
 1

Revised: Block Cipher Based Hash Function Construction From 
PGV 

 

Duo Lei, Guozhu Feng , Li Chao , and RuiLin Li  

 

Department of Science, National University of Defense Technology,Changsha, China 

Duoduolei@gmail.com 

 

Abstract. Preneel, Govaerts, and Vandewalle[12] considered the 64 most basic ways to construct a 
hash function from a block cipher, and regarded 12 of these 64 schemes as secure. Black, Pogaway 
and Shrimpton[3] proved that, in black-box model, the 12 schemes that PGV singled out as secure 
really are secure and given tight upper and lower bounds on their collision resistance. And also they 
pointed out, by stepping outside of the Merkle-Damgard[5] approach to analysis, an additional 8 of the 
64 schemes are just as collision resistant as the first group of schemes. In this paper we point out that 
the 12 compression functions that PGV singled out are free start collision resistant and others are not, 
the additional 8 compression functions are only fix start collision resistant as singled out by BRS, the 
hash functions based on those 20 schemes are fix start collision resistant, the upper bound of collision 
resistance and preimage resistant are given based on conditional probability of | ( ) =  Y X xP y , 

| ( ) = Y K kP y of compression function, not based on assumption of random oracle model, the bounds 
have more practical value than the bounds given by BRS. In view point of collision resistant, the best 
4 schemes are not among the 12 schemes singled by PGV, and among the 8 schemes point out by BRS, 
and block cipher E itself is the best compression to build a collision resistant hash function. At the end 
of the paper, two recommend structure of block cipher based hash function are given, and a prove of 
their securities are also given. 
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1 Introduction 
Most of hash functions iterate a compression function by Merkle-Damgaard structure with constant 
IV[10]. A well known approach for building hash function is the compression function out of a block 
cipher which have been discussed sine Rabin[13] given the first model of that kind of structure. As 
pointed out by BRS the block cipher approach has been less widely used for variety of reasons, and 
the emergence of the AES[6] has somewhat modified this landscape, especially recently the MD5 and 
SHA1 were attacked[1][2][16][17]. 

The topics of building hash function based on block cipher had been systematically analyzed in 
paper [12][15][9][3] and [7]. The PGV paper considered turning a block cipher 

{0,1} {0,1} {0,1} : × →n n nE  into a hash function *{0,1} {0,1} {0,1} : × →i n nnH  using a 

compression function :{0,1} {0,1} {0,1}× →n n nF  derived from E. For v is a fixed n-bit constant, 
PGV considerd all 64 compression functions F of the form 1( , ) ( )− = ⊕i i aF m h E b c ,where 

1 1, , { , , , }− −∈ ⊕i i i ia b c m h m h v ,defined the iterated hash of F as 1( || || , ) ="t tH m m IV h , 

0h IV= , 1( , )i i ih F m h −= , [1, , ],| |ii t m n∈ =" . Of the 64 such schemes, the authors of [12] 
regarded 12 as secure.  

The authors of [3] taken a more proof-centric look at the schemes from PGV, proved additional 8 
schemes were collision resistant, divided the 20 schemes into two group where the group-1 was the 12 
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schemes picked by PGV and the group-2 was the new founded 8 schemes. For the new founded 
schemes, the hash function H immune to collision attack within the Merkle-Damgard paradigm, the 
compression functions were not immune to collision attack. The proves of collision resistant of 
group-2 used the assumptions of E was a random oracle model and H with fix start model. They also 
provided both upper and lower bounds for each scheme. 

This paper provide the complexity of finding a collision or preimage based on the assumption of 
known conditional probability of block cipher E. We analyze the 64 schemes with M-D structure, the 
12 compression functions that PGV singled out are immune to free start collision resistant and 
additional 8 compression functions singled out by BRS are immune to fix start collision resistant. All 
the 20 schemes based hash function are fix start collision resistant, and fix start preimage resistant 
(where the preimage of 8 schemes singled out by BRS based hash function can be found by meet in 
middle attack, but the complexity is / 22n . On that condition we still call the hash is preimage 
resistant, for the complexity is same as birthday attack on collision).  

On considering of collision resistance, the best 4 schemes are not among the 12 schemes singled 
out by PGV and are among the 8 schemes singled out by BRS and the block cipher E is the best 
compression function, more precisely, we can tell the precise upper bound of preimage resistant and 
collision resistant of those 4 schemes, that of other 16 schemes are unpredictable and the block cipher 
E has much influence on the bounds. In this paper, we assume the padding is padding zero at end of 
the message, and the hash function is iterated by Merkle-Damgard paradigm. 

