
A Practical Attack on the Root Problem in Braid Groups

Anja Groch, Dennis Hofheinz, and Rainer Steinwandt

Abstract. Using a simple heuristic approach to the root problem in braid
groups, we show that cryptographic parameters proposed in this context must
be considered as insecure. In our experiments we can, often within seconds,
extract the secret key of an authentication system based on the root problem
in braid groups.

1. Introduction

In recent years several proposals for asymmetric cryptographic schemes building
on braid groups have been made. For an excellent introduction to the subject wer
refer to Dehornoy’s survey article [Deh04]. Next to proposals based on (variants
of) the conjugacy problem, more recently constructions for making use of the root
problem in braid groups gained attention, and in the sequel we show that parame-
ters proposed in this context succumb to a simple heuristic attack. Our approach
reduces a root problem in the braid group Bn to a root problem in the symmetric
group Sn, and despite its simplicity turns out as rather effective for proposed in-
stances. To describe the details, we start by recalling some basic terminology on
braid groups.

1.1. Braid groups. For our purposes it suffices to interpret the braid group
Bn (n ∈ N) as a finitely presented group defined through the presentation (cf.
[Art25])

〈

σ1, . . . , σn−1
σiσjσi = σjσiσj if |i − j| = 1
σiσj = σjσi if |i − j| > 1

〉

.

As usual, we refer to σ1, . . . , σn−1 as (Artin) generators and to arbitrary elements
of Bn as braids. To refer to a specific representation of a braid in terms of Artin
generators, we use the term braid word. A braid is said to be positive if and only
if it can be written as a product of generators σi, i.e., without involving negative
powers of the σi. Here the identity ε ∈ Bn is regarded as positive, too, and it can
be shown that the positive braids in Bn form a monoid B+

n which embeds into Bn

(cf. [Gar69]). Moreover, we call a braid u ∈ B+
n a tail of w ∈ B+

n if w can be
written as w = vu for some v ∈ B+

n . Analogously, u ∈ B+
n is referred to as a head

of w ∈ B+
n if w = uv for some v ∈ B+

n .

Key words and phrases. braid group, root problem, cryptanalysis.

1

2 ANJA GROCH, DENNIS HOFHEINZ, AND RAINER STEINWANDT

1.2. ∆-normal form. Setting inductively ∆1 := σ1 and ∆i = σ1 · · ·σi · ∆i−1

for 1 < i < n, we define the fundamental braid ∆ ∈ Bn as ∆ := ∆n−1. Next, we
establish a partial ordering ≤ on the elements of Bn: For u, v ∈ Bn we set v ≤ w
if and only if there exist positive braids α, β ∈ B+

n such that w = αvβ. Now any
braid α ∈ Bn satisfying ε ≤ α ≤ ∆ is referred to as canonical factor. Further on,
we have a canonical homomorphism π : Bn −→ Sn from the braid group Bn into
the symmetric group Sn such that

• π(σi) = (i, i + 1) and
• restricting π to the set of canonical factors in Bn induces a bijection

(see [EM94]). We denote by π−1 the map that maps permutations to canonical
factors such that π ◦ π−1 = id.

A factorization γ = αβ of a positive braid γ into a canonical factor α and
a positive braid β is said to be left-weighted if and only if α has the maximal
length among all such decompositions. A right-weighted factorization is defined
analogously. Moreover, for any braid w ∈ Bn we denote the greatest i ∈ Z with
∆i ≤ w by inf w; analogously, supw stands for the smallest i ∈ Z with w ≤ ∆i.
With this notation every braid w ∈ Bn can be written uniquely as

(1) w = ∆rW1 · · ·Ws

with r = inf w, s = supw − inf w and canonical factors ε < Wi < ∆ such that
WiWi+1 is left-weighted for 1 ≤ i < s (cf. [Gar69]). In this context, we say that
s is the canonical length of w, and the explicit decomposition (1) is called the
∆-normal form of w.

