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Abstract

The plateaued functions have a big interest for the studying of bent
functions and by the reason that many cryptographically important
functions are plateaued. In this paper we study the possible values
of the affine rank of spectrum support for plateaued functions. We
consider for any positive integer h plateaued functions with a spec-
trum support of cardinality 4" (the cardinality must have such form),
give the bounds on the affine rank for such functions and construct
functions where the affine rank takes all integer values from 2h till
2h+1 _ 2. We solve completely the problem for h = 2, namely, we
prove that the affine rank of any plateaued function with a spectrum
support of cardinality 16 is 4, 5 or 6.

1 Introduction and main definitions

We consider F5", the vector space of m-tuples of elements from F;. An
n-variable Boolean function is a map from F5" into F,. In this paper we
will denote a vector from F," by a letter, whereas the component of this
vector by the same letter equipped with low indices pointed to the number
of this component in a vector. Vectors z’ and x” are called adjacent in
the i1th component if they differ only in the ith component. We denote by
z' the vector that differs from z only in the ith component, i = 1,..., n.
The component z; is called fictitious for a function f if for any vectors x’
and z” adjacent in the ith component we have f(2') = f(z"). The Hamming



distance d(z', x"") between two vectors 2’ and x” is the number of components
where vectors ' and z” differ. For given function f from FJ the minimum
of distances d(f,l) where [ ranges over the set of all affine functions on F3
is called the nonlinearity of f and denoted by nl(f). The subfunction of a
Boolean function f is the function f’ obtained by a substitution of some
constants 0 or 1 instead of some components in f.

It is well known that a function f on F5" can be uniquely represented by
a polynomial (ANF) on F, whose degree in each variable in each term is at

most 1. Namely, f(z,...,z,) = ( EB)EFn glay, ... a,)x]" ... x% where g
A1,y...,Qn P

is also a function on F". This polynomial representation of f is called the
algebraic normal form (briefly, ANF) of the function and each z{*...z% is
called a term in ANF of f. Sometimes the map f(z) — g(x) is called the
Mobius transform.

The algebraic degree of f, denoted by deg(f), is defined as the number of
variables in the longest term in ANF of f.

The weight wt(f) of a function f on F} is the number of vectors x from F}
such that f(z) = 1. The function f is called balanced if wt(f) = wt(f 1) =
2"~! (i. e. the function takes the values 0 and 1 at the same number of
vectors.

Let = (x1,...,2,) and u = (uy, ..., u,) be vectors of length n over Fs.
The inner product of x and u is the function defined as

n
<zr,u>= Z Tl
i=1
where the operations are produced over Fy. By sum = + u of two vectors x
and v we understand their componentwise addition over Fs.
The Walsh transform of a Boolean function f is called the integer valued
function on F7 defined by the next way:

Wf(u) — Z (_l)f(z)+<u,z>‘

zeFy

For any u € F}' the value Wy(u) is called the Walsh coefficient. We will
call the Walsh coefficients also the spectral coefficients, and the set of all

2" Walsh coefficients — the spectrum of a Boolean function. Walsh coef-
ficients satisfy the Inversion formula (—1)/@ = 277 S We(u)(—1)<w*>
ueF}

and Parseval’s identity 3 W7 (u) = 2°". The nonlinearity of a Boolean
uckFy

function f is expressed via its Walsh coefficients by the next way: nl(f) =
n—1 1
21— Lo Wy ).



The set Sy of all vectors u such that Wy(u) # 0 is called the spectrum
support of a function f.

The Boolean function is called a bent function if the values of its Walsh
coefficients at all vectors are exactly +2"/2. Bent functions exist for all even
n and do not exist for all odd n. A bent function is a function with maximum
possible nonlinearity 27~' — 2("/2=1 among all functions of n variables for
even n. The Boolean function is called plateaued if its Walsh coefficients take
exactly three possible values: 0 and +2¢ for some integer c¢. The plateaued
functions have a big interest for the studying of bent functions (for example,
by the reason that the decomposition of a bent function f = (x; + 1)f; +
z; fo gives two plateaued functions f; and f;) and by the reason that many
cryptographically important functions are plateaued (for example, m-resilient
functions of n variables with maximum possible nonlinearity 2"~! — 2m+1),
For plateaued functions denote ¢(z) = 27 “Wy(z). Then for any = € F} the
value ¢(x) can take only three possible values: 0, —1 and 1. The set Sy of all
vectors u such that Wy(u) # 0 is called the spectrum support of a plateaued
function. We denote the set of all vectors = such that ¢(z) = —1 by T,
and the set of all vectors z such that ¢(z) = 1 by T*. From Parseval’s
identity it follows immediately that the cardinality of a spectrum support is
4™~¢ It is convenient to consider a bent function as the particular case of
a plateaued function for ¢ = n/2 and |Sy| = 2" that we will use below with
some stipulations. (Although often formally bent functions are not referred
to plateaued functions.) Plateaued functions were investigated in different
works, see, for example, [6, 7, 10].

For any u € Fy" the autocorrelation coefficient of the function f at the
vector u is defined as Af(u) = ¥ (—=1)/@+/ @) The function D,f =

TEFY™

f(z) + f(z + u) is called the derivative of the function f in direction u. The
vector u € Fy" such that D, f = const is called the linear structure of the
function f. It is easy to check that the linear structures of a function f
form a linear space in F7. The existence of a nontrivial linear structure for
functions is a cryptographic weakness in some cases (but not in all).

