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ABSTRACT 

The paper proposes a new scheme of authenticated encryption that is either publicly 

verifiable or not publicly verifiable depending on the quantity of information the recipient 

released. This property would give recipient much flexibility in many applications. This scheme 

combines the ElGamal encryption with Schnorr signature. Considering the security goal of 

signature, the resultant scheme is at least as secure as that of the combined signature scheme. The 

security goal of encryption is examined under the chosen ciphertext attack, it is proven directly 

related to the security of signature. Furthermore, this new scheme is also secure against 

one-more-decryption attack. This novel security goal may be valuable in the applications of 

private information retrieval.     

Keywords 

Authenticated encryption, digital signature, encryption, one-more-decryption attack, signcryption. 

1. INTRODUCTION 

With the quick and ongoing growth of digitalized information, more and more data are being 

exchanged. Data transferred would be safe from eavesdrop or modification if participants 

communicate over a secure channel. However, building and maintaining a secure channel for any 

two prospective participants isn't a good solution to provide secure communication.  

Generally, communication parties communicate over an insecure channel (an open channel). 

This channel could be a telephone line, computer network or Internet, for example. It is not 
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difficult to have a tapping device tagged on these channels. Therefore, there are eavesdroppers 

and intruders who can intercept and modify messages transmitted in an open channel. 

Let’s call the message to be transmitted plaintext m. Plaintext can be text data, executable 

program or any kind of information. Instead of sending plaintext to a recipient, an encryption 

scheme E(.) is used to encrypt a plaintext and obtain a ciphertext c. Then the ciphertext is 

transmitted to the recipient. The recipient can turn the received ciphertext into plaintext by a 

decryption scheme D(.). Needless to say, there must be some methods so that the processes of 

enciphering and deciphering work correctly, namely m = D(c) = D(E(m)), and no one except the 

recipient can decrypt the ciphertext to obtain the embedded plaintext. In the public-key 

cryptography [1-4], each participant has a published public key pk and a hidden secret key sk. Let 

pkr (pks) and skr (sks) denote the recipient’s (sender’s) public key and secret key. Then the sender 

using the recipient’s public key to construct a ciphertext, c = E(pkr, m), and sends it to the 

recipient. Upon receiving ciphertext c, the recipient uses secret key to recover plaintext, m = D(skr, 

c). Theoretically, any eavesdropper should have no idea about the plaintext, since only the 

recipient knows secret key skr. In this way (using encryption scheme), the recipient’s privacy is 

protected. 

In some applications the recipient may require to make sure of the originator of each 

message received, e.g. key agreement, e-commerce, secure e-mailing. In the public-key setting, 

the scheme of digital signature can be used to generate a signature on either the plaintext or 

ciphertext. Then, sender sends recipient the signature together with the ciphertext. This signature 

confirms that the ciphertext was constructed and sent by the sender. Thus the sender’s authenticity 

is protected. Since any modification of the original ciphertext will be detected by the signature, 

the signature protects the integrity of message. Furthermore, the signature also provides the 

property of non-repudiation. That is to say that the sender cannot deny having sent recipient the 

message. 

Traditionally, the schemes of encryption and digital signature are consecutively applied to 

message to achieve the properties of privacy, authenticity, integrity, and non-repudiation. Namely, 
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enciphering comes after signing on a plaintext (sign-then-encrypt) or signing comes after 

enciphering a plaintext (encrypt-then-sign). The computational cost is thus the sum of the cost of 

the two steps. It is possible to integrate enciphering and signing into a single step while still 

provides the four properties as mentioned above. Indeed, a combination of ElGamal encryption [5] 

and signature scheme with message recovery [6-7] was presented in [7]. The scheme of 

authenticated encryption in [8] and schemes of signcryption in [9] are also integration of digital 

signature and encryption. The terminologies signcryption and authenticated encryption denote the 

same thing, i.e. integration of digital signature and encryption. This paper refers to this integration 

as authenticated encryption. Benefiting by the single step operation, the integrated scheme 

requires less computational cost, narrower communicational bandwidth, and lower expansion rate 

as compared with the two-step operations of encrypt-then-sign or sign-then-encrypt. 