2 Definition 

2.1 Basic Definition 

The notations of the probability it the paper is followed PhD paper of Christian Cachin[4]. 

Let {0,1}n
nI � , the compression function : k n nF I I I ×  → , ( , )m hy F x x= , h nx I∈ , 

m kx I∈ , ny I∈ , in hash iteration, hx  is chaining value. Let M-D hash construction 

: k n nH I I I⋅∗ × → , , ,n k nx I m I z I∗∈ ∈ ∈i . 

1 1( , ) ( || || , ) ( , ( , ( , )))z H m x H m m x F m F F m x∗ ∗ = =   " � " . 

Let : l n nG I I I ×  → , ( , )z G m x= , {( , , ) | , , }nl ny m x m I x I z IΩ  ∈ ∈ ∈� , lm I∈ , nx I∈ , 

nz I∈ , {( , , )} {( , , ) | ( , , ) , ( , )}Gz m x z m x z m x z G m xΩ∈  =� , 
0 0

0 0,
max#{( , , )}G

G z m
S z m x� , 

0 0
0 0,

max#{( , , )}G
G z x

T z m x� , 
0

0max#{( , , )}G
G z

R z m x�  

A discrete random variable X  is a mapping from the sample space Ω  to an alphabet χ , X  
assigns a value x X∈  to each elementary event in the Ω  and the probability distribution of X  
is the function:  

: ( )

: : [ ] [ ]
ω ω

χ ω
∈Ω =

→ ℜ = = ∑6X
X x

P x P X x P  

If the conditioning event involves another random variable Y defined on the same sample space, 
the conditional probability distribution of Y given that X takes on a value y is: 

|
( , )( )
( )

XY
Y X x

X

P x yP y
P x= =  

whenever ( )XP x  is positive . 

Theorem1: Let function : k t n ng I I I⋅ × →  ( , )y g m x= , the distributions of independent random 

variable M and X are ( )MP m  and ( )XP x , function ( , ) ( )g m x yχ  is defined as: 
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( , )
1, ( , )

( )
0, ( , )g m x

y g m x
y

y g m x
χ

=⎧
⎨ ≠⎩

�  

the random variable Y’s distribution can be derived from X and M by: 

( , ) ( , )( ) ( , ) ( ) ( ) ( ) ( )
n n t n n t

Y MX g m x M M g m x
x I m I x I m I

P y P m x y P m P m yχ χ
⋅ ⋅∈ ∈ ∈ ∈

∑ ∑ ∑ ∑� �  

we call the probability of Y  is derived probability of M and X.  

Definition 1: (Random Oracles[3]). A fixed-size Random Oracle is a 

function : a bf I I→  chosen uniformly at random from the set of all such functions. 

Definition 2: The maximum advantage of collision attack and preimage attack are defined as follows:  

1. Pseudo Preimage Attack: 

0

Pr ,
0 0( ) max Pr[ ; : {( , , )} ]e F H H

H nz
Adv A z I A z m xω ω∈ ← ∈� �  

2. Fixed Start Preimage Attack: 

0

FixP ,
0 0 0 0( ) max Pr[ , ; : {( , , )} ]F H H

H nz
Adv A z x I A z m xω ω∈ ← ∈� �  

3. Pseudo Collision Attack: 

0

,
0( ) max Pr[ , :     , , {{( , , )} }]Coll F H F

H z
Adv A A z m xω ω ω ω′ ′← ∈ Λ Λ ⊂� �  

4. Fixed Start Collision Attack: 

0

,
0 0 0( ) max Pr[ , , : , , {{( , , )} }]FixC F H H

H nz
Adv A x I A z m xω ω ω ω′ ′∈ ← ∈Λ Λ ⊂� � . 

