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Abstrat

The plateaued funtions have a big interest for the studying of bent

funtions and by the reason that many ryptographially important

funtions are plateaued. In this paper we study the possible values

of the aÆne rank of spetrum support for plateaued funtions. We

onsider for any positive integer h plateaued funtions with a spe-

trum support of ardinality 4

h

(the ardinality must have suh form),

give the bounds on the aÆne rank for suh funtions and onstrut

funtions where the aÆne rank takes all integer values from 2h till

2

h+1

� 2. We solve ompletely the problem for h = 2, namely, we

prove that the aÆne rank of any plateaued funtion with a spetrum

support of ardinality 16 is 4, 5 or 6.

1 Introdution and main de�nitions

We onsider F

2

n

, the vetor spae of n-tuples of elements from F

2

. An

n-variable Boolean funtion is a map from F

2

n

into F

2

. In this paper we

will denote a vetor from F

2

n

by a letter, whereas the omponent of this

vetor by the same letter equipped with low indies pointed to the number

of this omponent in a vetor. Vetors x

0

and x

00

are alled adjaent in

the ith omponent if they di�er only in the ith omponent. We denote by

x

i

the vetor that di�ers from x only in the ith omponent, i = 1; : : : ; n.

The omponent x

i

is alled �titious for a funtion f if for any vetors x

0

and x

00

adjaent in the ith omponent we have f(x

0

) = f(x

00

). The Hamming
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distane d(x

0

; x

00

) between two vetors x

0

and x

00

is the number of omponents

where vetors x

0

and x

00

di�er. For given funtion f from F

n

2

the minimum

of distanes d(f; l) where l ranges over the set of all aÆne funtions on F

n

2

is alled the nonlinearity of f and denoted by nl(f). The subfuntion of a

Boolean funtion f is the funtion f

0

obtained by a substitution of some

onstants 0 or 1 instead of some omponents in f .

It is well known that a funtion f on F

2

n

an be uniquely represented by

a polynomial (ANF) on F

2

whose degree in eah variable in eah term is at

most 1. Namely, f(x

1

; : : : ; x

n

) =

L

(a

1

;:::;a

n

)2F

n

2

g(a

1

; : : : ; a

n

)x

a

1

1

: : : x

a

n

n

, where g

is also a funtion on F

2

n

. This polynomial representation of f is alled the

algebrai normal form (briey, ANF) of the funtion and eah x

a

1

1

: : : x

a

n

n

is

alled a term in ANF of f . Sometimes the map f(x) ! g(x) is alled the

M�obius transform.

The algebrai degree of f , denoted by deg(f), is de�ned as the number of

variables in the longest term in ANF of f .

The weight wt(f) of a funtion f on F

n

2

is the number of vetors x from F

n

2

suh that f(x) = 1. The funtion f is alled balaned if wt(f) = wt(f � 1) =

2

n�1

(i. e. the funtion takes the values 0 and 1 at the same number of

vetors.

Let x = (x

1

; : : : ; x

n

) and u = (u

1

; : : : ; u

n

) be vetors of length n over F

2

.

The inner produt of x and u is the funtion de�ned as

< x; u >=

n

X

i=1

x

i

u

i

where the operations are produed over F

2

. By sum x + u of two vetors x

and u we understand their omponentwise addition over F

2

.

The Walsh transform of a Boolean funtion f is alled the integer valued

funtion on F

n

2

de�ned by the next way:

W

f

(u) =

X

x2F

n

2

(�1)

f(x)+<u;x>

:

For any u 2 F

n

2

the value W

f

(u) is alled the Walsh oeÆient. We will

all the Walsh oeÆients also the spetral oeÆients, and the set of all

2

n

Walsh oeÆients | the spetrum of a Boolean funtion. Walsh oef-

�ients satisfy the Inversion formula (�1)

f(x)

= 2

�n

P

u2F

n

2

W

f

(u)(�1)

<u;x>

and Parseval's identity

P

u2F

n

2

W

2

f

(u) = 2

2n

. The nonlinearity of a Boolean

funtion f is expressed via its Walsh oeÆients by the next way: nl(f) =

2

n�1

�

1

2

max

u2F

n

2

jW

f

(u)j.
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The set S

f

of all vetors u suh that W

f

(u) 6= 0 is alled the spetrum

support of a funtion f .

The Boolean funtion is alled a bent funtion if the values of its Walsh

oeÆients at all vetors are exatly �2

n=2

. Bent funtions exist for all even

n and do not exist for all odd n. A bent funtion is a funtion with maximum

possible nonlinearity 2

n�1

� 2

(n=2)�1

among all funtions of n variables for

even n. The Boolean funtion is alled plateaued if its Walsh oeÆients take

exatly three possible values: 0 and �2



for some integer . The plateaued

funtions have a big interest for the studying of bent funtions (for example,

by the reason that the deomposition of a bent funtion f = (x

i

+ 1)f

1

+

x

i

f

2

gives two plateaued funtions f

1

and f

2

) and by the reason that many

ryptographially important funtions are plateaued (for example,m-resilient

funtions of n variables with maximum possible nonlinearity 2

n�1

� 2

m+1

).

For plateaued funtions denote �(x) = 2

�

W

f

(x). Then for any x 2 F

n

2

the

value �(x) an take only three possible values: 0, �1 and 1. The set S

f

of all

vetors u suh that W

f

(u) 6= 0 is alled the spetrum support of a plateaued

funtion. We denote the set of all vetors x suh that �(x) = �1 by T

�

,

and the set of all vetors x suh that �(x) = 1 by T

+

. From Parseval's

identity it follows immediately that the ardinality of a spetrum support is

4

n�

. It is onvenient to onsider a bent funtion as the partiular ase of

a plateaued funtion for  = n=2 and jS

f

j = 2

n

that we will use below with

some stipulations. (Although often formally bent funtions are not referred

to plateaued funtions.) Plateaued funtions were investigated in di�erent

works, see, for example, [6, 7, 10℄.

For any u 2 F

2

n

the autoorrelation oeÆient of the funtion f at the

vetor u is de�ned as �

f

(u) =

P

x2F

2

n

(�1)

f(x)+f(x+u)

. The funtion D

u

f =

f(x) + f(x+ u) is alled the derivative of the funtion f in diretion u. The

vetor u 2 F

2

n

suh that D

u

f � onst is alled the linear struture of the

funtion f . It is easy to hek that the linear strutures of a funtion f

form a linear spae in F

n

2

. The existene of a nontrivial linear struture for

funtions is a ryptographi weakness in some ases (but not in all).