1.1 Related work  

Since the germination of authenticated encryption, many related schemes have been 

proposed. Some of these schemes were discussed and arranged in chronological order in [10]. 

Some researchers further extended the schemes of authenticated encryption to the utilization of 

large message transmission [11-13]. We investigate some of the authenticated encryption schemes 

presented in [7-13]. The signature scheme in [13] signs on ciphertext so that it is difficult to 

possess the property of non-repudiation. Most of these schemes lack rigorous study of security. 

Namely, there may be potential weakness of leaking partial information. For example, the 

signature scheme in [11] is always forgeable; the encryption scheme in [12] and many schemes 

listed in [10] are not secure under the model of chosen ciphertext attack. More precisely, they are 

distinguishable in polynomial time, using the security definition in [14]. We give some words to 

explain secure encryption and attack model. Assume that an adversary is given the advantage of 

choosing two messages m0 and m1 (the same length). One of them is encrypted and hands on the 

ciphertext to the adversary. An encryption scheme is said to be secure if the adversary cannot 

determine whether the given ciphertext is an encryption of message m0 or message m1 in 

polynomial time. This definition of security comes from [14] and is called polynomial 
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indistinguishability (also known as semantic security [2]). In the attack model of chosen 

ciphertext, an adversary can access oracles of hash, encryption, and decryption while trying to 

extract some information about a given ciphertext. For more details about notion of security and 

attack model please refer to [2, 4, 14-15]. Surely, the adversary is inhibited to ask decryption 

oracle to decrypt the given ciphertext. Although the original schemes in [9] were formally proven 

to be secure in [16], they are not easy to fulfill the property of non-repudiation since the signature 

cannot be verified publicly. The worst of it is that to show non-repudiation in case of dispute, 

recipient’s privacy is lost, as shown in [17].  

To conquer the problem found in [9], some authenticated encryption schemes [12, 18-22] are 

designed so that the signatures are publicly verifiable. Like those schemes mentioned in [7-13], 

schemes in [18-20] are claimed to be secure without proof. Under the chosen ciphertext attack, 

the insecurity of schemes in [18-19] is shown in [21]. Scheme in [12, 20] also faces the same 

problem. Assume that the Gap Diffie-Hellman problem is hard; the authenticated encryption 

schemes in [21-22] are secure under the chosen ciphertext attack. However the scheme in [21] 

requires two additional assumptions, i.e. a secure symmetric encryption scheme and a secure 

digital signature scheme.  

1.2 Contributions  

This paper will propose a new scheme of authenticated encryption with publicly verifiable 

signature. The proposed scheme combines schemes of ElGamal encryption [5] with Schnorr 

signature [23]. Following the discussion on security of authenticated encryption in [24], the 

security of both signature and encryption are discussed. For signature the new scheme achieves 

existentially unforgeable under the adaptive chosen message attack; for encryption the new 

scheme achieves indistinguishable under the adaptive chosen ciphertext attack. Again, we give 

brief description about the security goal and attack model of signature scheme. The terminology 

existentially unforgeable originally defined in [25] is a common security goal of signature. This 

means that any adversary should have a negligible probability in forging a valid signature on a 

new message. The attack model is called adaptive chosen message if a signing oracle is available 



5 

to adversary while forging a signature. More information can be found in [4, 25-27]. 

So far the authenticated encryption schemes with publicly verifiable [12, 18-22] are 

unconditionally verifiable. Namely, once a matched plaintext is released from recipient, then 

everyone can verify whether the plaintext was sent and signed by the sender. It is also called 

“convertible authenticated encryption scheme” in [28]. In some applications, the recipient may 

only want to release the plaintext and do not release “publicly verifiable information” till a 

decisive moment. Our new scheme provides this favor without additional computation, i.e. the 

recipient can choose to release “only the corresponding plaintext” or “all the publicly verifiable 

information”. Without enough information, every one except the recipient cannot recognize that 

some messages were a signature of the sender.   