Definition3: [Black Box Model] function : k t n ng I I I⋅ × →  ( , )y g m x=  is a Black Box Model, if 

the probabilities of success of Game0 and Game1 are same, where / 22nq ≤ : 

Game0 ( 0, , ,A F y q ) 

For i=1,…,t do: 

0
( , )y i iA m x→  

A wins if exists i st 0 ( , )i iz G m x=  

Game1 ( 0, , ,A F y q ) 

Q ← ∅  

For i=1,…,t do: 

0( , ) ( , )i iA y Q m x→  

( ( , ), , )i i i iQ Q G m x m x→ ∪  

A wins if exists i st. 0 ( , )i iz G m x=  

If no special statement is given, 0( , )z G m x=  and 0( , )z G m x=  are not invertible. 
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3 The Security of Hash Function 

Theorem 2 ( [8] ).For m hy F( x ,x ) = , and y H( m,x ) = , then: 

1. if m hy F( x ,x ) =  is black box model then: 

Pr ( ) 2 max{ , }
2 2

e H H
H n k

S TAdv q q=� ; 

P ( ) 2 max{ }
2

Fix H
H k

TAdv q q=� ; 

( ) 1Coll
HAdv q =� ; 

1( ) max{2 , ( 1) }
2 2

FixC H H
H n k

S TAdv q q q q −
≤ −� . 

2. if, for any 
0h nx I∈ , 

0m hy F( x ,x ) =  is black box model then: 

P ( ) 2 max{ }
2

Fix H
H k

TAdv q q=� ; 

1( ) max{2 , ( 1) }
2 2

FixC H H
H n k

S TAdv q q q q −
≤ −� . 

4 Collision Resistance of PGV Schemes 

We assume block cipher : n n nE I I I× → , ( )ky E x=  is black box model, the security of 24 PGV 
schemes is summarized in tables 1 where we do not consider the constant value v . The functions are 
numbered in BRS[3], :i n n nF I I I × → , iH  are M-D construction with: 

:{0,1} {0,1} {0,1}n n n
iH  ⋅ ∗ ×  → ， 

1( , ) ( , ( , ( , )))i i i iz H m x F m F F m x∗= � "  

Where 1|| ||m m m∗ = " , nx I∈ .  

The 1 12~F F  are the group one schemes, which are immune to free start collision resistance 

and 13 20~F F  are the group two schemes which are not immune to free start collision resistance, 
immune to fix start collision resistance. In fact 24 schemes are driven from 12 compression function 
with different fix start and four of which are not immune to fix start collision resistance. 

4.1 Probability of Compression Function 

Lemma 1. If ( )ky E x =  is a random oracle model, ,x k  is uniformly distributed in nI  then  

1ET  =  and 1ES  = . 

Theorem 3. Block cipher ( )ky E x =  is a random oracle model, x  and k are uniformly distributed 

in nI , then for ( , )i m hy F x x = , 

1
iFS = , and  1

iFT = , 1 24i≤ ≤ . 

Proof. Since ( )ky E x=  is a random oracle, then x , k , ( )kE x  are independent from each other. 
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We give the prove of the most famous model 1 : ( )
hx m mF y E x x = ⊕ . 

1

00

|

| ,

| ,

( , ) ( , )

( , ) |

( )

( ) ( ( ) )

= ( ) ( , ( ))

1 ( ) ( )
2

1( ) ( )
2

h h

m m m h h h

m

m m m h h h

m

m m h

m

m h h

Y X x

X m Y X x X x x m m
x

X m Y X x X x m x m
x

x u m F x xn
u x

x u m U X x n
u

P y

P x P y E x x

P x P y x u u E x

y x u u

y x u P u

χ χ

χ

 =

= =

= =

=

 

= = ⊕

= ⊕ =

= = ⊕

≤ = ⊕ =

∑

∑

∑∑

∑

 

And also 

  

|

| ,

| ,

( )

( ) ( ( ))

= ( ) ( ( ))

1
2

m m

h m m h h h
h

h m m h h h
h

Y X x

X h Y X x X x m x m
x

X h Y X x X x x m
x

n

P y

P x P y x E x

P x P y E x

 =

= =

= =

 

= ⊕ =

′ =

=

∑

∑  

Other models can be proved in similar way.□ 

Theorem 4. 0 0,  ( , )k y E x k∀ =  is a black box model, then iF ,1 12i≤ ≤  are black box model. 

Proof. We give the prove of 1F , others can be proved in similar way.  