Note that the Wi are canonical factors, so they can be represented uniquely
by the correspending permutations π(Wi) ∈ Sn. For a given braid word w ∈ Bn,
its ∆-normal form can be computed in time O(|w|2n log n) with | · | denoting the
word length (see [CKL+01] for details). Sometimes the ∆-normal from is called
left-normal form because of the power of ∆ being written on the left and the
decompositions of canonical factors being left-weighted. Writing the power of ∆
on the right and demanding right-weightedness of the decompositions of canonical
factors, one obtains the right-normal form, which can also be computed efficiently.

1.3. Conjugacy and Root Problem. For the conjugacy (search) problem
(short: CSP), we are given two braid words so that the corresponding braids u, w ∈
Bn are related by w = α−1uα for some α ∈ Bn, and the goal is to find some
braid α′ ∈ Bn with w = α′−1uα′. Leaving aside the question of efficiency, this
problem has been solved in [Gar69], but finding an efficient algorithm for CSP
is the topic of ongoing research. In parts motivated by cryptanalytic purposes,
a number of heuristic approaches to the CSP have been brought up (see, e.g.,
[Hug02, HS02, GKT+05]). An experimentally very efficient Las Vegas algorithm
for solving the CSP is known, too (cf. [Geb03]), and from the cryptographic point
of view further research on how to generate hard instances of the CSP is desirable.

Most of the braid group based cryptographic schemes that have been proposed
rely on the difficulty of some varation of the CSP. For instance, the public key
cryptosystem of [KLC+00] is based on a variant of the CSP, where one is given
α−1uα and β−1uβ for α and β chosen from two commuting subgroups, and one
needs to find (αβ)−1u(αβ) (see also [SU04]). Note that this particular problem
can be solved in polynomial time, cf. [CJ03].

A PRACTICAL ATTACK ON THE ROOT PROBLEM IN BRAID GROUPS 3

For the root extraction problem (short: REP), we are given a braid word rep-
resenting some w ∈ Bn along with some natural number m ∈ N such that w = um

for some u ∈ Bn. The goal is to find a braid u′ with u′m = w. As shown by
González-Meneses [GM03], u′ and u then in particular must be conjugate.

Using the REP for cryptography has been suggested by Ko et al. in [KLC+00],
and a concrete cryptographic system for entity authentication basing on the hard-
ness of the REP has been put forward by Sibert et al. in [SDG02, Sib03]. This
system is provably secure (assuming the hardness of REP and CSP) and is described
in more detail in Section 2. Very recently, in [LC05], two authentication schemes,
claimed to be based on the REP, were suggested, but the first of these has been
attacked successfully in [Tsa05] without solving the REP. The second scheme is
unsatisfying in the sense that is relies on the difficulty of the Diffie-Hellman decom-
position problem which can be solved in polynomial time [CJ03]. Moreover,[LC05]
lacks concrete parameter suggestions that could serve as testground for practical
tests. Hence here we do not investigate these two proposals further.

Disregarding the question of efficiency, a result of Styshnev [Sty79] provides
an algorithmic solution for the REP. Furthermore, Lee in [Lee04] shows how to
reduce the REP to a conjugacy search problem in a different (Garside) group.
In combination with, e.g., the techniques developed in [Geb03] (which apply to
arbitrary Garside groups) this can be used to solve the REP. However, to our
knowledge no results about the efficiency of that method are currently known. In
particular, it seems unclear how efficient the algorithm of [Geb03] performs in the
Garside groups considered in [Lee04]. While exploring this question certainly looks
worthwhile, in the sequel we show that already a rather simple heuristic approach
enables a practical attack on proposed parameters of the root problem.

2. A Proposal of Sibert, Dehornoy and Girault

To get an idea of how a cryptographic system might be founded on CSP and
REP (and also to motivate the parameters used in our experiments in Section 3.6),
we reproduce an authentication system described in [SDG02, Sib03].

2.1. System Description. The authors of [SDG02] refer to the system dis-
cussed here as Scheme III. It follows the Fiat-Shamir paradigm (cf. [FS87]) and
involves a prover P who chooses a braid s ∈ Bn along with an integer m ∈ N.
Then P publishes both b := sm and m, but keeps s secret. During an authentica-
tion phase, P wants to convince a verifier V that he knows s.