Furthermore, the proposed authenticated encryption is also secure against 

one-more-decryption attack [29]. Under this attack, an adversary tries to decrypt (l + 1) plaintexts 

from given l ciphertexts (l > 1). In the applications of private information retrieval, a security 

guarantee against attack of this type would be desirable.   

1.3 Organization  

Section 2 introduces notation. Section 3 describes the proposed scheme and proves the 

correctness as well as security. Section 4 discusses the scheme’s performance. Finally, Section 5 

concludes the paper.  

2. NOTATION  

Let p and q be two large primes and q divide (p - 1). The notation used in the paper is as 

follows. Zq denotes the addition group modulo q; Zp denotes the addition group modulo p; Z*
p 

denotes the multiplicative group modulo p; g is an element of Z*
p and we write g ∈ Z*

p; a cyclic 

group G ⊂ Z*
p is generated by g (g is a generator of G), i.e. G = {gi mod p| i = 0, 1, …, (q - 1)}; 

G’ = G \ { p1,…, pi} = {x| x ∈ G and x ∉ { p1,…, pi}}; use |G| to denote the cardinality of G (|G| = 

q); a ←R G denotes that an element a is randomly and uniformly selected from G; x ← y denotes 

that value of y is assigned to x. Assume that primes p, q and generator g have been chosen such 
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that finding the discrete logarithm in G is hard. Namely, given an attacker p, q, g, and an element 

y ←R G, it is assumed that finding x ∈ Zq such that y = gx mod p is computationally intractable. 

Also, a||b denotes a concatenation of strings a and b; f(.) is a one-way permutation function 

defined as f(.): G → G; H(.) is a one-way collision-resistant hash function with domain {0, 1}* 

and range Zq. Furthermore, we assume that the hash function H(.) and permutation function f(.) 

have been modeled as a random oracle [30]. 

3. PROPOSED SCHEME  

A recipient randomly selects xr from Zq and computes yr = gxr mod p, then publishes yr as 

her/his public key and keeps xr secretly as secret key. Similarly, xs and ys = gxs mod p are sender’s 

secret and public keys. A ciphertext of an authenticated encryption on a message m ∈ G is 

obtained by computing (c, e, s) = Authen-EncH(), f()(xs, m, yr, ys); the embedded plaintext is 

recovered and verified by {m ∈ G, “invalid”} = Authen-DecH(), f()(xr, (c, e, s), yr, ys), where H(.): 

{0, 1}* → Zq and f(.):G → G as introduced in Section 2. The details of algorithms Authen-Enc(.) 

and Authen-Dec(.) are as follows. 

Algorithm Authen-EncH(), f()(xs, m, yr, ys)   

       k ←R Zq          

       Yr ← (yr)k mod p 
       c ← m / f(Yr) mod p 

k’ ← Yr mod q 

       e ← H(c || m || yr || ys || (gk + k’ mod p)) 

       s ← (k - e ⋅ xs) mod q 

       Return ciphertext (c, e, s)  

Algorithm Authen-DecH(), f()(xr, (c, e, s), yr, ys) 
       Y’r ← (gs(ys)e)xr mod p   

       m’ ← c ⋅ f(Y’r) mod p 
k’ ← Y’r mod q 

s’ ← s + k’ mod q 

       e’ ← H(c || m’ || yr || ys || (gs’(ys)e mod p)) 

       If e = e’ then return m’ else return ‘invalid’ 
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3.1 Correctness 

Lemma 1. The algorithm Authen-Dec(.) correctly recovers the plaintext embedded in a ciphertext 

produced by algorithm Authen-Enc(.). 

