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Chapter 1

Introdu
tion

The demand for priva
y of digital data and of more 
omplex stru
tures like algo-

rithms has be
ome stronger during the last few years. This goes hand in hand

with the growth of 
ommuni
ation networks like the Internet and the vastly grow-

ing number of ele
troni
 devi
es. On the one hand these devi
es enable a great

variety of atta
ks on digital goods and on the other hand they are vulnerable to

atta
ks su
h as the manipulation or destru
tion of data and the theft of sensitive

information. For storing and reading data se
urely there exist several possibilities

to guarantee priva
y su
h as data en
ryption and tamper resistent hardware. The

problem be
omes more 
omplex when asking for the possibility to 
ompute (pub-

li
ly) with private data or to modify fun
tions or algorithms in su
h a way that

they are still exe
utable while their priva
y is ensured. This is where homomorphi



ryptosystems 
an be used sin
e they enable 
omputations with en
rypted data.

In 1978 Rivest et al. [73℄ were the �rst to ask (impli
itly) for homomorphi
 en
ryp-

tion s
hemes. Unfortunately their �priva
y homomorphisms� were broken a 
ouple

of years later by Bri
kell and Ya
obi [15℄.

The question rose again in 1991 when Feigenbaum and Merritt [38℄ asked: �Is there

an en
ryption fun
tion E() su
h that both E(x+ y) and E(xy) are easy to 
ompute

from E(x) and E(y)? � They were asking expli
itly for so 
alled algebrai
ally homo-

morphi
 en
ryption s
hemes. Unfortunately, there has been little progress made in

determining whether su
h en
ryption s
hemes exist that are e�
ient and se
ure, al-

though it is one of the 
ru
ial open problems in 
ryptography. We 
annot settle this
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question here but we prove that it is possible to obtain algebrai
ally homomorphi



ryptosystems given a homomorphi
 
ryptosystem on a spe
ial non-abelian group.

This may be viewed as a �rst step in answering the above question; However, in this

thesis we do not 
onsider this problem in more detail. Instead we mainly fo
us on

appli
ations of homomorphi
 
ryptosystems.

Main Results

This thesis is organised into three main parts. In the �rst part we 
onsider alge-

brai
ally homomorphi
 s
hemes sin
e they are of pivotal importan
e in designing

powerful 
ryptographi
 proto
ols. However, as we already mentioned it is not 
lear

yet whether su
h (e�
ient and se
ure) s
hemes even exist. The �rst 
ontribution

of this thesis is a new approa
h to the problem: 
onstru
ting algebrai
ally homo-

morphi
 
ryptosystems from en
ryption s
hemes that are homomorphi
 on spe
ial

non-abelian groups (see Se
tion 2.1). Based on a 
onstru
tion of Ben-Or and Cleve

[10℄ and a fa
t from proje
tive geometry we observe that an algebrai
ally homomor-

phi
 en
ryption s
heme 
an be 
onstru
ted from a homomorphi
 en
ryption s
heme

on the symmetri
 group on seven elements. Hen
e, the sear
h for algebrai
ally

homomorphi
 s
hemes 
an be redu
ed to the sear
h for homomorphi
 s
hemes on

spe
ial non-abelian groups.

In the se
ond part we analyse possible appli
ations of algebrai
ally homomorphi


s
hemes. Owing to the la
k of su
h s
hemes we design solutions based on homo-

morphi
 s
hemes only. Clearly, these 
annot be as powerful as solutions based on

algebrai
ally homomorphi
 s
hemes. Nevertheless, we present as a se
ond 
ontri-

bution a provably se
ure, non-intera
tive solution for en
rypting fun
tions given by

polynomial bran
hing programs and for en
rypting data that is 
omputed by su
h

fun
tions (see Chapter 3). This is an enlargement of the set of en
ryptable and still

exe
utable fun
tions. We are now able to en
rypt fun
tions from the more general


lass of polynomial bran
hing programs instead of fun
tions represented by NC1


ir
uits. Thus it is an improvement of one of the main appli
ations of homomor-

phi
 
ryptosystems. Furthermore, we introdu
e a new property that o�ers more

possibilities 
on
erning 
omputations with en
rypted data and en
rypted fun
tions,
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respe
tively. We demonstrate examples of homomorphi
 s
hemes having this prop-

erty that we 
all key swapping.

In the third part we des
ribe an example of a homomorphi
 s
heme that allows for

realising the solutions presented in the previous parts. We generalise this s
heme

to obtain a wide variety of appli
ations. More 
on
retely, as a �nal 
ontribution

we develop a threshold de
ryption version of the ellipti
 
urve Paillier s
heme [42℄.

This version 
an be proven to be as se
ure as a 
entralised s
heme with a trusted

player who performs the de
ryption, i. e., it 
an be proven to be semanti
ally se
ure

against a stati
 adversary in the random ora
le model. We 
onstru
t this threshold

s
heme in su
h a way that it is espe
ially suited for several appli
ations. Based on

our new s
heme we present various proto
ols that are the �rst ellipti
 
urve ver-

sions of this kind. These proto
ols build the main tool for applying our s
heme to

di�erent s
enarios su
h as multiparty 
omputation and voting s
hemes. Finally, by

modifying the original ellipti
 
urve Paillier s
heme we are able to base a spe
ial

mixed 
ommitment s
heme on it.

Outline of this Thesis

We begin with an introdu
tion to homomorphi
 
ryptosystems in Chapter 2 where

we provide de�nitions and explain the relationship between homomorphi
 and al-

gebrai
ally homomorphi
 en
ryption s
hemes in Se
tion 2.1, and brie�y introdu
e

some of the main appli
ations in Se
tion 2.2.

In Chapter 3 we present an improved solution to one of the main appli
ations of

homomorphi
 
ryptosystems �
omputing with en
rypted data� in Se
tion 3.2 and


losely related �
omputing with en
rypted fun
tions� in Se
tion 3.3. After qui
kly

introdu
ing these issues we pro
eed with des
ribing the 
on
ept of bran
hing pro-

grams. We then present two provably se
ure and non-intera
tive proto
ols with

zero-error that allow 
omputation with en
rypted data and fun
tions, respe
tively.

Finally, we de�ne a new property of homomorphi
 s
hemes that we 
all key swap-

ping. We demonstrate why this property is useful in the 
ontext of 
omputations

with en
rypted data and fun
tions. Furthermore, we give two examples of homo-

morphi
 s
hemes that support key swapping.
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In Chapter 4 we present a s
heme that has exa
tly the properties needed for our

solution presented in Chapter 3: Galbraith's ellipti
 
urve Paillier s
heme [42℄. We

begin with summarising this semanti
ally se
ure, probabilisti
, additively homomor-

phi
 s
heme and its generalisation by Galbraith. Thereafter we 
onstru
t a further

semanti
ally se
ure generalisation in Se
tion 4.4, namely a threshold de
ryption ver-

sion as well as a length-�exible variant. This threshold 
ryptosystem is built in su
h

a way that it is suitable for important appli
ations. Subsequently, we design several

auxiliary proto
ols in Se
tion 4.5 to provide the basis for appli
ations of our gener-

alised ellipti
 
urve Paillier s
heme. These appli
ations are 
onsidered in Se
tions

4.6, 4.7, and 4.8. They in
lude a multiparty proto
ol, a proto
ol for ele
troni
 vot-

ing, and a 
ommitment s
heme for whi
h we have to slightly modify the underlying

ellipti
 
urve Paillier s
heme.

Finally, in Chapter 5 we 
on
lude this work and give an outlook on further questions

that are of interest.



Chapter 2

Homomorphi
 Cryptosystems

During the last few years homomorphi
 en
ryption s
hemes have been studied ex-

tensively sin
e they have be
ome more and more important in many di�erent 
ryp-

tographi
 proto
ols su
h as, e. g., voting proto
ols. In this 
hapter we introdu
e ho-

momorphi
 
ryptosystems in three steps (�what�, �how�, and �why�) that re�e
t the

main aspe
ts. We start by de�ning homomorphi
 
ryptosystems and algebrai
ally

homomorphi
 
ryptosystems. Then we develop a method to 
onstru
t algebrai
ally

homomorphi
 s
hemes given spe
ial homomorphi
 s
hemes. Finally, we des
ribe

appli
ations of homomorphi
 s
hemes. A general and more detailed introdu
tion to

homomorphi
 
ryptosystems 
an be found in [72℄.

De�nition 2.0.1. Let the message spa
e (M, ◦) be a �nite (semi-)group, and let σ

be the se
urity parameter. A homomorphi
 publi
-key en
ryption s
heme (or homo-

morphi
 
ryptosystem) on M is a quadruple (K,E,D,A) of probabilisti
, expe
ted

polynomial time algorithms, satisfying:

Key Generation: On input 1σ
the algorithmK outputs an en
ryption/de
ryption

key pair (ke, kd) = k ∈ K where K denotes the key spa
e.

1

En
ryption: On inputs 1σ
, ke, and an element m ∈ M the en
ryption algorithm

E outputs a 
iphertext c ∈ C where C denotes the 
iphertext spa
e.

1

Usually, we are interested in the running time of the algorithm K as a fun
tion of σ rather

than log σ, i. e., we want to allow expe
ted polynomial time in the se
urity parameter σ to generate

a key. Therefore, te
hni
ally we need to think of K as being given σ in unary notation. This is

denoted by 1σ
.
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De
ryption: The de
ryption algorithm D is deterministi
. On inputs 1σ
, k, and

an element c ∈ C it outputs an element in the message spa
e M so that for all

m ∈ M it holds: if c = E(1σ, ke,m) then Prob[D(1σ, k, c) 6= m] is negligible,

i. e., it holds that Prob[D(1σ, k, c) 6= m] ≤ 2−σ
.

Homomorphi
 Property: A is an algorithm that on inputs 1σ, ke, and elements

c1, c2 ∈ C outputs an element c3 ∈ C so that for all m1,m2 ∈ M it holds: if

m3 = m1 ◦m2 and c1 = E(1σ, ke,m1), c2 = E(1σ, ke,m2) then

Prob[D(A(1σ, ke, c1, c2))] 6= m3]

is negligible.

Informally speaking, a homomorphi
 
ryptosystem is a 
ryptosystem with the addi-

tional property that there exists an e�
ient algorithm to 
ompute an en
ryption of

the sum or the produ
t, of two messages given the publi
 key and the en
ryptions

of the messages but not the messages themselves.

If M is an additive (semi-)group then the s
heme is 
alled additively homomorphi


and the algorithm A is 
alled Add. Otherwise the s
heme is 
alled multipli
atively

homomorphi
 and the algorithm A is 
alled Mult.

Remark 2.0.2.

1. Note that for a homomorphi
 en
ryption s
heme to be e�
ient it is 
ru
ial to

make sure that the size of the 
iphertexts remains polynomially bounded in

the se
urity parameter σ during repeated 
omputations.

2. The se
urity aspe
ts, de�nitions, and models of homomorphi
 
ryptosystems

are the same as usually for 
ryptosystems.

If the en
ryption algorithm E gets as additional input a uniform random number

r of a set Z, the en
ryption s
heme is 
alled probabilisti
 otherwise it is 
alled de-

terministi
. Hen
e if a 
ryptosystem is probabilisti
 there belong several di�erent


iphertexts to one message depending on the random number r ∈ Z. But note that
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as before the de
ryption algorithm remains deterministi
, i. e. there is just one mes-

sage belonging to a given 
iphertext. (See below Example 2.0.4.) Furthermore, in a

probabilisti
, homomorphi
 
ryptosystem the algorithm A should be probabilisti
,

too to hide the input 
iphertexts. For instan
e, this 
an be realised by applying

a blinding algorithm (see De�nition 2.0.7) on a (deterministi
) 
omputation of the

en
ryption of the produ
t and of the sum, respe
tively.

Notation 2.0.3. In the following we will omit the se
urity parameter σ and the

publi
 key in the des
ription of the algorithms. We will write Eke
(m) or E(m) for

E(1σ, ke,m) and Dk(c) or D(c) for D(1σ, k, c) when no misunderstanding is possible.

If the s
heme is probabilisti
 we will also write Eke
(m) or E(m) as well as Eke

(m, r)

or E(m, r) for E(1σ, ke,m, r). Furthermore, we will write

A(E(m), E(m′)) = E(m ◦m′)

to denote that the algorithm A (either Add or Mult) is applied on two en
ryptions

of the messages m,m′ ∈ (M, ◦) and outputs an en
ryption of m ◦m′
, i. e., it holds

that

D(A(1σ, ke, Eke
(m), Eke

(m′))) = m ◦m′

ex
ept with negligible probability.

Example 2.0.4. Here we give an example of a deterministi
, multipli
atively ho-

momorphi
 s
heme and an example for a probabilisti
, additively homomorphi


s
heme.

1. The 
lassi
al RSA s
heme [74℄ is an example of a deterministi
, multipli
atively

homomorphi
 
ryptosystem on M = (Z/NZ, ·), where N is the produ
t of two

large primes. As 
iphertext spa
e we have C = (Z/NZ, ·) and as key spa
e we

have K = {(ke, kd) = ((N, e), d) | N = pq, ed ≡ 1 mod ϕ(N)}. The en
ryption

of a message m ∈ M is de�ned as Eke
(m) := me mod N and for de
ryption of

a 
iphertext Eke
(m) = c ∈ C we 
ompute Dke,kd

(c) := cd mod N = m mod N.