Let E be an arbitrary subset of F

n

2

. The rank of a set E is the dimension

of the subspae generated by E in F

n

2

. The aÆne rank of a set E is the

dimension of a smallest oset in F

n

2

that ontains E. The rank and the aÆne

rank of the spetrum support of a Boolean funtion will be denoted by k

and k, respetively. For the brevity in this paper the aÆne rank and the

rank of a Boolean funtion shortly will be alled by its aÆne rank and rank,

respetively. It is easy to understand that k 2 fk; k � 1g. It is well known

(see, for example, [2℄) that the dimension of the set of linear strutures of

a funtion f is equal to n � k. If there exists the vetor u 2 F

2

n

suh that

3



D

u

f � 1 then k = k+ 1. If suh vetor does not exist then k = k.

For additional fats about properties of Boolean funtions we refer to [8℄

and [9℄.

2 On aÆne transformations in F

n

2

The aÆne transformation in F

n

2

is the map x ! x

0

= Ax = xA

T

+ a where

A is a square nondegenerated matrix of order n over F

2

, and a is a vetor of

length n. The aÆne transformation is an automorphism F

n

2

that transfers all

osets to osets of the same dimension. If a = 0 then the aÆne transformation

is alled also linear.

The aÆne transformation of a funtion f de�ned on F

n

2

is the transfor-

mation f(x) ! f

0

(x) = f(Ax). If for funtions f and f

0

there exists an

aÆne transformation of a funtion that transfers f to f

0

then f and f

0

are

alled aÆne equivalent. If for funtions f and f

0

there exists the linear trans-

formation of a funtion that transfers f to f

0

then f and f

0

are alled linear

equivalent.

Lemma 1 Let f(x) ! f

0

(x) = f(Ax) be the aÆne transformation of a

funtion f de�ned on F

n

2

. Then W

f

0

(x)

(u) = (�1)

<a;uA

�1

>

�W

f

(uA

�1

).

Proof. By the formula for Walsh oeÆients we have

W

f

0

(x)

(u) =

X

x2F

n

2

(�1)

f

0

(x)+<x;u>

=

X

x2F

n

2

(�1)

f(Ax)+<x;u>

=

X

x2F

n

2

(�1)

f(x)+<A

�1

x;u>

=

X

x2F

n

2

(�1)

f(x)+<x;uA

�1

>+<a;uA

�1

>

=

(�1)

<a;uA

�1

>

�

X

x2F

n

2

(�1)

f(x)+<x;uA

�1

>

= (�1)

<a;uA

�1

>

�W

f

(uA

�1

):

ut

Suppose that a Boolean funtion f is de�ned on F

n

2

. The aÆne transfor-

mation of a spetrum of a funtion f is the transformationW

f

(x)! W

0

(x) =

W

f

(Ax). It is possible to show that oeÆients W

0

(x) are Walsh oeÆients

for some funtion f

0

that is not, generally speaking, aÆne equivalent to the

funtion f .

Lemma 2 Let W

f

(x)!W

0

(x) = W

f

(Ax) be the aÆne transformation of a

spetrum of a funtion f de�ned on F

n

2

. Then oeÆients W

0

(x) are Walsh

oeÆients for some funtion f

0

, moreover f

0

(x) = f(xA

�1

)+ < a; xA

�1

>.
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Proof. Chek that for all x 2 F

n

2

the sums in the inversion formula for

the hypotheti funtion f

0

(x) are �1. Denote

F (x) = 2

�n

X

u2F

n

2

W

0

(u)(�1)

<u;x>

:

We have

F (x) = 2

�n

X

u2F

n

2

W

0

(u)(�1)

<u;x>

= 2

�n

X

u2F

n

2

W

f

(Au)(�1)

<u;x>

=

2

�n

X

v2F

n

2

W

f

(v)(�1)

<A

�1

v;x>

= 2

�n

X

v2F

n

2

W

f

(v)(�1)

<v;xA

�1

>+<a;xA

�1

>

=

(�1)

<a;xA

�1

>

� 2

�n

X

v2F

n

2

W

f

(v)(�1)

<v;xA

�1

>

= (�1)

f(xA

�1

)+<a;xA

�1

>

:

Thus, for all x 2 F

n

2

we have F (x) = �1. Therefore the funtion f

0

(x) exists,

moreover, f

0

(x) = f(xA

�1

)+ < a; xA

�1

>. ut

The spetrum of funtions f and f

0

that obtained one from another by

an aÆne transformation of a spetrum are alled aÆne equivalent. The

spetrum of funtions f and f

0

that obtained one from another by a lin-

ear transformation of a spetrum are alled linear equivalent. Analogously,

the aÆne equivalene of funtions does not imply the aÆne equivalene of

their spetra. For example, by the reason that under the aÆne transfor-

mation of a funtion f the value wt(f) remains unhanged. Nevertheless,

wt(f) = 2

n�1

�

1

2

W

f

(0), therefore, transferring by the aÆne transformation

of a spetrum into 0 a vetor with another value of a Walsh oeÆient we

will obtain the funtion that is not aÆne equivalent to f . At the same time

Lemmas 1 and 2 imply that the linear transformation of a spetrum is the

linear transformation of a funtion, and vie versa.

Obviously, the aÆne transformation of a spetrum of a plateaued funtion

f transfers it to a spetrum of also plateaued funtion f

0

with the same ar-

dinality of a spetrum support, and the aÆne transformation of a plateaued

funtion f transfers it to a plateaued funtion f

0

with the same ardinality

of a spetrum support.

Lemma 3 Let f be a Boolean funtion de�ned on F

n

2

, moreover, the spe-

trum support of this funtion lies in F

l

2


 (0 : : : 0

| {z }

n�l

). Then the funtion f

depends on variables x

l+1

, . . . , x

n

�titiously. Let f

0

be a funtion on F

n

2

obtained from f by deleting of �titious variables x

l+1

, . . . , x

n

. Then for any

u from F

l

2

we have W

f

0

(u) = 2

�(n�l)

W

f

(u 0 : : : 0

| {z }

n�l

).

5



Proof. Let x and x

i

be an arbitrary pair of vetors adjaent in the ith

omponent, i 2 fl + 1; : : : ; ng. By the inversion formula we have

(�1)

f(x)

� (�1)

f(x

i

)

= 2

�n

X

u2F

n

2

W

f

(u)

h

(�1)

<x;u>

� (�1)

<x

i

;u>

i

=

2

�n

X

u2F

l

2


(0 : : : 0

| {z }

n�l

)

W

f

(u)

h

(�1)

<x;u>

� (�1)

<x

i

;u>

i

= 0:

Therefore f(x) = f(x

i

), and, thus, the variables x

l+1

, . . . , x

n

are really

�titious. Consider now the funtion f

0

on F

n

2

obtained from f be deleting

of �titious variables x

l+1

, . . . , x

n

. For any its Walsh oeÆient u 2 F

l

2

we

have

W

f

0

(u) =

X

x2F

l

2

(�1)

f

0

(x)+<x;u>

=

2

�(n�l)

X

x2F

n

2

(�1)

f(x)+<x;u0 : : : 0

| {z }

n�l

>

= 2

�(n�l)

W

f

(u 0 : : :0

| {z }

n�l

):

ut

Lemma 4 Let f be a Boolean funtion de�ned on F

n

2

. Let f

0

be a funtion

on F

n+1

2

de�ned as f

0

(x

1

, : : :, x

n

, x

n+1

) = f(x

1

; : : : ; x

n

) + x

n+1

. Then if u

is a vetor from F

n+1

2

that belongs to a spetrum support of the funtion f

0

then u

n+1

= 1 and W

f

0

(u

1

; : : : ; u

n

; 1) = 2W

f

(u

1

; : : : ; u

n

).

