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Abstract

Multivariate Quadratic public key schemes have been suggested back in 1985 by Mat-

sumoto and Imai as an alternative for the RSA scheme. Since then, several other schemes have

been proposed, for example Hidden Field Equations, Unbalanced Oil and Vinegar schemes,

and Stepwise Triangular Schemes. All these schemes have a rather large key space for a secure

choice of parameters. Surprisingly, the question of equivalent keys has not been discussed in

the open literature until recently. In this article, we show that for all basic classes mentioned

above, it is possible to reduce the private — and hence the public — key space by several

orders of magnitude. For the Matsumoto-Imai scheme, we are even able to show that the

reductions we found are the only ones possible, i.e., that these reductions are tight. While

the theorems developed in this article are of independent interest themselves as they broaden

our understanding of Multivariate Quadratic public key systems, we see applications of our

results both in cryptanalysis and in memory efficient implementations of MQ-schemes.
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1 Initial Considerations

In the last 20 years, several schemes based on the problem of Multivariate Quadratic equations (or
MQ for short) have been proposed. The most important ones certainly are MIA / C∗ [MI88] and
Hidden Field Equations (HFE, [Pat96b]) plus their variations MIA- / C∗−−, HFE-, HFEv, and
HFEv- [KPG99, Pat96a, Pat96b]. Both classes have been used to construct signature schemes for
the European cryptography project NESSIE [NES], namely the MIA- variation in Sflash [CGP03],
the HFEv- variation in Quartz [CGP01] and the HFE- variation in the tweaked version Quartz-7m
[WP04]. Unbalanced Oil and Vinegar schemes [KPG99] and Stepwise Triangular Schemes [WBP04]
are also important in practice. While the first is secure with the correct choice of parameters, the
second forms the basis of nested constructions like the enhanced TTM [YC04], Tractable Rational
Maps [WHL+05], or Rainbow [DS05].

The aim of this paper is to systematically study the question of equivalent keys of MQ-schemes.
At first glance, this question seems to be purely theoretical. But for practical applications, we
need memory and time efficient instances of Multivariate Quadratic public key systems. One
important point in this context is the overall size of the private key: in restricted environments
such as smart cards, we want it as small as possible. Hence, if we can show that a given private
key is only a representative of a much larger class of equivalent private keys, it makes sense to
compute (and store) only a normal form of this key. Similar, we should construct new Multivariate
Quadratic schemes such that they do not have a large number of equivalent private keys but only
a small number, preferable only one, per equivalence class. This way, we make optimal use of
the randomness in the private key space and neither waste computation time nor storage space
without any security benefit.

All systems based on MQ-equations use a public key of the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n

∑

j=1

βi,jxj + αi ,

with n ∈ Z
+ variables and m ∈ Z

+ equations. Moreover, we have 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n
and αi, βi,j , γi,j,k ∈ F (constant, linear, and quadratic terms). We write the set of all such sys-
tems of polynomials as MQ(Fn, Fm). Moreover, the private key consists of the triple (S,P ′, T )
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where S ∈ Aff−1(Fn), T ∈ Aff−1(Fm) are bijective affine transformations. Details on affine trans-
formation are given in Section 2.1). Moreover, we have P ′ ∈ MQ(Fn, Fm) is a polynomial-vector
P ′ := (p′1, . . . , p

′
m) with m components; each component is a polynomial in n variables x′

1, . . . , x
′
n.

Throughout this paper, we will denote components of this private vector P ′ by a prime ′. In
contrast to the public polynomial vector P ∈ MQ(Fn, Fm), the private polynomial vector P ′ does
allow an efficient computation of x′

1, . . . , x
′
n for given y′

1, . . . , y
′
m. Still, the goal of MQ-schemes

is that this inversion should be hard if the public key P alone is given. The main difference be-
tween MQ-schemes lies in their special construction of the central equations P ′ and consequently
the trapdoor they embed into a specific class of MQ-problems. An introduction to Multivariate
Quadratic public key systems is given in [WP05c].

1.1 Related Work

In their cryptanalysis of HFE, Kipnis and Shamir report the existence of “isomorphic keys” [KS99].
A similar observation for Unbalanced Oil and Vinegar Schemes can be found in [KPG99]. In both
cases, there has not been a systematic study of the structure of equivalent key classes. In addition,
Patarin observed the existence of some equivalent keys for MIA / C∗ [Pat96a] — however, his
method is different from the one presented in this article, as he concentrated on modifying the
central monomial rather than using special affine transformations. Moreover, Toli observed that
there exists an additive sustainer in the case of Hidden Field Equations [Tol03] but did not extend
his result to other Multivariate Quadratic schemes. Additive sustainers will be introduced in
Section 3.1. In the case of symmetric ciphers, [BCBP03] used a similar idea in the study of S-
boxes. A different angle of the idea of equivalent keys can be found in [HWyCL05] where the
authors compute normal forms of the public key. Main reason here is to save some memory in
the public but particularily in the private key. Using the techniques suggested in [HWyCL05], the
latter can be reduced by up to 50%.

This article is based on the two conference papers [WP05b, WP05a] which deal with the classes
MIA, HFE, and UOV. In this article, the proofs have been simplified and also extended to the STS
class. In addition, a tightness proof for the case of MIA is given.

1.2 Outline

This paper is organized as follows: after this general introduction, we move on to the necessary
mathematical background in Section 2. This includes particularly a definition of the term equivalent
keys. In Section 3, we concentrate on a subclass of affine transformations, denoted sustaining
transformations, which can be used to generate equivalent keys. These transformations are applied
to different variations of Multivariate Quadratic equations in Section 4. In Section 5, we give a
tightness proof for the case of MIA/MIO. This paper concludes with Section 6.

2 Mathematical Considerations

Before discussing concrete schemes, we start with some general observations and definitions. Ob-
viously, the most important term in this article is “equivalent private keys”. We give a graphical
representation of this idea in Figure 1. We can also express this idea in the following definition:

Definition 2.1 We call two private keys

(S,P ′, T ), (S̃, P̃ ′, T̃ ) ∈ Aff−1(Fn) ×MQ(Fn, Fm) × Aff−1(Fm)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

In the above definition, Aff−1(·) denotes the class of bijective affine transformations. We give more
details on affine transformations in Section 2.1. In order to find equivalent keys, we consider the
following transformations:

Definition 2.2 Let (S,P ′, T ) ∈ Aff−1(Fn) × MQ(Fn, Fm) × Aff−1(Fm), and consider the four
transformations σ, σ−1 ∈ Aff−1(Fn) and τ, τ−1 ∈ Aff−1(Fm). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S . (1)

We call the pair (σ, τ) ∈ Aff−1(Fn)×Aff−1(Fm) “sustaining transformations” for an MQ-system
if the “shape” of P ′ is invariant under the transformations σ and τ . For short, we write (σ, τ) •
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input x

❄

x = (x1, . . . , xn)

❄

private: S σ−1 ◦ S

x′

❄

private: P ′ τ ◦ P ′ ◦ σ

y′

❄

private: T T ◦ τ−1

output y ✛

public:
(p1, . . . , pn)

Fig. 1: Equivalent private keys using affine transformations σ, τ

(S,P ′, T ) for (2.2) and (σ, τ) sustaining transformations. This idea has already been outlined in
Figure 1.

Remark. In the above definition, the meaning of “shape” is still open. In fact, its meaning has
to be defined for each MQ-system individually. For example, in HFE (cf Section 4.1), it is the
bounding degree d ∈ Z

+ of the polynomial P ′(X ′) ∈ E[X ′]. In the case of MIA, the “shape” is
the fact that we have a single monomial with factor 1 as the central equation (cf Section 4.2). In
general and for σ, τ sustaining transformations, we are now able to produce equivalent keys for
a given private key by (σ, τ) • (S,P ′, T ). A trivial example of sustaining transformations is the
identity transformation, i.e., to set σ = τ = id.