Obviously, the en
ryption of the produ
t of two messages 
an be e�
iently
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omputed by multiplying the 
orresponding 
iphertexts, i. e.,

Eke
(m1 ·m2) = (m1m2)

e mod N

= (m1
e mod N)(m2

e mod N)

= Eke
(m1) · Eke

(m2)

where m1,m2 ∈ M. Hen
e, the algorithm Mult 
an easily be implemented as

Mult(Eke
(m1), Eke

(m2)) := Eke
(m1) · Eke

(m2).

Usually in the RSA s
heme as well as in most s
hemes based on the di�
ulty

of fa
toring the se
urity parameter σ is the bit length of N . For instan
e,

σ = 1024 is a 
ommon se
urity parameter.

2. The Goldwasser-Mi
ali s
heme, proposed in [45℄ is an example of a probabilis-

ti
, additively homomorphi
 
ryptosystem on M = (Z/2Z,+) with C = Z =

(Z/NZ)∗ where N = pq is the produ
t of two large primes. We have

K = {(ke, kd) = ((N, a), (p, q)) | N = pq, a ∈ (Z/NZ)∗ :

(
a

p

)
=

(
a

q

)
= −1}.

Sin
e this s
heme is probabilisti
, the en
ryption algorithm gets as additional

input a random value r ∈ Z. We de�ne Eke
(m, r) := amr2 mod N and

D(ke,kd)(c) :=

{
0, if c is a square

1, else

It holds that

Eke
(m1, r1) · Eke

(m2, r2) = Eke
(m1 +m2, r1r2).

Thus the algorithm Add 
an be e�
iently implemented e. g. as

Add(Eke
(m1, r1), Eke

(m2, r2), r3) = Eke
(m1, r1) · Eke

(m2, r2) · r3
2 mod N︸ ︷︷ ︸
Eke

(0,r3)

= Eke
(m1 +m2, r1r2r3)
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where m1,m2 ∈ M and r1, r2, r3 ∈ Z. Note that as ready mentioned this algo-

rithm should be probabilisti
, i. e., it obtains a random number r3 as additional

input.

A publi
-key homomorphi
 en
ryption s
heme on a (semi-)ring (M,+, ·) 
an be

de�ned in an analogous manner. Su
h s
hemes 
onsist of two algorithms Add and

Mult for the homomorphi
 property instead of one algorithm A, i. e., it is addi-

tively and multipli
atively homomorphi
 at the same time. Su
h s
hemes are 
alled

algebrai
ally homomorphi
.

De�nition 2.0.5. An additively homomorphi
 en
ryption s
heme on a (semi-)ring

(M,+, ·) is 
alled s
alar homomorphi
 if there exists a probabilisti
, expe
ted poly-

nomial time algorithm Mixed-Mult that on inputs 1σ, ke, s ∈ M and an element

c ∈ C outputs an element c′ ∈ C so that for all m ∈ M it holds that: if m′ = s ·m

and c = E(1σ, ke,m) then Prob[D(Mixed-Mult(1σ, ke, s, c)) 6= m′] is negligible.

Thus in a s
alar homomorphi
 s
heme it is possible to 
ompute an en
ryption

E(1σ, ke, s · m) = E(1σ, ke,m
′) of a produ
t of two messages s,m ∈ M given the

publi
 key ke and an en
ryption c = E(1σ, ke,m) of one message m and the other

message s as a plaintext.

Obviously any s
heme that is algebrai
ally homomorphi
 is s
alar homomorphi
,

too.

Notation 2.0.6. We will denote by

Mixed-Mult(m,E(m′)) = E(mm′)

if

D(Mixed-Mult(1σ, ke,m,Eke
(m′)) = m ·m′

holds ex
ept with negligible probability.

De�nition 2.0.7. A blinding algorithm is a probabilisti
, polynomial time algo-

rithm, whi
h on inputs 1σ, ke, and c ∈ Eke
(m, r) where r ∈ Z is randomly 
hosen

outputs another en
ryption c′ ∈ Eke
(m, r′) of m where r′ ∈ Z is 
hosen uniformly

at random.
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For instan
e, in a probabilisti
, homomorphi
 
ryptosystem on (M, ◦) the blinding

algorithm 
an be realised by applying the algorithm A on the 
iphertext c and an

en
ryption of the identity element in M.

Remark 2.0.8. If M is isomorphi
 to

Z
/nZ if M is �nite, or to Z otherwise,

then the algorithm Mixed-Mult 
an easily be implemented using a double and add

algorithm. This is 
ombined with a blinding algorithm if the s
heme is probabilisti


[24℄. Hen
e, every additively homomorphi
 
ryptosystem on

Z
/nZ or Z is also s
alar

homomorphi
 and the algorithm Mixed-Mult 
an be e�
iently implemented (see

also [75℄).

Remark 2.0.9. Sin
e most of the existing additively homomorphi
 
ryptosystems

(e. g., [44, 7, 62, 65, 67, 77, 31, 42℄) are de�ned on

Z
/nZ for some n ∈ N the algorithm

Mixed-Mult 
an in general be implemented e�
iently.

2

2.1 Algebrai
ally Homomorphi
 Cryptosystems

As already mentioned the existen
e of an e�
ient and se
ure algebrai
ally homo-

morphi
 
ryptosystem has been a long standing open question. In this se
tion we

�rst present related work 
onsidering this problem. Thereafter we des
ribe the rela-

tionship between algebrai
ally homomorphi
 s
hemes and homomorphi
 s
hemes on

spe
ial non-abelian groups. More pre
isely, we prove that a homomorphi
 en
ryption

s
heme on the non-abelian group (S7, ·), the symmetri
 group on seven elements,

allows to 
onstru
t an algebrai
ally homomorphi
 en
ryption s
heme on (F2,+, ·).

An algebrai
ally homomorphi
 en
ryption s
heme on (F2,+, ·) 
an also be obtained

from a homomorphi
 en
ryption s
heme on the spe
ial linear group (SL(3, 2), ·) over

F2. Furthermore, using 
oding theory an algebrai
ally homomorphi
 en
ryption on

an arbitrary �nite ring or �eld 
ould be obtained given a homomorphi
 en
ryption

s
heme on one of these non-abelian groups. These observations 
ould be a �rst step

to solve the problem whether e�
ient and se
ure algebrai
ally homomorphi
 s
hemes

exist. Many authors have tried to solve this problem. In 1996, Boneh and Lipton

have proven that under a reasonable assumption every deterministi
, algebrai
ally

2

We denote by N the set of positive integers.
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homomorphi
 
ryptosystem 
an be broken in sub-exponential time [13℄. This may

be seen as a negativ result 
on
erning the existen
e although most existing 
ryp-

tosystem, e. g., the RSA s
heme (see Example 2.0.4) or the ElGamal s
heme (see

Se
tion 3.4.1), 
an be broken in sub-exponential time, too. Furthermore, if we are

seeking for algebrai
ally homomorphi
 publi
-key s
hemes on small �elds or rings

su
h as M = F2, obviously su
h a s
heme has to be probabilisti
 to be se
ure.

Other authors have tried to �nd 
andidates for algebrai
ally homomorphi
 s
hemes.

In 1993, Fellows and Koblitz presented an algebrai
 publi
-key 
ryptosystem 
alled

Polly Cra
ker [39℄. It is algebrai
ally homomorphi
 and provably se
ure. Unfortu-

nately, the s
heme has a number of di�
ulties and is not e�
ient 
on
erning the


iphertext length. Firstly, Polly Cra
ker is a polynomial-based system. Therefore,


omputing an en
ryption of the produ
t E(m1 ·m2) of two messages m1 and m2 by

multiplying the 
orresponding 
iphertext polynomials E(m1) and E(m2), leads to

an exponential blowup in the number of monomials. Hen
e, during repeated 
om-

putations there is an exponential blowup in the 
iphertext length.

Se
ondly, all existing instantiations of Polly Cra
ker su�er from further drawba
ks

(see e. g., [59℄). They are either inse
ure sin
e they su

umb to 
ertain atta
ks,

they are too ine�
ient to be pra
ti
al, or they loose the algebrai
ally homomor-

phi
 property. Hen
e it is far from 
lear how su
h kind of s
hemes 
ould be turned

into e�
ient and se
ure algebrai
ally homomorphi
 en
ryption s
hemes. A detailed

analysis and des
ription of these s
hemes 
an be found in [61℄.

In 2002, J. Domingo-Ferrer [36℄ developed a probabilisti
, algebrai
ally homomor-

phi
 se
ret-key 
ryptosystem. But as before this s
heme is not e�
ient sin
e there

is an exponential blowup in the 
iphertext length during repeated multipli
ations.

Furthermore, it was re
ently broken by Wagner and Bao [81, 3℄.

Thus 
onsidering homomorphi
 en
ryption s
hemes on groups instead of rings seems

more promising to solve the presented question. It brings us 
loser to stru
tures

that have been su

essfully used in 
ryptography. The following theorem shows

that indeed the sear
h for algebrai
ally homomorphi
 s
hemes 
an be redu
ed to

the sear
h for homomorphi
 s
hemes on spe
ial non-abelian groups.

Theorem 2.1.1. The following statements are equivalent:

1. There exists an algebrai
ally homomorphi
 en
ryption s
heme on (F2,+, ·).
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2. There exists a homomorphi
 en
ryption s
heme on the symmetri
 group (S7, ·).

The following proof is based on an idea of Tomas Sander.

Proof. 1 ⇒ 2 This dire
tion of the proof follows immediately and it holds for an

arbitrary �nite group sin
e operations of �nite groups 
an always be implemented

by Boolean 
ir
uits. Let S7 be represented as a subset of {0, 1}l
, where e. g. l = 21


an be 
hosen

3

, and let C be a 
ir
uit with addition and multipli
ation gates that

takes as inputs the binary representations of elements m1,m2 ∈ S7 and outputs the

binary representation ofm1m2. If we have an algebrai
ally homomorphi
 en
ryption

s
heme (K,E,D,Add,Mult) on (F2,+, ·) then we 
an de�ne a homomorphi
 s
heme

(K̃, Ẽ, D̃, M̃ult) on S7 by de�ning Ẽ(m) = (E(s0), . . . , E(sl−1)) where (s0, . . . , sl−1)

denotes the binary representation of m. M̃ult is 
onstru
ted by substituting the

addition gates in C by Add and the multipli
ation gates by Mult. K̃ and D̃ are

de�ned in the obvious way.

2 ⇒ 1 The proof has two steps. First we use a 
onstru
tion of Ben-Or and Cleve

[10℄ to show that the �eld (F2,+, ·) 
an be en
oded in the spe
ial linear group

(SL(3, 2), ·) over F2. Then we apply a theorem from proje
tive geometry to show

that (SL(3, 2), ·) is a subgroup of S7. This proves the 
laim.

We map

(F2,+, ·)
encoding
→ SL(3, 2)

x 7→




1 0 x

0 1 0

0 0 1


 =: M(x).

It is easy to see that:

1. M(x)M(y) = M(x+ y)

2. ∃ T ∈ SL(3, 2) :

TM(x)T−1 =




1 0 0

0 1 x

0 0 1


 and

3

Sin
e log2(7!) ≈ 12.3, the minimal possible number of bits is l = 13.
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∃ S ∈ SL(3, 2) :

SM(y)S−1 =




1 y 0

0 1 0

0 0 1


 :

M(xy) = [




1 y 0

0 1 0

0 0 1


 ,




1 0 0

0 1 x

0 0 1


],

where [A,B] denotes the 
ommutator of the matri
es A and B.

Therefore the operations + and · in F2 
an be performed on M(0) and M(1) using

the 
onstants S and T , and the multipli
ation in the group SL(3, 2). Given a

homomorphi
 en
ryption s
heme (K,E,D,Mult) on (SL(3, 2), ·) we 
an thus easily


onstru
t an algebrai
ally homomorphi
 s
heme on (F2,+, ·) using E(S), E(T ), and

the algorithm Mult.

We now use the fa
t that SL(3, 2) is the group of 
ollineations on the proje
tive

plane over F2 (see e. g. [52℄). As this plane has 7 points, SL(3, 2) 
an be embedded

in S7, whi
h 
on
ludes the proof.

Remark 2.1.2. An analysis of the proof of Theorem 2.1.1 shows that using the

des
ribed 
onstru
tion the matri
es S, T , and M(x) are ne
essary for the en
oding.

We have

〈M(1), S, T 〉 = SL(3, 2).

Hen
e, there is no proper subgroup of SL(3, 2) that 
an be used to en
ode F2 in

the above way. We additionally note that S7 is the smallest symmetri
 group in

whi
h SL(3, 2) 
an be embedded sin
e SL(3, 2) 
ontains an element of order 7. For

instan
e, the following element has order 7:




0 0 1

0 1 1

1 1 0


 .

An interesting question is whether there are �smaller� or �simpler� groups than S7
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and SL(3, 2) that allow to en
ode the �eld F2.

From the proof of Theorem 2.1.1 we obtain dire
tly the following 
orollary.

Corollary 2.1.3. The following statements are equivalent:

1. There exists an algebrai
ally homomorphi
 en
ryption s
heme on (F2,+, ·).

2. There exists a homomorphi
 en
ryption s
heme on the spe
ial linear group

(SL(3, 2), ·).