Let E be an arbitrary subset of F}. The rank of a set E is the dimension
of the subspace generated by E in F3. The affine rank of a set E is the
dimension of a smallest coset in F} that contains E. The rank and the affine
rank of the spectrum support of a Boolean function will be denoted by k
and k, respectively. For the brevity in this paper the affine rank and the
rank of a Boolean function shortly will be called by its affine rank and rank,
respectively. It is easy to understand that k € {k,k — 1}. It is well known
(see, for example, [2]) that the dimension of the set of linear structures of
a function f is equal to n — k. If there exists the vector u € F5" such that



D,f =1 then k =k + 1. If such vector does not exist then £ = k.
For additional facts about properties of Boolean functions we refer to [§]
and [9].

2 On affine transformations in Fy

The affine transformation in F? is the map x — 2’ = Ax = A" + a where
A is a square nondegenerated matrix of order n over Fy, and a is a vector of
length n. The affine transformation is an automorphism F7 that transfers all
cosets to cosets of the same dimension. If a = 0 then the affine transformation
is called also linear.

The affine transformation of a function f defined on F} is the transfor-
mation f(x) — f'(z) = f(Ax). If for functions f and f’ there exists an
affine transformation of a function that transfers f to f’ then f and f’ are
called affine equivalent. If for functions f and f’ there exists the linear trans-
formation of a function that transfers f to f’ then f and f’ are called linear
equivalent.

Lemma 1 Let f(z) — f'(z) = f(Az) be the affine transformation of a
function f defined on F3. Then W (u) = (—1)<e%47"> . Wi(uA").

Proof. By the formula for Walsh coefficients we have

Wf/(z)(u) = Z (_l)f’(x)+<x,u> _ Z (_1)f(Ax)+<qj,u> _

z€Fy z€F}
> (—l)f($)+<A_1”’“> = > (_1)f($)+<x,uA‘1>+<a,uA—1> _
(_1)<a,uA—1> ) Z (_1)f(z)+<x,u,4—1> _ (_1)<a,uA—1> . Wf(uAfl)_
zcF7}

O

Suppose that a Boolean function f is defined on F3. The affine transfor-

mation of a spectrum of a function f is the transformation Wy(z) — W'(z) =

Wr(Axz). It is possible to show that coefficients W'(x) are Walsh coefficients

for some function f’ that is not, generally speaking, affine equivalent to the
function f.

Lemma 2 Let Wy(x) — W'(x) = W;(Ax) be the affine transformation of a
spectrum of a function f defined on ¥%5. Then coefficients W'(x) are Walsh
coefficients for some function f', moreover f'(x) = f(zA ")+ < a,zA™" >.
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Proof. Check that for all z € F} the sums in the inversion formula for
the hypothetic function f'(x) are +1. Denote

__2 n E: VV, <ux>
ueFy
We have
_2 nZW <u1:>_2 nZWf Au)( )<u,x>:
ucF7y ucFy
9—n E: LV} <A_1 —9n E: LV} <va 1>+<axA,1>::
veFY veFY
( 1)<axA,1> 9—n E: LV} )<va,1>:: C_l)ﬂxA*U+<a@Af1>_

veFY

Thus, for all x € F} we have F(z) = +1. Therefore the function f'(x) exists,
moreover, f'(z) = f(zA™")+ < a,zA7" >. O

The spectrum of functions f and f’ that obtained one from another by
an affine transformation of a spectrum are called affine equivalent. The
spectrum of functions f and f’ that obtained one from another by a lin-
ear transformation of a spectrum are called linear equivalent. Analogously,
the affine equivalence of functions does not imply the affine equivalence of
their spectra. For example, by the reason that under the affine transfor-
mation of a function f the value wt(f) remains unchanged. Nevertheless,
wit(f) = 2" — 2W;(0), therefore, transferring by the affine transformation
of a spectrum into 0 a vector with another value of a Walsh coefficient we
will obtain the function that is not affine equivalent to f. At the same time
Lemmas 1 and 2 imply that the linear transformation of a spectrum is the
linear transformation of a function, and vice versa.

Obviously, the affine transformation of a spectrum of a plateaued function
f transfers it to a spectrum of also plateaued function f’ with the same car-
dinality of a spectrum support, and the affine transformation of a plateaued
function f transfers it to a plateaued function f’ with the same cardinality
of a spectrum support.

Lemma 3 Let f be a Boolean function defined on F%, moreover, the spec-

trum support of this function lies in Fy, ® (0...0). Then the function f
n—I|

depends on variables x;y, ..., x, fictitiously. Let f' be a function on FY

obtained from f by deleting of fictitious variables x;1+, ..., x,. Then for any

u from Fh we have Wy (u) = 2= DW,(u0...0).

n—I



Proof. Let z and 2 be an arbitrary pair of vectors adjacent in the ith
component, i € {{ +1,...,n}. By the inversion formula we have

(1Y) (1)) =270 5 W) [(1) e — ()] =
9—n Z Wf(u) [(_1)<x,u> B (_1)<xi,u>] —0.
ung®(u)

n—1

Therefore f(x) = f(z'), and, thus, the variables z;,1, ..., =, are really
fictitious. Consider now the function f’ on F} obtained from f be deleting
of fictitious variables 2,1, ..., z,. For any its Walsh coefficient u € Fl, we
have

Wf’ (u) — Z (_1)ff(ac)+<x,u> —
zcF)
f(x)+<ac,u0 ...0>
27(717!) Z (_1) n—lI = 27(nil)Wf(U 0... 0)

zeFYy n—I

O

Lemma 4 Let f be a Boolean function defined on F. Let f' be a function
on FI defined as f'(x1, ..., Tn, Tne1) = f(@1,...,7) + Tpe1. Then if u
is a vector from FIT' that belongs to a spectrum support of the function f'
then upy1 =1 and We(uy, ..., up, 1) = 2We(uq,. .., up).