Proof. Upon receiving a ciphertext (c, e, s), the recipient runs algorithm Authen-DecH(), f()(xr, (c, e, 

s), yr, ys) to recover plaintext and verify signature. The quantities (yr)k and k’ are recovered by the 

computations Y’r = (gs(ys)e)xr mod p and k’ = Y’r mod q. Then plaintext is obtained by computing 

m’ = c ⋅ f(Y’r) mod p. 

Now we want to recover the quantity gk + k’. Indeed, gs’(ys)e = gs + k’(ys)e = gk’gs(ys)e = gk’gs + e xs 

= gk’ + k mod p. Therefore the signature (e, s) on message (c || m’ || yr || ys) is correctly verified, and 

a success in verification indicates that the plaintext is correctly recovered. � 

3.2 Security of Signature 

The security of Schnorr signature scheme has received extensive discussion and has been 

proven to be existentially unforgeable under the adaptive chosen message attack [23, 26-27, 31]. 

Assume that an adversary A has maximum advantage cma-uf
sig-SchnorrADV (A) while trying to forge a 

Schnorr signature under the attack model of adaptive chosen message. In the following lemma, 

we will prove that the signature scheme used in algorithm Authen-Enc(.) (let’s call it Sig-scheme) 

is at least as secure as Schnorr signature scheme, i.e. the adversary A cannot have advantage of 

forging Sig-scheme signature more than cma-uf
sig-SchnorrADV (A).  

A ciphertext (c, e, s) is essential a signature of Sig-scheme, i.e. a signature on message c || m 

|| yr || ys, where m = c ⋅ f((gs(ys)e)xr) mod p, k’ = ((gs(ys)e)xr mod p) mod q, e = H(c || m || yr || ys || (gk 

+ k’ mod p)), s = (k - e ⋅ xs) mod q. Namely, Sig-scheme is a variant of Schnorr signature with 

restricted verifiable information. Nobody except sender and recipient can verify this signature 

unless the recipient releases plaintext m and k’. Thus the result of the following lemma seems 

reasonable.    

Lemma 2. The signature scheme Sig-scheme is at least as secure as Schnorr signature scheme.  

Proof. In the following, we will include message in signature at our convenience. With the 
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knowledge of secret key xr, recipient transforms a ciphertext (c, e, s) into a Schnorr signature. The 

details of transformation are as follows. Recipient runs the algorithm Authen-Dec(.) and obtains 

m’, k’. Then a Schnorr signature (m’’, e, s’) is obtained. Namely, message m’’ = c || m’ || yr || ys, 

commitment is gk + k’ mod p, response s’ = s + k’, and challenge e is a hash value on concatenation 

of message m’’ and commitment, i.e. e = H(c || m’ || yr || ys || (gk + k’ mod p)).  

Although a recipient is able to convert a signature of Sig-scheme, (c, e, s), into a Schnorr 

signature; the recipient cannot transform an ordinary Schnorr signature (m, e, s) into a Sig-scheme 

signature, (c’, e’, s’). An exception is that message m = c’ || m’ || yr || ys and c’ = m’ / f((gs(ys)e)xr) 

mod p. Then (c’, e, s’) is a Sig-scheme signature, where s’ = (s - k’) mod q and k’ = ((gs(ys)e)xr 

mod p) mod q. However, this situation will occur with negligible probability.  

Let the quantity cma-uf
scheme-SigADV (A) be A’s advantage of forging a Sig-scheme signature under 

adaptive chosen message attack model. We conclude that  

cma-uf
scheme-SigADV (A) ≤ cma-uf

sig-SchnorrADV (A)           (1) 

or else the adversary can first forge a Sig-scheme signature and then transform it into a Schnorr 

signature. Therefore a Schnorr signature can be forged with a higher probability than 

cma-uf
sig-SchnorrADV (A), this contradicts the assumption that cma-uf

sig-SchnorrADV (A) is A’s maximum 

advantage of forging a Schnorr signature.  � 

The insider security introduced in [24] is a stronger notion for the security of authenticated 

encryption. Assume that an adversary is given recipient’s secret key and the adversary still cannot 

forge a signature with non-negligible probability. Then the signature scheme is secure against 

insider attack. We see that our Sig-scheme is secure against insider attack. 