Lemma 2.3 Let σ ∈ Aff−1(Fn), τ ∈ Aff−1(Fm) be sustaining transformations. If the two struc-
tures G := (σ, ◦) and H := (τ, ◦) form a subgroup of the affine transformations, they produce
equivalence relations within the private key space.

Proof. We start with a proof of this statement for G := (σ, ◦). First, we have reflexivity as
the identity transformation is contained in the subgroup G. Second, we also have symmetry as
subgroups are closed under inversion. Third, we have transitivity as subgroups are closed under
composition. Therefore, the subgroup G partitions the private key space into equivalence classes.
The proof for the subgroup H := (τ, ◦) is analogous. ¤

Remark. We want to point out that the above proof does not use special properties of sustaining
transformations, but the fact that we dealt with subgroups of the group of affine transformations.
Hence, the proof does not depend on the term “shape” and is therefore valid even if the latter is
not rigorously defined yet. In any case, instead of proving that sustaining transformations form a
subgroup of the affine transformations, we can also consider normal forms of private keys. As we
see below, normal forms have some advantages to avoid double counts in the private key space.

2.1 Affine Transformations

Given that our main tool to construct equivalent keys are special subclasses of affine transfor-
mations, we start with some general observations on them. As we only deal with bijective affine
transformations Aff−1(·) and bijective linear transformations Hom−1(·) in this article, the following
lemma proves useful:

Lemma 2.4 Let F be a finite field with q := |F| elements. Then we have
∏n−1

i=0 qn − qi invertible
(n × n)-matrices over F.

Next, we recall some basic properties of affine transformations over the finite fields F and E.

Definition 2.5 Let MS ∈ F
n×n be an invertible (n × n) matrix and vs ∈ F

n a vector and let
S(x) := MSx + vs. We call this the “matrix representation” of the affine transformation S.
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Definition 2.6 Moreover, let s1, . . . , sn be n polynomials of degree 1 at most over F, i.e., si(x1, . . . , xn) :=
βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for
x := (x1, . . . , xn) as a vector over F

n. We call this the “multivariate representation” of the affine
transformation S.

Remark. The multivariate and the matrix representation of an affine transformation S are inter-
changeable. We only need to set the corresponding coefficients to the same values: (MS)i,j ↔ βi,j

and (vS)i ↔ αi for 1 ≤ i, j ≤ n. However, the first is useful in the context of matrix equa-
tions while the latter is preferable when dealing with affine transformations in the context of term
substitution.

In addition, we can also use the “univariate representation” over the extension field E of the
transformation S.

Definition 2.7 Let 0 ≤ i < n and A,Bi ∈ E. Moreover, let the polynomial S(X) :=
∑n−1

i=0 BiX
qi

+
A be an affine transformation. We call this the “univariate representation” of the affine transfor-
mation S(X).

Lemma 2.8 An affine transformation in univariate representation can be transfered efficiently in
multivariate representation and vice versa.

Proof. This lemma follows from [KS99, Lemmata 3.1 and 3.2] by a simple extension from the
linear to the affine case. A more elaborated proof can be found in [Wol05, Lemma 2.2.7]. ¤

3 Sustaining Transformations

In this section, we discuss several examples of sustaining transformations. In particular, we consider
their effect on the central transformation P ′.

3.1 Additive Sustainer

For n = m, i.e., the number of equations is equal to the number of variables, let σ(X) := (X + A)
and τ(X) := (X + A′) for some elements A,A′ ∈ E. As long as the transformations σ, τ keep the
shape of the central equations P ′ invariant, they form sustaining transformations.

In particular, we are able to change the constant parts vs, vt ∈ F
n or VS , VT ∈ E of the

two affine transformations S, T ∈ Aff−1(Fn) to zero, i.e., to obtain a new key (Ŝ, P̂ ′, T̂ ) with
Ŝ, T̂ ∈ Hom−1(Fn). The constant terms of S, T have now been moved to the central equation P ′

and as a result, Ŝ, T̂ are now linear rather than affine transformations over F
n.

Remark. This result is very useful for cryptanalysis as it allows us to “collect” the constant terms
in the central equations P ′. For cryptanalytic purposes, we therefore only need to consider the
case of linear transformations S, T ∈ Hom−1(Fn).

The additive sustainer also works if we interpret it over the vector space F
n rather than the

extension field E. To distinguish this case from the setting above, we write a ∈ F
n, a′ ∈ F

m here.
In particular, we can also handle the case n 6= m now. However, in this case it may happen that
we have a′ ∈ F

m and consequently τ : F
m → F

m. Nevertheless, we can still collect all constant
terms in the central equations P ′.

If we look at the central equations as multivariate polynomials, the additive sustainer will affect
the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n. A similar observation is true for
central equations over the extension field E: in this case, the additive sustainer affects the additive
constant A ∈ E and the linear factors Bi ∈ E for 0 ≤ i < n.

3.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have σ(X) := (BX) and
τ(X) := (B′X) for B,B′ ∈ E

∗. Again, we obtain a sustaining transformation if this operation
does not modify the shape of the central equations as (BX), (B′X) ∈ Aff−1(Fn).

The big sustainer is useful if we consider schemes defined over extension fields as it does not
affect the overall degree of the central equations over this extension field. Note that we only allow
non-zero elements of the extension field E for B,B′ as BX,B′X are not invertible otherwise.
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3.3 Small Sustainer

We now consider vector-matrix multiplication over the (small) ground field F, i.e., we have σ(x) :=
Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b

′
m)x for the non-zero coefficients b1, . . . , bn, b′1, . . . , b

′
m ∈

F
∗ and Diag(b),Diag(b′) the diagonal matrices on both vectors b ∈ F

n and b′ ∈ F
m, respectively.

In contrast to the big sustainer, the small sustainer is useful if we consider schemes which define
the central equations over the ground field F as it only introduces a scalar factor in the polynomials
(p′1, . . . , p

′
m). As for the big sustainer, we require non-zero elements, i.e., we have bi, b

′
i ∈ F

∗.

3.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the central equations while
for the transformation τ , it permutes the polynomials of the central equations themselves. As each
permutation has a corresponding, invertible permutation-matrix, both σ ∈ Sn and τ ∈ Sm are
also affine transformations. The effect of the central equations is limited to a permutation of these
equations and their input variables, respectively.

3.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permutations, multiplication
of rows and columns by scalars from the ground field F, and the addition of two rows/columns. As
all these operations can be performed by invertible matrices, they form a subgroup of the affine
transformations and are hence a candidate for a sustaining transformation.

The effect of the Gauss sustainer is similar to the permutation sustainer and the small sustainer.
In addition, it allows the addition of multivariate quadratic polynomials. This will not affect the
shape of some MQ-schemes.

3.6 Frobenius Sustainer

Definition 3.1 Let F be a finite field with q := |F| elements and E its n-dimensional extension.

Moreover, let H := {i ∈ Z : 0 ≤ i < n}. For a, b ∈ H we call σ(X) := Xqa

and τ(X) := Xqb

Frobenius transformations.

Obviously, Frobenius transformations are linear transformations with respect to the ground field
F. The following lemma establishes that they also form a group:

Lemma 3.2 Frobenius transformations are a subgroup in Hom−1(Fn).

Proof. First, Frobenius transformations are linear transformations, so associativity is inherited
from them. Second, the set H from Definition 3.1 is not empty for any given F and n ∈ Z

+. Hence,
the corresponding set of Frobenius transformations is not empty either. In particular, we notice
that the Frobenius transformation Xq0

coincides with the neutral element of the group of linear
transformations (Hom−1(Fn), ◦).