Remark 2.1.4. In exa
tly the same way as in the proof of Theorem 2.1.1 it is

possible to en
ode the �nite �eld (Fp,+, ·) in the spe
ial linear group (SL(3, p), ·).

Homomorphi
 en
ryption s
hemes on groups have been extensively studied. For

instan
e, we have homomorphi
 s
hemes on groups (Z/MZ,+), forM being a smooth

number (e. g., [45, 8, 62℄), forM = pq being an RSA modulus [67, 42℄, and for groups

((Z/NZ)∗, ·) where N is an RSA modulus. All known e�
ient and se
ure s
hemes

today are homomorphi
 on abelian groups, however S7 and SL(3, 2) are non-abelian.

Sander, Young and Yung [77℄ had asked expli
itly whether there is a homomorphi


en
ryption s
heme on non-abelian groups. The redu
tion above motivates that this

is indeed an important question and that non-abelian groups should be studied from

this perspe
tive.

Unfortunately, we 
an not des
ribe an e�
ient homomorphi
 en
ryption s
heme on

a non-abelian group here either. Although non-abelian groups had been previously

used to 
onstru
t en
ryption s
hemes ([58, 66, 82, 49℄) the resulting s
hemes were

not homomorphi
 in the sense that we need for 
omputing e�
iently on en
rypted

data (see Chapter 3).

In [49℄ Grigoriev and Ponomarenko propose a new de�nition of homomorphi
 
ryp-

tosystems on whi
h they base a method to 
onstru
t homomorphi
 
ryptosystems

over arbitrary �nite groups in
luding non-abelian groups. Their 
onstru
tion method

is based on the fa
t that every �nite group is an epimorphi
 image of a free produ
t

of �nite 
y
li
 groups. It uses existing homomorphi
 en
ryption s
hemes on �nite


y
li
 groups as building blo
ks to obtain homomorphi
 en
ryption s
hemes on arbi-

trary �nite groups. Sin
e the 
iphertext spa
e of the so obtained en
ryption s
heme
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is a free produ
t of groups an exponential blowup of the 
iphertext lengths during

repeated 
omputations follows. The reason is that the length of the produ
t of two

elements x and y of a free produ
t is in general the sum of the length of x and

the length of y. Hen
e their te
hnique su�ers from the same drawba
k as before

and thus does not lead to an e�
ient 
ryptosystem. Note that using this 
onstru
-

tion it is possible to 
onstru
t a homomorphi
 en
ryption s
heme on the symmetri


group S7 and on the spe
ial linear group SL(3, 2). If we 
ombine this with Theorem

2.1.1 we 
an 
onstru
t an algebrai
ally homomorphi
 
ryptosystem on the �nite �eld

(F2,+, ·). Unfortunately, the exponential blowup owing to the 
onstru
tion method

in the homomorphi
 en
ryption s
heme on S7 and on SL(3, 2), respe
tively, would

lead to an exponential blowup in F2 and hen
e leaves the question open if an e�
ient

algebrai
ally homomorphi
 
ryptosystem on F2 exists.

In [50℄ Grigoriev and Ponomarenko propose another method to en
rypt arbitrary

�nite groups homomorphi
ally. This method is based on the di�
ulty of the mem-

bership problem for groups of integer matri
es, while in [49℄ it is based on the

di�
ulty of fa
toring. However, as before this s
heme is not e�
ient. Furthermore,

in [50℄ an algebrai
ally homomorphi
 
ryptosystem over �nite 
ommutative rings is

proposed, but owing to its immense size it is infeasible to implement.

2.2 Appli
ations and Properties of Homomorphi


Cryptosystems

An inherent drawba
k of homomorphi
 
ryptosystems is that atta
ks might ex-

ploit their additional stru
ture. For instan
e, using plain RSA [74℄ for signing, the

multipli
ation of two signatures yields a valid signature of the produ
t of the two


orresponding messages. Although there are many ways to avoid su
h atta
ks for

instan
e by the appli
ation of hash fun
tions, the use of redundan
y or probabilisti


s
hemes, this potential weakness leads us to the question why homomorphi
 s
hemes

are used in some situations instead of 
onventional 
ryptosystems. The main reason

for the interest in homomorphi
 
ryptosystems is its wide appli
ation s
ope. There

are theoreti
al as well as pra
ti
al appli
ations in di�erent areas of 
ryptography.
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In the following we list some of the main appli
ations and properties of homomor-

phi
 s
hemes and summarise the idea behind them. We will des
ribe some of these

appli
ations in more detail throughout the following 
hapters.

• Prote
tion of mobile agents:

One of the most interesting and demanding appli
ation of homomorphi
 
ryp-

tosystems is the prote
tion of mobile agents. As it was shown in Theorem 2.1.1

a homomorphi
 en
ryption s
heme on a spe
ial non-abelian group would lead

to an algebrai
ally homomorphi
 
ryptosystem on the �nite �eld F2. Sin
e

all 
onventional 
omputer ar
hite
tures are based on binary strings and only

require multipli
ation and addition, su
h homomorphi
 
ryptosystems would

o�er the possibility to en
rypt a whole program so that it is still exe
utable.

Hen
e, it 
ould be used to prote
t mobile agents against mali
ious hosts by

en
rypting them. More details about this idea 
an be found in [76℄.

� Computing with en
rypted fun
tions:

This is a spe
ial 
ase of the prote
tion of mobile agents. In su
h s
enar-

ios a se
ret fun
tion is publi
ly evaluated in su
h a way that the fun
tion

remains se
ret. Using homomorphi
 
ryptosystems the en
rypted fun
-

tion 
an be evaluated whi
h guarantees its priva
y. This will be further

dis
ussed in the next 
hapter.

� Computing with en
rypted data:

Homomorphi
 s
hemes o�er the possibility to 
ompute publi
ly with se-


ret data su
h that it remains se
ret. This 
an be done by en
rypting the

data in advan
e and then exploiting the homomorphi
 property to 
om-

pute with en
rypted data. The area �
omputing with en
rypted data�


an be shown to be equivalent to the 
ase of �
omputing with en
rypted

fun
tions�. The idea behind it will be further explained in the following


hapter.

• Multiparty 
omputation:

In multiparty 
omputation s
hemes several parties want to 
ompute a 
om-

mon, publi
 fun
tion on their inputs while keeping their individual inputs

private. This belongs to the area of �
omputing with en
rypted data�. Usually
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in multiparty 
omputation proto
ols we have a set of n ≥ 2 players whereas

in 
omputing with en
rypted data s
enarios n = 2. Furthermore, in multi-

party 
omputation proto
ols the fun
tion that should be 
omputed is publi
ly

known, whereas in the area of �
omputing with en
rypted data� it is a private

input of one party. A proto
ol for multiparty 
omputations will be given in

Se
tion 4.6.

• Se
ret sharing s
hemes:

In a se
ret sharing s
heme several parties share a se
ret so that no party 
an

re
onstru
t the se
ret by itself, but if many parties 
ooperate they are able to

re
onstru
t it. Here, the homomorphi
 property implies that the 
omposition

of the se
rets' shares are shares of the se
rets' 
omposition.

• Threshold s
hemes:

Se
ret sharing s
hemes and multiparty 
omputation s
hemes are examples of

threshold s
hemes that are based on the homomorphi
 property. An example

of a threshold de
ryption s
heme is given in Chapter 4.

• Zero-knowledge proofs:

This is a fundamental primitive of 
ryptographi
 proto
ols and thus an exam-

ple of a theoreti
al appli
ation of homomorphi
 
ryptosystems. Zero-knowledge

proofs are used to prove knowledge of some private information. For instan
e,


onsider the 
ase where a user has to prove his identity to a host by logging in

with his a

ount and private password. Obviously, in su
h a proto
ol the user

wants his private information (i. e., his password) to stay private and not to be

leaked during the proto
ol. Zero-knowledge proofs guarantee that the proto
ol


ommuni
ates exa
tly the knowledge that was intended, and no (zero) extra

knowledge. An example of an honest-veri�er zero-knowledge proof that uses

the homomorphi
 property is given in Se
tion 4.5.3. For further examples of

zero-knowledge proofs using the homomorphi
 property see [22℄.

• Ele
tion s
hemes:

In ele
tion s
hemes the homomorphi
 property provides a tool to obtain the

tally given the en
rypted votes without de
rypting the individual votes. In

Se
tion 4.7 we will explain this further.
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• Watermarking and �ngerprinting s
hemes:

Digital watermarking and �ngerprinting s
hemes embed additional informa-

tion into digital data. The homomorphi
 property is used to add a mark

to previously en
rypted data. In general watermarks are used to identify the

owner/seller of digital goods to ensure the 
opyright. In �ngerprinting s
hemes

the person who buys the data should be identi�able by the mer
hant to ensure

that data is not illegally redistributed. Further properties of su
h s
hemes 
an

be found in [70℄ or [2℄.

• Oblivious transfer:

Oblivious transfer is another 
ryptographi
 primitive. Usually in a two-party

1-out-of-2 oblivious transfer proto
ol the �rst party sends a bit to the se
ond

party in su
h a way that the se
ond party re
eives it with probability 1/2,

without the �rst party knowing whether or not the se
ond party re
eived the

bit. An example of su
h a proto
ol that uses the homomorphi
 property 
an

be found in [60℄.

• Commitment s
hemes:

Commitment s
hemes are another fundamental primitive of 
ryptographi
 pro-

to
ol theory. In a 
ommitment s
heme a player makes a 
ommitment. He is

able to 
hoose a value from some set and 
ommit to his 
hoi
e su
h that he


an no longer 
hange his mind. He does not have to reveal his 
hoi
e al-

though he may do so at some later point. Commitment s
hemes that use the

homomorphi
 property will be introdu
ed in Se
tion 4.8.

• Lottery proto
ols:

Usually in a 
ryptographi
 lottery a number pointing to the winning ti
ket has

to be jointly and randomly 
hosen by all parti
ipants. Using a homomorphi


en
ryption s
heme this 
an be realized as follows: Ea
h player 
hooses a ran-

dom number whi
h he en
rypts. Then using the homomorphi
 property the

en
ryption of the sum of the random values 
an be e�
iently 
omputed. The


ombination of this and a threshold de
ryption s
heme (like e. g. proposed in

Se
tion 4.4) leads to the desired fun
tionality. See [41℄ for further details.
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• Mix-nets:

Mix-nets are proto
ols that provide anonymity for senders by 
olle
ting en-


rypted messages from several users. For instan
e, one 
an 
onsider mix-nets

that 
olle
t 
iphertexts and output the 
orresponding plaintexts in a randomly

permuted order. In su
h a s
enario priva
y is obtained by requiring that the

permutation, mat
hing inputs to outputs, is se
ret to anyone ex
ept the mix-

net. In parti
ular, determining a 
orre
t input/output pair, i. e., a 
iphertext

with 
orresponding plaintext, should not be more e�e
tive then guessing one

at random. A desirable property to build su
h mix-nets is re-en
ryption. As

will be mentioned below, this is provided by the use of homomorphi
 
ryp-

tosystems as building blo
k. For instan
e, see [48℄ and [31℄ for details.

Examples of useful properties of homomorphi
 s
hemes are the following:

• Re-randomizable en
ryption/re-en
ryption:

Re-randomizable 
ryptosystems (see e. g. [51℄) are probabilisti
 
ryptosystems

with the additional property that given the publi
 key ke and an en
ryption

Eke
(m, r) of a message m ∈ M under the publi
 key ke and a random number

r ∈ Z it is possible to e�
iently 
onvert Eke
(m, r) into another en
ryption

Eke
(m, r′) that is perfe
tly indistinguishable from a �fresh� en
ryption of m

under the publi
 key ke. This property is also 
alled re-en
ryption.

Obviously every probabilisti
 homomorphi
 
ryptosystem is re-randomizable:

Without loss of generality we assume that the 
ryptosystem is additively ho-

momorphi
. Given Eke
(m, r) and the publi
 key ke we 
an 
ompute Eke

(0, r′′)

for a random number r′′ and hen
e 
ompute

Add(Eke
(m, r), Eke

(0, r′′)) = Eke
(m+ 0, r′) = Eke

(m, r′),

with r′ being an appropriate random number. Note that this is exa
tly what

a blinding algorithm (see De�nition 2.0.7) does.

• Random self-redu
ibility:

Along with the possibility of re-en
ryption 
omes the property of random

self-redu
ibility 
on
erning the problem of 
omputing the plaintext from the
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iphertext. A 
ryptosystem is 
alled random self-redu
ible if any algorithm

that 
an break a non-trivial fra
tion of 
iphertexts 
an also break a random

instan
e with signi�
ant probability. This property is further dis
ussed in e. g.

[32℄ or [77℄.

• Veri�able en
ryptions/fair en
ryptions:

If an en
ryption is veri�able it provides a me
hanism to 
he
k the 
orre
tness

of en
rypted data without 
ompromising se
re
y. For instan
e, this is use-

ful in voting s
hemes to 
onvin
e any observer that the en
rypted name of a


andidate, i. e., the en
rypted vote is indeed in the list of 
andidates. A 
ryp-

tosystem with this property that is based on homomorphi
 en
ryptions 
an

be found in [71℄ (see also Se
tion 4.7). Note that in the literature veri�able

en
ryptions are also 
alled fair en
ryptions.



