
One-Time Signatures Revisited: Have They Become Practical?

Dalit Naor∗ Amir Shenhav† Avishai Wool‡

December 2, 2005

Abstract

One-time signatures have been known for more than two decades, and have been studied
mainly due to their theoretical value. Recent works motivated us to examine the practical use
of one-time signatures in high-performance applications. In this paper we describe FMTseq — a
signature scheme that merges recent improvements in hash tree traversal into Merkle’s one-time
signature scheme. Implementation results show that the scheme provides a signature speed of
up to 35 times faster than a 2048-bit RSA signature scheme, for about one million signatures,
and a signature size of only a few kilobytes. We provide an analysis of practical parameter
selection for the scheme, and improvements that can be applied in more specific scenarios.

1 Introduction

1.1 Motivation

Commonly used digital signature algorithms, like RSA, are not sufficiently fast for many appli-
cations. As an example application, consider a financial news service that wishes to sign all its
messages: such a service requires both low latency and high bandwidth. An efficient alternative to
a digital signature is a Message Authentication Code (MAC). However, a MAC does not provide
the asymmetry between the signer and the verifier which digital signatures provide — anyone who
can verify the signature can also sign.

One-time signatures [Mer89], on the other hand, are digital signatures that are based on one-way
functions without a trapdoor, thus they are much faster. One-time signatures have been known for
more than two decades, but are usually considered to be impractical. This is due to their complex
key management problems, and the fact that their signature length is significantly larger.

Over the last few years, there has been some increased interest in one-time signatures, mainly
due to the multicast authentication problem (cf. [Per01]). New signature schemes have been pre-
sented, with key management solutions for some limited scenarios. These techniques and other
efficient algorithms that improved key management aspects led us to re-examine whether one-time
signatures can be made practical for high-performance tasks.

∗IBM Haifa Research labs, Tel Aviv, Israel. dalit@il.ibm.com.
†School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel. amir.shenhav@gmail.com.
‡School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel. Supported in part by an IBM

faculty award. yash@acm.org.

1

1.2 Related Work

One-time signatures have been known for a relatively long time. They were first presented by
Lamport [Lam79] and Rabin [Rab78], but are mostly known in the form presented by Merkle and
Winternitz [Mer87]. These signatures are based on one-way functions, as opposed to trapdoor
functions that are used in public key signatures like RSA and ElGamal.

Although one-way functions are simpler to implement and are typically more computationally
efficient than trapdoor functions, one-time signatures have been considered to be impractical for
two main reasons: First, their “one-timed-ness”, i.e., key generation is required for each usage, thus
implying a complicated key management scheme; Second, the signature size is relatively long in
comparison with common public-key signatures and MACs.

Bos and Chaum [BC92], and later, Bleichenbacher and Maurer [BM94, BM96b, BM96a] for-
malized a generalization of the problem and suggested signatures based on acyclic graphs. Even,
Goldreich and Micali [EGM89] combine one time signatures and public key signatures to form a
hybrid scheme. They introduced an on-line/off-line scheme which provides a medium sized signa-
ture whose message-dependent signature computation is short, but the preparations for the next
signature, as well as signature verification, are as slow as a public key signature. Improvements to
this work were presented by Rohatgi [Roh99], who focused mainly on reducing the signature size.

Recently, this area was revisited due to the need for fast, low computation, authentication
solutions for IP-multicast and sensor networks. Perrig [Per01] presents a new one-time signature
scheme that aims for very fast verification at the cost of signature time and key size. Reyzin and
Reyzin [RR02] introduce a different scheme that has faster signature and verification times (for a
single signature). This scheme is further improved by Pieprzyk et al. [PWX03]. These new schemes
suggest the reuse of the same keys more than once. These “several times signatures” have a known
compromise probability after a given number of reuses. Nevertheless, even if these schemes can
sign several messages with the same keys, with reasonable security, the number of repeated uses
is still small for all practical scenarios. Therefore, efficient key generation and management for a
large sequence of one-time signatures still remains on open problem.

Merkle [Mer87, Mer89] addressed the problem of key management, introducing the method of
tree authentication. In [Mer89], originally published in 1979, the concept of a hash tree is presented,
which provides efficient key management for a large number of one-time signatures. In [Mer87], an
infinite tree signature is presented, which theoretically enables the creation of an unlimited number
of one time signatures. This latter scheme is impractical as the signature size is very large and grows
(logarithmically) with the number of signatures. The recent works of [JLMS03, Szy04a, BKN04]
improve Merkle’s hash-tree method [Mer89] and give the ability to handle large hash trees more
efficiently. Jakobsson et al.’s suggestion for using their algorithm for one-time signatures was
implemented in [Col03]. However, the signature scheme that was implemented differs from Merkle’s
[Mer89] proposal, and the results obtained by [Col03] do not encourage the use of the scheme.

Perrig [Per01] addresses the key generation problem in a different way, by using hash chains
for key management. However, his scheme provides authentication only for scenarios in which the
signer and the verifiers are time synchronized, and it is difficult to adopt this solution for general
scenarios.

Recently, a work of Seys and Preneel [SP05] provided a power consumption estimation of one-

2

time signatures schemes, for low power mobile platforms. Their work estimates the overall power
consumption of the signature schemes of Winternitz and Reyzin, with the key management tech-
niques of Jakobsson et al. [JLMS03] and Perrig [Per01]. They take into account other aspects of
the signature schemes, including key generation and communication costs. Their estimations are
based on measurements of the power consumption of AES block cipher and radio communications
on a given mobile platform.