1
1 : ( ) ( )

h hx m m x m mF y E x x E y x x−  = ⊕ ⇔ ⊕ = , for given y  and mx , if we can get hx , that implies 

for given plaintext mx  and cipher text my x⊕ , we get the key hx  with ( )
hm x my x E x⊕ = , since 

E  is a block cipher, the best way to find hx  is exhaustive search; for given y  and hx , if we can 

get mx  by direct computation means for given , hy x , we can get the cipher text mx y⊕  and 

plaintext mx  directly, but the computation we can do is E  and 1E− , the condition is possible only 

when E  is a linear function, for ( )
hx m my E x x= ⊕ , E  is not a linear function, so the only way to 

find the mx  is exhaustive search, collision resistant can be proved in similar way. 

Theorem 5. 
0 0
, ( , )h i m hx y F x x∀ =  is black box model. 

Proof. 

13F− : y∀ , 1( )kx E y−= , let mx x� , ,hx x k⊕� , then ( )
mh m mx x hE x x x y⊕ ⊕ ⊕ = , but y∀  

and 
0hx , the way to find mx satisfy 

0
( )

mh mxxE x y⊕ =  is exhaustive search, so 
013( , )m hy F x x=  

is balck box model; 

14F− : y∀ , 1( )kx E y k−= ⊕ , let ,hx x k⊕�  mx x� , then ( )
mh m mx x hE x x x y⊕ ⊕ ⊕ = , but 

y∀  and 
0hx , we can’t find mx  satisfy 

00
( )

mh m mx x hE x x x y⊕ ⊕ ⊕ =  directly. 

15F− : y∀ , 1( )kx E y k−= ⊕ , let ,hx x�  mx k� , then ( )
m hxE x y= , but y∀  and 

0hx , we 
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can’t find mx  satisfy 
0

( )
m hxE x y= ; 

16F− : y∀ , 1( )kx E y−= , let mx k x⊕� , ,hx x�  then ( )hm hx xE x y⊕ = , but y∀  and 
0hx , 

we can’t find mx  satisfy 
0
( )hm hx xE x y⊕ = ; 

17F− : y∀ , 1( )kx E y k−= ⊕ , let ,hx x�  mx k x⊕� ,then ( )h mmxE x x y⊕ = , but y∀  and 

0hx , we can’t find mx  satisfy 
0

( )h mmxE x x y⊕ = ; 

18F− : y∀ , 1( )kx E y k−= ⊕ , let ,hx x�  mx k x⊕� , then ( )h m hm hx xE x x x y⊕ ⊕ ⊕ = , but 

y∀  and 
0hx , we can’t find mx  satisfy 

0 00
( )h m hm hx xE x x x y⊕ ⊕ ⊕ = ; 

19F− : y∀  computes 1( )kx E y−= , let ,hx x k⊕�  mx k� , then ( )m hmxE x x y⊕ = , but 

y∀  and 
0hx , we can’t find mx  satisfy 

0
( )m hmxE x x y⊕ = ; 

20F− : y∀  compute 1( )kx E y k−= ⊕ , let ,hx x�  mx k� , then ( )m h mmxE x x x y⊕ ⊕ = , but 

y∀  and 
0hx , we can’t find mx  satisfy 

0
( )m h mmxE x x x y⊕ ⊕ = ;             □ 

Theorem 6. iF , 21 24i≤ ≤  are not fix start preimage resistant and fix start collision resistant. 

Proof. 

21F− :
0

, hy x∀  , let 
0

1 ( )
hm xx E y−  �  then 

0
( )

h mxE x y= ; 

22F− :
0

, hy x∀  , let 
00

1 ( )
hm x hx E y x−  ⊕�  then 

00
( )

h m hxy E x x= ⊕ ;  

23F− :
0

, hy x∀  , let 
00

1 ( )
hm x hx E y x−  ⊕�  then 

00
( )

h m hxy E x x= ⊕ ; 

23F− :
0

, hy x∀  , let 
0 00

1 ( )
hm x h hx E y x x−  ⊕ ⊕�  then 

0 00
( )

h m h hxE x x x y⊕ ⊕ = . 

4.2 Collision Resistance of Hash Function 

 

Theorem 7. If block cipher E  is a random oracle model, if the compression function is 
( , )i m hy F x x= , 1 20i≤ ≤ ,then the Hash function ( , )iH m IV , constant value nIV I∈  is 

preimage resistance and collision resistant, the bound of collision resistance and preimage resistance 
are shown as bellow. 

− For iH ,1 12i≤ ≤ , 

2( )
2i

FixP
H n

qAdv q ≤� ,     
( 1)( )
2i

FixC
H n

q qAdv q −
≤� . 