In addition, the inverse of a Frobenius transformation is also a Frobenius transformation: Let
σ(X) := Xqa

for some a ∈ H. Working in the multiplicative group E
∗ we observe that we need

qa ·A′ ≡ 1 (mod qn−1) for A′ ∈ Z
+ to obtain the inverse function of σ. We notice that A′ := qa′

for

a′ := n − a (mod n) yields the required and moreover σ−1 := Xqa′

is a Frobenius transformation
as a′ ∈ H.

So all left to show is that for any given Frobenius transformations σ, τ , the composition σ ◦ τ
is also a Frobenius transformation, i.e., that we have closure.

Let σ(X) := Xqa

and τ(X) := Xqb

for some a, b ∈ H. So we can write σ(X) ◦ τ(X) = Xqa+b

.
If a + b < n we are done. Otherwise n ≤ a + b < 2n, so we can write qa+b = qn+s for some
s ∈ H. Again, working in the multiplicative group E∗ yields qn+s ≡ qs (mod qn − 1) and hence,
we established that σ ◦ τ is also a Frobenius transformation. This completes the proof that all
Frobenius transformations form a group. ¤

Frobenius transformations usually change the degree of the central equation P ′. But taking
τ := σ−1 cancels this effect and hence preserves the degree of P ′. Therefore, we can speak of a
Frobenius sustainer (σ, τ). Fore a given extension field E, there are n Frobenius sustainers.

It is tempting to extend this result to the case of powers of the characteristic of F. However,
this is not possible as xcharF is not a linear transformation in F for q 6= p where p denotes the
characteristic of the finite field F and q := |F| the number of its elements.
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Remark. All six sustainers presented so far form groups and hence partition the private key space
into equivalence classes. The relation between partitions and groups has been previously discussed
in Lemma 2.3.

3.7 Reduction Sustainer

Reduction sustainers are quite different from the transformations studied so far, because they are
applied with a different construction of the trapdoor of P. In this new construction, we define the
public key equations as P := R ◦T ◦P ′ ◦S where R : F

n → F
n−r denotes a reduction or projection

while S,P ′, T have the same meaning as before, i.e., they are affine invertible transformations and
a system of Multivariate Quadratic polynomials, respectively. Less loosely speaking, we consider
the function R(x1, . . . , xn) := (x1, . . . , xn−r), i.e., we neglect the last r components of the vector
(x1, . . . , xn). Although this modification looks rather easy, it proves powerful to defeat a wide class
of cryptographic attacks against several MQ-schemes, including HFE and MIA, e.g., the attack
introduced in [FJ03].

For the corresponding sustainer, we consider the affine transformation T in matrix representa-
tion, i.e., we have T (x) := Mx+v for some invertible matrix M ∈ F

m×m and a vector v ∈ F
m. We

observe that any change in the last r columns of M or v does not affect the result of R (and hence
P). Therefore, we can choose these last r columns without affecting the public key. Inspecting
Lemma 2.4, we see that this gives us a total of

qr

n−1
∏

i=n−r−1

(

qn − qi
)

choices for v and M , respectively, that do not affect the public key equations P.
When applying the reduction sustainer together with other sustainers, we have to make sure

that we do not count the same transformation twice. We will show how to deal with this difficulty
in the corresponding proofs.

4 Application to Multivariate Quadratic Schemes

Having all necessary tools at hand, we show now how to apply suitable sustaining transformations
to the Multivariate Quadratic schemes. We want to stress that the reductions in size we achieve in
this section represent lower rather than upper bounds: additional sustaining transformations may
further reduce the key space of these schemes. The only exception for this rule are the MIA/MIO
class: due to the tightness proof in Section 5, we know that only the big sustainer and the Frobenius
sustainer can be applied here. Unfortunately, the details of this tightness proof are cumbersome
and we do not see how it can be extended to the other schemes discussed in this section.

4.1 Hidden Field Equations

We start with the HFE class as the overall proof ideas can be demonstrated most clearly here. In
fact, we will use some of these ideas again for the MIA class. The Hidden Field Equations (HFE)
have been proposed by Patarin [Pat96b]. Its main characteristic is the exceptional low degree of
the central polynomial P ′(X ′) ∈ E[X ′].

Definition 4.1 Let E be a finite field and P ′(X ′) a polynomial over E. For

P ′(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

C ′
i,jX

′qi+qj

+
∑

0≤k≤d

qk≤d

B′
kX ′qk

+ A′

where







C ′
i,jX

qi+qj

for C ′
i,j ∈ E are the quadratic terms,

B′
kXqk

for B′
k ∈ E are the linear terms, and

A′ for A′ ∈ E is the constant term

and a degree d ∈ Z
+, we say the central equations P ′ are in HFE-shape.

Due to the special form of P ′(X ′), we can express it as a Multivariate Quadratic equation P ′ over
F. A proof of this fact for the case F =GF(2) can be found in [MIHM85]. It has been elaborated
and further extended in [Wol05, Section 2.4]. Polynomials of cubic and higher degree have been
discussed in [KS99, Lemma 3.3]. The bound of the degree of the polynomial P ′(X ′) has a different
motivation: this allows efficient inversion of the equation P (X) = Y for given Y ∈ E and is
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hence necessary to obtain efficient schemes. So the shape of HFE is in particular this degree d of
the private polynomial P . Moreover, we observe that there are no restrictions on its coefficients
C ′

i,j , B
′
k, A′ ∈ E for i, j, k ∈ Z

+ and qi, qi + qj ≤ d. Hence, we can apply both the additive and the
big sustainer from sections 3.1 and 3.2 without changing the shape of this central equation.

Theorem 4.2 For K := (S, P, T ) ∈ Aff−1(Fn)×E[X ′]×Aff−1(Fn) a private key in HFE, we have

n.q2n(qn − 1)2

equivalent keys.

Proof. To prove this theorem, we consider normal forms of private keys: let S̃ ∈ Aff−1(Fn)
being the affine transformation we start with. First we compute Ŝ(X) := S̃(X) − S̃(0), i.e., we
apply the additive sustainer. Obviously, we have Ŝ(0) = 0 after this transformation and hence a
special fix-point. Second we define S(X) := Ŝ(X).Ŝ(1)−1, i.e., we apply the big sustainer. As
the transformation Ŝ : E → E is a bijection and we have Ŝ(0) = 0, we know that Ŝ(1) must be
non-zero. Hence, we have S(1) = 1, i.e., we add a new fix-point but still keep the old fix-point as
we have S(0) = Ŝ(0) = 0. Similar we can compute an affine transformation T (X) with T (0) = 0
and T (1) = 1 as a normal form of the affine transformation T̃ ∈ Aff−1(Fn). Note that both the
additive sustainer and the big sustainer keep the degree of the central polynomial P (X) so we can
apply both sustainers on both sides without changing the “shape” of P (X).

Applying the Frobenius sustainer is a little more technical. First we observe that this sustainer
keeps the fix-points S(0) = T (0) = 0 and S(1) = T (1) = 1 so we are sure we still deal with
equivalence classes, i.e., each given private key has a unique normal form, even after the Frobenius
sustainer has been applied. Now we pick an element C ∈ E\{0, 1} for which g := S(C) is a
generator of E

∗, i.e., we have E
∗ = {gi | 0 ≤ i < qn}. As E is a finite field we know that such

a generator g exists. Given that S is surjective we know that we can find the corresponding

C ∈ E\{0, 1}. Now we compute gi := S(C)
qi

for 0 ≤ i < n. Using any total ordering “<”, we
obtain gc := min{g0, . . . , gn−1} for some c ∈ N as the smallest element of this set. One example
of such a total ordering would be to use a bijection between the sets E ↔ {0, . . . , qn − 1} and
then exploiting the ordering of the natural numbers to derive an ordering on the elements of the
extension field E. Finally, we define S(X) := [S(X)]q

c

as new affine transformation. To cancel the

effect of the Frobenius sustainer, we define T (X) := [T (X)]q
n−c

.
Hence, we have now computed a unique normal form for a given private key. Moreover, we can

“reverse” these computations and derive an equivalence class of size n.q2n.(qn − 1)2 this way as we
have

(BXqc

+ A,B′Xqn−c

+ A′) • (S,P ′, T ) for B,B′ ∈ E
∗, A,A′ ∈ E and 0 ≤ c < n .