1.3 Contributions

Our first contribution is a design of a signature scheme we call FMTseq - Fractal Merkle Tree
sequential signatures. FMTseq combines Merkle’s one-time signatures with Jakobsson et al.’s algo-
rithm for hash tree traversal. Our scheme differs from [JLMS03] by providing many more one-time
signatures with the same hash tree1. Also, the main focus of [JLMS03] was to reduce the run-time
space requirements of their scheme. We argue that many applications would prefer trading a few
additional kilobytes of signer run-time storage to obtain faster signature rates. Thus, we focus on
minimizing the signature speed and signature size – while keeping the run-time space reasonable
(if not optimal).

Next, we provide an efficient implementation of a scheme that significantly improves the poor
performance that was reported in [Col03] (see also [Szy04b]). Our experimental results show that
FMTseq is one- or two-orders of magnitude faster than RSA, with low signature sizes and signer
storage requirements. We also show that the parameter values that produce the fastest signature
times are different from those suggested in [JLMS03].

For scenarios in which repudiation and adaptive chosen-message attacks are not significant
threats, we suggest using Bellare and Rogaway’s Target-Collision-Resistant functions [BR97] instead
of regular hash functions. Our analysis shows that this improves the signature speed and size by
at least another 50%.

Finally we present a number of improvements that address forward security, online/offline vari-
ants, and allowing an unbounded number of signatures. We believe that our constructions bring
one-time signatures into the realm of the practical, at least for some application areas.

Organization In the next section we provide a brief review of one-time signatures and an
overview of the fractal Merkle tree traversal algorithm. In Section 3 we describe our construction
for Fractal Merkle Tree sequential one-time signatures. Section 4 provides experimental results that
are analyzed and discussed for trade-offs. Improvements for our construction that are attractive in
more specific scenarios are presented in Section 5. In Section 6 we present our conclusions.

1Actually, our construction follows Merkle’s original suggestion for using the hash tree.

3

Preparation Signature Verification

The signer:
1. Generates a set of t random secrets
{ski}

t
i=1

, where t = l + dlog2 le.

2. Calculates: {h(ski)}ti=1

a commitment on each secret value.
h() is a one-way hash function.

3. Gives the commitments, in an
authenticated way, to the verifier.

Input: l-bit message M .

1. Calculate:
M ′ = M‖Checksum.

Checksum is the number of
′0′ bits in M .

2. The signature:
Output all the secrets ski that
correspond to the ′1′ bits of M ′.

1. Calculate the checksum to get M ′.

2. Check if exactly the appropriate
secrets were revealed
(for all the ′1′ bits in M).

3. Check if hashing each secret ski

provides its claimed commitment.

Figure 1: Merkle’s one-time signature scheme for a message M of length l bits.

2 One-Time Signatures and Authentication Trees

2.1 One-Time Signatures

In this section we introduce the notion of one-time signatures. A comprehensive presentation of
one-time signatures can be found in [Gol04].

One-time signatures are digital signature schemes that enable a signer to sign a single message
with a given set of keys. One-time signatures require the signer to generate different keys for each
message to be signed, in contrast with “regular” digital signatures like RSA, whose keys can be
used for an unlimited number of times.

One-time signature keys can be viewed as a set of public commitments to a set of secrets
chosen by the signer prior to signing a message. These commitments are given to the verifier
in an authenticated manner. To sign a message, the signer reveals a subset of his secrets that
correspond to the message content. The verifier determines the message authenticity by checking
if the appropriate secrets were revealed, and verifies their correspondence to the commitments that
were given earlier. The one-time signature is secure if an attacker, given a signature for a chosen
message, can provide a valid signature for a different message with non-negligible probability.

2.1.1 Merkle’s One-Time Signature

The best known one-time signature scheme was presented by Merkle in [Mer87], and is an improve-
ment of Lamport’s [Lam79] signature scheme. Merkle’s scheme is described in Figure 1.

It is quite easy to be convinced that an adversary cannot alter the message without invalidating
the signature: to do so he must publish a secret that corresponds to a bit either in the message or
its checksum, thus demonstrating the ability to reverse the one-way function.

To sign an arbitrary length message, a message digest should be calculated using a hash function,
and the scheme should be applied to the message digest. The security of the scheme is then implied
by the irreversibility of the one-way function and the collision-resistance of the message digest

4

function. In practice, a message digest could be the SHA-1 [Nat95] function that has a 160 bits
output, or SHA-256 [Nat02]. Therefore to sign this output one needs t = 168 or t = 264 secrets.

2.1.2 Other One-Time Signature Schemes

A one-time signature scheme called BiBa is presented in [Per01]. This scheme aims to lower the
signature bandwidth and verification complexity, but requires a high computation effort at the
signer side. It has a probabilistic nature that enables the re-use of the same keys for several
signatures, but with a security degradation for each additional key re-use. In [RR02], a “better
than BiBa” scheme is presented (also called HORS), that provides fast signature and verification,
and keeps the short length of the signature, but is still probabilistic in nature.

However, both of these schemes require a larger number of secret values per signature (e.g.,
1024 secret values per signature are recommended by [Per01]), although only a small part of them
are exposed. Therefore, the key management problem, i.e., committing to a large number of
secrets, remains a major concern. Perrig [Per01] suggests using a hash chain as a key management
mechanism, such that each secret is a node in a separate chain, and its commitment is the preceding
node. After each one-time signature, all the secrets are exposed and become the commitments for
the next one-time signature. The disclosure of all the secrets makes the previous signature insecure,
and thus, [Per01] uses a time synchronization mechanism to ensure that only the signer could
have known the secrets that were used. This technique is applicable to the scenario of broadcast
authentication, but not as a general digital signature.

2.2 Authentication Trees

2.2.1 Fractal Merkle Trees

Merkle [Mer89] introduced the idea of using a hash tree to authenticate a large number of one-time
signatures (see the Appendix A.1 for details). An important notion in Merkle trees is that of an
authentication path — the values of all the nodes that are siblings of nodes on the path between a
given leaf and the root. Basically, the signer provides the authentication path with each signature.