Proof. Suppose that u 2 F

n+1

2

. Group in the sum

W

f

0

(u) =

X

x2F

n+1

2

(�1)

f(x)+<x;u>

into pairs vetors x and x

n+1

that di�er only in (n + 1)th omponent. Let

x

n+1

= 0 for the de�niteness. For these vetors f

0

(x) = f

0

(x

n+1

) + 1 holds.

If u

n+1

= 0 then < x; u >=< x

n+1

; u >. It follows (�1)

f

0

(x)+<x;u>

+

(�1)

f

0

(x

n+1

)+<x

n+1

;u>

= 0. Therefore, W

f

0

(u) = 0. If u

n+1

= 1 then <

x; u >=< x

n+1

; u > +1. It follows (�1)

f

0

(x)+<x;u>

+ (�1)

f

0

(x

n+1

)+<x

n+1

;u>

=

2 �(�1)

f

0

(x)+<x;u>

= 2 �(�1)

f(x

1

;:::;x

n

)+<(x

1

;:::;x

n

);(u

1

;:::;u

n

)>

. Therefore, W

f

0

(u) =

2W

f

(u

1

; : : : ; u

n

). ut

Lemmas 1, 2, 3 imply that the study of plateaued funtions on F

n

2

with a

spetrum support of ardinality 4

h

an be redued in some sense to the study

of plateaued funtions with a spetrum support of the same ardinality 4

h

de�ned on F

k

2

. Moreover, if k > 2h then any plateaued funtion f

0

on F

n

2

6



with a spetrum support of ardinality 4

h

an be obtained from some funtion

f on F

k

2

with a spetrum support of the same ardinality 4

h

by adding of

n� k �titious variables and implementing of some linear transformation of

a funtion. The same result an be ahieved also in the ase if k = 2h and

W

f

0

(0) 6= 0 (in this ase the funtion f will be bent funtion). If k = 2h and

W

f

0

(0) = 0 then the mentioned linear transform of a funtion does not exist

but it is possible to use the aÆne transformation of a spetrum or to take a

funtion f of k + 1 variables.

Note that the mentioned redution an be insuÆient if it is neessary

to investigate additional properties of funtions not preserved under aÆne

transformations (for example, orrelation immunity).

Point also to the next property that allows to avoid the separate onsid-

eration of the problem on possible values taken by a rank k.

Lemma 5 If there exists a plateaued funtion with a spetrum support of

ardinality 4

h

and an aÆne rank taken the value k then there exist plateaued

funtions with a spetrum support of the same ardinality 4

h

and ranks taken

both values k = k and k = k+ 1.

Proof. By Lemma 2 an aÆne transformation of a spetrum support

of a plateaued funtion gives again the plateaued funtion with a spetrum

support of the same ardinality and with the same aÆne rank. If by some

aÆne transformation to transfer to 0 one of vetors lain in the smallest oset

ontained S

f

then for the obtained funtion, obviously, k = k will be hold.

If to transfer to 0 a vetor that does not lie in the smallest oset ontained

S

f

then for the obtained funtion k = k+ 1 holds. If for the initial funtion

there do not exist vetors that do not belong to the smallest oset ontained

S

f

(i. e. if k is equal to the number of variables) then it is possible simply to

add a �titious variable, and suh vetors will appear whereas the funtion

will remain plateaued with the same ardinality of a spetrum support. ut

All mentioned above follows that the aÆne rank is an important har-

ateristis of plateaued funtions. It is obvious, that the aÆne rank of any

plateaued funtion with a spetrum support of ardinality 4

h

is at least 2h

sine the smaller osets do not ontain 4

h

vetors. Any plateaued funtion

with a spetrum support of ardinality 1 is an aÆne funtion and, obviously,

its aÆne rank is equal to 0. It is well known that the aÆne rank of any

plateaued funtion with a spetrum support of ardinality 4 is equal to 2.

This fat was proved in [5℄ but it is evident that it was known muh more

early. The plateaued funtions with the spetrum support of ardinality 16

(without the name of plateaued) were onsidered, in fat, in [4℄. In the work

[2℄ for the sublass of plateaued funtions with a spetrum support of ar-

dinality 16 (more exatly, for ubi resilient funtions of order n� 4) it was

7



obtained the bound k � k � 9. In our paper we prove that the aÆne rank

of any plateaued funtion with a spetrum support of ardinality 16 is equal

to 4, 5 or 6. Besides, we onsider for any positive integer h the plateaued

funtions with a spetrum support of ardinality 4

h

, give the bounds on the

aÆne rank for suh funtions and onstrut funtions the aÆne rank of whih

takes all positive integer values from 2h till 2

h+1

� 2.

3 Auxiliary results

The next statement is well known (see, for example, the relation (2.16) in

[8℄). Earlier its proof was given in [3℄.

Lemma 6 Let f be a Boolean funtion on F

n

2

. Suppose that U is a linear

subspae of dimension l in F

n

2

, and U

?

is a spae orthogonal to U in F

n

2

. Let

v be an arbitrary vetor from F

n

2

. Then

X

u2U+v

W

f

(u) = 2

l

X

x2U

?

(�1)

f(x)+<x;v>

:

Lemma 7 [1℄ Let f be a plateaued funtion with a spetrum support of

ardinality 4

h

de�ned on F

n

2

. Suppose

P

a2F

n

2

�(a) = 2

h

. Then

P

a2F

n

2

�(a) 2

f�2

h

; 2

h

g.

Proof. Take in Lemma 6 in the apaity of a subspae U whole F

n

2

.

In the notations of Lemma 6 we have W

f

(u) = �(u) � 2

n�h

, l = n. Then

U

?

= f0g. Therefore,

X

u2F

n

2

W

f

(u) = 2

n

(�1)

f(0)

:

For the funtion f it follows

X

u2F

n

2

�(u) = 2

h

(�1)

f(0)

2 f�2

h

; 2

h

g:

ut

Lemma 8 Let f be a plateaued funtion with a spetrum support of ardi-

nality 4

h

de�ned on F

n

2

. Suppose

P

a2F

n

2

�(a) = 2

h

. Let H be an (n � 1)-

dimensional oset in F

n

2

. Then

P

a2H

�(a) 2 f0; 2

h

g.