Proof. Suppose that « € F5*'. Group in the sum

Wyl = 3 (-1

xEF;H'l

into pairs vectors x and z"*! that differ only in (n + 1)th component. Let
Tpy1 = 0 for the definiteness. For these vectors f'(z) = f/(z"*1) + 1 holds.
If upyy = 0 then < z,u >=< 2" 4 >. It follows (—1)/@+<zu> 4
(—1)F' @ t<e™hu> — 0 Therefore, Wp(u) = 0. If u,.; = 1 then <
z,u >=< 2" u > +1. Tt follows (—1)7'@+<eu> L ()@ THt<a™ >
9. (_1)f’(x)+<x,u> — 9. (_1)f(x1,...,xn)+<(ac1,...,xn),(ul,...,un)>_ Therefore, Wf’ (U) —
2We(ury ..., up). O

Lemmas 1, 2, 3 imply that the study of plateaued functions on F} with a
spectrum support of cardinality 4" can be reduced in some sense to the study
of plateaued functions with a spectrum support of the same cardinality 4"
defined on F¥X. Moreover, if k > 2h then any plateaued function f' on F}
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with a spectrum support of cardinality 4" can be obtained from some function
f on F¥ with a spectrum support of the same cardinality 4" by adding of
n — k fictitious variables and implementing of some linear transformation of
a function. The same result can be achieved also in the case if k = 2h and
W (0) # 0 (in this case the function f will be bent function). If k = 2h and
W (0) = 0 then the mentioned linear transform of a function does not exist
but it is possible to use the affine transformation of a spectrum or to take a
function f of k 4+ 1 variables.

Note that the mentioned reduction can be insufficient if it is necessary
to investigate additional properties of functions not preserved under affine
transformations (for example, correlation immunity).

Point also to the next property that allows to avoid the separate consid-
eration of the problem on possible values taken by a rank k.

Lemma 5 If there exists a plateaued function with a spectrum support of
cardinality 4" and an affine rank taken the value k then there exist plateaued
functions with a spectrum support of the same cardinality 4" and ranks taken

both values k =k and k =k + 1.

Proof. By Lemma 2 an affine transformation of a spectrum support
of a plateaued function gives again the plateaued function with a spectrum
support of the same cardinality and with the same affine rank. If by some
affine transformation to transfer to 0 one of vectors lain in the smallest coset
contained Sy then for the obtained function, obviously, £ = k will be hold.
If to transfer to 0 a vector that does not lie in the smallest coset contained
Sy then for the obtained function £ =k + 1 holds. If for the initial function
there do not exist vectors that do not belong to the smallest coset contained
St (i. e. if k is equal to the number of variables) then it is possible simply to
add a fictitious variable, and such vectors will appear whereas the function
will remain plateaued with the same cardinality of a spectrum support. 0O

All mentioned above follows that the affine rank is an important char-
acteristics of plateaued functions. It is obvious, that the affine rank of any
plateaued function with a spectrum support of cardinality 4" is at least 2h
since the smaller cosets do not contain 4" vectors. Any plateaued function
with a spectrum support of cardinality 1 is an affine function and, obviously,
its affine rank is equal to 0. It is well known that the affine rank of any
plateaued function with a spectrum support of cardinality 4 is equal to 2.
This fact was proved in [5] but it is evident that it was known much more
early. The plateaued functions with the spectrum support of cardinality 16
(without the name of plateaued) were considered, in fact, in [4]. In the work
[2] for the subclass of plateaued functions with a spectrum support of car-
dinality 16 (more exactly, for cubic resilient functions of order n — 4) it was
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obtained the bound k < k£ < 9. In our paper we prove that the affine rank
of any plateaued function with a spectrum support of cardinality 16 is equal
to 4, 5 or 6. Besides, we consider for any positive integer h the plateaued
functions with a spectrum support of cardinality 4", give the bounds on the
affine rank for such functions and construct functions the affine rank of which
takes all positive integer values from 2h till 2"+! — 2.

3 Auxiliary results

The next statement is well known (see, for example, the relation (2.16) in
[8]). Earlier its proof was given in [3].

Lemma 6 Let f be a Boolean function on ¥3. Suppose that U is a linear
subspace of dimension I in F%, and U~ is a space orthogonal to U in Fy. Let
v be an arbitrary vector from F3. Then

Z Wf(u) — 9! Z (_1)f($)+<x,v>.

ueU~+v xeU-L

Lemma 7 [1] Let f be a plateaued function with a spectrum support of
cardinality 4" defined on F3. Suppose Y. é(a) = 2", Then ¥ ¢(a) €

acFy acFy
[—2h 2n,

Proof. Take in Lemma 6 in the capacity of a subspace U whole FJ.
In the notations of Lemma 6 we have W;(u) = ¢(u) - 2" | = n. Then
Ut = {0}. Therefore,

> Wi(u) = 2°(~1)"©.

ueFy

For the function f it follows

S p(u) = 2"(=1)10 € {2 2"},

ucF7y

O

Lemma 8 Let f be a plateaued function with a spectrum support of cardi-
nality 4" defined on F3. Suppose Y. ¢(a) = 2". Let H be an (n — 1)-

acFy
dimensional coset in FY. Then Y ¢(a) € {0,2"}.
acH
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Proof. In the notations of Lemma 6 we have W;(u) = ¢(u) - 2",
| = n — 1. Therefore, Lemma 6 follows that > ¢(a) € {—2",0,2"}. If the
acH

sum is equal to —2" then Y. ¢(a) = 2"*! that is impossible according to
a€FL\H

what has been said above. a

The next statement is also well known (see, for example, Theorem 2.89

in [8)).