Benefiting by that a ciphertext is also a signature of Sig-scheme; the proposed authenticated 

encryption is also secure against one-more-decryption attack. In our scheme, a success in 

one-more-decryption attack implies that given l ciphertexts (signatures), an adversary can 

construct another ciphertext different from those l ciphertexts. It would be impossible for an 

adversary (include recipient) to do that, since the security of Sig-scheme is strong enough to resist 
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this attack, by Lemma 2. 

3.3 Security of Encryption 

In the following, we will use the technique of sequences games described in [32] to prove 

the security goal of encryption. Our proof consists of six games, Game0, Game1, …, Game5. 

Game0 demonstrates the definition of security goal and attack model. Namely, a challenger who 

honestly runs the algorithm specified in Game0 and an adversary trying to break the algorithm in 

the sense of definition. Gamei evolves from Gamei-1 with a small change. Finally, we achieve a 

final game, Game5. Assume that the differences between games and the success probability of 

adversary in final game can be calculated efficiently. Then we can compute the adversary’s 

probability of successful experiment in Game0, namely, in the original definition.  

During an attack game, we assume that the adversary (denoted by A(.)) called encryption 

oracle qe times and decryption oracle qd times. Let ψ denote ciphertext (c, e, s) and Qj denote the 

number of encryption queries made prior to the jth decryption query. It is evident that 0 ≤ Qj ≤ qe.  

3.3.1 Definition of security goal and attack model 

Game0:  

xs ←R Zq, xr ←R Zq, ys ← gxs mod p, yr ← gxr mod p, b ←R {0, 1}  

Upon the ith encryption query:  

(mi0, mi1) ← A (ys, yr, ψ1, ..., ψi-1)   // mi0, mi1 ∈ G, ciphertext ψ = (c, e, s) 

ki ←R Zq, Yri ← (yr)ki mod p, ci ← mib / f(Yri) mod p, k’i ← Yri mod q 

ei ← H(ci || mib || yr || ys || (gki + k’i mod p)), si ← (ki – ei ⋅ xs) mod q, ψi ← (ci, ei, si) 

Return ψi to A(.) as the answer 

Upon the jth decryption query (ψ’j denotes the jth ciphertext (c’j, e’j, s’j)): 

   Y’rj ← (gs’j(ys)e’j)xr mod p, m’j ← c’j ⋅ f(Y’rj) mod p, k’j ← Y’rj mod q 

s’’j ← s’j + k’j mod q, e’’j ← H(c’j || m’j || yr || ys || (gs’’j(ys)e’j mod p))  

// ψ’j ∉ {ψa | a = 1, …, Qj } 

If e’’j = e’j then return m’j else return “invalid”  
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b’ ← A (ψ1, ..., ψqe, m’1, ..., m’qd) ∈ {0, 1} 

 

It is clearly that Game0 describes the attack model of adaptive chosen ciphertext (CCA2) 

[15]. The adversary freely selects two plaintexts (mi0, mi1) and hands on them to challenger. 

According to the value of a pre-selected random bit b, challenger enciphers either mi0 or mi1. Then 

challenger returns the resultant ciphertext to the adversary and asks him/her what value the 

random bit b is. While selecting plaintexts, adversary has knowledge of public information and 

some ciphertexts generated previously, i.e, ψ1, ..., ψi-1. Also, the adversary can query decryption 

oracle to decrypt some ciphertexts ψ’j thatψ’j ∉ {ψa | a = 1, …, Qj }.  

Let S0 define the event that b = b’ in Game0. If the adversary simply tosses a fair coin to 

decide random bit b’, then the probability of event S0 will be 1 / 2, i.e. Pr[S0] = 1 / 2. Since the 

adversary has been equipped with some capabilities to guess random bit b’, Pr[S0] my be higher 

than 1 / 2. Thus it is straightforward to define  

CCA2
Enc-AuthenADV = (Pr[S0] - 1 / 2);                    (2) 

namely, the advantage that an adversary can have while trying to distinguish between encryption 

of two plaintexts of his/her choosing.  