¤

Remark. To the knowledge of the authors, the additive sustainer for HFE has first been reported
in [Tol03]; it was used there for reducing the affine transformations to linear ones. In addition, a
weaker version of the above theorem can be found in [WP05b].

For q = 2 and n = 80, the number of equivalent keys per private key is ≈ 2326. In comparison,
the number of choices for S and T is ≈ 212,056. This special choice of parameters has been used in
HFE Challenge 1 [Pat96b].

4.1.1 HFE-

We recall that HFE- is the original HFE-class with the minus modification from Section 3.7 applied.
In particular, this means that the “shape” of the central polynomial P ′(X ′) is still the same, i.e.,
all considerations from the previous theorem also apply to HFE-.

Theorem 4.3 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private key in HFE and a
reduction parameter r ∈ Z

+ we have

n.q2n(qn − 1)(qn−r − 1)

n−1
∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of HFE- can be reduced by this number.
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Proof. This proof uses the same ideas as the proof of Theorem 4.2 to obtain a normal form of the
affine transformation S, i.e., applying the additive sustainer, the big sustainer and the Frobenius
sustainer on this side. Hence, we have a reduction by n.qn(qn − 1) keys here.

For the affine transformation T , we also have to take the reduction sustainer into account:
we use T̃ (X) : F

n → F
n−r and fix T̃ (0) = 0 by applying the additive sustainer and T̃ (1) =

1 by applying the big sustainer, which gives us qn−r and qn−r − 1 choices, respectively. To
avoid double counting with the reduction sustainer, all computations were performed in Ẽ :=
GF(qn−r) rather than E. Again, we can compute a normal form for a given private key and reverse
these computations to obtain the full equivalence class for any given private key in normal form.
Moreover, we observe that the resulting transformation T̃ allows for qr

∏n−1
i=n−r−1(q

n − qi) choices

for the original transformation T : F
n → F

n without affecting the output of T̃ and hence, keeping
the two fix points T̃ (0) = 0 and T̃ (1) = 1. Therefore, there are a total of qn−r · qr · (qn−r − 1) ·
∏n−1

i=n−r−1(q
n−qi) possibilities for the transformation T without changing the public key equations.

Multiplying out the intermediate results for S and T yields the theorem. ¤

For q = 2, r = 7 and n = 107, the number of equivalent keys for each private key is ≈ 22129. In
comparison, the number of choices for S and T is ≈ 223,108. This special choice of parameters has
been used in Quartz-7m [WP04].

4.1.2 HFEv

Another important variation of Hidden Field Equations is HFEv. In particular, it was used in
the signature scheme Quartz [CGP01]. HFEv was introduced in [KPG99]. The HFEv scheme is
characterized in the following definition.

Definition 4.4 Let E be a finite field with degree n′ over F, v ∈ Z
+ the number of vinegar

variables, and P(X) a polynomial over E. Moreover, let (z1, . . . , zv) := sn−v+1(x1, . . . , xn), . . . ,
sn(x1, . . . , xn) for si the polynomials of S(x) in multivariate representation and X ′ := φ−1(x′

1, . . . , x
′
n′),

using the canonical bijection φ−1 : F
n → E and x′

i := si(x1, . . . , xn) for 1 ≤ i ≤ n′ as hidden vari-
ables. Then define the central equation as

P ′
z′

1
,...,z′

v
(X ′) :=

∑

0≤i,j≤d

qi+qj≤d

Ci,jX
′qi+qj

+
∑

0≤k≤d

qk≤d

Bk(z1, . . . , zv)X ′qk

+A′(z′1, . . . , z
′
v)

where































C ′
i,jX

′qi+qj

for C ′
i,j ∈ E are the

quadratic terms,

B′
k(z′1, . . . , z

′
v)X ′qk

for B′
k(z′1, . . . , z

′
v) depending

linearly on z′1, . . . , z
′
v and

A′(z′1, . . . , z
′
v) for A′(z′1, . . . , z

′
v) depending

quadratically on z′1, . . . , z
′
v

and a degree d ∈ Z
+, we say the central equations P ′ are in HFEv-shape.

The condition that the B′
k(z′1, . . . , z

′
v) are affine functions (i.e., of degree 1 in the z′i at most) and

A′(z′1, . . . , z
′
v) is a quadratic function over F ensures that the public key is still quadratic over F.

Theorem 4.5 For K := (S, P ′, T ) ∈ Aff−1(Fn) × E[X ′] × Aff−1(Fm) a private key in HFEv,
v ∈ Z

+ the number of vinegar variables, E an n′-dimensional extension of F where n′ := n−v = m
we have

n′qn+n′+vm(qn′

− 1)2
v−1
∏

i=0

(qv − qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof. In contrast to HFE-, the difficulty now lies in the computation of a normal form for the
affine transformation S rather than the affine transformation T . For the latter, we can still apply
the big sustainer and the additive sustainer and obtain a total of qm · (qm − 1) = qn′

· (qn′

− 1)
equivalent keys for a given transformation T . Moreover, the HFEv modification does not change
the “absorbing behaviour” of the central polynomial P ′ and hence, the proof from Theorem 4.2 is
still applicable.

Instead, we have to concentrate on the affine transformation S here. In order to simplify the
following argument, we apply the additive sustainer on S and obtain a linear transformation.
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This reduces the key-space by qn. In order to make sure that we do not count the same linear
transformation twice, we consider a normal form for the now (linear) transformation S

(

Em Fm
v

0 Iv

)

with Em ∈ F
m×m, Fm

v ∈ F
m×v .

In the above definition, we also have Iv the identity matrix in F
v×v. Moreover, the left-lower corner

is the all-zero matrix in F
v×m. The reason for this non-symmetry: we may not introduce vinegar

variables in the set of oil variables, but due to the form of the vinegar equations, we can introduce
oil variables in the set of vinegar variables. This is done by the following matrix. In particular, for
each invertible matrix MS , we have a unique matrix

(

Im 0
Gv

m Hv

)

with an invertible matrix Hv ∈ F
v×v.

which transfers MS to the normal form from above. Again, Im is an identity matrix in F
m×m.

Moreover, we have some matrix Gv
m ∈ F

v×m. This way, we obtain qvm
∏v−1

i=0 (qv − qi) equivalent
keys in the “v” modification alone. As stated previously, the identity matrix Im ensures that the
input of the HFE component is unaltered. However, we do not have such a restriction on the input
of the vinegar part and can hence introduce the two matrices Gv

m and Hv: they are “absorbed”
into the random terms of the vinegar polynomials B′

k(z′1, . . . , z
′
v) and A′(z′1, . . . , z

′
v).

For the HFE component over E, we can now apply the big sustainer to S and obtain a factor
of (qn′

− 1). In addition, we apply the Frobenius sustainer to the HFE component, which yields
an additional factor of n′. Note that the Frobenius sustainer can be applied both to S and T , and
hence, we can make sure that it cancels out and does not affect the degree of the central polynomial
Pz1,...,zv

(X). Again, we can reverse all computations and therefore obtain equivalence classes of
equal size for each given private key in normal form. ¤

For the case q = 2, v = 7 and n = 107, the number of equivalent keys for each private is ≈ 21160.
In comparison, the number of choices for S and T is ≈ 221,652.

4.1.3 HFEv-

Here, we combine both the HFEv and the HFE- modification to obtain HFEv-. In fact, the original
Quartz scheme [CGP01] was of this type.