Chapter 3

Computing with En
rypted Data

and En
rypted Fun
tions

The sear
h for an e�
ient algebrai
ally homomorphi
 
ryptosystem is a long stand-

ing open problem. A major motivation is the prote
tion of mobile agents and the

se
ure 
omputation with en
rypted fun
tions or en
rypted data as already men-

tioned in Se
tion 2.2. Until now no e�
ient algebrai
ally homomorphi
 s
heme has

been found. All 
andidates for those s
hemes su�er from the same drawba
k (see

Se
tion 2.1): they have to deal with an exponential blowup in the 
iphertext length

during repeated multipli
ation. This is the main reason why their appli
ation s
ope

is restri
ted to fun
tions that 
an be implemented by NC1

ir
uits, i. e., 
ir
uits of

logarithmi
 depth. Thus other methods are needed to enable se
ure 
omputations.

We 
ome up with a new approa
h for this problem. Instead of developing a new

s
heme or 
onsidering 
ir
uits we take a 
loser look at bran
hing programs as a


omputational model for fun
tions. Using existing e�
ient additively homomorphi



ryptosystems like Paillier's 
ryptosystem [67℄ provides a tool to en
rypt bran
hing

programs in order to enable se
ure 
omputations. Thus in this 
hapter we suggest a

provably se
ure and non-intera
tive method to 
ompute with en
rypted data and en-


rypted fun
tions that are given by polynomial bran
hing programs. This is the �rst

solution using bran
hing programs we are aware of. Furthermore, it is an enlarge-

ment of the 
lass of fun
tions that are en
ryptable e�
iently and non-intera
tively,

in su
h a way that they are still exe
utable, from NC1
to polynomial bran
hing
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programs [4℄. Moreover, we de�ne a new property of homomorphi
 
ryptosystems

that we 
all key swapping. This property o�ers new possibilities in �
omputing with

en
rypted data� and �
omputing with en
rypted fun
tions� s
enarios. Finally, we

present two examples of homomorphi
 s
hemes supporting key swapping.

3.1 Bran
hing Programs

In this se
tion we introdu
e the basi
 
on
epts of bran
hing programs that we will

need in the following. The de�nition we present was re
ently introdu
ed by Cramer

et al. in [26℄. It refers to bran
hing programs over arbitrary rings. It in
ludes the

notion usually given in literature, e. g., in [83℄ as a spe
ial 
ase. Therefore the new

de�nition is more powerful whi
h indu
es that known fa
ts still hold for the new

de�nition and that bounds might be improved.

De�nition 3.1.1. A bran
hing program of size λ on inputs x1, . . . , xn ∈ Rn
, where

R is an arbitrary ring, is a quadruple BP = (G,w, s, t) where G = (V,E) is a

dire
ted a
y
li
 graph with V being the set of verti
es and E being the set of edges,

w is a labelling fun
tion and s and t are two spe
ial verti
es of the graph.

We may assume that V = {s = 1, . . . , t = λ} and that for ea
h edge (i, j) ∈ E it

holds that i < j. Let w assign to ea
h edge a degree-1 polynomial over R in the

input variables, i. e.,

w(i, j) =
n∑

k=1

alkxk + bl, alk, bl ∈ R and 1 ≤ l ≤ λ2.

For ea
h dire
ted path φ = (i1, i2, . . . , ik) from i1 to ik in G, the weight of φ is de�ned

to be the produ
t w(i1, i2) · w(i2, i3) · · ·w(ik−1, ik). W (i, j) denotes the total weight

of all dire
ted paths from i to j for i < j (viewed as a fun
tion of x = (x1, . . . , xn)).

That is

W (i, j) =
∑

φ(i,j)

k−1∏

m=1

w(im, im+1)

where i = i1 and j = ik and φ(i, j) denotes a path from i to j.
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The fun
tion f : Rn → R 
omputed by a bran
hing program BP is de�ned by

f(x) = W (1, λ)(x) = W (s, t)(x).

Example 3.1.2. Let R be a 
ommutative ring with 1. As an example of a bran
h-

ing program of size 5 on inputs x1, x2, x3, x4 
onsider the following graph, where

x1, x2, x3, x4, a, b ∈ R:

1


2
x
1


x
4


5


3


4


x
3


x
2
+
bx
3


a+
x
4


We have

w(1, 2) = x1, w(2, 3) = x3, w(3, 5) = a+ x4, w(1, 4) = x4, w(4, 5) = x2 + bx3.

Hen
e, the weight of the path φ = (1, 4, 5) is de�ned to be

w(1, 4)w(4, 5) = x4 · (x2 + bx3).

The total weight W (i, j) equals x1x3(a + x4) + x4(x2 + bx3) and thus the fun
tion


omputed by BP is

f(x) = x1x3(a+ x4) + x4(x2 + bx3).

If R is a 
ommutative ring with 1, the 
omputation of f(x) 
an be mapped to the


omputation of the determinant of a matrix in the following way (see e. g. [53℄):

Let x = (x1, . . . , xn) ∈ Rn
. There is an adja
en
y matrix H(x) belonging to

ea
h bran
hing program BP = (G,w, s, t) where G = (V,E). If we assume that

V = {s = 1, . . . , t = λ} and that for ea
h edge (i, j) ∈ E it holds that i < j, then

H(x) is an λ × λ matrix where entry (i, j) equals 0 if (i, j) /∈ E and w(i, j) other-

wise. Sin
e G is a dire
ted a
y
li
 graph H(x) is an upper triangular matrix whi
h

is nilpotent. If r is the number of edges of the longest path from s = 1 to t = λ

then H(x)r+1 = 0. When no misunderstanding is possible we will write H instead

of H(x).

Let k-path denote a path that 
onsists of exa
tly k edges. The entry (i, j) of the
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power Hk
equals the total weight of all dire
ted k-paths from i to j. Hen
e,

H∗ :=
∞∑

k=0

Hk =
r∑

k=0

Hk

is the matrix whose (i, j) entry equals W (i, j). Sin
e Hr+1 = 0 we obtain that

(I −H)H∗ = H∗(I −H) =
r∑

k=0

Hk −

r∑

k=0

Hk+1 = H0 = I

⇒ H∗ = (I −H)−1.

Furthermore, the upper right entry (1, λ) = (s, t) of H∗
, denoted by H∗

1,λ, equals

W (1, λ)(x). This determines the output f(x) of the fun
tion f : Rn → R 
omputed

by BP . To 
ompute the entry (1, λ) of H∗
we 
an apply Cramer's rule. Hen
e

H∗
1,λ = W (1, λ) = ((I −H)−1)1,λ = (−1)λ+1 detM

det(I −H)
,

where M denotes the submatrix of I −H obtained by deleting the �rst 
olumn and

the last (λ-th) row. Sin
e H is an upper triangular matrix we have det(I −H)=1.

Hen
e

H∗
1,λ = (−1)λ+1 detM = f(x).

Remark 3.1.3. If f is a Boolean fun
tion then this determinant equals either 0 or

1, i. e., to 
ompute the fun
tion value it is su�
ient to de
ide if the matrix M is of

full rank.

Example 3.1.4. The adja
en
y matrix of the graph of Example 3.1.2 looks as

follows:

H =




0 x1 0 x4 0

0 0 x3 0 0

0 0 0 0 a+ x4

0 0 0 0 x2 + bx3

0 0 0 0 0



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⇒ H2 =




0 0 x1x3 0 x4(x2 + bx3)

0 0 0 0 x3(a+ x4)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



,

H3 =




0 0 0 0 x1x3(a+ x4)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, H4 = 0.

Sin
e H∗ :=
∑
Hk

, it follows that

H∗
1,5 = W (1, 5)(x) = x1x3(a+ x4) + x4(x2 + bx3) = f(x).

The reason to look 
loser at bran
hing programs is that every fun
tion f 
an be 
om-

puted by a bran
hing program, and many "natural" fun
tion families (in parti
ular

regular languages) 
an be 
omputed by linear-size bran
hing programs. Further-

more, the bran
hing program size is no larger than the 
orresponding formula size

of f [26℄. However, polynomial-size bran
hing programs are probably not powerful

enough to e�
iently 
ompute all polynomial-time 
omputable fun
tions. This is

owing to the fa
t that the power of polynomial-size bran
hing programs 
oin
ides

with that of di�erent variants of log-spa
e 
omputation [54℄.

Remark 3.1.5. The upper bound for the size of bran
hing programs 
omputing

Boolean fun
tions f : {0, 1}n → {0, 1} is exponential. For spe
ial 
lasses of fun
tions

a smaller bound 
an be proven. An example of fun
tions that 
an be 
omputed by

linear-size bran
hing programs are Boolean fun
tions f(x) = 1+
∑

J⊆{1,...,n}

∏
i∈J xi.

Hen
e, f(x) =
∏n

i=1(1 + xi) and there exists a bran
hing program of size n + 1


omputing f .

Example 3.1.6. Let

f(x1, x2, x3) = 1 +
∑

J⊆{1,2,3}

∏

i∈J

xi = 1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3,
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where xi ∈ {0, 1} for 1 ≤ i ≤ 3. Then

f(x1, x2, x3) = 1 + x2 + x3 + x2x3 + x1(1 + x2 + x3 + x2x3)

= (1 + x2 + x3 + x2x3)(1 + x1)

= (1 + x3 + x2(1 + x3))(1 + x1) = ((1 + x3)(1 + x2))(1 + x1).

The following bran
hing program of size 4 
omputes f :

1
 2
 3
 4

1+
x
1
 1+
x
2
 1+
x
3


Remark 3.1.7. An interesting appli
ation of bran
hing programs - namely the


onstru
tion of so-
alled randomizing polynomials - was introdu
ed in [54, 55℄ and

further generalised in [26℄. These randomizing polynomials are a representation

of fun
tions by low-degree polynomials whi
h is espe
ially useful for the design of

se
ure multiparty 
omputation proto
ols.

3.2 Computing with En
rypted Data

In this se
tion we 
onsider an important appli
ation of homomorphi
 
ryptosystems:


omputing with en
rypted data. We �rst give an introdu
tion to this problem by

des
ribing it and giving examples. Then we develop a proto
ol that solves the

underlying problem. Our proto
ol is non-intera
tive, e�
ient for polynomial-size

bran
hing programs, and provably se
ure. It is an improvement to known solutions

in the literature.

Consider the following S
enario 1. It was introdu
ed as se
ure 
ir
uit evaluation

in [1℄ (see also [85, 46℄) and it 
an be found in the literature with several di�erent

notions, e. g., in [77, 16℄. Note that in Se
tion 3.3 we 
onsider a s
enario known as


omputing with en
rypted fun
tions, that is equivalent to S
enario 1.

S
enario 1:

Ali
e has a fun
tion f : Rn → R that she does not want to reveal and some

se
ret inputs x1, . . . , xk ∈ Rk
. Bob has some se
ret inputs y1, . . . , ym ∈ Rm

where

k + m = n. Ali
e is willing to 
ompute f(x1, . . . , xk, y1, . . . , ym) =: f(x, y) on her
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inputs xi, 1 ≤ i ≤ k and Bob's se
ret inputs yj, 1 ≤ j ≤ m so that only Bob learns

the output of the fun
tion. Bob and Ali
e should learn nothing about the other ones

input values besides the information that the output reveals.

Variants:

1. For some appli
ations we 
ould think about f being a publi
 fun
tion (see e. g.

[85, 46℄). The solution given below 
an also be used to solve this s
enario.

2. In some 
ases Ali
e should learn the output, too.

3. Only Ali
e should learn the output f(x).

Remark 3.2.1. Obviously Ali
e's inputs 
an also be seen as a �xed part of her

fun
tion f . Hen
e k = 0 is also possible.

Example 3.2.2. Now we give examples of the above s
enario and its variants.

1. As an example of S
enario 1 we 
ould think about Ali
e having an e�
ient

algorithm for fa
toring that she uses to earn money with and thus wants to

keep private. Bob has an input that he wants to have fa
torized. Ali
e o�ers

Bob to fa
tor his input for money.

2. As a typi
al example of the �rst variant we 
ould think about Ali
e wanting

to sell her 
omputing power to Bob for a publi
 algorithm.

3. If f is publi
 - as in Variant 1 - and both Ali
e and Bob should learn the

output - as in Variant 2 - we have the s
enario usually 
onsidered in 2-party


omputation proto
ols. As an example we 
onsider f as being the fun
tion

that 
omputes the maximum of two inputs. Ali
e and Bob now use f in order

to de
ide who of them earns more money. Multiparty 
omputation solutions

for su
h a s
enario di�er from our solution sin
e in the former one the roles

of Ali
e and Bob are usually symmetri
, i. e., the 
omputations they have to

perform are nearly the same. See Se
tion 4.6 for su
h a multiparty 
omputation

proto
ol and further details.

4. Ali
e wanting to do a 
onsumer-opinion poll is an example of Variant 3. Here,

Ali
e 
olle
ts input values of Bob (and other entities) to evaluate them pri-

vately.
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Clearly S
enario 1 
an be solved with general proto
ols for se
ure fun
tion evaluation

(see e. g., [85, 46℄). However, we would like to have a solution that is non-intera
tive,

i. e., Ali
e and Bob should have only one round of data ex
hange and should not

have to 
ommuni
ate further during the evaluation of the fun
tion. Furthermore,

it would be optimal to provide a solution in whi
h the workload that Ali
e has to

perform depends only on the e�
ien
y of the underlying en
ryption s
heme, but not

on the �size� of f , i. e., the size of a 
ir
uit 
omputing f .

