positive integer, therefore we have

m � h+ 1, as was to be proved. ut

The proof of Theorem 3 follows immediately from the stru
ture of the matrix

M and Lemma 32.

For h = 2 the bound of Theorem 3 
an not be a
hieved. We brave to

formulate the hypothesis.
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Hypothesis. For any positive integer h the maximum possible aÆne rank

of a plateaued fun
tion with a spe
trum support of 
ardinality 4

h

is equal to

2

h+1

� 2.
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