Jakobsson et al. [JLMS03] present a new scheme for the sequential traversal of such a Merkle
hash tree, i.e., providing the authentication path for each leaf when the leaves are used one after
the other. The scheme requires a computational effort of 2 log N/ log log N and a run-time space
of 1.5 log2 N/ log log N nodes. Since this scheme is central to our work, we briefly describe it here.

Notation

A hash tree T of height H is divided into L levels, each of height h. The leaves of the hash tree are
indexed {0, 1, ..., 2H − 1} from left to right. The altitude of a node n is defined as the height of the
maximal subtree for which it is the root and ranges from 0 (for the leaves), to H (for the root).
An h-subtree is “at level i” when the altitude of its root is ih for some i ∈ {1, 2, ..., L}. For each i
there are 2H−ih such h-subtrees at level i. A series of h-subtrees {Treei}

L
i=1 is a stacked series if

for all i < L the root of Treei is a leaf of Treei+1. The notations are illustrated in Figure 2.

5

Exist 0

Exist L-1

Desired 0
H

h=
H/
L

Exist 1 Desired 1

Figure 2: Fractal merkle tree notations

2.2.2 Algorithm Intuition

The goal of [JLMS03] algorithm is to provide the authentication path of the current leaf (signature)
with minimal storage and computation. Instead of storing the whole hash tree at the signer side,
[JLMS03] stores only two sets of subtrees:

Exist subtrees are a stacked series of h-subtrees, indexed {Existi}
L
i=1, that include the authen-

tication path for the current signature.

Desired subtrees are a stacked series of h-subtrees, indexed {Desiredi}
L−1
i=1 . Each Desired sub-

tree is adjacent to the an Exist subtree of the same level. When an Exist subtree no longer
contains the next authentication path, it is replaced with its Desired subtree counterpart. The
Desired subtrees are built incrementally after each output of the algorithm, thus amortizing
the operations required to evaluate the subtree.

In the key generation phase, the signer initializes all the Exist and Desired subtrees and
evaluates the root of the hash tree. The signer discards all the computed values except the Exist
subtrees. The root of the hash tree can then be handed to the verifier in an authenticated manner.
Note that all the hash tree nodes are evaluated during the key generation phase. Therefore, the
overall computation effort requires 2H leaf evaluations and 2H − 1 hash computations.

For each output operation (signature) the signer also updates its run-time data structures in
preparation for future signatures by performing two operations for every Desired subtree. Each
operation can be either a calculation of an internal node or a leaf evaluation. For a detailed
description of the algorithm refer to [JLMS03].

3 Fractal Merkle Tree Sequential One-Time Signatures

In this section we describe our scheme for sequential one-time signatures using fractal Merkle tree
algorithm. In our scheme, the secrets of each one-time signatures are generated by a pseudo-
random number generator. The value of each leaf of the fractal Merkle tree is a hash over all the

6

commitments of a single one-time signature. Therefore, each leaf serves as a public commitment
to a one-time signature2. For each one-time signature, the signer regenerates the next unused
leaf, reveals the required secrets, and outputs the commitments of the unrevealed secrets and the
authentication path. We call this scheme FMTseq: Fractal Merkle Tree Sequential One-Time
Signature.

The FMTseq scheme consists of three algorithms: key generation, signing and verification. The
scheme is described in Figure 3.

Key generation and initialization

Definitions:

1. SK - a k-bit secret key.
2. ski

j
- the secrets of each one-time signature

where i is the signature number, and j is the index
of the secret, j = 1, . . . , t.

3. ski
j

= R(SK, i, j)

R is a pseudo-random number generator (PRNG).
4. pki

j
= h(ski

j
) - the commitments for each ski

j
.

5. Public leaf commitment - plci = h(pki
1
| . . . |pki

t),
the hash of all the commitments of a single
one-time signature.

Computation:

1. Input: a secret, k-bit key, SK.
2. Initialize a Fractal Merkle hash tree of height H,

with the plci values as its leaves (i = 1, . . . , 2H).
3. Publish the tree root

(or provide it to the verifiers securely).
4. Set Signature number i = 0.

plci

Public
Root

ski1 ski2 skit

pki1 pki2 pkit

...
PRNGSK

i

FMTseq key generation phase.

Signing a message Verifying a message

Input: a message M .

1. Increment i.
2. Calculate a message digest md = g(M)

and C=number of ′0′-bits in md.
3. Sign m with Merkle’s one-time signature scheme:

- Let m = md‖C,
- Let J = {j|mj = 1} and J̄ = {j|mj = 0}
- Generate {ski

j
}t

j=1
using the PRNG R.

- Output S =
{

ski
j
∀j ∈ J , pki

j
∀j ∈ J̄

}

.

4. Output {api}, the authentication path of leaf i,
using fractal Merkle tree algorithm [JLMS03].

5. Perform the update operations of [JLMS03].

Input: a message M and a signature S, {api}.

1. Calculate a message digest md = g(M).
and C=number of ′0′-bits in md.

2. Verify the Merkle one-time signature:
- Let m′ = md‖C.

- Let J =
{

j|m′
j

= 1
}

.

- Set S′ = S, and denote the members of S′

by S′ = {s′j}
t
j=1

.

- Calculate and update s′
j
← h(s′

j
), ∀j ∈ J .

- Calculate plc′ = h(s′
1
| . . . |s′t)

3. Iteratively hash the result, plc′

with the authentication path.
4. Compare the result to the public root of the tree.

Figure 3: The FMTseq scheme algorithms and data structure.