Some non-intera
tive solutions have been des
ribed in the literature, see e. g. [77, 16℄.

However, none of them o�ers independen
y of the �size� of f . The best known non-

intera
tive solution to our s
enario is des
ribed by Sander et al. in [77℄. They

des
ribed a proto
ol using novel 
onstru
tions whi
h requires only one round of in-

tera
tion to evaluate NC1

ir
uits and whi
h gives Bob 
omputational priva
y for

his input y and Ali
e information-theoreti
 priva
y for her fun
tion f . However

Ali
e's workload depends exponentially on the depth d of the 
ir
uit C. Therefore,

this solution is bounded to 
ir
uits of logarithmi
 depth - known as NC1

ir
uit.

Obviously, a natural 
andidate to solve both requirements (no intera
tion and in-

dependen
y of the size of f) would be a probabilisti
, algebrai
ally homomorphi


en
ryption s
heme sin
e it provides a tool for 
omputations on en
rypted data. How-

ever, an e�
ient and se
ure algebrai
ally homomorphi
 s
heme has not been found

yet. As already mentioned in Se
tion 2.1 all known s
hemes have to deal with an

exponential blowup during repeated 
omputations. That is why their appli
ation

s
ope is restri
ted to fun
tions that 
an be implemented by NC1

ir
uit. In [5℄ it was

proven that any Boolean 
ir
uit of logarithmi
 depth 
an be e�
iently simulated by

a 
ir
uit over an arbitrary �nite nonsolvable group. Hen
e the proposed en
ryptions

of non-abelian groups of Grigoriev et al. in [49, 50℄ (see Se
tion 2.1) 
an be applied

to obtain en
ryptions of NC1

ir
uits. However owing to the exponential blowup of

their s
heme they 
annot do any better than NC1

ir
uits. Thus, another approa
h

is ne
essary to enlarge the 
lass of en
ryptable fun
tions.

Our solution presented below for S
enario 1 is based on an idea of Ronald Cramer.

It has two ingredients. We assume that the fun
tion f is given by a bran
hing

program in the form of the 
orresponding adja
en
y matrix. Then we en
rypt that

matrix using a probabilisti
, additively and s
alar homomorphi
 en
ryption s
heme

(see Chapter 4 for an example).
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To prove the se
urity of our solution formally we have to guarantee that R is a �nite

�eld, although in pra
ti
e we usually may assume that the ring

Z
/NZ where N is the

produ
t of two large primes behaves like a �nite �eld (see Remark 3.2.3). Thus we

restri
t the 
onsidered s
enario to the 
ase where the fun
tion f : Rn → R is de�ned

on a �nite �eld R. Furthermore, sin
e all known e�
ient additively homomorphi


en
ryption s
hemes are de�ned on

Z
/kZ for some k ∈ N it is wise to restri
t R to

being a prime �eld. Thus we may use probabilisti
, additively homomorphi
 
ryp-

tosystems as the Goldwasser-Mi
ali s
heme [45℄ on M = (Z/2Z,+), or s
hemes as

the Okamoto-U
hiyama s
heme [65℄ on M = (Z/pZ,+) with p being prime. If addi-

tively and s
alar homomorphi
 
ryptosystems will be developed on arbitrary �nite

�elds - rather than prime �elds - then our solution 
an immediately be generalised.

Remark 3.2.3. It is also possible to 
onsider fun
tions f : Rn → R where R = Z
/NZ

and N = pq is the produ
t of two large primes. Given x ∈ Z
/NZ the probability

that gcd(x,N) = 1 is

φ(N)
N

=
∏

p|N(1 − 1
p
) = (1 − 1

p
)(1 − 1

q
). Sin
e this probability

is negligibly 
lose to 1, almost all elements are invertible. Thus, in pra
ti
e we may

assume that

Z
/NZ behaves like a �nite �eld. However, in this 
ase the se
urity

of our proto
ol 
an not be formally proven. Examples of probabilisti
, additively

homomorphi
 s
hemes with M = Z
/NZ are Paillier's s
heme [67℄ and the ellipti



urve Paillier s
heme [42℄ whi
h we will des
ribe in Se
tion 4.2.

Notation 3.2.4. LetM be a matrix over the message spa
eM and EB : M → C be

an en
ryption fun
tion under a publi
 key ke = B. The notation EB(M) means that

EB is applied on ea
h entry of M and that the result is written in a matrix again.

When applying the algorithms Add or Mixed-Mult on su
h 
iphertext matri
es, we

apply them on ea
h entry separately.

For a better understanding we �rst give a basi
 version of our solution, and then

improve its e�
ien
y afterwards.

Basi
 Solution:

1. Bob en
rypts his input values yj, 1 ≤ j ≤ m with his publi
 key B using a

probabilisti
, additively homomorphi
 en
ryption s
heme E : M → C where

M = (R,+) and R is a prime �eld. We denote su
h en
ryptions by EB(yj)

where 1 ≤ j ≤ m. Bob sends these en
ryptions to Ali
e.
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2. To 
ompute an output f(x, y) that 
an only be read by Bob given his en
rypted

inputs EB(yj), 1 ≤ j ≤ m and Ali
e's inputs xi, 1 ≤ i ≤ k, Ali
e does the

following:

(a) Let BP = (G,w, 1 = s, λ = t) be a bran
hing program of size λ 
om-

puting Ali
e's fun
tion f . Let H be the 
orresponding λ × λ adja
en
y

matrix. The entries of H are degree-1 polynomials over R in the input

variables xi and yj, i. e., they equal

∑n
i=1 alizi + bl, ali, bl ∈ R, 1 ≤ l ≤ λ2

where zh ∈ {xi, yj|1 ≤ i ≤ k, 1 ≤ j ≤ m}, 1 ≤ h ≤ n (see Se
tion 3.1).

Ali
e deletes the �rst 
olumn and the last row of H and obtains a matrix

H−
. She repla
es ea
h entry

∑n
i=1 alizi + bl of H

−
with its en
rypted

entry EB(
∑n

i=1 alizi + bl) to obtain an en
rypted matrix E(H−). Note

that this 
an be done owing to the homomorphi
 property of the en
ryp-

tion s
heme: If zh ∈ {xi|1 ≤ i ≤ k}, i. e., if the entry of the matrix H−

is a polynomial in her input, then Ali
e is able to 
ompute EB(alhzh)

dire
tly using Bob's publi
 key B. Note that Ali
e knows alh as part

of her fun
tion f . If zh ∈ {yj|1 ≤ j ≤ m}, i. e., the entry depends on

Bob's input, then given en
ryptions EB(yj) of Bob's inputs an en
ryp-

tion EB(alhzh) 
an be 
omputed using the algorithm Mixed-Mult of the

en
ryption s
heme to obtain

Mixed-Mult(alh, EB(yj)) = EB(alhyj) = EB(alhzh),

for 1 ≤ h ≤ n, 1 ≤ l ≤ λ2
. Then given the en
ryptions EB(alhzh)

she en
rypts ea
h bl and uses the algorithm Add to get an en
ryption

EB(
∑n

i=1 alizi + bl). Thus she is able to 
ompute an en
ryption E(H−)

of her (redu
ed) adja
en
y matrix (see Se
tion 3.1).

(b) Ali
e deletes the �rst 
olumn and the last row of the λ×λ identity matrix

I to obtain the matrix I−. Then she 
omputes an en
ryption EB(I−) of

I− by en
rypting ea
h entry 0 and 1 using Bob's publi
 key.

(
) Due to the homomorphi
 property of the en
ryption s
heme Ali
e is able

to 
ompute EB(I− − H−) =: EB(M) entry by entry (see Se
tion 3.1)
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sin
e

Add(EB(I−),Mixed-Mult(−1, EB(H−))) = EB(I− −H−) = EB(M)

where the algorithms Add and Mixed-Mult are applied on ea
h entry.

(d) To blind, i. e., to hide the entries (EB(M))i,j of this matrix, Ali
e 
hooses

two random (λ − 1) × (λ − 1) matri
es S, T over R, so that det(S) and

det(T ) are units in R. If f is not a Boolean fun
tion then Ali
e 
hooses

S, T with det(S) = (det(T ))−1
. Then she 
omputes EB(S ·M ·T ) Due to

the additively and s
alar homomorphi
 property of the en
ryption s
heme

this 
omputation 
an be done: It is

(EB(SMT ))i,j = EB(
∑

l

∑

k

si,k ·mk,l · tl,j) = EB(
∑

l

∑

k

si,k · tl,j ·mk,l).

Ali
e uses the algorithm Mixed-Mult to 
ompute the values

Mixed-Mult(si,k · tl,j, EB(mk,l)) = EB(si,k · tl,j ·mk,l).

Note that Ali
e knows the values (si,k · tl,j) ∈ R. Then she uses the

algorithm Add to obtain EB(SMT ))i,j. Sin
e R is a �eld EB(S ·M · T )

is an en
ryption of a random matrix of the same rank as M (see Lemma

3.2.7).

(e) Ali
e sends the en
ryption EB(S ·M · T ) to Bob.

3. To obtain f(x, y) Bob uses his se
ret key to de
rypt the entries of EB(SMT )

and thus he obtains SMT .

If f is a Boolean fun
tion it is su�
ient to 
ompute the rank of this de
rypted

matrix using an e�
ient algorithm. If it equals λ − 1, the output of f(x, y)

equals 1, otherwise 0 (see Remark 3.1.3).

If f was de�ned over a prime �eld

Z
/pZ with p 6= 2 then Bob applies an e�
ient

algorithm to 
ompute

detSMT = detM = (−1)λ+1(I −H)−1
1,λ = f(x)
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to obtain the output of the fun
tion (see Se
tion 3.1). Note that it holds that

det(S) = (det(T ))−1
.

Remark 3.2.5. If EB(M) was nonsingular then one random nonsingular matrix

would have been su�
ient in Step 2d to blind the entries (EB(M))i,j, but sin
e

Ali
e does not know the se
ret key, she is not able to de
rypt and to 
ompute the

rank.

The following image summarises the idea of our solution:

f
, x = (
 x
1
,...,
 x
k
)


D
B
(
E
B
(
f
(x,
y
))) =
 f
(x,
y
)
f
(x,
E
B
(
y
)) =
 E
B
(
f
(x,
y
))


E
B
(
y
)


Alice
 Bob


E
B
(
f
(x,
y
))


y
 = (
y
1
,...,
 y
m
)


Figure 3.1: Computing with en
rypted data

In other words the basi
 idea of our solution is the following: Ali
e has a private

fun
tion f and a private input x. Bob has a private input y that he en
rypts using

his publi
 key B and sends the en
ryption to Ali
e. She evaluates her fun
tion f

on her private input and Bob's en
rypted input. She modi�es the result to hide

her fun
tion and obtains an en
rypted �fun
tion value� EB(f(x, y)). She sends this

value ba
k to Bob. He is now able to de
rypt it using his se
ret key and to 
ompute

the output f(x, y).

Remark 3.2.6. A similar solution 
an be given for 
ounting and 
ounting modulo-p

bran
hing programs. These bran
hing programs 
ompute fun
tions f : {0, 1}n → N

and f : {0, 1}n → Z
/pZ, respe
tively (see [53, 54℄ and [55℄ for de�nitions).

To improve e�
ien
y of our solution we slightly modify it in the following way:

We keep the 
leartext values as long as possible to redu
e the 
omputational 
om-

plexity sin
e usually additions and multipli
ations of 
leartext values are more e�-


ient than the usage of the algorithms Add and Mixed-Mult on en
rypted values.
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Improved solution:

1. As before Bob en
rypts his inputs yj, 1 ≤ j ≤ m with his publi
 key using

a probabilisti
, additively homomorphi
 en
ryption s
heme, and sends these

en
ryptions EB(yj) to Ali
e.

2. To 
ompute an output f(x, y) that 
an only be read by Bob given the en
rypted

inputs EB(yj), 1 ≤ j ≤ m and Ali
e's inputs xi, 1 ≤ i ≤ k, Ali
e now does

the following:

(a) First, Ali
e deletes the �rst 
olumn and the last row of the adja
en
y

matrix H and obtains a matrix H−
. Then she repla
es every addend

alhzh where zh ∈ {yj|1 ≤ j ≤ m} of the entry

∑n
i=1 alizi + bl in H

−
with

its en
rypted entry EB(alhzh) using Bob's publi
 key and the algorithm

Mixed-Mult. Ali
e keeps the addends bl and the addends alhzh where

zh ∈ {xi|1 ≤ i ≤ k} as they are. Denote by ẼB(H−) the matrix she

obtains. Sin
e this matrix is not entirely en
rypted we do not denote it

by EB(H−).

(b) Ali
e deletes the �rst 
olumn and the last row of the λ×λ identity matrix

I to obtain the matrix I−.

(
) Then she 
omputes ẼB(I− − (H−)) = ẼB(M) entry by entry. This is

done by using the algorithms Add and Mixed-Mult to 
ompute the en-


rypted values whereas the remaining 
leartext values in this matrix 
an

be 
omputed dire
tly. Thus some of the matrix's entries are en
rypted,

some are partly en
rypted and the remaining entries are 
leartext values.

(d) To blind her matrixH Ali
e 
hooses two random (λ−1)×(λ−1) matri
es

S, T over R, so that det(S) and det(T ) are units in R with det(S) =

(det(T ))−1
. She 
an now 
ompute EB(SMT ): As before we have

(EB(SMT ))i,j = EB(
∑

l

∑

k

si,k · tl,j ·mk,l).