The idea is to convince the verifier V not in the trivial way (namely by sending
her s), but rather in zero-knowledge (see [GMR89]), i.e., without revealing any
“usable” information about s. This makes the scheme useful for authentication in
the sense that P is the only one who can convince another party of knowing s: even
after having convinced V , the braid s remains the prover P ’s individual secret. For
P and V being honest, the communication in Scheme III reads as follows.

(1) P chooses a random r ∈ Bn and sends x = rbr−1 to V .
(2) V chooses a random ǫ ∈ {0, 1} and sends it to P .

(3) • If ǫ = 0, P sends y = r to V ; V then checks x
?
= yby−1,

• if ǫ = 1, P sends y = rsr−1 to V ; V then checks x
?
= ym.

The verifier V accepts the proof exactly if the check in the third step succeeds. Of
course, extracting an mth root of b will enable anybody to authenticate as P . Also,

4 ANJA GROCH, DENNIS HOFHEINZ, AND RAINER STEINWANDT

when communicating with P , choosing ǫ = 1 combined with the ability to solve
the CSP (applied to u = b and w = ym = rbr−1) enables an evil verifier to get r
and therewith P ’s indivual secret s. On the other hand, under the assumption that
REP and CSP are hard, and additionally some assumptions concerning the choice of
instances, [SDG02] shows that the scheme indeed is zero-knowledge. That means
that no computationally usable information about s is leaked.

2.2. Suggested Parameters. In [SDG02], the following parameters are sug-
gested: n = 30, and random braids should be chosen either as products of 15
random permutations, or as products of at least 1000 random (Artin) generators.
Additionally, to protect against a heuristic approach to the CSP (cf. [HS02]),
[Sib03] suggests to employ cycling and decycling steps in the generation of in-
stances (see [Sib03, Algorithme 3.2.2] for details).

3. A Heuristic Apprach to the REP

As outlined in the explanation of the REP, subsequently we assume that w =
um ∈ Bn and m ∈ N are given, and our goal is to find a u′ ∈ Bn such that w = u′m.
Moreover, for most cryptographic applications, infimum and canonical length of u
are also either public or at least can be guessed with significant probability. Hence,
we will assume inf u and the canonical length of u to be known, too.

3.1. A First Observation. We start with:

Proposition 3.1. Say that u ∈ Bn has ∆-normal form

∆rU1 · · ·Us,

and that w := um has ∆-normal form

∆r′

W1 · · ·Ws′

such that ℓ := s′−(m−1)s > 0. Then the last ℓ canonical factors W(m−1)s+1 · · ·Ws′

of the ∆-normal form of w form a tail of U1 · · ·Us, i.e.,

U1 · · ·Us = u′W(m−1)s+1 · · ·Ws′

for some positive u′ ∈ B+
n .

Proof. Juxtaposing m copies of u and moving powers of ∆ to the left, we can
write w as

(2) w = ∆mrW
(1)
1 · · ·W (1)

ms ,

such that for j = 0, . . . , m − 1 and k = 1, . . . , s we have W
(1)
js+k = τr(m−1−j)(Uk),

where τ denotes conjugation by ∆. As conjugation by ∆ maps canonical factors

to canonical factors, all W
(1)
i are canonical factors, but the decomposition (2) is of

course not necessarily the ∆-normal form of w.
The ∆-normal form of w can then be computed from (2) by successively mak-

ing decompositions W
(1)
i W

(1)
i+1 left-weighted, e.g., using the normal form algorithm

in [CKL+01]. During this process, a number of decompositions

(3) w = ∆rlW
(l)
1 · · ·W (l)

sl
(l > 1)

are formulated such that the lth decomposition of w is derived from the (l − 1)st

by making exactly one product W
(l−1)
i W

(l−1)
i+1 of canonical factors left-weighted.