The performance in FMTseq is dominated by the leaf calculation time, which is defined as
the time to generate all the secrets, commit each one of them with a one-way hash function, and
hash all these commitments to one value. Therefore, to minimize the leaf calculation time, we

2In contrast to the suggestion of Jakobsson et al. [JLMS03] that each leaf serves as a commitment to a single
secret, i.e., to a single bit.

7

Key Public Signature Signature Verification Key generation
length exponent size time time time

1024 bits 17 128 Bytes 5.9 mSec 0.24 mSec 0.15 Sec

2048 bits 17 256 Bytes 33.8 mSec 0.6 mSec 1.2 Sec

Table 1: RSA parameters and performance as computed on our system (Pentium IV, 1.7GHz with
Windows XP).

chose the basic Merkle’s one-time signature scheme. Winternitz’s improvement to Merkle’s one-
time signature [Mer87] reduces the signature size but requires more hash calculations, thus, it
increases the leaf calculation time. Taking a different one-time signature scheme, like BiBa or
HORS, requires a larger number of secrets, and therefore also increases the leaf calculation time
significantly. Moreover, within the FMTseq construction, using BiBa or HORS does not provide
shorter signatures, since all the commitments of each one-time signatures need to be provided to
the verifier with every signature (not only the secret ones as these schemes assume).

4 Experimental Results

4.1 Implementation

We implemented the FMTseq scheme in C and tested its performance on a Pentium IV, 1.7GHz,
running Microsoft Windows XP. The implementation of RC4, MD5, SHA-1 and SHA-256 was based
on code from [Dev05]. The MD5 code was slightly optimized to achieve a more efficient hash for
the committing function3. The RC4 stream cipher was used as a pseudo-random number generator.
The program ran with real-time priority, measuring time using operating system time functions.

We compared the FMTseq results to those of a reference public-key signature. We chose to
compare with the popular RSA signature. The RSA parameters and performance values were
measured on the same platform using the Crypto++ code library [Dai04]. The RSA results on our
system are listed in Table 1.

4.2 Selecting Hash Functions for FMTseq

The hash functions that are used in our scheme determine its performance (both speed and signature
size) as well as security. We selected the hash functions so that they provide a level of security
that is comparable with RSA signatures. According to [Len01], 2048-bit RSA is approximately
equivalent to a 128-bit key of a symmetric cipher, and 1024-bit RSA is approximately equivalent
to a 75-bit symmetric key.

Recall that cryptographic hash functions provide two notions of security:

• Second pre-image resistance - for a given hash h(x) it is infeasible to find another pre-image
x′ such that h(x′) = h(x).

3Since we hash short bit strings we could remove some code that supports arbitrarily long strings.

8

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7 8 9 10

L

S
ig

n
at

u
re

 T
im

e
[u

S
ec

]

RSA-2048

RSA-1024

FMTseq with SHA-256

FMTseq with SHA-1

Figure 4: Average signature time as a function of the number of levels L in the FMTseq tree for
L = 1 to 10, in comparison with RSA signature times. Each point is an average of 128 runs, each
consisting of 128 sequentially generated signatures over randomly chosen messages.

• Collision resistance - it is infeasible to find any two values x, x′ such that h(x′) = h(x).

For the FMTseq message digest hash function, g(), collision resistance is required. Thus, a fair
comparison should match SHA-1 to the 1024-bit RSA, and SHA-256 to the 2048-bit RSA. The
number of secrets for each one-time signature will be 168 or 264 respectively.

For committing secrets and for hash operations in the Merkle hash tree, we argue that the
security level is determined by the second pre-image resistance and not by the collision-resistance
property of the hash function. Therefore, we argue that MD5 is sufficient as the one-way hash
function, h(), since its 128-bit output provides the required security level, and its software imple-
mentation is almost twice as fast as SHA-1. If one uses SHA-1 instead of MD5 then the performance
becomes twice slower and both signature size and run-time space grow by 25%.

We note that the recent attacks on both SHA-1 and MD5 [WY05, BC04, BCJ+05] are against
collision-resistance, and no efficient attacks are known for finding a second pre-image for these
functions. Therefore, these attacks are irrelevant against a one-way function that is used to commit
the secrets and to hash the nodes of the Merkle tree.

4.3 Signature Time

Figure 4 shows the average signature time of FMTseq versus RSA signatures. The figure shows
that even for the worst choice of the number of levels, L (L = 10), FMTseq-SHA-1 is roughly 4
times faster than 1024-bit RSA, and FMTseq-SHA-256 is more than 14 times faster than 2048-bit
RSA. Moreover, other choices of L provide even better performance, e.g., for L = 4 we get a 10
times speedup over 1024-bit RSA and more than 35 times speedup over 2048-bit RSA.

Our benchmark measures the average signature time of FMTseq. The raw results are presented
in Tables 3 and 4 in the Appendix. Each point in Figure 4 is an average of 128 runs, each consisting
of 128 sequentially generated signatures over randomly chosen messages. Thus, we average over
the variability caused by the amortization operations and by the different number of ′1′-bits in the
message digests. We found that for a given number of levels, L, the signature time is practically

9

Signature Scheme Average Verification Time

FMTseq with SHA-1 76 uSec

FMTseq with SHA-256 114 uSec

RSA-1024 240 uSec

RSA-2048 600 uSec

Table 2: Average Verification Time for H ≤ 20

invariant with the total tree height H. Since L must divide H, L can have only a few possible
values for each H. Therefore, the value of each point on the graph represents a selection of a value
of L for an appropriate tree height H.