Now some of the valuesmk,l ∈ ẼB(M) are en
rypted and others are partly

en
rypted or 
leartext values. To 
ompute (EB(SMT ))i,j she 
omputes
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the produ
ts and sums of the 
leartext values and uses the algorithms

Mixed-Mult and Add to 
ompute the other produ
ts and sums. After

that she en
rypts the remaining 
leartext values of this matrix and uses

the algorithm Add to obtain the same matrix EB(SMT ) as in the above

basi
 solution.

(e) She sends EB(SMT ) to Bob.

3. Bob does the same as above to obtain f(x, y).

E�
ien
y:

Considering the 
ommuni
ation 
omplexity our proto
ol is optimal sin
e it is non-

intera
tive, i. e., it needs just one round of 
ommuni
ation. Con
erning the 
omputa-

tional 
omplexity it depends mainly on the size of the underlying bran
hing program

as well as on the e�
ien
y of the homomorphi
 
ryptosystem. Further 
omputations

like the sele
tion of random matri
es in Step 2d or the 
omputation of the deter-

minant or rank in Step 3 
an be done e�
iently. Obviously, the e�
ien
y of this

proto
ol is restri
ted to fun
tions that are 
omputable by polynomial-size bran
hing

programs. The 
lass of su
h fun
tions that are 
omputable by bran
hing programs

of polynomial size in
ludes the 
lass of NC1
fun
tions. Sin
e known results in the

literature are restri
ted to NC1
fun
tions, our result is an improvement (see e. g.

[77℄).

Corre
tness:

The 
orre
tness of our proto
ol follows immediately from the results presented in

Se
tion 3.1, from the properties of the algorithms Add and Mixed-Mult, from the

multipli
ativity of the determinant, i. e., detSMT = detS · detM · detT as well as

from the fa
t that multipli
ation by random nonsingular matri
es does not 
hange

the rank.

Se
urity:

One possible �atta
k� that Ali
e is able to perform is denial of servi
e, by not send-

ing any value ba
k to Bob. However, in s
enarios where Ali
e wants to get paid for

sending Bob the en
rypted output, this atta
k is unlikely.

Another atta
k would be that Ali
e sends a wrong result to Bob. This is a gen-

eral problem of su
h proto
ols although in many s
enarios Bob is able to verify the
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orre
tness of the output. To avoid su
h an atta
k Bob 
ould ask Ali
e for a zero-

knowledge proof to verify the 
orre
tness of her 
omputation (see Remark 3.3.4).

What we 
onsider here is se
urity 
on
erning the priva
y of Bob's inputs and Ali
e's

fun
tion (and her inputs as part of her fun
tion). It follows immediately that the

priva
y of Bob's inputs is equivalent to the se
urity of the underlying en
ryption

s
heme sin
e Ali
e only obtains Bob's en
rypted inputs. If the homomorphi
 
ryp-

tosystem is semanti
ally se
ure su
h as, e. g. Paillier's s
heme, then Ali
e is not able

to gain any information about Bob's inputs. Furthermore, sin
e Ali
e is not able

to de
rypt the entries of the matri
es, she is not able to 
ompute the rank or the

determinant of SMT and thus of M , i. e., she is not able to 
ompute the output

f(x, y).

Bob re
eives an en
ryption of a random matrix SMT of a �xed rank and of a �xed

determinant. Hen
e he is not able to derive any information about the adja
en
y

matrix H and thus about Ali
e's fun
tion f - ex
ept its size. (Note that we 
an

also provide a proto
ol in whi
h he only gets to know un upper bound of this size,

see Se
tion 3.3). Furthermore, he is not able to de
ide whi
h entries belong to Al-

i
e's inputs. This argument why Ali
e's fun
tion remains private will be further

formalized in the following.

We establish the priva
y of Ali
e's fun
tion through the following lemma. It shows

that the matrix EB(S ·M · T ) that Ali
e obtains after blinding her matrix is an

en
ryption of a random matrix that has the same rank and the same determinant

as M . The entries of this matrix EB(SMT ) are the only values that Bob re
eives

from Ali
e. Hen
e, if this matrix is an en
ryption of a random matrix, Bob is not

able to gain any extra information about Ali
e's fun
tion - ex
ept its size.

Lemma 3.2.7. LetM be a n×n matrix over Fq and let S and T be uniform-random

nonsingular n× n matri
es with det(T )·det(S) = 1 over Fq. Then for �xed M ea
h

possible matrix SMT o

urs with the same probability.

Proof. Consider the group G = {(S, T ) | det(T )·det(S) = 1} ⊆ GL(n, q)×GL(n, q).

This group operates on the set M := {M | M is a n × n matrix over Fq} as M 7→

S ·M · T . Note that this operation does not 
hange the determinant and rank of

M ∈ M. Consider the supgroup GM of G with GM = {(S, T ) ∈ G | SMT = M}
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and for M ∈ M the subset G.M := {SMT | (S, T ) ∈ G} of M. Then the mapping

G/GM → G.M, (S, T ) ·GM 7→ SMT

is a bije
tion. Due to the equipoten
y of the orbitsG.M and the uniform distribution

of S and T the 
laim follows.

In our proto
ol it is essential that the homomorphi
 s
heme is probabilisti
 whi
h

guarantees priva
y for Bob's input sin
e Ali
e is not able to 
ompare di�erent en-


ryptions. This 
ondition is already in
luded in our se
urity analysis above sin
e we

require a semanti
ally se
ure en
ryption s
heme. Hen
e, our proto
ol is as se
ure

as the probabilisti
, homomorphi
 
ryptosystem used.

Remark 3.2.8. If f is a polynomial of degree d that Ali
e wants to hide, she should

not output more than d values to Bob (or someone else). Otherwise Bob 
ould use

the fun
tion values to obtain Ali
e's polynomial by Lagrange's interpolation.

3.3 Computing with En
rypted Fun
tions

We now have a 
loser look at the 
losely related problem 
alled 
omputing with

en
rypted fun
tions . The s
enario is the following:

S
enario 2:

Ali
e has a fun
tion f : Rn → R and Bob has a se
ret input x = (x1, . . . , xn). Bob

is willing to 
ompute f(x) lo
ally on his input x in su
h a way that only Ali
e learns

the output of the fun
tion. Bob and Ali
e should learn nothing about the other ones

input besides that what the output reveals. In parti
ular, Ali
e's fun
tion should

remain se
ret.

Note that depending on the fun
tion f the output f(x) 
ould reveal the entire input

x.

It is also possible to 
onsider the following two variants of this s
enario:

Variants:

1. Only Bob should learn the output f(x).



3.3 Computing with En
rypted Fun
tions 37

2. Ali
e and Bob should learn the output f(x).

Example 3.3.1.

1. As an example of S
enario 2 we 
ould think about a mobile agent f that


olle
ts data x. In this 
ase we would think about Bob's input x as publi
ly

known. For instan
e, Ali
e wants to book a �ight and sear
hes for the 
heapest

�ight at her desired time. For this purpose she sends a mobile agent to the

servers of di�erent airlines who 
olle
ts the appropriate data to �nd out the


heapest �ight. After that it returns to Ali
e. To prote
t su
h an agent against

mali
ious hosts it is en
rypted. See [76℄ for further details.

If the mobile agent also tells the airline servers the 
heapest �ight, Variant 2

is implemented.

2. As an example of Variant 1 of S
enario 2 we 
ould think about an e�
ient

algorithm for fa
toring that Ali
e wants to sell to Bob without providing him

with the algorithm. In 
ontrast to Example 3.2.2 this time it should be Bob

who performs most of the 
omputations.

A similar s
enario was mentioned by several authors, but with slightly di�erent

notions. For instan
e, Abadi and Feigenbaum [1℄ 
onsidered a 
ir
uit that imple-

ments the fun
tion f instead of 
onsidering f itself. Su
h a s
enario is 
alled se
ure


ir
uit evaluation. Furthermore, Abadi and Feigenbaum pointed to the following

relation between 
omputing with en
rypted data (see S
enario 1) and 
omputing

with en
rypted fun
tions (see S
enario 2):

�It is also 
lear from this des
ription that the distin
tion between �data� and �
ir-


uits� is unne
essary. If [Ali
e℄ has the ability to hide a 
ir
uit, then [she℄ 
an also

hide some private data, simply by �hardwiring� it into the 
ir
uit. Conversely, in

proto
ols in whi
h [Ali
e℄ has the ability to hide data, [she℄ 
an also hide a 
ir
uit

through a detour: [Ali
e℄ 
an run the proto
ol, take the 
ir
uit for f to be a universal


ir
uit, and use an en
oding of the 
ir
uit [she℄ wants to hide as input.�

Sin
e we 
onsider bran
hing programs as a 
omputational model for fun
tions in-

stead of 
ir
uits, this result 
an not dire
tly be applied to our 
ase. Furthermore, a

�universal bran
hing program� has not been de�ned yet.
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We solve S
enario 2 for fun
tions f : Rn → R, where R is a prime �eld in the fol-

lowing way. Note that as before in pra
ti
e our solution 
an be generalised to rings

R = Z
/NZ where N = pq but where there is no formal proof of se
urity known.

Solution:

1. Ali
e en
rypts the adja
en
y matrix H belonging to the bran
hing program

that 
omputes the fun
tion f . To do so, she uses a probabilisti
, additively

and s
alar homomorphi
 en
ryption s
heme on R and en
rypts the entries of

H using her publi
 key A. She obtains a �matrix�

EA(H) :=




0 E(a1,2
1 ), . . . , E(a1,2

n ), E(b1,2) . . . E(a1,λ
1 ), . . . , E(a1,λ

n ), E(b1,λ)

0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. E(aλ−1,λ
1 ), . . . , E(aλ−1,λ

n ), E(bλ−1,λ)

0 0 . . . 0




where w(i, j) =
∑n

k=1 a
i,j
k xk + bi,j and λ is the size of the bran
hing program.

If (i, j) is not an edge in G she sets ai,j
k = bi,j = 0 for 1 ≤ k ≤ n and en
rypts

these values.

Ali
e sends EA(H) to Bob. Hen
e, Bob gets to know the size of the bran
hing

program. If we only want him to learn an upper bound of the size then we


an use the matri
es U and N de�ned below in Remark 3.3.2 instead of the

matri
es H and M .

2. Bob uses the algorithms Add and Mixed-Mult to 
ompute the matrix

EA(H(x)) = EA(H)(x) =




0 E(
∑n

i=1 a
1,2
i xi + b1,2) . . . E(

∑n
i=1 a

1,λ
i xi + b1,λ)

0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. E(
∑n

i=1 a
λ−1,λ
i xi + bλ−1,λ)

0 0 . . . 0




where x = (x1, . . . , xn) is his private input. He then 
omputes an en
ryption

EA(I) of the (λ− 1) × (λ− 1) identity matrix I using Ali
e's publi
 key. Let

EA(H(x)−) denote the matrix obtained by deleting the �rst 
olumn and the
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last row of EA(H(x)). Bob is now able to 
ompute

EA(M) = EA(I −H(x)−) = Add(EA(I),Mixed-Mult(−1, EA(H(x)−))).

To blind the entries of EA(M) and thus to hide his se
ret input x he 
hooses

two random nonsingular (λ− 1)× (λ− 1) matri
es S, T over R with det(S) =

(det(T ))−1
and 
omputes EA(S ·M · T ). As already des
ribed in Se
tion 3.2

this 
omputation 
an be done using the algorithms Add and Mixed-Mult of

the underlying en
ryption s
heme. Bob sends EA(S ·M · T ) to Ali
e.

3. To obtain f(x) Ali
e has to 
ompute (−1)λ+1
multiplied with the determinant

or if f is Boolean the rank of the de
ryption of the matrix EA(S ·M · T ): She

uses her se
ret key to de
rypt the entries and applies an e�
ient algorithm

that 
omputes the determinant and rank, respe
tively.

The image visualizes the idea of our proto
ol:

Alice
 Bob


f
 x


E
A
(
f
)(x)=
 E
A
(
f
(x))
D
A
(
E
A
(
f
(x)))=
 f
(x)


E
A
(
f
)


E
A
(
f
(x))


Figure 3.2: Computing with en
rypted fun
tions

Hen
e, the basi
 idea of our solution is as follows: Ali
e has a fun
tion f that

she en
rypts with her publi
 key A and sends the en
ryption EA(f) to Bob. Bob

evaluates this en
rypted fun
tion on his se
ret input x in su
h a way that he obtains

an en
ryption EA(f(x)). Furthermore, he blinds his input and sends the result ba
k

to Ali
e. Ali
e is now able to de
rypt it using her se
ret key and to 
ompute the

output of her fun
tion f(x).
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Remark 3.3.2. De�ne a matrix

U =

(
O O

O H

)
,

where H is the adja
en
y matrix belonging to a bran
hing program that 
omputes

the fun
tion f , and O is a r × r zero-matrix. If H is a λ × λ matrix then U is a

(r + λ) × (r + λ) matrix. Sin
e H is nilpotent U is nilpotent, too. It holds that

U i =

(
O O

O H i

)

and we de�ne U∗ :=
∑∞

k=0 U
k
. As before (see Se
tion 3.1) we have U∗ = (I − U)−1

and det(I−U) = 1. Sin
e the entry (1, λ) ofH∗ =
∑
Hk

equals the entry (r+1, r+λ)

of U∗
, we have

U∗
r+1,r+λ = W (1, λ)(x) =

detN

det(I − U)
= detN = f(x),

where N denotes the submatrix of I−U obtained by deleting the (r+1)-th 
olumn

and the (r + λ)-th row. Therefore, the fun
tion value f(x) 
an be determined by


omputing the determinant of a larger sized matrix N instead of 
omputing the

determinant of M (multiplied by (−1)r+λ+1
). Hen
e, instead of using H Ali
e 
ould

also use the matrix U in our proto
ol. When en
rypting U she would en
rypt the

whole upper triangular matrix, i. e., in
luding the zeros in the upper triangular

matrix of U . Then Bob has to 
ompute an en
ryption of N instead of M and has

to 
hange the sizes of the matri
es S and T adequately.