− For iH ,13 20i≤ ≤ , 

( 1)( )
2i

FixP
H n

q qAdv q −
≤� ,     

( 1)( )
2i

FixC
H n

q qAdv q −
≤�  

− For iH , 21 24i≤ ≤ , 

( ) 1
i

FixP
HAdv q =� ,     ( ) 1

i

FixC
HAdv q =� . 
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Proof. From Lemma 1, Theorem 2, Theorem 3 Theorem 4 and Theorem5 and Theorem6, we can get 
the conclusions directly. 

Lemma 2. Let E  is compression function, then ( )ky E x k= ⊕ , ( )ky E x k= ⊕ , 

( )ky E x k k = ⊕ ⊕  then  

|

1( )
2nY K kP y

  =
= . 

Theorem 8. Let block cipher : n n nE I I I× →  has no weakness then: 

− For {15,17,19,20}i ∈ : 

( ) ( 1)
2

i

i

FFixP
H n

T
Adv q q q≤ −� ,    ( ) ( 1)

2
i

i

FFixC
H n

T
Adv q q q≤ −�  

− For {13,14,16,18}i ∈ : 

( ) max{ ( 1) , 2 }
2 2

i i

i

F HFixP
H n n

T S
Adv q q q q≤ −� ,    ( ) max{ ( 1) , 2 }

2 2
i i

i

F HFixC
H n n

T S
Adv q q q q≤ −� . 

− For {1,2,3,4,5,6,7,8}i ∈ : 

( ) max{2 ,2 }
2 2

i i

i

F HFixP
H n n

T S
Adv q q q≤� ,    ( ) max{ ( 1) , 2 }

2 2
i i

i

F HFixC
H n n

T S
Adv q q q q≤ −� . 

5 Design of Secure Hash Function 
 

From above discussion, we can make a conclusion that, if we can design a iterated hash function with 
2 n

HS −=  and 2 n
HT −= , then the hash function is a idea model. 

Definition4: An iterated hash function structure is defined as 1 :B n n nH I I I ⋅ ∗ ×  →  

1

1
( || || , ) 1 0( , ) ( )B

H m m xH m x E h h h
∗ ∗ ⊕ ⊕ ⊕  "� " , 

Where {0,1}nx∈ , 1|| ||m m m∗= " , {0,1}nm  ⋅ ∗∈ , 1( )
ii m ih E h −= , 0h x= , ( , )z H m x= , 

1( , )Bz H m x= . 

z  

Fig.2 The design of 1BH  Hash Function 

The structure of 1BH  is similar to the structure of 3c[19], but the attentions on the structure are 
different. 

Definition5. An iterated hash function structure is defined as 2 :B n n nH I I I ⋅ ∗ ×  →  
', nz z I∈ , 

1
( ( ))

tm mz E E x= " , ' ( , ), ( , ) ( )
hm h x mz H m x y F x x E x= = = , 

2 ( , ) ( ')B
zz H m x E z= = , 1|| || {0,1}n t

tm m m  ⋅ = ∈" . 
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z  

Fig. 3. The design of 2BH Hash Function 

Theorem 9. For 1( , )Bz H m x= , 2 ( , )Bz H m x= , if x , k  and y  are independent from each 
other, and 1 0( , ) tf m x h h h= ⊕ ⊕ ⊕"  is independent from x  and m , and ( , )m hy F x x=  
then: 

1 1BH
S  = , 1B EH

T T =  , 2 1BH
S  = ,  and 2B EH

T T = . 

Theorem 10. For 1( , )Bz H m x= , 2 ( , )Bz H m x= , if x , k  and y  are independent from each 
other, and 1 0( , ) tf m x h h h= ⊕ ⊕ ⊕"  is independent from x  and m , and ( , )m hy F x x=  
then: 

1 ( ) 2
2

B
FixP E
H n

TAdv q q≤� ,     , 1 ( ) ( 1)
2

B
FixC E
H n

TAdv q q q≤ −�  

2 ( ) 2
2

B
FixP E
H n

TAdv q q≤� ,    2 ( ) ( 1)
2

B
FixC E
H n

TAdv q q q≤ −�  

6 Conclusion 
The theorem 7 needs block cipher is random oracle, or else ( x  and ( )kE x ) or ( ( )kE x  and k ) is 
not independent, respectively. If block cipher E  is not assumed as a random oracle, then in 

13 20i≤ ≤ , the 15F , 17F 19F 20F  with properities of |
1( )
2Y K k nP y= = ,which means in group 2, the 

best compression function is 15F , 17F 19F 20F . And also the 15F  is the block cipher E  itself. In 

group 1, the possibility of 1iQ =  is very low, then the preimage resistant and collision resistant of 
these schemes are unpredictable, different block cipher may result in a totally different results, for in 
design of block cipher does not consider these properties and it is difficult to consider. 