Figure 4 shows that the average signature time is linear with L, thus, we see that the amor-
tization time dominates the total signature time as the number of levels increases. Note that in
the analysis of [JLMS03], two equally weighted operations were counted for each of L − 1 Desired
subtrees, meaning that hashing internal nodes and leaf computation were considered to have an
equivalent time complexity. In contrast, in FMTseq the process of leaf computation (generating
the secrets and commitments for a one-time signature), takes much longer. Therefore, the bound
of [JLMS03] on the amortization time no longer represents the average case of FMTseq. Since
there is an equal number of leaves and internal nodes, we argue that the average amortization time
becomes the time for approximately L − 1 leaf evaluations. The average leaf computation time
Tleaf on our system is 0.15 milliseconds (using SHA-1) or 0.235 milliseconds (using SHA-256), and
a close inspection of our data shows that for each value of L, the average signature time is almost
exactly L · Tleaf .

Table 2 shows the average signature verification time for FMTseq and RSA. The FMTseq
verification time comprises of a one-time signature and authentication path verification. We found
that the verification time is practically invariant to the tree parameters (see Tables 3 and 4 in the
Appendix). Therefore, we provided only the average of all the results.

For a practical number of one million signatures (using L = 4), comparing FMTseq with 2048-
bit RSA (using SHA-256 as a message digest) shows that the verification time is about 5 times
faster, and signing time is approximately 35 times faster. Compared with 1024-bit RSA (using
SHA-1 as a message digest), FMTseq verification is 3 times faster, and signing is about 10 times
faster.

4.4 Signature Size

The signature size depends on the one-time signature parameters and on the length of the authen-
tication path. The latter only slightly affects the overall size in practical constructions since it is
logarithmic with the number of leaves. The one-time signature size is defined by the hash output
length as shown in Figure 5.

For about one million signatures (H=20), we compared the signature size of FMTseq to that of
RSA. Using SHA-256 as a message digest, the signature size is approximately 18 times larger than
2048-bit RSA, but is still reasonable for many applications: about 4.5 KBytes.

10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 12 14 16 18 20

H

S
ig

n
at

u
re

 S
iz

e
[B

yt
es

]

RSA-2048

RSA-1024

FMTseq with SHA-256

FMTseq with SHA-1

Figure 5: Signature size as a function of the tree height H in comparison with RSA signatures.

0

200

400

600

800

1000

1200

1400

1600

10 11 12 13 14 15 16 17 18 19 20

H

S
ig

n
at

u
re

 T
im

e
[u

S
ec

]

hopt

1.5*hopt

2*hopt

Figure 6: The improvement in performance that can be achieved, by allowing up to twice the
optimal run-time space that was defined by [JLMS03].

4.5 A Memory versus Signature Time Trade-off

In [JLMS03] much effort is spent in search of run-time space optimality: reducing the memory
requirements for running the fractal Merkle tree algorithm to a minimum. The authors show that
minimal space is achieved with subtree height of hopt ≈ lnH. However, h and L must be integers,
and we argue that signature time is more important than run-time space in many applications.

Figure 6 demonstrates the improvements in total signature time when allowing a larger space
allocation relative to the space that is required when h = hopt. For example, when H = 20, hopt = 2,
(since 3 does not divide 20). If we allow up to twice the run-time space compared with hopt (about
4.6 KBytes instead of 3KBytes), the signature time becomes more than twice as fast. The “dip” at
H = 15 is due to the fact that hopt ≈ 2, but for H = 15, we must use h = 3, since h must divide H.
For all other choices of H we have hopt = 2.

4.6 Key Generation and Initialization

Key generation involves committing to all one-time signatures and initializing the fractal Merkle
tree algorithm subtrees. From Figure 7 it can be seen that, as expected, the initialization time is

11

0.00

50.00

100.00

150.00

200.00

250.00

0 200000 400000 600000 800000 1000000 1200000

Number of Signatures
T

im
e

[S
ec

]

FMTseq with SHA-256

FMTseq with SHA-1

Figure 7: Initialization Time of FMTseq

linear with the number of signatures and depends on the hash function selection. For FMTseq with
message digest of SHA-256, for about one million signatures, the initialization takes 245 seconds
(about 4 minutes).

4.7 Selecting Number of Signatures

Constraining the parameters L and h to natural numbers is another aspect of FMTseq parameters
selection. This constraint causes some constructions to be inefficient. For example, the results in
Tables 3 and 4 (in the Appendix) show that seleting H = 14 and L = 2 is a bad choice. By choosing
H = 15 and L = 3, one can achieve twice the number of signature with less than half the run-time
space required.

5 Improvements

5.1 Using HMAC

The number of commitments in Merkle’s signature depends on the output length of the hash
function that is used to compute the message digest. The hash function is required to provide both
collision resistance and second pre-image resistance to achieve unforgeability and non-repudiation.
By reducing the length of the message digest, faster one-time signature with smaller signature size
can be achieved. One way to shorten the message digest by half, is to remove the requirement to
protect against birthday attacks. Birthday attacks can be used to generate two higher level attacks:

• Repudiation – A signer can find a pair of messages with the same hash, sign one message and
later claim to sign the other.

• Adaptive chosen message attack – An adversary finds a pair of messages with the same hash,
then asks the signer to sign one message, but actually gets him sign a different message.

However, protecting against these notions of security is not always essential. There are scenarios
in which one signs a message that he has created to provide integrity and authentication. The
verifier trusts the signer not to claim later that his signature was applied to a different message.

12

 ... k

 ...

Figure 8: A TCR based FMTseq scheme. The HMAC key (marked ‘k’), for each one-time signature,
is committed by the leaf that represents it.

For example, users of an on-line financial news service may trust the data source but want to
protect from adversaries who may alter the data or impersonate the service provider.

Bellare and Rogaway [BR97] (following Naor and Yung [NY89]) define Target Collision-Resistance
(TCR) hash functions. A family of keyed hash functions, Hk, provides target collision-resistance
if a hash function hk() ∈ Hk, selected after choosing a message M , is resistant to finding a mes-
sage M ′ such that hk(M

′) = hk(M). Since the hash function key is selected independently, after
selecting the message M , birthday attacks are prevented, despite the adversary having the ability
to select M . As an outcome, the output of such TCR hash function can be smaller, for example
80 or 128 bits, instead of 160 or 256 bits of a standard collision-resistance hash function.