The advantage of using U and N instead of H and M is that Bob just learns an

upper bound for the bran
hing program size and not the exa
t size. Of 
ourse, this is

at the 
ost of additional 
omputing power sin
e the matri
es are larger than before.

Remark 3.3.3. In [26℄ Cramer et al. proposed a way to garble bran
hing programs

whi
h are de�ned over arbitrary rings. Their te
hnique 
an also be applied to our

proto
ol. Sin
e a garbled bran
hing program has a full matrix instead of an upper

triangular matrix as adja
en
y matrix this would lead to a less e�
ient proto
ol

with a slightly 
hanged semanti
. Therefore this te
hnique should not be used in



3.4 Key Swapping 41

our proto
ol.

Se
urity, Corre
tness, E�
ien
y:

The 
orre
tness, e�
ien
y and se
urity analysis of this proto
ol is exa
tly the same

as of the one in Se
tion 3.2. Hen
e, as before our proto
ol is provably se
ure,

non-intera
tive and e�
ient for polynomial-size bran
hing programs. This is an

improvement to known result in the literature.

Remark 3.3.4.

1. It is su�
ient if the en
ryption algorithm E is a symmetri
 algorithm and

remains se
ret. For the 
omputations Bob only needs the algorithms Add and

Mixed-Mult. Note that if E is symmetri
 then Ali
e has to send an en
ryption

E(I) of the identity matrix I, too.

2. Ali
e 
ould ask Bob for proving, e. g. in zero-knowledge fashion (see Se
tion

4.5.1), that he knows his input x, that x is a valid input, and that the fun
tion

E(f) evaluated on x equals E(f(x)). See [22℄ for su
h proto
ols.

3.4 Key Swapping

In this se
tion we introdu
e a new property that we 
all key swapping. We shortly

demonstrate why this property of 
ryptosystems is useful, espe
ially in the 
ontext

of this 
hapter. Furthermore, we show that there already exist multipli
atively as

well as additively homomorphi
, probabilisti
 
ryptosystems having this property.

De�nition 3.4.1. Given a 
ryptosystem (K,E,D,A) on the message spa
e M

where for the 
iphertext spa
e it holds that C ⊆ M. Let Eke
(m) denote an en-


ryption of a message m ∈ M en
rypted with a publi
 key ke. Let a be the publi


key of a party A and b be the publi
 key of another party B. The 
ryptosystem

is 
alled key swapping if there exists an e�
ient algorithm Key-Swap that given an

en
ryption Ea(Eb(m)) 
omputes an en
ryption Eb(Ea(m)).

A probabilisti
, additively and s
alar homomorphi
 en
ryption s
heme that satis�es

key swapping 
ould be used to solve the following Variant 1 of S
enario 2:
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Ali
e has a fun
tion f : Rn → R and Bob has an input x ∈ R for f that he wants

to evaluate. Bob and Ali
e should learn nothing about the other ones inputs, i. e., f

and x should remain se
ret and only Bob should learn the output f(x). Furthermore,

Bob should do most part of the 
omputation on his own.

Given a probabilisti
, additively and s
alar homomorphi
 
ryptosystem that satis-

�es key swapping, a solution similar to the ones des
ribed in Se
tion 3.2 and Se
tion

3.3 
an easily be given. The idea is displayed in the following �gure:

Alice
 Bob


f
 x


E
a
(
f
)(x) =
 E
a
(
f
(x))

E
b
(
E
a
(
f
(x))) =
 E
a
(
E
b
(
f
(x)))


D
a
(
E
a
(
E
b
(
f
(x)))) =
 E
b
(
f
(x))


D
b
(
E
b
(
f
(x))) =
 f
(x)


E
a
(
f
)


E
a
(
E
b
(
f
(x)))


E
b
(
f
(x))


Figure 3.3: Key swapping

Ali
e en
rypts her fun
tion f (i. e., the 
orresponding bran
hing program) by her

publi
 key a. She sends the en
ryption Ea(f) to Bob, who evaluates it on his input

x to obtain Ea(f(x)). He uses his publi
 key b to en
rypt the result Ea(f(x)) and

obtains Eb(Ea(f(x))) = Ea(Eb(f(x))) whi
h he sends ba
k to Ali
e. Ali
e now uses

her se
ret key to de
rypt it and obtains Eb(f(x)) whi
h she sends ba
k to Bob who

is able to de
rypt it and to obtain the desired fun
tion value f(x).

Obviously Variant 3 of S
enario 1 
an be solved analogously.

Remark 3.4.2. Another possibility to solve these s
enarios is the following: Given

a fun
tion f : Rn → R where R is a �nite ring. To hide the fun
tion value f(x) for

x = (x1, . . . , xn) ∈ Rn
we may 
ompute f(x) + r where r ∈ R is 
hosen at random.

Then f(x) + r is a random value in R, too.

For instan
e, in Variant 1 of S
enario 2 Ali
e 
ould en
rypt her fun
tion f with

a homomorphi
 
ryptosystem using her publi
 key a and send Ea(f) to Bob. If

Ea(f)(x) = Ea(f(x)) holds, Bob 
an evaluate the fun
tion on his private input x.

Furthermore, he 
an 
hoose a random value r and 
ompute Add(Ea(f(x)), Ea(r)) =
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Ea(f(x) + r). If he sends this to Ali
e she is able to de
rypt it to obtain f(x) + r

whi
h is a random value. If she sends it ba
k to Bob he is able to subtra
t r to

obtain the fun
tion value f(x).

In an analogous manner Variant 3 of S
enario 1 
an be solved. There Bob en
rypts

his input x with a homomorphi
 
ryptosystem using his publi
 key b and sends the

result Eb(x) to Ali
e. If f(Eb(x)) = Eb(f(x)) holds, Ali
e 
an evaluate f(x) + r,

where she 
hooses r at random, on Eb(x) to obtain Eb(f(x) + r). If she sends this

value ba
k to Bob he is able to de
rypt it in order to obtain f(x) + r whi
h is again

a random value. If he sends f(x) + r ba
k to Ali
e she 
an subtra
t her se
ret,

random value r to obtain the output f(x).

3.4.1 Examples

In this se
tion we present two examples of homomorphi
 s
hemes that satisfy key

swapping.

The ElGamal S
heme

The ElGamal s
heme [37℄ was �rst published in 1984. It is based on the di�
ulty

of the 
omputation of dis
rete logarithms. It is a popular example of a probabilis-

ti
, multipli
atively homomorphi
 publi
-key s
heme. Furthermore, it supports key

swapping as we will show below.

The ElGamal 
ryptosystem works as follows:

Key Generation:

• Generate a large random prime p and a generator g of the multipli
ative group

(Z/pZ)∗.

• Sele
t a random integer x, 1 ≤ x ≤ p− 2 and 
ompute y = gx mod p.

The publi
 key of A is a = (p, g, y) and the se
ret key is x.
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En
ryption:

To en
rypt a message m ∈ M = (Z/pZ)∗ sele
t a random integer 1 ≤ r ≤ p− 2 and


ompute

c = (γ, δ) = (gr mod p, m · yr mod p) =: Ea(m, r).

De
ryption:

To de
rypt Ea(m, r) = (γ, δ) ∈ C where C = (Z/pZ)∗ × (Z/pZ)∗ 
ompute

γ−x = γp−1−x = g−xr mod p

then

m = (γ−x) · δ mod p.

Homomorphi
 Property:

This s
heme is multipli
atively homomorphi
: If

Ea(m1, r1) = (γ1, δ1) = (gr1 mod p,m1 · y
r1 mod p)

and

Ea(m2, r2) = (γ2, δ2) = (gr2 mod p,m2 · y
r2 mod p)

then

Ea(m1, r1)·Ea(m2, r2) := (gr1+r2 mod p,m1·m2·y
(r1+r2) mod p) = Ea(m1·m2, r1+r2).

Hen
e the algorithm Mult 
an simply be implemented by multiplying the 
orre-

sponding plaintexts and using a blinding algorithm (see De�nition 2.0.7).

Key Swapping:

Given the publi
 keys a = (p, g, y) of a party A and b = (p, g′, y′) of a party B

where y = gx mod p and y′ = g′x
′

mod p with 
orresponding se
ret keys x and x′,

respe
tively. Note that the prime p should be the same in both keys, i. e., we are

working in the same group, but the generator g may be 
hosen di�erently. We

�rst have to de�ne the en
ryption under the publi
 key b of a given 
iphertext

c = (gr mod p,m · yr mod p) = Ea(m, r), i. e., we have to extend the message spa
e
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from (Z/pZ)∗ to (Z/pZ)∗ × (Z/pZ)∗:

Eb(c, r
′) = Eb(Ea(m, r), r

′) = Eb((g
r mod p,m · yr mod p), r′)

:= (g′
r′

mod p, gr mod p,m · yry′r
′

mod p)

= (g′r
′

mod p, gr mod p,m · gxrg′
x′r′

mod p).

Now we 
an de�ne the algorithm Key-Swap:

Key-Swap(Ea(Eb(m, r
′)), r) = Key-Swap(gr mod p, g′

r′
mod p,m · gxrg′

x′r′
mod p)

= (g′
r′

mod p, gr mod p,m · gxrg′
x′r′

mod p)

= Eb(Ea(m, r), r
′).

So, given Ea(Eb(m, r
′), r) the algorithm Key-Swap just swaps the �rst two 
oordi-

nates of this triple to obtain Eb(Ea(m, r), r
′). This 
an obviously be done extremly

e�
iently.

Given an en
ryption Eb(Ea(m, r), r
′) the 
orresponding se
ret key to the publi
 key b


an be used to obtain Ea(m, r). This is straightforward. An analysis of the se
urity

of the ElGamal s
heme and further details 
an be found in [37℄.

The Damgård-Jurik S
heme

Now we give another example of an en
ryption s
heme that is key swapping. This

time it is a probabilisti
, additively and s
alar homomorphi
 
ryptosystem and hen
e


an be used to solve the s
enarios presented in the last se
tions. It was re
ently

published by I. Damgård and M. Jurik [31℄. The s
heme works as follows:

Key Generation:

• Choose an RSA modulus N = pq = (2p′ + 1)(2q′ + 1) with primes p, p′, q, q′.

• Sele
t an element g ∈ QN where QN denotes the group of all squares in

(Z/NZ)∗. Choose α ∈ Z
/τZ, where τ = p′q′ = |QN |.

• Compute h = gα mod N .
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The publi
 key is a := (N, g, h) and the se
ret key is α.

En
ryption:

To en
rypt a message m, 
hoose an integer s > 0 so that m ∈ Z
/NsZ, and 
hoose a

random r ∈ Z
/nZ where n = 4log2 N

. The 
iphertext is

Ea(m, r) = (gr mod N, (hr mod N)Ns

(N + 1)m mod N s+1) =: (G,H).

Let Ls denote a fun
tion with

Ls((N + 1)m mod N s+1) = m mod N s.

An algorithm that 
omputes this fun
tion, i. e., that 
al
ulates the dis
rete logarithm

with respe
t to the element (N + 1) is des
ribed in [30℄.

De
ryption:

Given a 
iphertext c = (G,H) = Ea(m, r), s 
an be dedu
ed from the length of c or

it is atta
hed to the en
ryption. Then the message m 
an be found as

m = Ls(H(Gα mod N)−Ns

)

= Ls((g
αr mod N)Ns

(N + 1)m(grα mod N)−Ns

)

= Ls((N + 1)m mod N s+1).

Homomorphi
 Property:

This s
heme is additively homomorphi
 sin
e given Ea(m1, r1) and Ea(m2, r2) we


an 
ompute

Ea(m1 +m2, r1 + r2) = (gr1+r2 mod N, (hr1+r2 mod N)Ns

(N + 1)m1+m2 mod N s+1)

= Ea(m1, r1) · Ea(m2, r2).

Hen
e the algorithm Add 
an e�
iently be implemented by multiplying the input


iphertexts and applying a blinding algorithm.

Key Swapping:

Given the publi
 keys a := (N, g, h) where h = gα
and b := (N, g′, h′) where h′ = g′β

with 
orresponding private keys α and β, respe
tively. Note that N = pq must
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be the same for both publi
 keys. Then the Damgård-Jurik s
heme satis�es key

swapping:

We �rst have to de�ne an en
ryption of a 
iphertext, i. e. we have to enlarge the

message spa
e:

Ea(Eb(m, r
′), r) = Ea(g

′r
′

mod N, (h′
r′

mod N)Ns

(N + 1)m mod N s+1)

:= (gr mod N, g′
r′

mod N, (hrh′
r′

mod N)Ns

(N + 1)m mod N s+1).