Theorem 4.6 For K := (S, P ′, T ) ∈ Aff−1(Fn) × E[X ′] × Aff−1(Fm+v, Fm+r) a private key in
HFEv-, v ∈ Z

+ vinegar variables, a reduction parameter r ∈ Z
+ and E an n′-dimensional extension

of F where n′ := n − v and n′ = m + r we have

n′qr+2n′+vn′

(qn′

− 1)2
v−1
∏

i=0

(qv − qi)
n′−1
∏

i=n′−r−1

(qn′

− qi)

equivalent keys. Hence, the key-space of HFEv- can be reduced by this number.

Proof. This proof is a combination of the two cases HFEv and HFE-. Given that the difficulty
for the HFE- modification was in the T -transformation while the difficulty of HFEv was in the
S-transformation, we can safely combine the known sustainers without any double-counting. ¤

For the case q = 2, r = 3, v = 4 and n = 107, n′ = 103, the number of redundant keys is ≈ 21258.
In comparison, the number of choices for S and T is ≈ 222,261. This special choice of parameters
has been used in the original version of Quartz [CGP01], as submitted to NESSIE [NES].

4.2 Matsumoto-Imai Scheme A

As HFE, the MIA class uses a finite field F and an extension field E. However, the choice of the
central equation is far more restrictive than in HFE as we only have one monomial here.

Definition 4.7 Let E be an extension field of dimension n over the finite field F with even char-
acteristic and λ ∈ Z

+ an integer with gcd(qn − 1, qλ + 1) = 1. We then say that the following
central equation is of MIA-shape:

P ′(X ′) := X ′qλ+1 .
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The restriction gcd(qn − 1, qλ + 1) = 1 is necessary first to obtain a permutation polynomial and
second to allow efficient inversion of P ′(X ′). In this setting, we cannot apply the additive sustainer
as this monomial does not allow any linear or constant terms. Moreover, the monomial requires
a factor of one. Hence, we have to preserve this property. As we will see in Section 5, the only
sustainers suitable here are the big sustainer, see Section 3.2, and the Frobenius sustainer from
Section 3.6.
Remark. In the paper [MI88], MIA was introduced under the name C∗. Moreover, it used the
branching modifier [WP05c, 4.4] by default. As branching has been attacked very successfully,
C∗ has been used without this modification for any later construction, e.g., [CGP00b, CGP02,
CGP00a, CGP03]. However, without the branching condition, the “new” scheme C∗ coincides with
the previously suggested “Scheme A” from [IM85]. To acknowledge this historical development, we
decided to come back to the earlier notation and call the scheme presented in this section “MIA”
for “Matsumoto-Imai Scheme A”. This has been previously suggested in [WP05c].

Theorem 4.8 For K := (S, P ′, T ) ∈ Aff−1(Fn)×E[X ′]×Aff−1(Fn) a private key in MIA we have

n(qn − 1)

equivalent keys. Hence, the key-space of MIA can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in MIA. In particular, we
concentrate on a normal form of the affine transformation S where S is in univariate representation.
As for HFE and w.l.o.g., let B := S(1) be a non-zero coefficient on Input 1. Unlike HFE we cannot
enforce that S(0) = 0, so we may have S(1) = 0. However, in this case set B := S(0). Applying
σ−1(X) := B−1X will ensure a normal form for S. In order to “repair” the monomial P ′(X ′), we

have to apply an inverse transformation to T . So let τ(X) := (Bqλ+1)−1X. This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S

= T̃ ◦ (B(qλ+1).(−1).Bqλ+1.X ′qλ+1) ◦ S̃

= T̃ ◦ P ′ ◦ S̃ ,

where S̃ is in normal form. In contrast to HFE in Theorem 4.2, we cannot chose the transformations
σ and τ independently: each choice of σ implies a particular τ and vice versa. However, the fix
point 1 is still preserved by the Frobenius sustainer and so we can apply this sustainer to the
transformation S. As for HFE, we compute a normal form for a given generator and a total

ordering of E; again, we “repair” the monomial X ′qλ+1 by applying an inverse Frobenius sustainer
to T and hence have

(BXqc

, B−qλ−1Xqn−c

) • (S, P ′, T ) where B ∈ E
∗ and 0 ≤ c < n for c ∈ N ,

which leads to a total of n · (qn − 1) equivalent keys for any given private key. Since all these keys
form equivalence classes of equal size, we reduced the private key space of MIA by this factor. ¤

We want to point out that there is also a variation of MIA defined over odd characteristic. This
variation has been suggested in [WP05c, Sect. 7.1] and uses exactly the same structure for the
private key. For technical reasons, the condition on the gcd is replaced by gcd(qn − 1, qλ + 1) = 2.
However, this is irrelevant for our purpose and we have hence the following corollary.

Corollary 4.9 For K := (S, P ′, T ) ∈ Aff−1(Fn) × E[X ′] × Aff−1(Fn) a private key in MIO we
have

n(qn − 1)

equivalent keys. Hence, the key-space of MIO can be reduced by this number.

The above corollary can be proved in exactly the same way as Theorem 4.8. In particular, the fact
that MIO is defined over odd rather than even characteristic does not impose a restriction in this
context.
Remark. Patarin observed that it is possible to derive equivalent keys by changing the monomial
P ′ [Pat96a]. As the aim of this article is the study of equivalent keys by chaining the affine
transformations S, T alone, we did not make use of this property. A weaker version of the above
theorem can be found in [WP05b]; in particular, it does not take the MIO class into account.

Moreover, we observed in this section that it is not possible for MIA to change the transforma-
tions S, T from affine to linear. But Geiselmann et al. showed how to reveal the constant parts of
these transformations [GSB01]. Hence, having S, T affine instead of linear does not enhance the
overall security of MIA.

For q = 128 and n = 67, we obtain ≈ 2469 equivalent private keys per class. The number of
choices for S, T is ≈ 263,784 in this case.
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4.2.1 MIA-

We want to point out that MIA itself is insecure, due to a very efficient attack by Patarin [Pat95].
However, for well-chosen parameters q, r, its variation MIA- (also known as C∗−−) is believed to
be secure: as in the case of HFE and HFE-, we use the original MIA scheme and apply the minus
modification from Section 3.7.

Theorem 4.10 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private key in MIA and a
reduction number r ∈ Z

+ we have

n.(qn − 1)qr

n−1
∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of MIA- can be reduced by this number.

Proof. This proof is similar to the one of MIA, i.e., we apply both the Frobenius and the big
sustainer to S and the corresponding inverse sustainer to the transformation T . This way, we

“repair” the change on the central monomial Xqλ+1. All in all, we obtain a factor of n · (qn − 1)
equivalent keys for a given private key.

Next we observe that the reduction sustainer applied to the transformation T alone allows us
to change the last r rows of the vector vT ∈ F

n and also the last r rows of the matrix MT ∈ F
n×n.

This yields an additional factor of qr
∏n−1

i=n−r−1(q
n − qi) on this side.

Note that the changes on the side of the transformation S and the changes on the side of
the transformation T are independent: the first computes a normal form for S while the second
computes a normal form on T . Hence, we may multiply both factors to obtain the overall number
of independent keys. ¤

For q = 128, r = 11 and n = 67, we obtain ≈ 26180 equivalent private keys per class. The
number of choices for S, T is ≈ 263,784 in this case. This particular choice of parameters has been
used in Sflashv3 [CGP03].

4.3 Unbalanced Oil and Vinegar Schemes

In contrast to the two schemes before, we now consider a class of MQ-schemes which does not
mix operations over two different fields E and F but only performs computations over the ground
field F. Moreover, Unbalanced Oil and Vinegar schemes (UOV) omit the affine transformation T
but use S ∈ Aff−1(Fn). To fit in our framework, we set it to be the identity transformation, i.e.,
we have T := τ := id. UOV were proposed in [KPG99].