Now we try to compute the quantity of CCA2
Enc-AuthenADV  using the following games and 

differences (transitions) between games.  

3.3.2 A change in decryption oracle 

Game1:  

xs ←R Zq, xr ←R Zq, ys ← gxs mod p, yr ← gxr mod p, b ←R {0, 1} 

Upon the ith encryption query:  

(mi0, mi1) ← A (ys, yr, ψ1, ..., ψi-1)    

ki ←R Zq, Yri ← (yr)ki mod p, ci ← mib / f(Yri) mod p, k’i ← Yri mod q 

ei ← H(ci || mib || yr || ys || (gki + k’i mod p)), si ← (ki – ei ⋅ xs) mod q, ψi ← (ci, ei, si) 

Return ψi to A(.) as the answer 
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Upon the jth decryption query (ψ’j denotes the jth ciphertext (c’j, e’j, s’j)): 

Return “invalid” as the answer   // ψ’j ∉ {ψa | a = 1, …, Qj } 

b’ ← A (ψ1, ..., ψqe, m’1, ..., m’qd) ∈ {0, 1} 

 

Note that in Game1, the decryption oracle always returns “invalid” to the adversary in 

response to his/her decryption queries. Let S1 define the event that b = b’ in Game1. Also F 

defines the event in Game1 that for some j = 1, …, qd, the adversary queried decryption oracle 

with a ciphertext (c’j, e’j, s’j), and the ciphertext is such that Y’rj ← (gs’j(ys)e’j)xr mod p, m’j ← c’j ⋅ 

f(Y’rj) mod p, k’j ← Y’rj mod q, s’’j ← s’j + k’j mod q, e’’j ← H(c’j || m’j || yr || ys || (gs’’j(ys)e’j mod p)) 

and e’j = e’’j. It is clear that Game0 and Game1 will proceed identically unless event F occurs. 

Essentially, the event F implies that the adversary has successfully forged a signature of 

Sig-scheme. By Lemma 2 in Section 3.2, event F occurs with probability less than qd 

⋅ cma-uf
sig-SchnorrADV  (.), i.e.  

Pr[F] ≤ qd ⋅ cma-uf
scheme-SigADV (.) ≤ qd ⋅ cma-uf

sig-SchnorrADV (.).   (3) 

The Difference Lemma in [32] describes the relationship between events S0, S1, and F. It states 

that | Pr[S0] – Pr[S1] | ≤ Pr[F]. Therefore the following inequality is obtained. 

| Pr[S0] – Pr[S1] | ≤ qd ⋅ cma-uf
sig-SchnorrADV (.)             (4) 

3.3.3 Permutation function f(.) is replaced by a truly random faithful permutation function 

Game2:  

xs ←R Zq, xr ←R Zq, ys ← gxs mod p, yr ← gxr mod p, b ←R {0, 1} 

Upon the ith encryption query:  

(mi0, mi1) ← A (ys, yr, ψ1, ..., ψi-1)  

ki ←R Zq, Yri ← (yr)ki mod p, k’i ← Yri mod q 

Pi ←R G 

If (Pi ∈ { p1,…, pi-1}) then Pi ←R G \ { p1,…, pi-1} 

pi ← Pi 
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ci ← mib / pi mod p 

ei ← H(ci || mib || yr || ys || (gki + k’i mod p)), si ← (ki – ei ⋅ xs) mod q, ψi ← (ci, ei, si) 

Return ψi to A(.) as the answer 

Upon the jth decryption query: 

Return “invalid” as the answer         

b’ ← A (ψ1, ..., ψqe, m’1, ..., m’qd) ∈ {0, 1} 

 