8



Proof. In the notations of Lemma 6 we have W

f

(u) = �(u) � 2

n�h

,

l = n � 1. Therefore, Lemma 6 follows that

P

a2H

�(a) 2 f�2

h

; 0; 2

h

g. If the

sum is equal to �2

h

then

P

a2F

n

2

nH

�(a) = 2

h+1

that is impossible aording to

what has been said above. ut

The next statement is also well known (see, for example, Theorem 2.89

in [8℄).

Lemma 9 Let f be a Boolean funtion on F

n

2

. Suppose that U is a linear

subspae of dimension l in F

n

2

, and U

?

is a spae orthogonal to U in F

n

2

.

Then

X

u2U

W

2

f

(u) = 2

l

X

v2U

?

�

f

(v):

Lemma 10 Let f be a Boolean funtion on F

n

2

, n � 1. Then wt(f) is odd

if and only if deg(f) = n.

Proof is obvious (see, for example, Corollary 1 in [9℄). ut

Lemma 11 Let f be a Boolean funtion on F

n

2

, f 6� onst. Then 2

n�deg(f)

�

wt(f) � 2

n

� 2

n�deg(f)

.

Proof is obvious (see, for example, Lemma 5.6 in [8℄ or Lemma 3 in [9℄).

ut

Lemma 12 [6℄ Let f be a plateaued Boolean funtion on F

n

2

with a spetrum

support of ardinality 4

h

. Then deg(f) � h + 1.

Proof. Walsh oeÆients of the funtion f take values from the set

f0;�2

n�h

g. Consider the longest term x

i

1

x

i

2

: : : x

i

s

in the polynomial of the

funtion f (if there exist some longest terms then take one of them arbitrary).

It is possible to assume that s � 2, in the opposite ase the statement of

Lemma is automatially true. Use Lemma 6. Take in the apaity of U the

linear subspae U = fx 2 F

n

2

j x

i

1

= 0; : : : ; x

i

s

= 0g of dimension l = n � s,

take 0 as the vetor v. Then by Lemma 10 the orthogonal spae U

?

ontains

odd number of vetors x suh that f(x) = 1. Therefore the sum

P

x2U

?

(�1)

f(x)

is not divided by 4 for s � 2. Hene, in the equality

X

u2U

W

f

(u) = 2

n�s

X

x2U

?

(�1)

f(x)

the left part is divided by 2

n�h

whereas the right part is not divided by

2

n�s+2

. It follows n�h < n� s+2. Taking into aount that all oeÆients

are integer we obtain s � h+ 1, as was to be proved. ut
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Lemma 13 Let f be a plateaued Boolean funtion on F

n

2

with a spetrum

support of ardinality 4

h

. Suppose that H is an (n� 1)-dimensional oset in

F

n

2

. Then either

P

u2H

j�(u)j = 0, or

P

u2H

j�(u)j = 4

h

, or 2

h

�

P

u2H

j�(u)j �

4

h

� 2

h

.

Proof. Let at �rst that H is a linear subspae in F

n

2

. Then H

?

= f0; vg

for some nonzero v 2 F

n

2

. Obviously, �

f

(0) = 2

n

. By Lemma 9 we have

4

n�h

X

u2H

j�(u)j = 2

n�1

(2

n

+�

f

(v)) = 4

n

� 2

n

wt(D

v

f):

By Lemma 12 the inequality deg(f) � h + 1 holds. The funtion D

v

f is

the derivative of the funtion f , therefore, deg(D

v

f) � h. If D

v

f � 0 then

P

u2H

j�(u)j = 4

h

. If D

v

f � 1 then

P

u2H

j�(u)j = 0. If D

v

f 6� onst then by

Lemma 11 we have 2

n�h

� wt(D

v

f) � 2

n

�2

n�h

. It follows 2

h

�

P

u2H

j�(u)j �

4

h

� 2

h

, as was to be proved. For the oset F

n

2

nH the same three ases take

plae by the proved above and Parseval's identity. ut

Lemma 14 Let f

1

, f

2

be Boolean funtions on F

n

2

, and let f be a Boolean

funtion on F

n+1

2

, moreover, f(xx

n+1

) = (x

n+1

+ 1)f

1

(x) + x

n+1

f

2

(x). Then

W

f

(u0) = W

f

1

(u) +W

f

2

(u) and W

f

(u1) = W

f

1

(u)�W

f

2

(u).

This Lemma is very well known. In fat, the Fast Walsh Transform is

based on its appliation. ut

4 On aÆne rank of Boolean funtions with

spetrum support of ardinality 16

In all statements of this setion we suppose that f is a plateaued Boolean

funtion on F

n

2

and jS

f

j = 16. In this ase  = n�2. By Lemma 7 one of two

ases takes plae: jT

+

j = 10, jT

�

j = 6, or jT

+

j = 6, jT

�

j = 10. Taking into

aount that for all u the relation W

f

(u) = �W

f+1

(u) holds, it is possible

without loss of generality to assume jT

+

j = 10, jT

�

j = 6, that we will do

in the remained part of this setion. Thus, we have jS

f

j = 16, jT

+

j = 10,

jT

�

j = 6.

Our aim is to prove the next theorem.

Theorem 1. Let f be a plateaued funtion, jS

f

j = 16. Then for the aÆne

rank k of the spetrum support S

f

the inequality k � 6 holds.

The proof of Theorem 1 will be obtained by the proofs of several lemmas.

10



Suppose that the aÆne rank of the spetrum support S

f

is k, and the

aÆne rank of T

�

is k

�

. Obviously, 3 � k

�

� 5. It is easy to see that by

means of some aÆne transformation in F

n

2

it is possible to embed the smallest

oset ontaining the spetrum support S

f

into F

k

2


 (0 : : : 0

| {z }

n�k

) suh that some

k

�

+ 1 vetors from T

�

will be transferred to the vetors (0; 0; 0; : : : ; 0),

(1; 0; 0; : : : ; 0), (0; 1; 0; : : : ; 0), . . . , (0; 0; : : : ; 0; 1

| {z }

k

�

; 0; : : : ; 0). Note that after

suh transformation all vetors from T

�

will be transferred to the vetors

that have all zeroes in all omponents i, i > k

�

. Note that the aÆne trans-

formation of the spetrum desribed above, generally speaking, is not an

aÆne transformation of a funtion f , but we do not need this. It is suÆ-

ient for us that the Boolean funtion obtained as a result of this map will

be plateaued with the same set of absolute values of Walsh oeÆients, and

the same values k and k

�

. By Lemma 3 all variables from (k + 1)th till

nth in the obtained funtion will be �titious. Deleting them and dividing

all Walsh oeÆients by 2

n�k

, by Lemmas 2 and 3 we obtain a plateaued

funtion de�ned on F

k

2

with a spetrum support of the same ardinality 16.

Thus, without loss of generality in the remained part of this setion we will

onsider just suh a spetrum support.