Definition 4.11 Let F be a finite field and n,m ∈ Z
+ with n ≥ 2m. Moreover, let α′

i, β
′
i,j , γ

′
i,j,k ∈

F. We say that the polynomials below are central equations in UOV-shape:

p′i(x
′
1, . . . , x

′
n) :=

m
∑

j=1

n
∑

k=1

γ′
i,j,kx′

jx
′
k +

n
∑

j=1

β′
i,jx

′
j + α′

i .

In this context, the variables x′
i for 1 ≤ i ≤ m are called the “vinegar” variables and x′

i for
m < i ≤ n the “oil” variables. Note that the vinegar variables are combined quadratically while
the oil variables are only combined with vinegar variables in a quadratic way. Therefore, assigning
random values to the vinegar variables, results in a system of linear equations in the oil variables
which can than be solved, e.g., using Gaussian elimination. So the “shape” of UOV is the fact
that a system in the oil variables alone is linear. Hence, we may not mix oil variables and vinegar
variables in our analysis but may perform affine transformations within one set of these variables.
So for UOV, we can apply the additive sustainer and also the Gauss sustainer, introduced in
sections 3.1 and 3.5. However, in order to ensure that the shape of the central equations does
not change, we have to ensure that the Gauss sustainer influences the vinegar and oil variables
separately.

Theorem 4.12 Let K := (S,P ′, id) ∈ Aff−1(Fn) ×MQ(Fn, Fm) × Aff−1(Fm) be a private key in
UOV. Then we have

qn+mn

n−m−1
∏

i=0

(qn−m − qi)

m−1
∏

i=0

(qm − qi)

equivalent keys. Hence, the key-space of UOV can be reduced by this number.
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Proof. As in the case of the schemes before, we compute a normal form for a given private key.
First, applying the additive sustainer reduces the affine transformation S to a linear transformation.
This results in a factor of qn in terms of equivalent keys. Second, applying the Gauss sustainer
separately within vinegar and oil variables, we can enforce the following structure, denoted R ∈
F

n×n, on the matrix MS ∈ F
n×n of the (now only) linear transformation S:

R :=





Im 0 Am

0 In−2m Bn−2m
m

0 0 Im



 .

In this context, the matrices Im, In−2m are the identity elements of F
m×m and F

(n−2m)×(n−2m),
respectively. Moreover, we have the matrices Am ∈ F

m×m and Bn−2m
m ∈ F

(n−2m)×m. For a given
central equation P ′, each possible matrix R leads to the same number of equivalent keys. Let

E :=

(

Fn−m 0
Gm

n−m Hm

)

be an (n×n)-matrix. Here, we require that the matrices Fn−m ∈ F
(n−m)×(n−m) and Hm ∈ F

m×m

are invertible and hence the counting from Lemma 2.4 applies. For Gm
n−m ∈ F

m×(n−m), we have
no restrictions. This way, we define the transformation σ(x) := Ex where x ∈ F

n. Note that these
transformations σ form a subgroup within the affine transformations. So we have

(Ex + a, id) • (S,P ′, id) for a ∈ F
n and E as defined above.

As this choice of σ partitions the private key space into equivalence classes of equal size, and due
to the restrictions on E, we reduced the size of the private key space by an additional factor of
qmn

∏n−m−1
i=0 (qn−m − qi)

∏m−1
i=0 (qm − qi) . ¤

For q = 2,m = 64, n = 192, we obtain 232,956 equivalent keys per key — in comparison to
237,054 choices for S. If we increase the number of variables to n = 256, we obtain 257,596 and
265,790, respectively. Both choices of parameter have been used in [KPG03].

4.4 Stepwise-Triangular Systems

Unbalanced Oil and Vinegar schemes and Stepwise-Triangular Systems (STS) are quite similar
as both are defined over small ground fields rather than ground fields and extension fields. In
addition, they enforce a special structure on the input variables. In the case of UOV we have two
sets of variables while we use L ∈ Z

+ such sets in the case of STS, each forming one layer or step.
These layers form a generalized triangular structure, hence the name of these schemes. We capture
this intuition more formally below. Stepwise Triangular Schemes were introduced in [WBP04].

Definition 4.13 Let n1, . . . , nL ∈ Z
+ be L integers such that n1 + · · · + nL = n, the number of

variables, and m1, . . . ,mL ∈ Z
+ such that m1 + · · · + mL = m, the number of equations. Here nl

represents the number of new variables (step-width) and ml the number of equations (step-height),
both in Step l for 1 ≤ l ≤ L. By convention, we set n0 := m0 := 0. Now let P ′ ∈ MQ(Fn, Fm)
be a system of Multivariate Quadratic polynomials such that the ml private quadratic polynomials
p′m0+...+ml−1+1, . . . , p

′
ml

of each layer l contain only the variables x′
k with k ≤

∑l

j=1 nj, i.e.,
only the variables defined in all previous steps plus nl new ones. Then we call (S,P ′, T, ) ∈
Aff−1(Fn) × MQ(Fn, Fm) × Aff−1(Fm) a private key in Stepwise Triangular System shape. If
n1 = . . . = nL = m1 = . . . = mL = r for some r ∈ Z

+, we call this a regular Stepwise Triangular
System.

We want to stress in this context that we do not assume any additional structure for the private
polynomials p′1, . . . , p

′
m here. In particular, all coefficients γ′

i,j,k, β′
i,j , α

′
i ∈ F for these polynomials

may be chosen at random.
As STS and UOV are based on a similar concept, the following proof on Stepwise Triangular

Schemes uses the same ideas as the proof for the UOV class. As for UOV we exploit the fact that
we can use Gauss operations within any given layer — and use again the fact that equations of
Layer l depend on all variables of the layers 1, . . . , l, i.e., we may also perform Gauss operations
on these previous layers, as long as the result only affects the given Layer l.

Theorem 4.14 Let F be a finite field with q := |F| elements, n ∈ Z
+ the number of variables,

m ∈ Z
+ the number of equations and L ∈ Z

+ the number of layers. Moreover, let (n1, . . . , nL) ∈
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(Z+)
L

be a vector of integers such that n1 + . . . + nL = n and m1, . . . ,mL ∈ Z
+ integers such that

m1 + . . . + mL = m. Then for K := (S,P ′, T ) ∈ Aff−1(Fn) ×MQ(Fn, Fm) ×Aff−1(Fm) a private
key in STS we have

qm+n

L
∏

i=1



qni(n−
Pi

j=1
nj)

ni−1
∏

j=0

(qni − qj)





L
∏

i=1



qmi(m−
Pi

j=1
mj)

mi−1
∏

j=0

(qmi − qj)





equivalent keys. Hence, the key-space of STS can be reduced by this number.

Proof. For this proof, we apply both the additive sustainer and the Gauss sustainer. The latter
is applied independently on each layer.

First, we observe that we can apply the additive sustainer both to the transformation S ∈
Aff−1(Fn) and T ∈ Aff−1(Fm) to obtain the fix point S(0) = T (0) = 0. As a result, we obtain a
factor of qm+n and may assume S ∈ Hom−1(Fn) and T ∈ Hom−1(Fm) for the remainder of this
proof.

As in the proof of Theorem 4.12, we impose a special structure on the linear transformation S.
Therefore, we consider the matrix

MS :=































In1
∗ ∗ · · · ∗ ∗

0 In2
∗ ∗

0 0 In3

...
. . .

...

InL−2
∗ ∗

0 0 InL−1
∗

0 0 · · · 0 0 InL































In MS ∈ F
n×n, sub-matrices Ini

are identity matrices in F
ni×ni for 1 ≤ i ≤ n. The left lower

portion of MS is zero while the upper right portion of MS consists of elements of F. To obtain this
matrix MS , we make use of

E :=































An1
0 0 · · · 0 0

∗ An2
0 0

∗ ∗ An3

...
. . .