Note that in Game2, the permutation function f(.) is replaced by a truly random faithful 

permutation function. Then the difference between Game1 and Game2 is simply the difference 

between the permutation function f(.) and a truly random faithful permutation function, 

more information about random permutation and pseudo random permutation functions please 

refer to [4, 32]. Let prp
(.)fADV (.) be this difference and S2 the event that b = b’ in Game2. Then we 

have 

| Pr[S1] – Pr[S2] | ≤ prp
(.)fADV (.).                   (5) 

3.3.4 The truly random faithful permutation function is replaced by a truly random forgetful 

permutation function 

Game3:  

xs ←R Zq, xr ←R Zq, ys ← gxs mod p, yr ← gxr mod p, b ←R {0, 1} 

Upon the ith encryption query:  

(mi0, mi1) ← A (ys, yr, ψ1, ..., ψi-1)  

ki ←R Zq, Yri ← (yr)ki mod p, k’i ← Yri mod q 

Pi ←R G, pi ← Pi 

ci ← mib / pi mod p 

ei ← H(ci || mib || yr || ys || (gki + k’i mod p)), si ← (ki – ei ⋅ xs) mod q, ψi ← (ci, ei, si) 
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Return ψi to A(.) as the answer 

Upon the jth decryption query: 

Return “invalid” as the answer     

b’ ← A (ψ1, ..., ψqe, m’1, ..., m’qd) ∈ {0, 1} 

 

Note that in Game3, the truly random faithful permutation function is replaced by a truly 

random forgetful permutation function. There will be no difference between Game2 and Game3 

except that collision occurs when choosing random numbers Pi. Let Collision3 denote this event 

and S3 be the event that b = b’. Then  

Pr[Collision3] ≤ 
|G|

1 +
|G|

2 +…+
|G|

qe =
|G|2
1qq ee )( − ≤

|G|2
qe

2)( . (6) 

It is clear that Game2 and Game3 will proceed identically unless event Collision3 occurs. Thus by 

Difference Lemma, we have  

| Pr[S2] – Pr[S3] | ≤ Pr[Collision3] ≤ 
|G|2

qe
2)( .         (7) 

3.3.5 Hash function H(.) is replaced by a truly faithfully random function 

Game4:  

xs ←R Zq, xr ←R Zq, ys ← gxs mod p, yr ← gxr mod p, b ←R {0, 1} 

Upon the ith encryption query:  

(mi0, mi1) ← A (ys, yr, ψ1, ..., ψi-1)  

ki ←R Zq, Yri ← (yr)ki mod p, k’i ← Yri mod q 

Pi ←R G, pi ← Pi 

ci ← mib / pi mod p 

ei ← R Zq, si ← R Zq, Yi ← gsi (ys)ei mod p    // now ei and si are random 

If (ci || mib || yr || ys || Yi = cj || mjb || yr || ys || Yj) for some j < i  

Then ei ← ej, si ← sj, k’i ← k’j 
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Else the hash value of H(ci || mib || yr || ys || Yi) is ei  

ψi ← (ci, ei, (si – k’i) mod q)  

Return ψi to A(.) as the answer 

Upon the jth decryption query: 

Return “invalid” as the answer     

b’ ← A (ψ1, ..., ψqe, m’1, ..., m’qd) ∈ {0, 1} 

 

Note that in Game4, the hash function H(.) is replaced by a truly faithfully random function. 

Then the difference between Game3 and Game4 is just the difference between the hash function 

H(.) and a truly faithfully random function, more information about random and pseudo random 

functions please refer to [4, 32]. Let prf
(.)HADV (.) be this difference and S4 the event that b = b’ in 

Game4. Then we have 

| Pr[S3] – Pr[S4] | ≤ prf
(.)HADV (.).                   (8) 

3.3.6 The truly faithfully random function is replaced by a truly forgetfully random function 

Game5:  

xs ←R Zq, xr ←R Zq, ys ← gxs mod p, yr ← gxr mod p, b ←R {0, 1} 

Upon the ith encryption query:  