Lemma 15 Let H be a (k � 1)-dimensional oset in F

k

2

. Then

P

a2H

�(a) 2

f0; 4g.

Proof. The statement of Lemma is a partiular ase of Lemma 8. ut

Lemma 16 [2℄ Let H be a (k�1)-dimensional oset in F

k

2

. Then H ontains

4, 6, 8, 10 or 12 vetors from S

f

.

Proof. By Lemma 15 the oset H ontains even number of vetors from S

f

.

The ases 2 and 14 are impossible by Lemma 13. If H ontains 16 vetors

from S

f

then S

f

is ontained in H; if H ontains 0 vetors from S

f

then S

f

is ontained in F

k

2

n H. The both last ases are impossible sine F

k

2

is the

smallest oset that ontains the spetrum support S

f

. ut

Our aim is to prove that k � 6. Assume the onverse. Suppose that

k � 7. We will prove that this is impossible.

We form the matrix M of size 16� 7. In the rows of M we write �rst 7

omponents of the vetors from S

f

(in the ase k > 7 we omit all omponents

after 7th). In �rst 10 rows ofM we write vetors from T

+

, and in last 6 rows

of M we write vetors from T

�

. The left k

�

olumns of M we all the left

side of M , the remained 7� k

�

olumns we all the right side of M .
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

I 0

0 : : : 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Denote by 

i

the olumns from the left side ofM , and by x

i

the variables

orrespondent to these olumns. Denote by Æ

j

the olumns from the right

side ofM and by y

j

the variables orrespondent to these olumns. We denote

by 

+

i

and Æ

+

j

the subolumns ontained upper 10 elements of olumns 

i

and

Æ

j

, respetively.

Lemma 17 For any set Æ

j

1

, . . . , Æ

j

s

, 1 � s � 7 � k

�

, of di�erent olumns

from the right side of M we have wt(Æ

+

j

1

+ : : :+ Æ

+

j

s

) = 4.

Proof. Denote H = f(x; y) 2 F

k

2

j y

j

1

+ : : : + y

j

s

= 0g. The hyperplane H

ontains all 6 vetors of T

�

, therefore by Lemma 15 the hyperplane H must

ontain 6 or 10 vetors from T

+

, but if H ontains 10 vetors from T

+

then

H ontains S

f

. This is impossible sine k is the dimension of the smallest at

ontained S

f

. Therefore H ontains 12 vetors from S

f

, and F

n

2

nH ontains

exatly 4 vetors from S

f

. ut

Lemma 18 There exist at most 3 olumns satisfying the ondition of Lemma

17. Without loss of generality it is possible to hoose these olumns as

Æ

+

1

= (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

T

, Æ

+

2

= (0; 0; 0; 0; 1; 1; 0; 0; 1; 1)

T

, Æ

+

3

=

(0; 0; 0; 1; 0; 1; 0; 1; 0; 1)

T

.

Proof. It is easy to hek that the vetors Æ

+

1

, Æ

+

2

, Æ

+

3

given above an be

hosen without the loss of generality. Suppose that it is possible to add

some vetor Æ

+

4

to this set. For 

1

; 

2

; 

3

2 f0; 1g denote Æ

+

(

1

; 

2

; 

3

) =



1

Æ

+

1

+ 

2

Æ

+

2

+ 

3

Æ

+

3

. Consider the sum

S =

X



1

;

2

;

3

2f0;1g

d(Æ

+

4

; Æ

+

(

1

; 

2

; 

3

)):

Note that for any row from 4th till 10th exatly 4 of 8 vetors Æ

+

(

1

; 

2

; 

3

)

have one in this row. Therefore S = 28+8w

0

= 32 where w

0

is the number of

ones in rows 1{3 in Æ

+

4

. It follows that w

0

= 0:5 but w

0

is an integer number.

This ontradition proves Lemma 18. ut
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Lemma 19 The right side of the matrix M ontains at most 3 olumns.

Proof. It follows from Lemmas 17 and 18. ut

Lemma 19 follows that the ase k

�

= 3 is impossible. The remained ases

are k

�

= 4 and k

�

= 5.

Lemma 20 Let 

i

be a olumn from the left side of the matrix M . Suppose

that 

i

ontains 1 one and 5 zeroes in low 6 rows. Then wt(

+

i

) = 5.

Proof. Denote H = f(x; y) 2 F

k

2

j x

i

= 0g. By the hypothesis of Lemma

the hyperplane H ontains exatly 5 vetors of T

�

, therefore by Lemma 15

the hyperplane H must ontain 5 or 9 vetors from T

+

, but if H ontains

9 vetors from T

+

then H ontains exatly 14 vetors from S

f

. This is

impossible by Lemma 16. It follows that wt(

+

i

) = 5. ut

Lemma 21 Let 

i

be a olumn from the left side of the matrix M . Suppose

that 

i

ontains 2 ones and 4 zeroes in low 6 row. Then wt(

+

i

) 2 f2; 6g.

Proof. Denote H = f(x; y) 2 F

k

2

j x

i

= 0g. The hyperplane H ontains

exatly 4 vetors from T

�

, therefore by Lemma 15 the hyperplane H must

ontain 4 or 8 vetors from T

+

. It follows that wt(

+

i

) = 2 or 6. ut

Consider now separately the ases k

�

= 4 and k

�

= 5.

Case k

�

= 5.

In this ase the right side of the matrix M ontains two olumns. By

Lemma 18 without loss of generality we an assume that these olumns are

Æ

1

= (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

T

, Æ

2

= (0; 0; 0; 0; 1; 1; 0; 0; 1; 1)

T

. Without loss

of generality we an assume that the matrix M has the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � � 0 0

� � � � � 0 0

� � � � � 0 0

� � � � � 0 0

� � � � � 0 1

� � � � � 0 1

� � � � � 1 0

� � � � � 1 0

� � � � � 1 1

� � � � � 1 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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By Lemma 20 we have that all olumns 

+

i

, i = 1; 2; 3; 4; 5, ontain exatly

5 ones.

Lemma 22 Let k

�

= 5. Then for 1 � i

1

< i

2

� 5, we have d(

+

i

1

; 

+

i

2

) 2

f2; 6g.

Proof. DenoteH = f(x; y) 2 F

k

2

j x

i

1

+x

i

2

= 0g. The hyperplane H ontains

exatly 4 vetors from T

�

, therefore by Lemma 15 the hyperplane H must

ontain 4 or 8 vetors from T

+

. It follows that d(

+

i

1

; 

+

i

2

) = wt(

+

i

1

+ 

+

i

2

) 2

f2; 6g. ut

Lemma 23 Let k

�

= 5. Then for any i 2 f1; 2; 3; 4; 5g, 

1

; 

2

2 f0; 1g, we

have d(

+

i

; 

1

Æ

+

1

+ 

2

Æ

+

2

) = 5.