Denote by LR (with L, R canonical factors) the new left-weighted decomposition

A PRACTICAL ATTACK ON THE ROOT PROBLEM IN BRAID GROUPS 5

of W
(l−1)
i W

(l−1)
i+1 . If L = ∆, then L can be moved to the left (by conjugating all

canonical factors W
(l−1)
j for 1 ≤ j < i with ∆ and incrementing rl−1). If that

happens, or if R = ε, the new decomposition (3) gets shorter in the sense that
sl < sl−1.

For some l = l0, this procedure eventually terminates and for that l, the de-
composition (3) is the ∆-normal form of w. We claim that for all l with 1 ≤ l ≤ l0,
it holds that

(4) W
(l)
(m−1)s+1 · · ·W

(l)
sl

is a tail of U1 . . . Us.

(Note here that by the assumption sl0 = s′ > (m − 1)s on the canonical length of
w and the fact that sl ≤ sl−1 for all l, we are guaranteed sl ≥ (m − 1)s + 1.)

Property (4) can be proven for all l by induction:

• For l = 1, statement (4) is clear by construction of W
(1)
(m−1)s+k

= Uk

(1 ≤ k ≤ s).

• Assume (4) holds for l − 1 ≥ 1. Only making a product W l−1
i W l−1

i+1

left-weighted obviously does not affect property (4). (Here, in the only
interesting case i = (m − 1)s, the very definition of left-weightedness
guarantees that (4) still holds.)

However, by making W l−1
i W l−1

i+1 left-weighted, the new decomposition
LR might collapse in the sense that L = ∆ or R = ε. Then the overall

length decreases (i.e., sl < sl−1), canonical factors W
(l−1)
j (i < j ≤ sl−1)

get shifted left, and possibly a ∆ is “moved through” W
(l−1)
j (1 ≤ j < i).

For i ≤ (m−1)s, this does not affect (4), as with W
(l−1)
(m−1)s+1 · · ·W

(l−1)
sl−1

also W
(l)
(m−1)s+1 · · ·W

(l)
sl

= W
(l−1)
(m−1)s+1+k

· · ·W
(l−1)
sl−1

is a tail of U1 · · ·Us (for

suitable k ∈ {1, 2}). But for i > (m − 1)s, the case L = ∆ is not possible
(because then it would follow that ∆ ≥ U1 · · ·Us, which contradicts the
maximality of r = inf u), and the case R = ε does not affect (4). Taking
it all together, (4) thus holds for l, too.

As just shown, (4) holds in particular for l = l0, and it follows that

W
(l0)
(m−1)s+1 · · ·W

(l0)
sl

= W(m−1)s+1 · · ·Ws′

is a tail of U1 . . . Us. �

In a nutshell, Proposition 3.1 shows that, given only w = um, the exponent
m ∈ N and the canonical length s of u, one can derive a tail of the “canonical part”
of u by simply “reading off” canonical factors from the end of the ∆-normal form
of w.

3.2. Uncovering the Remaining Part. Assume we have, e.g., using Propo-
sition 3.1, obtained a tail uR of the “canonical part” U1 · · ·Us of u. Then, let
uL ∈ B+

n be the remaining canonical part of u, such that

(5) u = ∆ruLuR

with r = inf u as before assumed public. Suppose further that uL itself is “only”
a canonical factor. This latter assumption might seem a little odd, but in our
experiments, this turns out to be actually the case for suggested instances of the
REP. Note that this implies π−1(π(uL)) = uL for the canonical homomorphism π
from Section 1.2.

6 ANJA GROCH, DENNIS HOFHEINZ, AND RAINER STEINWANDT

Consider the projection

(6) u = ∆
r

uL uR

of (5) into the symmetric group Sn, where we write x for π(x). Obviously, uL, and
thus by assumption about uL also uL = π−1(uL), is uniquely determined by u, uR

and r. Since r and uR (and therefore also uR) are known, we only need to find u
to obtain uL and hence, using (5), also u (which is our final goal).