(mi0, mi1) ← A (ys, yr, ψ1, ..., ψi-1)  

ki ←R Zq, Yri ← (yr)ki mod p, k’i ← Yri mod q 

Pi ←R G, pi ← Pi 

ci ← mib / pi mod p 

ei ← R Zq, si ← R Zq, Yi ← gsi (ys)ei mod p   // now ei and si are random 

Set the hash value of H(ci || mib || yr || ys || Yi) to ei  

ψi ← (ci, ei, (si – k’i) mod q)  

Return ψi to A(.) as the answer 

Upon the jth decryption query: 
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Return “invalid” as the answer    

b’ ← A (ψ1, ..., ψqe, m’1, ..., m’qd) ∈ {0, 1} 

 

Note that in Game5, the truly faithfully random function is replaced by a truly forgetfully 

random function. Let Collision5 denote the event that (ci || mib || yr || ys || Yi = cj || mjb || yr || ys || Yj) 

for some j ≠ i. We observe that the adversary may choose mib from a small subset of group G, i.e. 

mib = mjb for all i ≠ j. Thus Collision5 is expressed by a simpler equation, (ci || Yi = cj || Yj) for some 

j ≠ i, namely the sampling space is extended to the Cartesian product of G. The probability of 

collision is as follows. 

Pr[Collision5] ≤ 
|GG|2

qe
×

2)(          (9) 

It is clear that Game4 and Game5 proceed identically unless Collision5 occurs. Let S5 denote 

the event that b = b’ in Game5. Thus we have  

| Pr[S4] - Pr[S5] | ≤ Pr[Collision5] ≤ 
|GG|2

qe
×

2)( .         (10) 

Also that Pr[S5] = 1 / 2. Therefore, combining equations (4), (5), (7), (8), and (10), the proposed 

scheme’s semantic security is as follows. 

| Pr[S0] - 1 / 2 |  

= | Pr[S0] - Pr[S5] |  

= | Pr[S0] - Pr[S1] + Pr[S1] - Pr[S2] + Pr[S2] - Pr[S3] + Pr[S3] - Pr[S4] + Pr[S4]- Pr[S5] | 

≤ qd ⋅ cma-uf
sig-SchnorrADV (.) + prp

(.)fADV (.) +
|G|2

qe
2)( + prf

(.)HADV (.) +
|GG|2

qe
×

2)(      (11) 

4. PERFORMANCE 

To simplify the estimation of computational cost, we count only the major operation. For 

example, the computational cost of modular multiplication, hash function, and permutation 

function is ignored as compared with the expensive cost of modular exponentiation.  
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The computational cost for encryption is two modular exponentiations. Using the technique 

of efficient simultaneous multiple exponentiations [2], the computational cost for decryption is 

2.34 modular exponentiations.  

For a practical cryptosystem, the parameters |p| = 1024, |H(.)| = 160, and |q| = 160 were 

suggested in [33]. Since a plaintext has bit length 1024 and a ciphertext consists of 1344 (|p| + 

|H(.)| + |q|) bits, therefore the data expansion rate is about 1.3.   

For both the computational cost and data expansion rate, the presented scheme is as efficient 

as that of those schemes in [18-19, 21].   

5. CONCLUSION 

This paper has presented a secure authenticated encryption scheme. In the aspect of 

signature, it is shown at least as secure as the Schnorr signature scheme which we have included 

in the proposed scheme. It is possible to integrate with other signature scheme, e.g. DSA signature 

scheme. Depending on the amount of information released by recipient, a signature is either 

publicly verifiable or not.  

As for the encryption, it is secure against one-more-decryption attack. Also, the adversary’s 

advantage in guessing random bit b is directly related to the advantage of forging a signature as 

shown in equation (11).  

As discussed in Section 3.2, the proposed scheme’s signature is secure against insider attack. 

But encryption is not. If an adversary has the knowledge of sender’s secret key, then recipient’s 

privacy is lost. It would be a challenge to construct an authenticated encryption to prevent both 

signature and encryption from insider attack.    
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