Proof. Denote H = f(x; y) 2 F

k

2

j x

i

+ 

1

y

1

+ 

2

y

2

= 0g. The hyperplane H

ontains exatly 5 vetors from T

�

, therefore by Lemma 15 the hyperplane

H must ontain 5 or 9 vetors from T

+

. But if H ontains 9 vetors from T

+

,

then H ontains exatly 14 vetors from S

f

. This is impossible by Lemma

16. It follows that d(

+

i

; 

1

Æ

+

1

+ 

2

Æ

+

2

) = wt(

+

i

+ 

1

Æ

+

1

+ 

2

Æ

+

2

) = 5. ut

Lemma 24 Let k

�

= 5. Then for any i, i 2 f1; 2; 3; 4; 5g, the olumn 

+

i

ontains exatly 2 ones in rows 1{4, exatly 1 one in rows 5; 6, exatly 1 one

in rows 7; 8, exatly 1 one in rows 9; 10.

Proof. If 

+

i

ontains 0 ones in rows 9; 10 then d(

+

i

; Æ

+

1

) = d(

+

i

; Æ

+

2

) = 5

follows that 

+

i

ontains only ones in rows 5; 6; 7; 8. But in this ase d(

+

i

; Æ

+

1

+

Æ

+

2

) = 1 that ontradits to Lemma 23. If 

+

i

ontains 2 ones in rows 9; 10

then d(

+

i

; Æ

+

1

) = d(

+

i

; Æ

+

2

) = 5 follows that 

+

i

ontains only zeroes in rows

5; 6; 7; 8. But in this ase d(

+

i

; Æ

+

1

+ Æ

+

2

) = 9 that ontradits to Lemma 23.

Therefore 

+

i

ontains exatly 1 one in rows 9; 10. It follows that 

+

i

ontains

exatly 1 one in rows 7; 8, exatly 1 one in rows 5; 6 and exatly 2 ones in

rows 1{4. ut

Lemma 25 The ase k

�

= 5 is impossible.

Proof. There exist 3 pairs of opposite vetors of the length 4 with exatly 2

ones. Therefore there exist two olumns 

i

1

and 

i

2

, i

1

6= i

2

, in the left side of

M that are either the same or the opposite inside of �rst 4 rows. Let 

i

3

be

some other olumn in the left side of M , i

1

6= i

3

, i

2

6= i

3

. Then from Lemma

24 it is easy to see that every group of rows (1{4), (5; 6), (7; 8), (9; 10) gives

to the sum S = d(

+

i

1

; 

+

i

2

) + d(

+

i

1

; 

+

i

3

) + d(

+

i

2

; 

+

i

3

) the ontribution divided

by 4. Therefore the sum S is divided by 4. On the other hand, by Lemma 22

all terms in S are ongruent 2 modulo 4. Therefore S is ongruent 2 modulo

4 too. This ontradition proves the Lemma. ut

Thus, we have proved that the ase k

�

= 5 is impossible.

14



Case k

�

= 4.

In this ase the right side of the matrixM ontains exatly three olumns.

By Lemma 18 without loss of generality we an assume that these olumns

are Æ

1

= (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

T

, Æ

2

= (0, 0, 0, 0, 1, 1, 0, 0, 1, 1)

T

,

Æ

3

= (0; 0; 0; 1; 0; 1; 0; 1; 0; 1)

T

. Without loss of generality we an assume that

the matrix M has the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 1

� � � � 0 1 0

� � � � 0 1 1

� � � � 1 0 0

� � � � 1 0 1

� � � � 1 1 0

� � � � 1 1 1

� � � � 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Let 

1

; 

2

; 

3

2 f0; 1g. Denote Æ

+

(

1

; 

2

; 

3

) = 

1

Æ

+

1

+ 

2

Æ

+

2

+ 

3

Æ

+

3

.

Lemma 26 Let k

�

= 4. Then any olumn 

i

in the left side of the matrix

M an not have zero in 11th row.

Proof. Suppose that some olumn 

i

have zero in 11th row. Then by

Lemma 20 we have wt(

+

i

) = 5. By the same way like to the proof of

Lemma 23 it is possible to show that for any 

1

; 

2

; 

3

2 f0; 1g we have

d(

+

i

; Æ

+

(

1

; 

2

; 

3

)) = 5. Consider the sum

S =

X



1

;

2

;

3

2f0;1g

d(

+

i

; Æ

+

(

1

; 

2

; 

3

)):

Note that for any row from 4th till 10th exatly 4 of 8 vetors Æ

+

(

1

; 

2

; 

3

)

have one in this row. Therefore S = 28 + 8w

0

= 40 where w

0

is the number

of ones in 

i

in rows from 1st till 3rd. It follows that w

0

= 1:5 but w

0

is an

integer number. This ontradition proves Lemma 26. ut

Lemma 26 follows that without loss of generality the 11th row of M is

(1111000) and the matrix M has the form
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 0

� � � � 0 0 1

� � � � 0 1 0

� � � � 0 1 1

� � � � 1 0 0

� � � � 1 0 1

� � � � 1 1 0

� � � � 1 1 1

1 1 1 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Lemma 27 Let k

�

= 4. Then for any 1 � i

1

< i

2

� 4 we have d(

+

i

1

; 

+

i

2

) 2

f2; 6g.

Proof. DenoteH = f(x; y) 2 F

k

2

j x

i

1

+x

i

2

= 0g. The hyperplane H ontains

exatly 4 vetors from T

�

, therefore by Lemma 15 the hyperplane H must

ontain 4 or 8 vetors from T

+

. It follows that d(

+

i

1

; 

+

i

2

) 2 f2; 6g. ut

Lemma 28 Let k

�

= 4. Then any olumn 

i

in the left side of the matrix

M has exatly 2 ones in rows from 1st till 3rd and oinides with a vetor

Æ

+

(

1

; 

2

; 

3

) in rows from 4th till 10th for some 

1

; 

2

; 

3

2 f0; 1g.

Proof. By Lemma 21 we have wt(

+

i

) 2 f2; 6g. By the same way it is

possible to show that for any 

1

; 

2

; 

3

2 f0; 1g we have d(

+

i

; Æ

+

(

1

; 

2

; 

3

)) 2

f2; 6g.

Suppose that wt(

+

i

) = 2. If 

+

i

does not ontain both its ones in rows

from 1st till 3rd then it is easy to �nd some 

1

; 

2

; 

3

2 f0; 1g suh that

the vetor Æ

+

(

1

; 

2

; 

3

) ontains exatly 1 one in two rows where 

+

i

has

ones. Then we have d(

+

i

; Æ

+

(

1

; 

2

; 

3

)) = 4 that is impossible. Therefore



+

i

ontains both ones in rows from 1st till 3rd and oinides with the vetor

Æ

+

(0; 0; 0) in rows from 4th till 10th, i. e. 