We can get u by solving the equation

(7) w = xm

in the symmetric group Sn for unknown x. (Note that w and thus w is known.)
Unfortunately, a solution to this root extraction problem in the symmetric group
need not be unique, so there may be many candidates x for u. However, for every
such candidate, (5) can be checked, where uL = π−1(uL) is obtained in turn from
(6) by setting u = x. Of course, any solution to (5) solves already the REP in
the braid group. Note also that the “right” u is among the candidates x for u, so
eventually a solution will be found.

3.3. Extracting Roots of Permutations. It remains to show how to get
all solutions x ∈ Sn to (7) for given y := w ∈ Sn and m ∈ N. Suppose x consists
of disjoint cycles C1, . . . , Cµ. Then

y = xm = Cm
1 · · ·Cm

µ ,

where Cm
i consists of gcd (|Ci|, m) cycles of length |Ci|/ gcd (|Ci|, m) each.

This allows to treat cycles of y with different lengths separately: let D1, . . . , Dν

be the disjoint cycles of y, and let L := {|Di|} be the set of cycle lengths occurring
in y. Then, any mth root x of y can be expressed as

(8) x =
∏

ℓ∈L

xℓ,

where xℓ is an mth root of the product

yℓ :=
∏

|Di|=ℓ

Di

of all cycles of y of length ℓ. Conversely, any product as in (8) with xm
ℓ = yℓ for all

ℓ satisfies xm = y. So without loss of generality, we may assume that y contains
only cycles of length ℓ, i.e., that y = yℓ for some ℓ.

An mth root x of y can then be constructed as follows: choose a divisor a ≥ 1
of m that is coprime to ℓ such that g := m/a ≤ ν. Then g = gcd (gℓ, m), and thus
any g cycles Di1 , . . .Dig

can be combined into one larger cycle C of length |C| = gℓ

such that Cm = Di1 · · ·Dig
. This combination can be done (in ℓg−1 different ways)

by writing the Dij
suitably “interleaved”. (We omit details here.) The process can

be repeated until there are no more cycles Di left. That way, using backtracking,
all possible solutions x can be obtained (however, the number of solutions may of
course be large).

A PRACTICAL ATTACK ON THE ROOT PROBLEM IN BRAID GROUPS 7

3.4. Summary of the Algorithm. In summary, our algorithm thus works as
depicted in Figure 1. Some comments are in place: the algorithm takes additionally
inf u and supu as input. When not already knowing these values (e.g., because they
might be fixed in a cryptographic system), they can simply be guessed: for example,
inf u lies between 0 and inf w/m, and the canonical length s of u lies between 0
and the canonical length s′ of w. The algorithm can also be run in parallel for all
possible guesses.

Steps 1 and 2 of the algorithm make use of Theorem 3.1 to read off a tail uR of
the canonical factors of u from the ∆-normal form of w. Steps 3 and 4 assume that
the remaining canonical part uL of u is only a canonical factor; then, the method
described in Section 3.2 is used to reduce the remaining problem to a root extraction
problem in the symmetric group Sn. Step 3 can be implemented by, e.g., using the
method described in Section 3.3. Note that a potential solution u′ to the REP can
easily be checked for correctness, and thus the algorithm never generates wrong
output (but it may well output “fail” to indicate that something went wrong).

Input: w = um ∈ Bn, m ∈ N, r = inf u, canonical length s of u
Output: either u′ ∈ Bn with u′m = w or “fail”

(1) Let ℓ := max {0, s′ − (m − 1)s} for the canonical length s′ of w.
(2) Let uR ∈ Bn be the product of the last ℓ canonical factors of w’s

∆-normal form.
(3) Solve π(w) = xm in the symmetric group Sn for unknown x ∈ Sn;

let X be the set of solutions.
(4) For all x ∈ X do

• let uL := π−1(π(∆)−r x π(uR)−1) ∈ Bn

• let u′ := ∆ruLuR

• if u′m = w, terminate with output w
end for.

(5) Terminate with “fail.”

Figure 1. Summary of our algorithm

3.5. Improvements and Optimizations. If the algorithm fails, not all is
lost. For example, there is a way to make the crucial assumption that the“remaining
canonical part” uL of u is a canonical factor potentially more likely. To see how
this works, first observe that to find an mth root of w ∈ Bn, it suffices to find an
mth root u′ of w′ := α−1wα, where α ∈ Bn is arbitrary but known. Namely, then
u := αu′α−1 is an mth root of w as desired, because

um = (αu′α−1)m = αu′mα−1 = αα−1wα−1α = w.