Lemma 9 Let f be a Boolean function on F3. Suppose that U is a linear
subspace of dimension | in F}, and UL is a space orthogonal to U in F}.

Then
Y Wiu)=2"3" Ag(v).
uelU veUL

Lemma 10 Let f be a Boolean function on ¥y, n > 1. Then wt(f) is odd
if and only if deg(f) = n.

Proof is obvious (see, for example, Corollary 1 in [9]).

O

Lemma 11 Let f be a Boolean function on F}, f # const. Then 2n~des(/) <
wt(f) < 2m — 2n—deslf),

Proof is obvious (see, for example, Lemma 5.6 in [8] or Lemma 3 in [9]).

O

Lemma 12 [6] Let f be a plateaued Boolean function on FY with a spectrum
support of cardinality 4". Then deg(f) < h + 1.

Proof. Walsh coefficients of the function f take values from the set
{0,42"""}. Consider the longest term x;,x;, ... x;, in the polynomial of the
function f (if there exist some longest terms then take one of them arbitrary).
It is possible to assume that s > 2, in the opposite case the statement of
Lemma is automatically true. Use Lemma 6. Take in the capacity of U the
linear subspace U = {z € Fy|z; =0,...,x;, = 0} of dimension [ = n — s,
take 0 as the vector v. Then by Lemma 10 the orthogonal space U~ contains

odd number of vectors  such that f(x) = 1. Therefore the sum Y (—1)7®)
zeU+
is not divided by 4 for s > 2. Hence, in the equality

S W) =27 ¥ (1))

uelU zeUL

the left part is divided by 2"~ whereas the right part is not divided by
2n=5+2 Tt follows n — h < n — s+ 2. Taking into account that all coefficients
are integer we obtain s < h + 1, as was to be proved. O
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Lemma 13 Let f be a plateaued Boolean function on F3 with a spectrum
support of cardinality 4". Suppose that H is an (n — 1)-dimensional coset in

F2. Then either Y |p(u)| = 0, or X |p(u)] = 4", or 2" < ¥ |o(u)| <
N L ucH ueH ueH
4" — 2",

Proof. Let at first that H is a linear subspace in F§. Then H+ = {0, v}
for some nonzero v € Fj. Obviously, A;(0) = 2". By Lemma 9 we have

4737 Jo(u)] = 2772 + Ap(v) = 4" — 2"wt(D, f).

ueH

By Lemma 12 the inequality deg(f) < h + 1 holds. The function D, f is
the derivative of the function f, therefore, deg(D,f) < h. If D,f = 0 then
> |p(u)| = 4h. If Dyf =1 then ¥ |¢(u)| = 0. If D,f # const then by
ucH uceH

Lemma 11 we have 2" " < wt(D, f) < 2"—2"". Tt follows 2" < ¥ |p(u)| <
ueEH

4h — 2" as was to be proved. For the coset F§ \ H the same three cases take
place by the proved above and Parseval’s identity. O

Lemma 14 Let fi, fo be Boolean functions on ¥4, and let f be a Boolean
function on Fy*' moreover, f(vx,,1) = (Tny1 + 1) f1(2) + 2ny1 fo(x). Then
Wi(u0) = Wy, (u) + Wy, (u) and Wy(ul) = Wy, (u) — Wy, (u).

This Lemma is very well known. In fact, the Fast Walsh Transform is
based on its application. O

4 On affine rank of Boolean functions with
spectrum support of cardinality 16

In all statements of this section we suppose that f is a plateaued Boolean
function on F} and |Sy| = 16. In this case ¢ = n—2. By Lemma 7 one of two
cases takes place: |T*| =10, |T~| =6, or |T*| =6, |T~| = 10. Taking into
account that for all u the relation Wy(u) = —Wpq(u) holds, it is possible
without loss of generality to assume |TF| = 10, [T~ | = 6, that we will do
in the remained part of this section. Thus, we have |Sy| = 16, |T*| = 10,
|T~| = 6.

Our aim is to prove the next theorem.
Theorem 1. Let f be a plateaued function, | S| = 16. Then for the affine
rank k of the spectrum support Sy the inequality k < 6 holds.

The proof of Theorem 1 will be obtained by the proofs of several lemmas.
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Suppose that the affine rank of the spectrum support S is k, and the
affine rank of 7~ is k=. Obviously, 3 < k= < 5. It is easy to see that by
means of some affine transformation in F} it is possible to embed the smallest
coset containing the spectrum support Sy into F§ ® (0...0) such that some

n—k
k= + 1 vectors from T~ will be transferred to the vectors (0,0,0,...,0),
(1,0,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1,0,...,0). Note that after
—_——
e

such transformation all vectors from T~ will be transferred to the vectors
that have all zeroes in all components i, 7 > k~. Note that the affine trans-
formation of the spectrum described above, generally speaking, is not an
affine transformation of a function f, but we do not need this. It is suffi-
cient for us that the Boolean function obtained as a result of this map will
be plateaued with the same set of absolute values of Walsh coefficients, and
the same values k and k=. By Lemma 3 all variables from (k + 1)th till
nth in the obtained function will be fictitious. Deleting them and dividing
all Walsh coefficients by 2" % by Lemmas 2 and 3 we obtain a plateaued
function defined on FX with a spectrum support of the same cardinality 16.
Thus, without loss of generality in the remained part of this section we will
consider just such a spectrum support.

Lemma 15 Let H be a (k — 1)-dimensional coset in FX. Then ¥ ¢(a) €
acH
(0,4}

Proof. The statement of Lemma is a particular case of Lemma 8. O

Lemma 16 [2/ Let H be a (k—1)-dimensional coset in Fx. Then H contains
4, 6, 8, 10 or 12 wvectors from Sy.