+

i

has the desired form.

Now suppose that wt(

+

i

) = 6. Consider the sum

S =

X



1

;

2

;

3

2f0;1g

d(

+

i

; Æ

+

(

1

; 

2

; 

3

)):

16



Note that for any row from the group (4{10) exatly 4 of 8 vetors Æ

+

(

1

; 

2

; 

3

)

have one in this row. Therefore S = 28 + 8w

0

where w

0

is the number of

ones in rows from 1st till 3rd in 

i

. If for any 

1

; 

2

; 

3

2 f0; 1g we have

d(

+

i

; Æ

+

(

1

; 

2

; 

3

)) = 6 then S = 48 and w

0

= 2:5, but w

0

is an integer

number. Therefore there exists the set of values 

1

; 

2

; 

3

2 f0; 1g suh that

d(

+

i

; Æ

+

(

1

; 

2

; 

3

)) = 2. Denote Æ

+

(

1

; 

2

; 

3

) by Æ

+

0

. Then wt(

+

i

+ Æ

+

0

) = 2

and for any 

1

; 

2

; 

3

2 f0; 1g we have d(

+

i

+ Æ

+

0

; Æ

+

(

1

; 

2

; 

3

)) 2 f2; 6g. As it

was pointed out in the beginning of this proof the vetor 

+

i

+ Æ

+

0

must have

exatly 2 ones in rows from 1st till 3rd, and only zeroes in rows from 4th till

10th. Hene, the vetor 

+

i

has exatly 2 ones in rows from 1st till 3rd and

oinides with the vetor Æ

+

0

in rows from 4th till 10th. ut

Lemma 29 The ase k

�

= 4 is impossible.

Proof. By Lemma 28 all olumns 

i

in the left side of M have exatly

2 ones in rows from 1st till 3rd. The left side of M ontains 4 olumns,

therefore there exist olumns 

i

1

and 

i

2

, 1 � i

1

< i

2

� 4 that oinide

in rows from 1st till 3rd. In rows from 4th till 10th the olumns 

i

1

and



i

2

oinide by Lemma 28 with some vetors Æ

+

(

0

1

; 

0

2

; 

0

3

) and Æ

+

(

00

1

; 

00

2

; 

00

3

),

respetively. By Lemma 17 we have d(Æ

+

(

0

1

; 

0

2

; 

0

3

); Æ

+

(

00

1

; 

00

2

; 

00

3

)) 2 f0; 4g.

It follows d(

+

i

1

; 

+

i

2

) 2 f0; 4g that ontradits to Lemma 27. ut

All ases are onsidered. Theorem 1 is proved.

Thus, we obtained that the aÆne rank of a plateaued funtion with a

spetrum support of ardinality 16 an not take another values with the

exeption of 4, 5 and 6. The funtions with suh parameters are known and

their examples were given, for example, in [2℄. We will not give examples

in this setion separately. These examples will be onstruted in the next

setion in the framework of a general onstrution.

5 Bounds on aÆne rank of plateaued fun-

tions with arbitrary ardinality of spetrum

support

Lemma 30 Suppose that there exists a plateaued funtion with a spetrum

support of ardinality 4

h

and the aÆne rank k. Then for any positive integer

s satis�ed inequalities k + 2 � s � 2k + 2 there exists a plateaued funtion

with a spetrum support of ardinality 4

h+1

and the aÆne rank s.

Proof. If there exists a plateaued funtion with a spetrum support of

ardinality 4

h

and the aÆne rank k then by Lemmas 2 and 3 starting with

17



this funtion by means of an aÆne transformation of a spetrum and following

deleting of �titious variables it is possible to obtain the plateaued funtion

f on F

k

2

with a spetrum support of ardinality 4

h

, moreover, this spetrum

support of f will ontain the zero vetor as well as all vetors of weight

1. Consider the funtion f

1

(x

1

; : : : ; x

s

) = f(x

s�k

; : : : ; x

s�1

) + x

s

on F

s

2

(the

variables x

1

, : : :, x

s�k�1

will be �titious for the funtion f

1

). By Lemmas 3

and 4 the funtion f

1

will be plateaued again with the same ardinality of a

spetrum support, moreover, to all vetors from S

f

in the spetrum support

of S

f

1

it will be assigned s � k � 1 zeroes from the left side, and it will be

assigned one from the right side. The linear subspae of dimension k in F

k

2

ontained S

f

passing to the funtion f

1

will transfer to the oset of dimension

k in F

s

2

ontained S

f

1

whih is not a linear spae. Therefore the rank of the

funtion f

1

is equal to k + 1. Note that the spetrum support S

f

1

ontains

the next vetors: all vetors of weight 2 with ones in the omponents i and s,

i = s�k; : : : ; s�1, and also the vetor of weight 1 with one in the omponent

s. Form the funtion

f

2

(x

1

; : : : ; x

s

) = f

1

(x

s

; : : : ; x

1

)

on F

s

2

renaming all variables of f

1

in reverse order. It is lear that the funtion

f

2

has the properties, analogous to the properties of the funtion f

1

. The

spetrum support S

f

2

ontains among others the next vetors: all vetors of

weight 2 with ones in the omponents 1 and i, i = 2; : : : ;k+ 1, and also the

vetor of weight 1 with one in the omponent 1. Note that all vetors from

S

f

1

have zero in the �rst omponent whereas all vetors from S

f

2

have one in

the �rst omponent. Therefore the sets S

f

1

and S

f

2

in F

s

2

do not interset.

Form the funtion

f

0

(x

1

; : : : ; x

s+1

) = (x

s+1

+ 1)f

1

(x

1

; : : : ; x

s

) + x

s+1

f

2

(x

1

; : : : ; x

s

)

on F

s+1

2

. By Lemma 14 for any u 2 F

s

2

we have W

f

0

(u0) = W

f

1

(u)+W

f

2

(u),

W

f

(u1) = W

f

1

(u) �W

f

2

(u). As it was pointed out above, the sets S

f

1

and

S

f

2

in F

s

2

do not interset. Therefore any vetor u from S

f

1

or S

f

2

in F

s

2

will

give exatly two vetors u0 and u1 ontained in the spetrum support S

f

0

of

the funtion f

0

on F

s+1

2

, moreover, the values of nonzero Walsh oeÆients

of the funtion f

0

will be the same as the values of nonzero Walsh oeÆients

of the funtions f

1

and f

2

. Thus, the ardinality of S

f

0

is equal to 4

h+1

, and

the funtion f

0

is also a plateaued funtion.