Assuming a signature scheme (Gen, Sign, V erify), Bellare and Rogaway suggest that TCR
functions can be used in signatures instead of standard hash functions in the following manner:

• To sign a given message M :

– Generate a random key k. This key determines which hash function will be used.

– Sign the message and the key using: Sign(k||hk(M))

– The key is published as part of the signature and is not secret.

• To verify the signature use V erify(k||hk(M)).

Since there is no standard construction for TCR function we adopt the suggestion of [BR97] to
use an ad hoc keyed hash function. We chose to use HMAC [BCK96] with SHA-1 as a keyed hash
function. HMAC can be used with a truncated output, e.g., taking only 80 of the bits in its output.
Hence, using 80-bit truncated HMAC-SHA1, instead of, for example, SHA-1, we can construct an
FMTseq scheme that requires a smaller number of commitments, and thus, is more efficient in time
and space, under the security assumptions that were presented.

In contrast to Bellare and Rogaway, we suggest adding the HMAC keys to the commitments
of each one-time signature (see Figure 8). In this way, the HMAC keys are authenticated by the
public root, and cannot be altered by an adversary4.

To summarize, we construct the following HMAC-SHA1-80 based scheme of FMTseq:
4Rohatgi [Roh99] uses a similar approach for a hybrid scheme of one-time signatures and online/offline signatures.

13

• Key generation and initialization - same as FMTseq, except t = 88, since the truncated
HMAC output is 80 bits and only 7 bits of checksum are required. The HMAC key is located
in the 88th value, i.e., pki

88 (See Figure 8).

• Sign - Similar to FMTseq with the additional output of the HMAC key as part of the signature.

• Verify - Similar to FMTseq except s′88 is taken as the HMAC key.

With this construction, each leaf in the authentication tree contains only 88 secrets and their
commitments. Thus, the time to calculate the leaf becomes about half of the time that was required
earlier. Since the total signature time is approximately linear with the leaf calculation time, the
total signature is twice as fast5.

The one-time signature size is also reduced since only about half of the secrets are required. For
HMAC-SHA1-80 the one-time signature length is 1424 bytes. The total signature length depends
on the authentication tree height, e.g., for H = 20 we get a signature size of 1.7 KBytes.

5.2 Beyond Using TCR for the Message Digest

Using TCR hash functions for committing one-time signatures (and not only for the message digest)
can further reduce both the signature size and the space which is required for the hash tree traversal.
Since only second pre-image resistance is required, and a birthday attack is inapplicable, a shorter
output of the TCR hash functions is sufficient. However, two problems arise when looking for
such a solution: (i) TCR functions are keyed hash functions, therefore a keying scheme should be
provided; (ii) There is no standard choice for such TCR function.

In [Roh99], where such approach is presented, the TCR functions are keyed with a different
key for each level of the tree. These keys are published together with the public root of the hash
tree. The TCR function is taken to be SHA-1 Compress, which is a primitive that is used in SHA-1
algorithm. Notice that taking the TCR function to be HMAC function is not adequate, since each
HMAC requires two hash operations and therefore the scheme will be less efficient.

If one accepts these suggestions, each node of the data structure (which includes the secrets,
commitments and the hash tree) can be reduced from 128-bits to 80-bits. The result is a decrease
of about 38% in both signature size and the space required to handle the hash tree.

5.3 Using the Online/Offline Approach

In [EGM89] it is suggested to divide the total signature time to online operations that are performed
to sign a concrete message, and offline operations that can be performed until the next signature is
needed. If we apply this approach to FMTseq, the online signature time excludes the amortization
operations and thus it is independent of the tree parameters. This leads to a speedup factor of
about L in the signature time. The verification time remains unchanged.

5Since only the inner hash is calculated over the whole message, the HMAC calculation time is practically equal
to a standard unkeyed hash calculation time.

14

5.4 Forward Secure Signatures

A requirement for a “forward secure” signature defines a signature scheme that preserves the
security of signatures, which have been issued earlier to the time the key is compromised. In
[BM99], a forward secure signature scheme is presented, using the key evolution paradigm. Key
evolution refers to iterative derivation of a key from the previous one, erasing the old key. At each
period a new secret key is derived using a one-way function, and the former is destroyed. Thus, an
exposure of Ki, the key of period i, does not compromise the keys Kj for periods j < i. The public
key of the signature scheme does not change and stays fixed, so that the signature verification
scheme is unchanged.

At first glance, applying forward security to FMTseq seems to be straight forward. Instead of
using a fixed long-term secret key SK, that all the signatures’ secrets are derived from, we can
apply a key evolution scheme. For example, the secret key SKi for each one-time signature will
be derived as a hash of the preceding signature’s key SKi−1. After each signature the next key is
derived from the current key, and the current key is erased.

However, using such a naive key evolution for FMTseq will lead to poor performance, since the
amortization operations of the fractal Merkle tree traversal calculate the leaves in a non-sequential
pattern. For example, after the first signature, the amortization of the uppermost Desired subtree,
requires the calculation of leaves that are far “in the future” from the first one. Thus, the linear
complexity of the naive key evolution scheme leads to performing many key derivation operations
after each signature — which will destroy the fast signature time of FMTseq. Instead, one should
use an efficient hierarchical key evolution algorithm (cf. [Dae97]). A key evolution scheme with a
logarithmic complexity will let us maintain the high performance of FMTseq.