Proof. By Lemma, 15 the coset H contains even number of vectors from S;.
The cases 2 and 14 are impossible by Lemma 13. If H contains 16 vectors
from Sy then Sy is contained in H; if H contains 0 vectors from Sy then Sy
is contained in Fk \ H. The both last cases are impossible since F¥ is the
smallest coset that contains the spectrum support S;. O

Our aim is to prove that k < 6. Assume the converse. Suppose that
k > 7. We will prove that this is impossible.

We form the matrix M of size 16 x 7. In the rows of M we write first 7
components of the vectors from S; (in the case k > 7 we omit all components
after 7th). In first 10 rows of M we write vectors from 7F, and in last 6 rows
of M we write vectors from T~. The left k— columns of M we call the left
side of M, the remained 7 — k™ columns we call the right side of M.

11



0 ... 0

Denote by ~; the columns from the left side of M, and by z; the variables
correspondent to these columns. Denote by d; the columns from the right
side of M and by y; the variables correspondent to these columns. We denote
by v;" and 5; the subcolumns contained upper 10 elements of columns v; and
d;, respectively.

Lemma 17 For any set 6;,, ..., 0;,, 1 < s < T7—=Kk~, of different columns
from the right side of M we have wt(&ﬁ +...+ 5;“) =4.

Proof. Denote H = {(z,y) € F¥|y;, + ... +y;, = 0}. The hyperplane H
contains all 6 vectors of T, therefore by Lemma 15 the hyperplane H must
contain 6 or 10 vectors from 7", but if H contains 10 vectors from 7+ then
H contains Sy. This is impossible since k is the dimension of the smallest flat
contained Sy. Therefore H contains 12 vectors from Sy, and F3 \ H contains
exactly 4 vectors from Sy. 0

Lemma 18 There exist at most 3 columns satisfying the condition of Lemma
17.  Without loss of generality it is possible to choose these columns as
6 = (0,0,0,0,0,0, 1, 1, 1, )T, §5 = (0,0,0,0,1,1,0,0,1,1)", 65 =
(0,0,0,1,0,1,0,1,0,1)T.

Proof. It is easy to check that the vectors d;", 45, 65 given above can be
chosen without the loss of generality. Suppose that it is possible to add
some vector &; to this set. For cy,cp,c3 € {0,1} denote §*(cy,cp,c3) =
107 + 05 + c365 . Consider the sum

S = Z d(5i,5+(01,62,03)).

c1,e2,c3€{0,1}

Note that for any row from 4th till 10th exactly 4 of 8 vectors d*(cy, ca, ¢3)
have one in this row. Therefore S = 28+ 8wy = 32 where wj is the number of
ones in rows 1-3 in §; . Tt follows that wy, = 0.5 but wy is an integer number.
This contradiction proves Lemma 18. O
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Lemma 19 The right side of the matriz M contains at most 3 columns.

Proof. It follows from Lemmas 17 and 18. O
Lemma 19 follows that the case k— = 3 is impossible. The remained cases
are k~ =4 and k™ = 5.

Lemma 20 Let v; be a column from the left side of the matriz M. Suppose
that ~; contains 1 one and 5 zeroes in low 6 rows. Then wt(y;") = 5.

Proof. Denote H = {(z,y) € F¥|z; = 0}. By the hypothesis of Lemma
the hyperplane H contains exactly 5 vectors of T, therefore by Lemma 15
the hyperplane H must contain 5 or 9 vectors from TF, but if H contains
9 vectors from T then H contains exactly 14 vectors from S;. This is
impossible by Lemma 16. Tt follows that wt(vy;") = 5. 0

Lemma 21 Let v; be a column from the left side of the matriz M. Suppose
that y; contains 2 ones and 4 zeroes in low 6 row. Then wt(v;") € {2,6}.

Proof. Denote H = {(z,y) € F¥|x; = 0}. The hyperplane H contains
exactly 4 vectors from T, therefore by Lemma 15 the hyperplane H must

contain 4 or 8 vectors from T, Tt follows that wt(v;") = 2 or 6. O
Consider now separately the cases k=~ =4 and k= = 5.
Case k™ =5.

In this case the right side of the matrix M contains two columns. By
Lemma 18 without loss of generality we can assume that these columns are
6, =(0,0,0,0,0,0,1,1,1, )7, 6, = (0,0,0,0,1,1,0,0,1,1)". Without loss
of generality we can assume that the matrix M has the form

OO OO OO EFMEMFEOOOO OO
SO OO OOIHEFEF OOHFEMHEHFOOOO

OO OO O % % % X X Xk * K X ¥
O O OO O% ¥ % % K ¥k ¥ X X ¥
O O O O O % % % % % % % % % %
O O = O O O % % % % % % % % % %
O = O O O O % % % % % % % % % *
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By Lemma 20 we have that all columns ~;", i = 1,2, 3, 4, 5, contain exactly
D ones.

Lemma 22 Let k= = 5. Then for 1 < i; < iy <5, we have d(7;",7;}) €
(2,6}.

Proof. Denote H = {(x,y) € F¥|x; +x;, = 0}. The hyperplane H contains
exactly 4 vectors from 7~ therefore by Lemma 15 the hyperplane H must
contain 4 or 8 vectors from T. It follows that d(v;',~;)) = wt(y;" + ;) €
{2,6}. O

Lemma 23 Let k= = 5. Then for any i € {1,2,3,4,5}, ¢1,co € {0,1}, we
have d(v;, c107 + cadd) = 5.