...

AnL−2
0 0

∗ ∗ AnL−1
0

∗ ∗ · · · ∗ ∗ AnL































In this matrix E ∈ F
n×n, we have invertible components Ani

∈ F
ni×ni for 1 ≤ i ≤ L. Moreover,

the upper right portion of the matrix E is zero while the left lower portion of E consists of elements
of F. We see that the above matrix is sufficient to impose this special structure on MS . Moreover,
for each choice of E, we obtain another linear transformation S and hence, MS is a normal form
of S.

Using Lemma 2.4, we can now count the number of possible matrices E and obtain

L
∏

i=1



qni(n−
Pi

j=1
nj)

ni−1
∏

j=0

(qni − qj)





for the number of possibilities. To see the correctness of the above computation, we specialise it
for n1: here we have the term

∏n1−1
j=0 (qn1−qj

) which computes the number of choices for the matrix

An1
while qn1(n−n1) gives the number of choices in the (n1 × (n − n1)) column over F below the

matrix An1
. By induction on ni we obtain the above formula for 1 ≤ i ≤ L. In particular, as MS is

in normal form, there exists exactly one matrix E of the above form for any given S ∈ Hom−1(Fn).
Hence, we have established the existence of an equivalence class of this size.

The corresponding proof for the transformation T is analogous, so we can define matrix E′ ∈
F

m×m similar to matrix E. We only have to replace variables by equations here to reflect the
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different roles the transformations S and T play. Note that we are allowed to add equations of
lower layers to equations of higher layers and hence, may perform the same Gauss operations on
equations that we could apply on variables. So we have

(Ex + a,E′x + a′) • (S,P ′, T ) for a ∈ F
n, a′ ∈ F

m and E,E′ defined as above.

As this choice of σ, τ partitions the private key space into equivalence classes of equal size, and due
to the restrictions on E,E′, we reduced the size of the private key space by the above number. ¤

Corollary 4.15 For regular STS with step-width r ∈ Z
+, L ∈ Z

+ layers and n := Lr variables,
the above formula simplifies to

q2n

(

L
∏

l=1

qr(n−(l−1)r)
r−1
∏

i=0

(qr − qi)L

)2

.

Choosing a regular STS scheme and q = 2, r = 4, L = 25, n = 100, we obtain 211,315 equivalent
keys for each given private key. For comparison: the number of choices for the two affine transfor-
mations S, T is 220,096. Changing the number of layers to 20, and consequently having r = 5, we
obtain a total of 211,630 equivalent keys. These special choices of parameters have been suggested
in [KS04].

5 Tightness for MIA and MIO

All theorems in the previous section suffer from the same problem: we do not know if the size-
reductions are “tight”, i.e., if the sustainers applied are the only ones possible. In this section we
proof that for the MIA/MIO class, the big sustainer and the Frobenius sustainer are actually the
only possible way to achieve equivalent keys for MIA and MIO. We recall that both classes use
a finite field F with q := |F| elements and an extension field E of dimension n over F. Over E,

they use the monomial Y ′ := X ′qλ+1 as central equation for 1 ≤ λ < n. While MIA needs q to
be even, MIO is defined for q being odd. The proof for the MIA case is based on an unpublished
observation by Dobbertin. Its extension to the MIO class is due to the authors.

The starting point of the proof is the following equation which needs to hold for any two
equivalent keys for the MIA / MIO class. This is due to the fact that Definition 2.1 restricts us to
affine transformations to transfer one private key into. Hence we have the following equation:

Xqλ+1 = T ◦ Xqλ+1 ◦ S ,

which we can rewrite as

Xqλ+1 ◦ S−1 = T ◦ Xqλ+1 . (2)

We know from Section 2.1 that affine transformations form a group. Moreover, we can use Defi-
nition 2.7 to obtain a univariate representation for any given affine transformation. We can hence
express (2) as

(

n−1
∑

i=0

BiX
qi

+ A

)qλ+1

=

n−1
∑

i=0

B̃i

(

Xqλ+1
)qi

+ Ã ,

for some coefficients A, Ã,Bi, B̃i ∈ E. Note that we have (A + B)p = Ap + Bp in a finite field of
characteristic p and consequently (A + B)q = Aq + Bq for q = pk and some k ∈ Z

+. We now use a
matrix representation of the above equation, similar to the matrix used by Kipnis and Shamir in
their cryptanalysis of HFE [KS99]. This yields
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(∗)
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As we work in E which has a multiplicative group of qn − 1 elements, we can reduce all powers
larger than or equal to qn by qn − 1.

Lemma 5.1 For F a finite field with q > 2 elements, we can only use the big sustainer and the
Frobenius sustainer to derive equivalent private keys within the MIA and the MIO class.

Proof. For this proof we show that the equations given by (∗) imply that A = 0 and all Bi for
0 ≤ n < n except one are zero. Note that B0 = . . . = Bn−1 = 0 implies that S(X) is no bijection
anymore but the transformation S(X) = A for any input X ∈ E and fixed A ∈ E. Hence, there
must exist at least one non-zero coefficient Bi. W.l.o.g., we assume that B0 is non-zero. Note that
this lemma is trivially true for an extension field of degree n = 1. Hence, we assume that E is a
proper extension of F and therefore n ≥ 2.

For the proof, we make use of the fact that we can reduce all powers in E by qn − 1. For
powers of the form qi this means that we can reduce the power i by n, i.e., all computations are
done in the ring Z/nZ and we can hence assume 0 ≤ a, b, c, d < n in the sequel. Moreover, we can
distinguish the following three types of equations in (∗):

1. Equations of the form ABqλ+a +Bqb

b Aqλ

= 0 for a+λ ≡ b (mod n). We call them equations

of type A. Note that they are related to terms with monomial of the form Xqb

for 0 ≤ b < n.

2. Equations of the form Bqλ+a

a Bqb

b = 0 with the condition a + λ ≡ b (mod n) on the powers.
We call them equations of Hamming weight 1 and say that they are self-dual. Note that each
row / column in the above matrix contains exactly one equation of Hamming weight 1 and

that they correspond to terms with a monomial of the form X2qb

for 0 ≤ b > n. As we have
q > 2 there is no reduction of the power here.

3. Equations of the form Bqλ+a

a Bqb

b + Bqλ+c

c Bqd

d = 0 with the following conditions on their
powers: first, we have a 6= b, c 6= d, as we otherwise would include equations from the
diagonal. Obviously, we cannot make the assumption anymore that the right-hand side is
equal to zero in this case. Second, we have a + λ 6≡ b (mod n) and c + λ 6≡ d (mod n) as we
obtain equations of Hamming weight 1 otherwise. Third, we need a + λ ≡ d (mod n) and

c + λ ≡ b (mod n) to ensure that the powers in the monomial Xqb+qd

actually match. We
call the pair (a, b) the dual of the pair (c, d). Note that this relation is reflexive, i.e., (c, d) is
the dual of (a, b). We call these equations of type B.

Note that equations of type A and equations of Hamming weight 1 do not mix as we have q > 2.
Moreover, equations of Hamming weight 1 may not lie on the diagonal as we would have λ+a ≡ a
(mod n) in this case and hence λ ≡ 0 (mod n), but this violates 0 < λ < n. So far, we did not
include any equation from the diagonal in our analysis. We come back to them later.