5.5 Unbounded Number of Signatures

The bound on the number of signatures is one of the main disadvantages of the scheme. Yet, if
another FMTseq tree can be generated while the current tree is used, then the last signature of the
current tree can be used to sign the public root of the next tree. After this public root update, the
new tree can be used as usual. The public root update can be done using a protocol between the
signer and the verifiers, or by adding the signed root to every signature.

Notice that the generation of the next tree can be done exactly like building the Desired subtrees,
i.e., by taking two additional amortization calculations after each signature. In this way, a new tree
will be ready just in time. A new trade-off is introduced in this way: one can select to work with
small hash trees (which leads to faster signatures), at the cost of more frequent public root update.

6 Conclusions

In this work we defined FMTseq - a one-time signature scheme that combines Merkle’s one-time
signatures with the efficient hash tree traversal of [JLMS03]. Benchmarking FMTseq against RSA
signatures, shows that a speedup of up to 35 times can be achieved if signature size of a few kilobytes
is acceptable. The FMTseq scheme differs from the [JLMS03] suggestion for a signature scheme,
in the method by which the leaves of the hash tree represent the one-time signatures. FMTseq

15

followed Merkle’s suggestion [Mer89] for using the hash tree, and thus achieves many signatures
with the same hash tree.

We demonstrated that when speed is the bottleneck factor, the requirement of [JLMS03] for run-
time space optimality can be relaxed. A different selection of the parameters leads to a significant
improvement in performance at the cost of a small increase in memory consumption.

We believe that when fast signatures are required, FMTseq or one of its suggested improvements
can be a promising alternative to the public-key signatures like RSA.

References

[BC92] Jurjen N. Bos and David Chaum. Provably unforgeable signatures. In Ernest F. Brickell,
editor, Advances in Cryptology - CRYPTO ’92, pages 1–14. Springer, 1992.

[BC04] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Advances in Cryptology -
CRYPTO 2004, pages 290–305. Springer, 2004.

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and reduced SHA-1. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, pages 36–57. Springer, 2005.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology - CRYPTO ’96, pages 1–15. Springer, 1996.

[BKN04] Piotr Berman, Marek Karpinski, and Yakov Nekrich. Optimal trade-off for Merkle tree
traversal. Electronic Colloquium on Computational Complexity (ECCC), (049), 2004.

[BM94] Daniel Bleichenbacher and Ueli M. Maurer. Directed acyclic graphs, one-way functions
and digital signatures. In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94,
pages 75–82. Springer, 1994.

[BM96a] Daniel Bleichenbacher and Ueli M. Maurer. On the efficiency of one-time digital sig-
natures. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology -
ASIACRYPT ’96, pages 145–158. Springer, 1996.

[BM96b] Daniel Bleichenbacher and Ueli M. Maurer. Optimal tree-based one-time digital signa-
ture schemes. In STACS 96, 13th Annual Symposium on Theoretical Aspects of Computer
Science, pages 363–374, 1996.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Advances
in Cryptology - CRYPTO ’99, pages 431–448. Springer, 1999.

[BR97] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making
UOWHFs practical. In Advances in Cryptology - CRYPTO ’97, pages 470–484. Springer,
1997.

[Col03] Dominic F. Coluccio. C++ implementation of a hash-based digital signature scheme
using fractal Merkle tree representation. http://cs1.cs.nyu.edu/~dfc218/hashsig.

html, 2003.

16

[Dae97] Joan Daemen. Management of secret keys: Dynamic key handling. In State of the Art
in Applied Cryptography, LNCS 1528, pages 264–276. Springer, 1997.

[Dai04] Wei Dai. Crypto++ library 5.2.1. http://www.eskimo.com/~weidai/cryptlib.html,
2004.

[Dev05] Christophe Devine. Crypto source code, GNU public license. http://www.cr0.net:8040,
2001-2005.

[EGM89] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital schemes. In
Gilles Brassard, editor, Advances in Cryptology - CRYPTO ’89, pages 263–275. Springer,
1989.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, 2004.

[JLMS03] Markus Jakobsson, Frank Thomson Leighton, Silvio Micali, and Michael Szydlo. Fractal
Merkle tree representation and traversal. In Topics in Cryptology - CT-RSA 2003, The
Cryptographers’ Track at the RSA Conference 2003, pages 314–326. Springer, 2003.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979.

[Len01] Arjen K. Lenstra. Unbelievable security. Matching AES security using public key sys-
tems. In Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, pages 67–86.
Springer, 2001.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, CRYPTO ’87, pages 369–378. Springer, 1987.

[Mer89] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, pages 218–238. Springer, 1989.

[Nat95] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash Stan-
dard. National Institute for Standards and Technology, Gaithersburg, MD, USA, April
1995. Supersedes FIPS PUB 180 1993 May 11.

[Nat02] National Institute of Standards and Technology. FIPS PUB 180-2: Secure Hash Stan-
dard (SHS). National Institute for Standards and Technology, Gaithersburg, MD, USA,
August 2002.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic ap-
plications. In Proceedings of the twenty-first annual ACM Symposium on Theory of
Computing, Seattle, Washington, May 15–17, 1989, pages 33–43, New York, NY, USA,
1989. ACM Press.

[Per01] Adrian Perrig. The BiBa one-time signature and broadcast authentication protocol. In
ACM Conference on Computer and Communications Security, pages 28–37, 2001.

17

[PWX03] Josef Pieprzyk, Huaxiong Wang, and Chaoping Xing. Multiple-time signature schemes
against adaptive chosen message attacks. In Selected Areas in Cryptography, SAC 2003,
pages 88–100. Springer, 2003.

[Rab78] M. O. Rabin. Digitalized signatures. In Richard A. DeMillo, David P. Dobkin, Anita K.
Jones, and Richard J. Lipton, editors, Foundations of Secure Computation, pages 155–
168. Academic Press, 1978.