Proof. Denote H = {(z,y) € F¥|x; + ciy1 + cay2 = 0}. The hyperplane H
contains exactly 5 vectors from 7, therefore by Lemma 15 the hyperplane
H must contain 5 or 9 vectors from 7. But if H contains 9 vectors from T,
then H contains exactly 14 vectors from S;. This is impossible by Lemma
16. Tt follows that d(v;", c107 + 205 ) = wt(v; + 107 + e85 ) = 5. O

Lemma 24 Let k= = 5. Then for any i, i € {1,2,3,4,5}, the column ;"
contains exactly 2 ones in rows 1-4, exactly 1 one in rows 5,6, exactly 1 one
wn rows 7,8, exactly 1 one in rows 9, 10.

Proof. If ;" contains 0 ones in rows 9,10 then d(v;",d07) = d(v;",05) = 5
follows that ;" contains only ones in rows 5, 6, 7, 8. But in this case d(v;", 6; +
65) = 1 that contradicts to Lemma 23. If ;" contains 2 ones in rows 9, 10
then d(v;",0;) = d(v;",05) = 5 follows that ;" contains only zeroes in rows
5,6,7,8. But in this case d(v;",d; + 65) = 9 that contradicts to Lemma 23.
Therefore v;" contains exactly 1 one in rows 9, 10. It follows that ;" contains
exactly 1 one in rows 7,8, exactly 1 one in rows 5,6 and exactly 2 ones in
rows 1-4. O

Lemma 25 The case k=™ =5 is impossible.

Proof. There exist 3 pairs of opposite vectors of the length 4 with exactly 2
ones. Therefore there exist two columns ~;, and 7;,, i1 7# 42, in the left side of
M that are either the same or the opposite inside of first 4 rows. Let ~;, be
some other column in the left side of M, i; # i3, i3 # i3. Then from Lemma
24 it is easy to see that every group of rows (1-4), (5,6), (7,8), (9,10) gives
to the sum S = d(v;', 7)) + d(7;7, ;) + d(v;h, 7)) the contribution divided
by 4. Therefore the sum S is divided by 4. On the other hand, by Lemma 22
all terms in S are congruent 2 modulo 4. Therefore S is congruent 2 modulo
4 too. This contradiction proves the Lemma. O
Thus, we have proved that the case k— = 5 is impossible.
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Case k™ = 4.

In this case the right side of the matrix M contains exactly three columns.
By Lemma 18 without loss of generality we can assume that these columns
are 6, = (0, 0,0,0,0,0,1, 1,1, 1), 6 = (0, 0, 0, 0, 1, 1, 0, 0, 1, 1)7,
63 = (0,0,0,1,0,1,0,1,0,1)". Without loss of generality we can assume that
the matrix M has the form

R T 0 0 0
% k% sk 0 0 O
¥ k% sk 0 0 O
*x k% % 0 0 1
I T 0 1 0
¥ % x % 0 1 1
* % %k X 1 0 0
*x k% % 1 0 1
* k% % 1 1 0
¥ k% % k 1 1 1
% k% sk 0 0 O
1 0 0 O 0 0 0
01 0 0 0 0 0
0 0 1 0 0 0 O
0 0 0 1 0 0 O
0 0 0 O 0 0 O

Let ¢1,¢2,c3 € {0,1}. Denote 6

—

— + + +
C1, Co, Cg) = 61(51 + 6252 + 0353 .

Lemma 26 Let k= = 4. Then any column ; in the left side of the matriz
M can not have zero in 11th row.

Proof. Suppose that some column 7; have zero in 11th row. Then by
Lemma 20 we have wt(y;") = 5. By the same way like to the proof of
Lemma 23 it is possible to show that for any ¢, cs,c3 € {0,1} we have
d(v;", 6% (c1, ¢, ¢3)) = 5. Consider the sum

S = Z d(vi, 0% (1, ca, c3)).

Clyc2a036{0a1}

Note that for any row from 4th till 10th exactly 4 of 8 vectors §* (cy, co, ¢3)
have one in this row. Therefore S = 28 + 8wy = 40 where wq is the number
of ones in 7; in rows from 1st till 3rd. It follows that wy = 1.5 but wy is an
integer number. This contradiction proves Lemma 26. ad

Lemma 26 follows that without loss of generality the 11th row of M is
(1111000) and the matrix M has the form
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OO O OO MEEFEFOOOO OO
SO OO DD OOHFFOOHFEMFHEHFOOOO
SO OO OO OO RO, O, OOO

O O O DO % % % % % ¥ % % * *
O O O O X % % % % % % % % %
O O~ O O KX % % % % % % % % %
O R O O O % % % % % ¥ % % * %

Lemma 27 Let k— = 4. Then for any 1 < iy < iy < 4 we have d(%t,v;;) €

(2,6).

Proof. Denote H = {(z,y) € Fy|z;,+x;, = 0}. The hyperplane H contains
exactly 4 vectors from 7, therefore by Lemma 15 the hyperplane H must
contain 4 or 8 vectors from T*. It follows that d(v;', ") € {2,6}. O

Lemma 28 Let k= = 4. Then any column ~; in the left side of the matrix
M has exactly 2 ones in rows from 1st till 3rd and coincides with a vector
3t (e, 2, ¢c3) in rows from 4th till 10th for some ¢, ¢y, c3 € {0, 1}.

Proof. By Lemma 21 we have wt(y;') € {2,6}. By the same way it is
possible to show that for any ¢, ¢a, 3 € {0, 1} we have d(v;", 6 (c1, ¢2, ¢3)) €
{2,6}.

Suppose that wt(y;") = 2. If v;" does not contain both its ones in rows
from 1st till 3rd then it is easy to find some ¢, co,c3 € {0,1} such that
the vector d%(ci, o, c3) contains exactly 1 one in two rows where ;" has
ones. Then we have d(v;",0 (c1, ¢z, c3)) = 4 that is impossible. Therefore
;" contains both ones in rows from 1st till 3rd and coincides with the vector
67(0,0,0) in rows from 4th till 10th, i. e. ;" has the desired form.