Inspecting the equation Bqλ

0 Bqλ

λ = 0 of Hamming weight 1, we see that it implies Bλ = 0 as

we have B0 6= 0 (see above). In addition, this implies A = 0 as we have ABqλ

0 + Bqλ

λ Aqλ

= 0 as
an equation of type A. For n = 2, we are done. For n ≥ 3, we can now use all equations of type

B of the form Bqλ

0 Bqb

b + Bqλ+c

c Bqλ

λ = 0. We notice that we need to meet the following conditions:
b 6= 0, λ and c 6= 0, λ but c + λ ≡ b (mod n). We see that we can construct pairs (b, c) meeting
this conditions for all b ∈ Z/nZ\{0, λ, 2λ} with 0 < b < n. Using the above equation we have
established that all coefficients Bb = 0 as B0 6= 0 and Bλ = 0. Note that λ 6≡ 2λ (mod n) as we
have 0 < λ < n. Moreover, 2λ 6≡ 0 (mod n) is not true either, which we see with the following
argument: due to the size condition on λ, we know that we need to have 2λ = n to make the above
equation hold. We use the condition gcd(qn − 1qλ + 1) = 1 for MIA and gcd(qn − 1qλ + 1) = 2 for
MIO to show that 2λ = n is impossible. Therefore we observe that (q2λ − 1) = (qλ + 1)(qλ − 1),
i.e., the gcd condition is violated for n = 2λ.

All left to show is that the coefficient B2λ is also equal to zero. To this end, we use the equation

Bq3λ

2λ Bq0

0 + Bq0

−λBq3λ

3λ = 0 of type B. In order to force the coefficient B2λ equal to zero, we need
B−λ = 0 or B3λ = 0. Therefore, we use the equation B−λq0B0q

0 = 0 of type Hamming weight 1.
As we have B0 6= 0, this implies B−λ and hence B2λ = 0.

We have now established that all coefficients A = B1 = . . . = Bn−1 = 0. Using the equations on
the diagonal, these conditions also propagate through to the coefficients of the affine transformation
T , i.e., to Ã, B̃a for 0 < a < n. Given that all coefficients but B0 are zero, all equations which have
terms of the form BaBb for a 6= 0, b 6= 0 on the left hand side are now also zero, i.e., they do not

influence the equations of the form Bqλ+i

i Bqi

i = B̃qλ+j

j B̃qj

j for some i, j with 0 ≤ i, j < n. We can
not assume i = j here as the matrix on the right hand side may have been rotated by a constant
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r ∈ Z
+ with 0 ≤ r < n. This is equivalent to the application of a Frobenius transformation. Still,

we established that S, T may have only one non-zero coefficient in their univariate representation.
Therefore, we know that the big sustainer and the Frobenius sustainer are the only two sustainers
applicable to Multivariate Quadratic systems of the MIA and the MIO type. ¤

Unfortunately, the above proof is not valid in the case q = 2. The reason is that the equations

of type A and Hamming weight 1 are mapped to one type of equation, namely ABqλ+a

a +Bqb

b Aqλ

+

Bqλ+a−1

a−1 Bqb−1

b−1 = 0 for a + λ ≡ b (mod n). All other powers are also reduced (mod n). However,
as soon as we assume A = 0, the above equation collapses to the original equation of Hamming
weight 1, and the rest of the proof is again applicable. Alternatively, we could assume that any
Bi = 0, and derive a similar proof starting with equations of type B. This leads to the following

Corollary 5.2 For q = 2, the affine transformation S in univariate representation either has all
coefficients A,B0, . . . , Bn−1 not equal to zero or exactly one coefficient Bi non-equal to zero and
all other coefficients equal to zero. The same condition holds for the coefficients Ã, B̃0, . . . , B̃n−1

of the transformation T .

Still, we were not able to derive a contradiction with the assumption that all of the above values
are non-equal to zero, so we have to leave the proof for the case q = 2 as an open problem.
However, due to the very high number of equations of O(n2) compared to only O(n) free variables,
we conjecture that the above lemma also holds for q = 2 although we expect a far more technical
proof in this case.

6 Conclusions

In this article, we showed through the examples of Hidden Field Equations (HFE), Matsumoto-Imai
Scheme A (MIA), Unbalanced Oil and Vinegar schemes (UOV), and Stepwise-Triangular Systems
(STS) that Multivariate Quadratic systems allow many equivalent private keys and hence have a
lot of redundancy in their key spaces. These results have been summarized in tables 1 and 2. The

Table 1: Summary of the reduction results of this article

Scheme (Section) Reduction

UOV (4.3) qn+mn
∏n−m−1

i=0 (qn−m − qi)
∏m−1

i=0 (qm − qi)

STS (4.4) qm+n
∏L

i=1

(

qni(n−
Pi

j=1
nj)

∏ni−1
j=0 (qni − qj)

)

∏L

i=1

(

qmi(n−
Pi

j=1
mj)

∏mi−1
j=0 (qmi − qj)

)

MIA (4.2) n(qn − 1)

MIA- (4.2.1) n(qn − 1)qr
∏n−1

i=n−r−1(q
n − qi)

HFE (4.1) nq2n(qn − 1)2

HFE- (4.1.1) nq2n(qn − 1)(qn−r − 1)
∏n−1

i=n−r−1(q
n − qi)

HFEv (4.1.2) n′qn+n′+vm(qn′

− 1)2
∏v−1

i=0 (qv − qi)

HFEv- (4.1.3) n′qr+2n′vn′

(qn′

− 1)2
∏v−1

i=0 (qv − qi)
∏n′−1

i=n′−r−1(q
n′

− qi)

first gives an overview on the formulae achieved while the latter features some numerical examples.
The symbols used in Table 1 are defined as follows: n ∈ Z

+ denotes the number of variables,
m ∈ Z

+ is the number of equations, q := |F| is the number of elements in the ground field F, L
the number of layers for STS, and nl,ml for 1 ≤ l ≤ L the number of new variables and equations,
respectively.

We see applications of our results in different contexts. First, they can be used for memory
efficient implementations of the above schemes: using the normal forms outlined in this chapter,
the memory requirements for the private key can be reduced without jeopardising the security of
these schemes. Second, they apply to cryptanalysis as they allow to concentrate on special forms
of the private key: an immediate consequence from the existence of the additive sustainers from
Section 3.1 is that HFE does not gain any additional strength from the use of affine rather than
linear transformations. Hence, this system should be simplified accordingly. Third, constructors of
new schemes should keep these sustaining transformations in mind: there is no point in having a
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Table 2: Numerical examples for the reduction results of this article

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

UOV q = 2,m = 64, n = 192 37,054 32,956
q = 2,m = 64, n = 256 65,790 57,596

STS q = 2, r = 4, L = 25, n = 100 20,096 11,315
q = 2, r = 5, L = 20, n = 100 20,096 11,630

HFE q = 2, n = 80 12,056 326
HFE- q = 2, r = 7, n = 107 23,108 2129
HFEv q = 2, v = 7, n = 107 21,652 1160
HFEv- q = 2, r = 3, v = 4, n = 107 22,261 1258

MIA q = 128, n = 67 63,784 469
MIA- q = 128, r = 11, n = 67 63,784 6180

large private key space — if it can be reduced immediately by an attacker who can just apply some
sustainers. Moreover, the results obtained in this article shine new light on cryptanalytic results,
in particular key recovery attacks: as each private key is only a representative of a larger class
of equivalent private keys, each key recovery attack can only recover it up to these equivalences
as the public key P cannot contain information about individual private keys but the equivalence
class used to construct P.

We want to stress that the sustainers from Section 3 are probably not the only ones possible.
We therefore state as an open problem to look for even more powerful transformations. The only
case where we know for certain that we found all sustainers possible, is the MIO/MIA class. The
corresponding proof can be found in Section 5. We also state as an open problem to find such
proofs for the other schemes discussed in this article. In addition, there are other multivariate
schemes which could not be discussed in this article, due to space limitations. We are confident
that they can be analysed using similar techniques as outlined in this article but have to leave the
concrete proof as an open problem.
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