In other words, we may as well preprocess w by conjugation as long as we keep
track of the conjugating braid α. Then it might be useful to cycle or decycle w
(and thus u) so that both end up in their super summit set (SSS). (Here, cycling
and decycling are simply special types of conjugation operations, and the super
summit set of a braid w is the subset of w’s conjugacy class of braids with minimal
canonical length; cf., e.g., [EM94] for details. An upper bound on the number of
needed cycling/decycling operations is provided in [BKL01].) The intuition here
is that the SSS contains exactly the “dense” conjugates of u resp. w. One may hope

8 ANJA GROCH, DENNIS HOFHEINZ, AND RAINER STEINWANDT

that for these conjugates (call them u′ and w′) the canonical length of w′ = u′m is
close to m times the canonical length of u′. Given that, one can hopefully read off
larger tails of u′ from the normal form of w′ in Step 2 of the algorithm. Also, this
makes inf u = inf w/m and supu = supw/m very likely, so that the algorithm can
guess r and s with high probability on its own.

Another rather trivial optimization is to not only consider the ∆-normal form
(or, left-normal form), but in addition also the right-normal form of w. An obvious
analogue to Theorem 3.1 shows then how to read off a head uL′ of the canonical
part (in the right-normal form) of u from the right-normal form of w. Then it can
be hoped that the remaining canonical part uR′ of u is only a canonical factor and
the problem can be projected into the symmetric group Sn just as in Section 3.2.

3.6. Experimental Results. We have implemented our algorithm (taking
into account the optimizations from Section 3.5) in the computer algebra system
MAGMA [BCP97] on a standard PC. In the following table, we have summarized
our success rates for extracting square roots for different choices of the braid index
n and types of instance generation. Here, “Canonical” means that u is chosen as
a product of r randomly chosen canonical factors, “Artin” means that u is chosen
as a product of r randomly chosen Artin generators (either positive or negative),
and “[Sib03]” means that u is chosen according to [Sib03, Algorithme 3.2.2] with
ℓ = r.

n r Instance Type Total samples Success rate

30 15 Canonical 1000 99.5%
30 15 [Sib03] 1000 99.1%
30 1000 Artin 1000 96.7%
60 30 Canonical 500 93.6%
60 30 [Sib03] 500 91.8%
60 2000 Artin 500 41.0%

It should be noted that “success” indicates that the algorithm found a complete
square root of w on input u only1. The reason for failure was—independently of
parameter choice—almost always the fact that there were too many solutions to (7)
to handle them efficiently. In other words, the problem was not the computation
in the braid group Bn, but the task of extracting roots in the Sn. So our algorithm
seems to succeed almost always in reducing a REP in the Bn to a REP in the Sn.
However, note that even to find only one solution to a REP in the Bn, we may have
to find all solutions to a REP in the Sn.

This also means that the success rate of the algorithm can be raised signif-
icantly (at least for n > 30) if it is allowed to run longer (and thus to consider
more solutions to (7)). For the computations documented in the above table, the
algorithm typically succeeded within seconds.

The results seem to generalize to exponents m > 2 and larger braid index n,
only the number of solutions to (7) grows substantially with the number of divisors
of m. So for large m with many divisors, the attack becomes impractical because
not all solutions to (7) can be found efficiently. It should be stressed however, that
also here the only problem is the number of solutions in the symmetric group; the
reduction to the REP in the Sn itself experimentally works almost always.

1inf u and sup u were—after (de)cycling w—guessed as inf u = inf w/2 and sup u = sup w/2

A PRACTICAL ATTACK ON THE ROOT PROBLEM IN BRAID GROUPS 9

3.7. Countermeasures. An obvious way to defeat the attack is to provoke
a situation in which there is a large number of solutions to the REP (7) in the Sn,
so that π(u) cannot be found efficiently. As just mentioned, this can be done by
choosing large m with a large number of divisors. However, this makes, e.g., the
authentication system of [SDG02] rather inefficient, because the public key then
becomes huge.