Now suppose that wt(7;") = 6. Consider the sum

S = > d(vy 6" (e, e0,03)).

c1,c2,c3€{0,1}
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Note that for any row from the group (4-10) exactly 4 of 8 vectors §*(c1, ca, 3)
have one in this row. Therefore S = 28 + 8w, where wq is the number of
ones in rows from 1st till 3rd in 7;. If for any ¢, co,c3 € {0,1} we have
d(vi,0%(c1,co,03)) = 6 then S = 48 and wy = 2.5, but wy is an integer
number. Therefore there exists the set of values ¢, ¢y, c3 € {0,1} such that
d(v;i, 0% (1, ca,c3)) = 2. Denote 6% (cy, o, ¢3) by 6f. Then wt(y; +6f) = 2
and for any ¢y, ¢9, c3 € {0, 1} we have d(v;t + 85,07 (1, 2, ¢3)) € {2,6}. Asit
was pointed out in the beginning of this proof the vector ;" + &, must have
exactly 2 ones in rows from 1st till 3rd, and only zeroes in rows from 4th till
10th. Hence, the vector ;" has exactly 2 ones in rows from 1st till 3rd and
coincides with the vector &5 in rows from 4th till 10th. O

Lemma 29 The case k= = 4 is impossible.

Proof. By Lemma 28 all columns v; in the left side of M have exactly
2 ones in rows from 1st till 3rd. The left side of M contains 4 columns,
therefore there exist columns v;, and 7;,, 1 < 4 < iy < 4 that coincide
in rows from 1st till 3rd. In rows from 4th till 10th the columns ~;, and
i, coincide by Lemma 28 with some vectors 01 (c}, b, c§) and 67 (¢, c5, c§),
respectively. By Lemma 17 we have d(67(c}, ¢y, &), 07 (], 5, c5)) € {0,4}.
It follows d(v;",~;') € {0,4} that contradicts to Lemma 27. O

All cases are considered. Theorem 1 is proved.

Thus, we obtained that the affine rank of a plateaued function with a
spectrum support of cardinality 16 can not take another values with the
exception of 4, 5 and 6. The functions with such parameters are known and
their examples were given, for example, in [2]. We will not give examples
in this section separately. These examples will be constructed in the next
section in the framework of a general construction.

5 Bounds on affine rank of plateaued func-
tions with arbitrary cardinality of spectrum
support

Lemma 30 Suppose that there exists a plateaued function with a spectrum
support of cardinality 4" and the affine rank k. Then for any positive integer

s satisfied inequalities k + 2 < s < 2k + 2 there exists a plateaued function
with a spectrum support of cardinality 4"+ and the affine rank s.

Proof. If there exists a plateaued function with a spectrum support of
cardinality 4" and the affine rank k then by Lemmas 2 and 3 starting with
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this function by means of an affine transformation of a spectrum and following
deleting of fictitious variables it is possible to obtain the plateaued function
f on FX with a spectrum support of cardinality 4", moreover, this spectrum
support of f will contain the zero vector as well as all vectors of weight
1. Consider the function fi(z1,...,25) = f(zs k,...,Zs 1) + x5 on F5 (the
variables w1, ..., 5_x_1 will be fictitious for the function f;). By Lemmas 3
and 4 the function f; will be plateaued again with the same cardinality of a
spectrum support, moreover, to all vectors from Sy in the spectrum support
of Sy it will be assigned s —k — 1 zeroes from the left side, and it will be
assigned one from the right side. The linear subspace of dimension k in FX
contained Sy passing to the function f; will transfer to the coset of dimension
k in F§ contained Sy, which is not a linear space. Therefore the rank of the
function f; is equal to k 4+ 1. Note that the spectrum support Sy, contains
the next vectors: all vectors of weight 2 with ones in the components 7 and s,
1 =s—k,...,s—1, and also the vector of weight 1 with one in the component
s. Form the function

fg(ﬂ?l, e ,IL'S) = fl(ﬂfs, e ,fL‘l)

on F renaming all variables of f; in reverse order. It is clear that the function
f2 has the properties, analogous to the properties of the function f;. The
spectrum support Sy, contains among others the next vectors: all vectors of
weight 2 with ones in the components 1 and 7,2 = 2,...,k+ 1, and also the
vector of weight 1 with one in the component 1. Note that all vectors from
S, have zero in the first component whereas all vectors from Sy, have one in
the first component. Therefore the sets Sy, and Sy, in F§ do not intersect.
Form the function

fl(xla R ,I5+1) = (‘TS+1 + l)fl(xla s 7935) +Q§5+1f2($1, B 7‘TS)

on F5™'. By Lemma 14 for any u € F§ we have Wy (u0) = Wy, (u) + W, (u),
We(ul) = Wy (u) — Wp,(u). As it was pointed out above, the sets Sy, and
Sy, in Fj do not intersect. Therefore any vector u from Sy, or Sy, in F3 will
give exactly two vectors u0 and ul contained in the spectrum support Sy of
the function f on F$*', moreover, the values of nonzero Walsh coefficients
of the function f’ will be the same as the values of nonzero Walsh coefficients
of the functions f; and f,. Thus, the cardinality of Sy is equal to 4!, and
the function f’ is also a plateaued function.