 

Table 1. Summary of results. Columen1 is the number of hash function which are 

given by BRS[3]. Column2 is the compression functions to build hash function, and column 

3 is the compression function iF , column 4 is the count of y  for constant hx  and column 
5 is the count of y for constant mx : 



 9

 

References 
1. E.Biham and R.Chen. Near-Collisions of SHA-0 and SHA-1. In Selected Areas in 
Cryptography-SAC 2004. 

2. E.Biham and R.Chen. Near-Collisions of SHA-0,In Advances in Cryptology CRYPTO'2004, LNCS 
3152, pp290-305, 2004. 

3. J.Black, P.Rogaway, and T.Shrimpton, "Black-box analysis of the block-cipher-based hash function 
constructions from PGV". In Advances in Cryptology -CRYPTO'02, volume 2442 of Lecture Notes in 
Computer Science. Springer-Verlag,2002.pp.320-335. 

4. C.Chchin. Entropy Measures and Uncoditional Security in Cryptography, PHD thesis. 

5. I.Damgºard. A design principle for hash functions. In G. Brassard, editor, Advances in CRYPTO' 
89, LNCS 435, 1990. 

6. J.Daemen and V.Rijmen: The Design of Rijndael: AES The Advanced Encryption Standard. 
Springer, 2002. 

7. X.Lai and J.L.Massey: Hash functions based on block ciphers. In Advances in Cryptology 
Eurocrypt'92, Lecture Notes in Computer Science, Vol. 658. Springer-Verlag, Berlin Hei-delberg New 
York (1993) 55-70. 

8. D.Lei, The Security Proof of Iterated Hash Structure. http:\\eprint.iacr.org\2006\147.pdf 

9. C. H. Meyer and S. M. Matyas. Cryptography: a New Dimension in Data Security.Wiley & Sons, 
1982. 

10. B.Preneel, V. Rijmen, A.Bosselaers: Recent Developments in the Design of Conventional 
Cryptographic Algorithms. In State of the Art and Evolution of Computer Security and Industrial 
Cryptography. Lecture Notes in Computer Science, Vol 1528. Springer-Verlag, Berlin Heidelberg 
New York(1998) 106-131. 

11. B.Preneel: The State of Cryptographic Hash Functions. In Lectures on Data Security, Lecture 
Notes in Computer Science, Vol. 1561. Springer-Verlag, Berlin Hei-delberg New York (1999) 
158-182. 

12. B. Preneel, R. Govaerts, and J.Vandewalle, " Hash functions based on block ciphers,", In 
Advances in Cryptology -CRYPTO'93, Lecture Notes in Computer Science,pages 368-378. 
Springer-Verlag, 1994. 

13. M. O. Rabin. Digitalized Signatures. In R. A. Demillo, D. P. Dopkin, A. K. Jones, and R. J. Lipton, 
editors, Foundations of Secure Computation, pages 155-166, New York, 1978. Academic Press. 

14. C.E. Shannon. "Communication theory of secrecy systems,", Bell System Technical Journal, 



 10

28:656C715, 1949. 

15. B. Van Rompay,Analysis and design of cryptographic hash functions, MAC algorithms and block 
cipher, K. U. Leuven, Juni 2004. 

16. X.Wang, H.Yu, How to Break MD5 and Other Hash Functions, EUROCRYPT'2005, 
Springer-Verlag, LNCS 3494, pp19-35, 2005. 

17. X. Wang, X. Lai, D.Feng and H.Yu., Cryptanalysis of the Hash Functions MD4 

and RIPEMD, EUROCRYPT 2005, Springer-Verlag,LNCS 3494, pp1-18, 2005. 

18. P.Gauravaram, W.Millan, J. Gonzalez Neito and E. Dawson: 3C-A Provably Secure 
Pseudorandom Function and Message Authentication Code. A New mode of operation for 
Cryptographic Hash Function. The preliminary draft version of this work is available at 
eprint-2005/390 . 

 