Note that choosing, e.g., pure braids u (i.e., braids u with π(u) = id) in itself
does not defeat the attack, as then π(u), which is the whole goal of solving (7),
is public. An ad hoc strategy which for m = 2 successfully counters our attack is
the following: Select a pure braid u and insert at random positions in u distinct
Artin generators such that π(u) consists only of cycles of length 2. Then, π(w) =
π(u2) = id, so the number of solutions to the REP in Sn is large, and guessing π(u)
becomes more difficult.

While this choice of instances defeats our attack, we do not endorse the security
of this construction and think further investigation of the choice of parameters for
the REP in Bn is required. (In particular, in face of our heuristic reduction, what
role does the canonical length of u play?)

4. Conclusion

We have described a heuristic algorithm for the root problem in braid groups.
This algorithm does not solve the root problem in the general case, yet it applies
to most of the cases considered for cryptographic purposes. We have run various
experiments with parameters proposed for braid group based cryptosystems to back
this result.

Furthermore, we believe that our algorithm can be improved to succeed for
some parameters not considered yet for cryptographic applications, and it seems an
interesting question how to efficiently find cryptographically satisfying instances of
the root problem in braid groups.

Acknowledgments

We thank Markus Grassl for valuable discussions and his help with MAGMA

and Robbert de Haan for valuable comments and discussions.

References

[Art25] Emil Artin, Theorie der Zöpfe, Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg 4 (1925), 47–72.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system I:

The user language, Journal of Symbolic Computation 24 (1997), 235–265.
[BKL01] Joan S. Birman, Ki Hyoung Ko, and Sang Jin Lee, The infimum, supremum, and

geodesic length of a braid conjugacy class, Advances in Mathematics 164 (2001),
41–56, Online available at http://mail.konkuk.ac.kr/~sangjin/webfiles/articles/
geolen.pdf.

[CJ03] Jung Hee Cheon and Byungheup Jun, A polynomial time algorithm for the braid

Diffie-Hellman conjugacy problem, Advances in Cryptology, Proceedings of CRYPTO
2003 (Dan Boneh, ed.), Lecture Notes in Computer Science, no. 2729, Springer-Verlag,
2003, Online available at http://eprint.iacr.org/2003/019.ps, pp. 212–225.

[CKL+01] Jae Choon Cha, Ki Hyoung Ko, Sang Jin Lee, Jae Woo Han, and Jung Hee Cheon,

An efficient implementation of braid groups, Advances in Cryptology, Proceedings of
ASIACRYPT 2001 (Colin Boyd, ed.), Lecture Notes in Computer Science, no. 2248,
Springer-Verlag, 2001, Online available at http://crypt.kaist.ac.kr/pre_papers/

braid-impl.ps, pp. 144–156.

10 ANJA GROCH, DENNIS HOFHEINZ, AND RAINER STEINWANDT

[Deh04] Patrick Dehornoy, Braid-based cryptography, Group Theory, Statistics, and Cryptog-
raphy (Alexei G. Myasnikov, ed.), Contemporary Mathematics, no. 360, ACM Press,
2004, Online available at http://www.math.unicaen.fr/~dehornoy/Surveys/Dgw.ps,
pp. 5–33.

[EM94] Elsayed A. Elrifai and H. R. Morton, Algorithms for positive braids, Quarterly Journal
of Mathematics 45 (1994), 479–497, Online available at http://www.liv.ac.uk/~su14/
papers/EM04.ps.gz.

[FS87] Amos Fiat and Adi Shamir, How to prove yourself: Practical solutions to identification

and signature problems, Advances in Cryptology, Proceedings of CRYPTO ’86 (An-
drew M. Odlyzko, ed.), Lecture Notes in Computer Science, no. 263, Springer-Verlag,
1987, pp. 186–194.

[Gar69] Frank A. Garside, The braid group and other groups, Quarterly Journal of Mathemat-
ics 20 (1969), 235–254.