The said above follows that Sy contains all vectors of weight 2 with ones
in the components 1 and 4, 2 = 2,...,k+ 1, all vectors of weight 2 with ones
in the components ¢ and s, : = s —k,...,s —2,s — 1,s + 1, and also the
vectors of weight 1 with one in the components 1, s. It is easy to see that the
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rank of the system of vectors pointed out above is equal to s + 1. Therefore
the rank of the function f' on F5' is equal to s + 1. At the same time for
any vector from Sy the sum of values of 1st and sth components is equal to
1. Therefore S; belongs to the hyperplane H = {z € F5'' |z, +z, = 1}, and
the affine rank of the function f’ is smaller than s 4+ 1 but it is not smaller
than the rank of the function f’ minus 1. It follows that the affine rank of
the function f’is equal to s. Thus, the desired function is constructed. O
Theorem 2. For any positive integer k satisfied inequalities 2h < k < 2h+1 —
2 there exists a plateaued function with a spectrum support of cardinality 4"
and the affine rank k.
Proof. The proof is by induction on h. For h = 1 the value k can be only 2.
The example of such function is, for example, bent function x x5 on F3. (If
we do not want to consider bent function as a plateaued function then add
to it a fictitious variable.) If the statement of Theorem holds for A then its
validity for A + 1 follows immediately from Lemma 30. a
Corollary. The affine rank of a plateaued function with a spectrum support
of cardinality 16 can take only values 4, 5 and 6.
Proof. The upper bound k < 6 is proved in Theorem 1. The lower bound
k > 4 is obvious. The existence of functions with k = 4,5, 6 follows from
Theorem 2. Note that examples of such functions were given in [2]. O
A trivial upper bound for the affine rank k of a plateaued function with a
spectrum support of cardinality 4" is k < 4" — 1. Here we give an improved
bound.
Theorem 3. Let f be a plateaued function, |S;| = 4". Then for the affine
rank k of a spectrum support Sy the inequality k < 2%/=1 — 2h=1 4}, holds.
Proof. We will follow the way, analogous to the proof of Theorem 1. By
Lemma 8 we have |TF|,|T| € {2271 + 2h=1 221 _ 2h=11 " Without loss
of generality we can assume that [7F| = 22=1 4 2h=1 | T—| = 2%h=1 — 2h—1,
Suppose that the affine rank of a spectrum support Sy is equal to k, and
the affine rank of T~ is equal to k=. Obviously, k= < 22—t — 2h=1 _ 1,
It is easy to see that by means of some affine transformation in F} it is
possible to embed the smallest coset contained the spectrum support Sy into
F¥®(0...0) such that some k=+1 vectors from T~ will transfer to the vectors
n—k

(0,0,0,...,0), (1,0,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1,0,...,0). The
—_——

Boolean function obtained as a result of this transformat{tion will be plateaued
with the same set of absolute values of Walsh coefficients, and with the same
values of k and k~. By Lemma 3 the variables from (k 4 1)th till nth in the
obtained functions will be fictitious. Deleting them and dividing all Walsh
coefficients by 2" % we obtain by Lemmas 2 and 3 a plateaued function
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defined on FX with a spectrum support of the same cardinality 2". Thus,
without loss of generality in the remained part of this section we will consider
just such a spectrum support.

Form the matrix M of size 4" x k. In the rows of M we write all vectors
from S;. In the first 22"~' +2"=" rows of M we write vectors from T'F, and in
the last 22/—1 —2"=1 rows of M we write vectors from 7. The left k~ columns
of M we call the left side of M, the remained k —k~ columns we call the right
side of M. The equality |T~| = 22"~1 — 21 follows k— < 22h~1 — 20" 1,

Denote by ¢; the columns from the right side of A, and by y; — the
variables corresponded to these columns. Denote by 5;“ the subcolumns
contained upper 2271 4+ 2h~1 elements of columns §;, respectively.

Lemma 31 For any set 0;,, ..., 6;,, 1 <s <k -k, of different columns
from the right side of M the equality wt(5;; + ...+ 6;) = 2" holds.

Proof. Denote H = {(z,y) € F¥|y;, + ...+ y;, = 0}. The hyperplane H
contains all 22#~1 —2"=1 yectors of T, therefore by Lemma 8 the hyperplane
H must contain 22h=1 —2/=1 or 2221 L 9h=1 yectors from T, but if H contains
22h=1 4 9h=1 yectors from T then H contains S¢. This is impossible, since
k is the dimension of the smallest coset contained Sy. Therefore H contains
4h — 2" vectors from Sy, and F§ \ H contains exactly 2" vectors from S;. O

Lemma 32 The right side of the matriz M contains at most h+1 columns.

Proof. Suppose that the right side of the matrix M contains m columns
81y -+ Om- Forcpy...,cp € {0,1} denote 67 (cy,...,cm) = €107 ... + e
Consider the sum

S = > wt(dt (e, em)).

Clyersem €{0,1}

Any term in S, besides the term that corresponds to zero vector, is equal to
2" by Lemma 31. Denote by r the number of rows among upper 22#~! 4 2/-1
rows of the matrix M that contain at least 1 one in the right side of the
matrix M. Note that if a row from the upper 22"~! 4+ 2"~1 rows of M
contains at least 1 such one then exactly 27! from 2™ — 1 nonzero vectors

6% (cy,-..,c3) have one in this row. Therefore S =2"(2™ — 1) =r-2m1. It
follows r = 21 — 2h=m+1 The value r is positive integer, therefore we have
m < h + 1, as was to be proved. O

The proof of Theorem 3 follows immediately from the structure of the matrix
M and Lemma 32.

For h = 2 the bound of Theorem 3 can not be achieved. We brave to
formulate the hypothesis.

20



Hypothesis. For any positive integer h the maximum possible affine rank

of a plateaued function with a spectrum support of cardinality 4" is equal to
2h+1 —9.
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