[Roh99] Pankaj Rohatgi. A compact and fast hybrid signature scheme for multicast packet
authentication. In ACM Conference on Computer and Communications Security, pages
93–100, 1999.

[RR02] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In Information Security and Privacy, 7th Australian Conference,
ACISP 2002, pages 144–153. Springer, 2002.

[SP05] Stefaan Seys and Bart Preneel. Power consumption evaluation of efficient digital sig-
nature schemes for low power devices. In Proceedings of the 2005 IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications (IEEE
WiMob 2005), pages 79–86. IEEE, 2005.

[Szy04a] Michael Szydlo. Merkle tree traversal in log space and time. In Advances in Cryptology
- EUROCRYPT 2004, pages 541–554. Springer, 2004.

[Szy04b] Michael Szydlo. Recent improvements in the efficient use of Merkle trees: Additional
options for the long term. RSA Laboratories: Technical Notes and Reports, 2004.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
EUROCRYPT, pages 19–35. Springer, Advances in Cryptology - EUROCRYPT 2005.

A Appendix

A.1 Merkle’s hash trees

Merkle [Mer89] presents a scheme for key management of one-time signatures. The scheme enables
the verifier to authenticate a large number of one-time signatures commitments using low storage
requirements. This is achieved by using the technique of a hash tree. A Merkle hash tree is a
complete binary tree with an assignment of a value to each node, such that the value of the parent
node is the output of a one-way hash function (OWHF) on its children nodes values, i.e.,

φ(parent) = OWHF (φ(left)|φ(right))

The hash tree is used for key management of one-time signatures in the following way:

• Each leaf is a public commitment to a one-time signature.

• The root of the hash tree is given to the verifier in a secure, authenticated manner. The root
serves as a short public commitment to all the one-time signatures.

18

• To authenticate the commitments of a single one-time signature, the signer provides the
verifier with an authentication path – the values of all nodes that are siblings of nodes on the
path between the leaf that represents the commitment and the root (See Figure 9).

• The verifier authenticates the one-time signature’s commitment by iterative hashing of the
commitment with the authentication path values.

• If the computed root value equals the public root commitment then the signature’s commit-
ment is authenticated.

x

Figure 9: Authentication path. The shaded nodes are the authentication path of the marked leaf.

Notice that only the signer has to know the whole hash tree. The verifier is given only the root
and the authentication path that is provided with the one-time signature. The verifier does not
have to be aware of the fact that those values are the nodes of a binary tree or to store these values.
The verifier only needs to perform the computation and compare the result with the public root.

For a large number of leaves, storing the whole tree at the signer side requires a large amount
of space. Merkle [Mer89] shows that if the signer uses the leaves sequentially, he can compute the
the authentication path with O(log n) time and O(log2n) space. This method is further improved
in the work of [JLMS03] which is discussed in section 2.2.1.

Merkle [Mer87] presents a different approach that enables to authenticate an infinite number of
one-time signature using a public root of a binary tree. However this method is impractical as each
node in the tree holds commitments for three one-time signatures. As the number of signatures
grows the amount of memory required to store the tree and the size of the signature become very
large.

A.2 Raw Performance Data

Tables 3 and 4 summarize the measurements of FMTseq on a 1.7 GHz Pentium IV, running Win-
dows XP.

19

H L Total # of Initialization Signature Verification Run-time Signature
Signatures Time [Sec] Time [uSec] Time [uSec] Memory [Bytes] Size [Bytes]

10 2 1024 0.16 311 73 2156 2864
10 5 1024 0.16 757 73 1072 2864
12 2 4096 0.62 312 74 4222 2896
12 3 4096 0.62 461 74 1788 2896
12 4 4096 0.62 609 74 1402 2896
12 6 4096 0.62 907 74 1398 2896
14 2 16384 2.5 313 75 8336 2928
14 7 16384 2.5 1055 75 1760 2928
15 3 32768 5 463 76 3378 2944
15 5 32768 5 759 76 1892 2944
16 2 65536 10 314 76 16546 2960
16 4 65536 10 612 76 2534 2960
16 8 65536 10 1205 76 2158 2960
18 3 262144 40.2 464 77 6504 2992
18 6 262144 40.2 909 77 2436 2992
18 9 262144 40.2 1354 78 2592 2992
20 4 1048576 161 614 79 4690 3024
20 5 1048576 161 762 79 3352 3024
20 10 1048576 161 1503 79 3062 3024

Table 3: Implementation results for FMTseq with SHA-1 as a message digest.

H L Total # of Initialization Signature Verification Run-time Signature
Signatures Time [Sec] Time [uSec] Time [uSec] Memory [Bytes] Size [Bytes]

10 2 1024 0.24 481 111 2156 4400
10 5 1024 0.24 1184 111 1072 4400
12 2 4096 0.96 481 110 4222 4432
12 3 4096 0.96 716 112 1788 4432
12 4 4096 0.96 950 112 1402 4432
12 6 4096 0.96 1420 115 1398 4432
14 2 16384 3.8 482 117 8336 4464
14 7 16384 3.8 1653 112 1760 4464
15 3 32768 7.7 717 115 3378 4480
15 5 32768 7.7 1185 114 1892 4480
16 2 65536 15 483 112 16546 4496
16 4 65536 15 952 116 2534 4496
16 8 65536 15 1888 116 2158 4496
18 3 262144 61 719 116 6504 4528
18 6 262144 61 1421 116 2436 4528
18 9 262144 61 2126 112 2592 4528
20 4 1048576 245 954 120 4690 4560
20 5 1048576 245 1188 113 3352 4560
20 10 1048576 245 2358 114 3062 4560

Table 4: Implementation results for FMTseq with SHA-256 as a message digest.

20