[Geb03] Volker Gebhardt, A new approach to the conjugacy problem in Garside groups, Journal
of Algebra (2003), To be published, online available at http://arxiv.org/ps/math.

GT/0306199.
[GKT+05] David Garber, Shmuel Kaplan, Mina Teicher, Boaz Tsaban, and Uzi Vishne, Proba-

bilistic solutions of equations in the braid group, Advances in Applied Mathematics 35

(2005), no. 3, 323–334, Online available at http://arxiv.org/ps/math.GR/0404076.

[GM03] Juan González-Meneses, The nth root of a braid is unique up to conjugacy, Algebraic
and Geometric Topology 3 (2003), 1103–1118, Online available at http://www.maths.
warwick.ac.uk/agt/ftp/main/2003/agt-3-39.ps.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff, The knowledge complexity of

interactive proof systems, SIAM Journal on Computing 18 (1989), no. 1, 186–208.
[HS02] Dennis Hofheinz and Rainer Steinwandt, A practical attack on some braid group based

cryptographic primitives, Public Key Cryptography, Proceedings of PKC 2003 (Yvo
Desmedt, ed.), Lecture Notes in Computer Science, no. 2567, Springer-Verlag, 2002,
pp. 187–198.

[Hug02] Jim Hughes, A linear algebraic attack on the AAFG1 braid group cryptosystem, Infor-
mation Security and Privacy, Proceedings of ACISP 2002 (Lynn Batten and Jennifer
Seberry, eds.), Lecture Notes in Computer Science, no. 2384, Springer-Verlag, 2002,
Online available at http://www.network.com/hughes/ACISP02.pdf, pp. 176–189.

[KLC+00] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung Kang, and
Choonsik Park, New public-key cryptosystem using braid groups, Advances in Cryp-
tology, Proceedings of CRYPTO 2000 (Mihir Bellare, ed.), Lecture Notes in Computer
Science, no. 1880, Springer-Verlag, 2000, pp. 166–183.

[LC05] Sunder Lal and Atul Chaturvedi, Authentication schemes using braid groups,
lanl.arXiv.org ePrint Archive, July 2005, Online available at http://arxiv.org/pdf/

cs.CR/0507066.
[Lee04] Sang Jin Lee, Growth of minimal word-length in Garside groups, lanl.arXiv.org ePrint

Archive, November 2004, Online available at http://arxiv.org/ps/math.GT/0411470.
[SDG02] Hervé Sibert, Patrick Dehornoy, and Marc Girault, Entity authentication schemes

using braid word reduction, Discrete Applied Mathematics (2002), To be published,
online available at http://eprint.iacr.org/2002/187.ps.

[Sib03] Hervé Sibert, Algorithmique des groupes de tresses, Ph.D. thesis, Université de Caen,
2003, Online available at http://www.math.unicaen.fr/~sibert/These.pdf.

[Sty79] V.B. Styshnev, The extraction of a root in a braid group, Mathematical of the USSR,
Izvestija 13 (1979), 405–416.

[SU04] Vladimir Shpilrain and Alexander Ushakov, The conjugacy search problem in public

key cryptography: unnecessary and insufficient, IACR ePrint Archive, November 2004,
Online available at http://eprint.iacr.org/2004/321.pdf.

[Tsa05] Boaz Tsaban, On an authentication scheme based on the root problem in the braid

group, lanl.arXiv.org ePrint Archive, September 2005, Online available at http://

arxiv.org/ps/cs.CR/0509059.

A PRACTICAL ATTACK ON THE ROOT PROBLEM IN BRAID GROUPS 11

Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, Am Fasa-

nengarten 5, 76131 Karlsruhe, Germany

E-mail address: groch@ira.uka.de

Centrum voor Wiskunde en Informatica, Cryptology and Information Security

Group, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

E-mail address: Dennis.Hofheinz@cwi.nl

Department of Mathematical Sciences, Florida Atlantic University, 777 Glades

Road, Boca Raton, FL 33431, USA

E-mail address: rsteinwa@fau.edu