The said above follows that S

f

0

ontains all vetors of weight 2 with ones

in the omponents 1 and i, i = 2; : : : ;k+1, all vetors of weight 2 with ones

in the omponents i and s, i = s � k; : : : ; s � 2; s � 1; s + 1, and also the

vetors of weight 1 with one in the omponents 1, s. It is easy to see that the

18



rank of the system of vetors pointed out above is equal to s+ 1. Therefore

the rank of the funtion f

0

on F

s+1

2

is equal to s + 1. At the same time for

any vetor from S

f

0

the sum of values of 1st and sth omponents is equal to

1. Therefore S

f

belongs to the hyperplane H = fx 2 F

s+1

2

j x

1

+x

s

= 1g, and

the aÆne rank of the funtion f

0

is smaller than s + 1 but it is not smaller

than the rank of the funtion f

0

minus 1. It follows that the aÆne rank of

the funtion f

0

is equal to s. Thus, the desired funtion is onstruted. ut

Theorem 2. For any positive integer k satis�ed inequalities 2h � k � 2

h+1

�

2 there exists a plateaued funtion with a spetrum support of ardinality 4

h

and the aÆne rank k.

Proof. The proof is by indution on h. For h = 1 the value k an be only 2.

The example of suh funtion is, for example, bent funtion x

1

x

2

on F

2

2

. (If

we do not want to onsider bent funtion as a plateaued funtion then add

to it a �titious variable.) If the statement of Theorem holds for h then its

validity for h+ 1 follows immediately from Lemma 30. ut

Corollary. The aÆne rank of a plateaued funtion with a spetrum support

of ardinality 16 an take only values 4, 5 and 6.

Proof. The upper bound k � 6 is proved in Theorem 1. The lower bound

k � 4 is obvious. The existene of funtions with k = 4; 5; 6 follows from

Theorem 2. Note that examples of suh funtions were given in [2℄. ut

A trivial upper bound for the aÆne rank k of a plateaued funtion with a

spetrum support of ardinality 4

h

is k � 4

h

� 1. Here we give an improved

bound.

Theorem 3. Let f be a plateaued funtion, jS

f

j = 4

h

. Then for the aÆne

rank k of a spetrum support S

f

the inequality k � 2

2h�1

� 2

h�1

+ h holds.

Proof. We will follow the way, analogous to the proof of Theorem 1. By

Lemma 8 we have jT

+

j; jT

�

j 2 f2

2h�1

+ 2

h�1

; 2

2h�1

� 2

h�1

g. Without loss

of generality we an assume that jT

+

j = 2

2h�1

+ 2

h�1

, jT

�

j = 2

2h�1

� 2

h�1

.

Suppose that the aÆne rank of a spetrum support S

f

is equal to k, and

the aÆne rank of T

�

is equal to k

�

. Obviously, k

�

� 2

2h�1

� 2

h�1

� 1.

It is easy to see that by means of some aÆne transformation in F

n

2

it is

possible to embed the smallest oset ontained the spetrum support S

f

into

F

k

2


(0 : : : 0

| {z }

n�k

) suh that some k

�

+1 vetors from T

�

will transfer to the vetors

(0; 0; 0; : : : ; 0), (1; 0; 0; : : : ; 0), (0; 1; 0; : : : ; 0), . . . , (0; 0; : : : ; 0; 1

| {z }

k

�

; 0; : : : ; 0). The

Boolean funtion obtained as a result of this transformation will be plateaued

with the same set of absolute values of Walsh oeÆients, and with the same

values of k and k

�

. By Lemma 3 the variables from (k+1)th till nth in the

obtained funtions will be �titious. Deleting them and dividing all Walsh

oeÆients by 2

n�k

we obtain by Lemmas 2 and 3 a plateaued funtion
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de�ned on F

k

2

with a spetrum support of the same ardinality 2

h

. Thus,

without loss of generality in the remained part of this setion we will onsider

just suh a spetrum support.

Form the matrix M of size 4

h

� k. In the rows of M we write all vetors

from S

f

. In the �rst 2

2h�1

+2

h�1

rows ofM we write vetors from T

+

, and in

the last 2

2h�1

�2

h�1

rows ofM we write vetors from T

�

. The left k

�

olumns

ofM we all the left side of M , the remained k�k

�

olumns we all the right

side of M . The equality jT

�

j = 2

2h�1

� 2

h�1

follows k

�

� 2

2h�1

� 2

h�1

� 1.

Denote by Æ

j

the olumns from the right side of M , and by y

j

| the

variables orresponded to these olumns. Denote by Æ

+

j

the subolumns

ontained upper 2

2h�1

+ 2

h�1

elements of olumns Æ

j

, respetively.

Lemma 31 For any set Æ

j

1

, . . . , Æ

j

s

, 1 � s � k � k

�

, of di�erent olumns

from the right side of M the equality wt(Æ

+

j

1

+ : : :+ Æ

+

j

s

) = 2

h

holds.

Proof. Denote H = f(x; y) 2 F

k

2

j y

j

1

+ : : : + y

j

s

= 0g. The hyperplane H

ontains all 2

2h�1

�2

h�1

vetors of T

�

, therefore by Lemma 8 the hyperplane

H must ontain 2

2h�1

�2

h�1

or 2

2h�1

+2

h�1

vetors from T

+

, but ifH ontains

2

2h�1

+ 2

h�1

vetors from T

+

then H ontains S

f

. This is impossible, sine

k is the dimension of the smallest oset ontained S

f

. Therefore H ontains

4

h

� 2

h

vetors from S

f

, and F

n

2

nH ontains exatly 2

h

vetors from S

f

. ut

Lemma 32 The right side of the matrix M ontains at most h+1 olumns.

Proof. Suppose that the right side of the matrix M ontains m olumns

Æ

1

, : : :, Æ

m

. For 

1

; : : : ; 

m

2 f0; 1g denote Æ

+

(

1

; : : : ; 

m

) = 

1

Æ

+

1

: : : + 

m

Æ

+

m

.

Consider the sum

S =

X



1

;:::;

m

2f0;1g

wt(Æ

+

(

1

; : : : ; 

m

)):

Any term in S, besides the term that orresponds to zero vetor, is equal to

2

h

by Lemma 31. Denote by r the number of rows among upper 2

2h�1

+2

h�1

rows of the matrix M that ontain at least 1 one in the right side of the

matrix M . Note that if a row from the upper 2

2h�1

+ 2

h�1

rows of M

ontains at least 1 suh one then exatly 2

m�1

from 2

m

� 1 nonzero vetors

Æ

+

(

1

; : : : ; 

3

) have one in this row. Therefore S = 2

h

(2

m

� 1) = r � 2

m�1

. It

follows r = 2

h+1

� 2

h�m+1

. The value r is positive integer, therefore we have

m � h+ 1, as was to be proved. ut

The proof of Theorem 3 follows immediately from the struture of the matrix

M and Lemma 32.

For h = 2 the bound of Theorem 3 an not be ahieved. We brave to

formulate the hypothesis.
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Hypothesis. For any positive integer h the maximum possible aÆne rank

of a plateaued funtion with a spetrum support of ardinality 4

h

is equal to

2

h+1

� 2.
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