Then

Eb(Ea(m, r), r
′) = (g′r

′

mod N, gr mod N, (hrh′
r′

mod N)Ns

(N + 1)m mod N s+1).

Hen
e, given Ea(Eb(m, r
′), r) the algorithm Key-Swap 
an swap the �rst two 
o-

ordinates of this triple to 
ompute Eb(Ea(m, r), r
′). To obtain Ea(m, r) given an

en
ryption

Eb(Ea(m, r), r
′) = (g′r

′

mod N, gr mod N, (hrh′
r′

mod N)Ns

(N + 1)m mod N s+1)

=: (F,G, I)

we 
ompute

I(Gα mod N)−Ns

= (hrh′
r′

mod N)Ns

(N + 1)m mod N s+1(gαr mod N)−Ns

= (gαrh′
r′

mod N)Ns

(N + 1)m mod N s+1(gαr mod N)−Ns

= (h′
r′

mod N)Ns

(N + 1)m mod N s+1

= (g′
βr′

mod N)Ns

(N + 1)m mod N s+1

=: H.

Hen
e (F,H) = Ea(m, r) is the desired de
ryption.

Further properties of this s
heme and a proof for its semanti
 se
urity under two

reasonable assumptions are given in [31℄.



Chapter 4

A Threshold Version of the Ellipti


Curve Paillier S
heme and its

Appli
ations

The Paillier s
heme [67℄ is an example of a very e�
ient, probabilisti
, additively and

s
alar homomorphi
 en
ryption s
heme based on arithmeti
s in the ring of integers

modulo N2
where N is the produ
t of two large primes. It was published in 1999

and analysed and extended by several authors (su
h as [31, 19, 30, 18, 20℄). One

of these extensions is the ellipti
 
urve Paillier s
heme, ECPS for short, whi
h was

re
ently published by S. Galbraith [42℄. The ECPS is a generalisation of Paillier's

en
ryption s
heme from the integers modulo a square to ellipti
 
urves over rings.

Paillier himself tried to generalise his s
heme to the ellipti
 
urve setting by using

anomalous ellipti
 
urves over rings [68℄, but Galbraith found se
urity �aws in this

generalisation [42℄ whereas the ECPS 
an be proven semanti
ally se
ure relative to

a new de�ned problem. In the same way as I. Damgård and M. Jurik managed to

generalise the original Paillier s
heme to higher modules to enable a wider appli
a-

tion s
ope Galbraith developed a generalisation of the ellipti
 
urve Paillier s
heme

(see [42℄).

The Paillier s
heme, the new ellipti
 
urve version by Galbraith as well as his fur-

ther generalisation are examples for probabilisti
, additively homomorphi
 
ryp-

tosystems, whi
h are also s
alar homomorphi
, i. e., they have the properties that



A Threshold Version of the Ellipti
 Curve Paillier S
heme and its Appli
ations 49

are ne
essary for the solutions to the s
enarios presented in the last 
hapter.

The performan
e of the ECPS and of its generalisation are by far slower than the

original Paillier s
heme together with the generalisation of Damgård and Jurik sin
e

they operate on ellipti
 
urves modulo large numbers. Hen
e, the ellipti
 
urve ver-

sion is mainly of theoreti
al interest. One interesting point is that the ellipti
 
urve

version is based on a slightly di�erent assumption than Paillier's original version.

This assumption may also hold even if the original Paillier assumption were broken.

In this 
hapter we begin with giving a short introdu
tion to ellipti
 
urves over

rings to re
all the basi
 fa
ts that are needed for the following s
hemes. Then,

after summarising the ECPS and Galbraith's generalisation we develop a further

generalisation of the ECPS: We will 
onstru
t a threshold de
ryption version in an

analogous manner as Damgård and Jurik did based on Paillier's s
heme [30℄. Thus

our new threshold ECPS is a threshold version of the ECPS on one side and an

ellipti
 
urve version of the threshold Paillier s
heme by Damgård and Jurik on the

other side.

Paillier → ECPS

↓ ↓

Threshold Paillier → Threshold ECPS

Our threshold version allows any subset of k out of ℓ players to de
rypt a 
iphertext


orre
tly and e�
iently while it disallows any subset of less than k players to obtain

any information about the message. Based on our threshold version we are able to

des
ribe various appli
ations in a similar way as it was done based on the threshold

version of Paillier's s
heme (see [31, 24, 32, 33℄).

First we explain how a length-�exible variant of the generalised ECPS 
an be 
on-

stru
ted, i. e., a variant that allows to determine the size of the 
iphertext during

en
ryption. This is a useful tool for di�erent appli
ations su
h as mix-nets. Further-

more, we show how the threshold ECPS 
an be used to devise general multiparty


omputation proto
ols, i. e., using threshold de
ryption we present a multiparty


omputation proto
ol whi
h allows to 
ompute an en
ryption of the produ
t of two

messages given the 
orresponding 
iphertexts but not the messages themselves. As
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further appli
ation we des
ribe how a proto
ol for ele
troni
 voting 
an be obtained,

in whi
h ea
h voter simply posts his ballot on a bulletin board in su
h a way that

the �nal tally 
an be 
omputed as sum of all votes while its 
orre
tness is veri�able

to any observer and while the priva
y of the individual votes is guaranteed. As a

last appli
ation we present a way to build a spe
ial 
ommitment s
heme based on

the ellipti
 
urve Paillier s
heme that has some interesting properties, e. g. it 
an

be instantiated in either perfe
tly hiding or perfe
tly binding. For most of these

appli
ations some further sub-proto
ols are needed whi
h are des
ribed in Se
tion

4.5. These proto
ols are the �rst ellipti
 
urve variants of the proto
ols developed

using Paillier's idea.

4.1 Introdu
tion to Ellipti
 Curves over Rings Z/NsZ

We shortly introdu
e ellipti
 
urves over rings to provide the basi
 fa
ts that are

needed to understand Galbraith's ellipti
 
urve Paillier s
heme as well as his gener-

alisation and our further generalisation. This introdu
tion is mainly based on [42℄.

For further details and a general introdu
tion to ellipti
 
urves we refer to [80℄.

Let R be a 
ommutative ring with 1 and R∗
the set of invertible elements in R. An

ellipti
 
urve

y2z = x3 + axz2 + bz3

over R is de�ned by a pair a, b ∈ R su
h that 6(4a3 + 27b2) ∈ R∗
. As usual the set

of R-valued points is denoted by E(R) and is de�ned to be the set of equivalen
e


lasses of points (x : y : z) with x, y, z ∈ R, y2z = x3 + axz2 + bz3
and su
h that

the ideal generated by x, y, z is R, and for whi
h the following equivalen
e relation

holds:

(x : y : z) ∼ (x′ : y′ : z′) ⇔ ∃ λ ∈ R∗ : λx = x′, λy = y′, λz = z′.

For the des
ription of the ellipti
 
urve Paillier s
heme and its generalisations we

need to 
onsider rings R = Z
/NsZ with N being the produ
t of two primes p and

q, and s ∈ N. For su
h rings the usual 
hord and tangent operation provides a

group law on E(Z/NsZ) with O = (0 : 1 : 0) as identity element. By the Chinese
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Remainder Theorem it follows that E(Z/NsZ) ≃ E(Z/psZ) ×E(Z/qsZ). To add two

points (x1 : y1 : z1) and (x2 : y2 : z2) on an ellipti
 
urve over

Z
/NsZ we 
an use the

usual formulae for z1, z2 ∈ (Z/NsZ)∗. To avoid problems if z1 or z2 are not invertible -

as it will often o

ur in our setting - we make the 
urves a�ne using the (x, z)−plane

by requiring that y = 1. Note that from z not being a unit in R it follows from the


urve equation that x is not a unit, too. Thus in this 
ase y has to be a unit and

we 
an set y = 1. Hen
e, we 
onsider 
urves of the form z = x3 + axz2 + bz3
. A

point (x : y : z) now be
omes (x/y, z/y) and the identity element is represented by

(0, 0). The inverse of a point (x, z) is obtained as (−x,−z). As long as the division

operations are de�ned in the ring, the sum (x3, z3) of two points (x1, z1) and (x2, z2)

for x1 6= x2 
an be 
omputed by the following group formulae:

x3 = x1 + x2 +
(z1 − λx1)(2aλ+ 3bλ2)

1 + aλ2 + bλ3
,

z3 = λ(x3 + x1) − z1, where

λ =
z1 − z2

x1 − x2

.

If x1 = x2 su
h that we double a point (x1, z1) we obtain the point (x3, z3) as

x3 = 2x1 +
(z1 − λz1)(2aλ+ 3bλ2)

1 + aλ2 + bλ3
,

z3 = λ(x3 + x1) − z1, where

λ =
3x1

2 + az1
2

1 − 3bz1
2 − 2ax1z1

.

If the divisions are not de�ned we need to use other formulae. To obtain su
h

formulae we have to re
all some fa
ts about the p-adi
 theory of ellipti
 
urves, see

[80℄ for further details. Let

E1(Z/NsZ) := {P ∈ E(Z/NsZ) : P redu
es to (0 : 1 : 0) in E(Z/NZ)}.

Thus, for an element (x : y : z) ∈ E1(Z/NsZ) it holds that N | x,N | z and N ∤ y.1

Consider the ellipti
 
urve z = x3 + axz2 + bz3
over

Z
/NsZ. Given any x with N | x

1

It even holds that N3 | z.
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we �nd a unique solution where N | z. It has the form:

w(x) = x3 + ax7 + bx9 + 2a2x11 + 5abx13 + (5a3 + 3b2)x15 + 21a2bx17 + · · ·

(for example solving the equation by iteration). Sin
e N | x the given sum w(x) is

�nite in

Z
/NsZ and N3 | w(x).

Let ψ : N(Z/NsZ) → E1(Z/NsZ) with x 7→ (x : 1 : w(x)). The image of the subgroup

N j(Z/NsZ) under ψ is the subgroup

Ej(Z/NsZ) = {(x : 1 : z) ∈ E1(Z/NsZ) : N j|x and N3j|z}

of E1(Z/NsZ). Obviously, Es(Z/NsZ) = (0 : 1 : 0). The map ψ is bije
tive and has


ertain homomorphi
 properties. Although it is not a group homomorphism itself

for all s, it indu
es a group homomorphism from N j(Z/NsZ)/N j+1(Z/NsZ) to the

group Ej(Z/NsZ)/Ej+1(Z/NsZ). In parti
ular, we get

|Ej(Z/NsZ)| = N · |Ej+1(Z/NsZ)|

for all 1 ≤ j ≤ s− 1. Hen
e |E1(Z/NsZ)| = N s−1
. Note that for s = 2 we obtain an

isomorphism between

Z
/NZ and E1(Z/N2Z).

Now we 
an give an expli
it formula for the sum of the points (x1 : 1 : w(x1)) and

(x2 : 1 : w(x2)). The sum is the point (x3 : 1 : w(x3)) where

x3 = (x1 + x2) + a(−2x1x2
4 − 4x1

2x2
3 − 4x1

3x2
2 − 2x1

4x2)

+b(−3x1x2
6 − 9x1

2x2
5 − 15x1

3x2
4 − 15x1

4x2
3 − 9x1

5x2
2 − 3x1

6x2) (4.1)

+a2(−2x1x2
8 + 8x1

3x2
6 + 16x1

4x2
5 + 16x1

5x2
4 + 8x1

6x2
3 − 2x1

8x2) + · · · .

As already mentioned, E(Z/NsZ) is a �nite group with identity (0 : 1 : 0). Sin
e

E1(Z/NsZ) is the kernel of the redu
tion map from E(Z/NsZ) to E(Z/NZ), we get

|E(Z/NsZ)| = |E1(Z/NsZ)| · |E(Z/NZ)|

= N s−1 · |E(Z/NZ)|.

For the des
ription of the 
ryptosystems in the following se
tions we need to 
onsider
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the points Pi = (Ni : 1 : 0) on E(Z/N2Z). They are an important family of points on

E(Z/N2Z). To 
ompute m ·Pi we have to use the above Equation 4.1 sin
e divisions

are not de�ned. We get that mPi = Pmi. Similarly, when working in E(Z/NsZ)

we use the point P1 = (N : 1 : w(N)), and 
ompute mP1 applying Equation 4.1.

Furthermore, it 
an be shown that N s−1P1 = (0 : 1 : 0).

4.2 The Ellipti
 Curve Paillier S
heme

In this se
tion the ellipti
 
urve Paillier s
heme by S. Galbraith will be summarised.

It is a natural generalisation of Paillier's probabilisti
, homomorphi
 publi
 key 
ryp-

tosystem [67℄ to ellipti
 
urves over rings. This s
heme - as well as its generalisations

that we will present in Se
tion 4.3 and 4.4 - have exa
tly the properties needed for

our proto
ols 
onstru
ted in the last 
hapter.

See [42℄ for details and see Se
tion 4.1 for some mathemati
al fa
ts about ellipti



urves over rings and about the p-adi
 theory of ellipti
 
urves.

Key generation:

To generate a key

• 
ompute a modulus N = pq as a produ
t of two primes p, q > 3.

• Choose a random ellipti
 
urve E : y2z = x3 + axz2 + bz3
over

Z
/NZ , i. e.,

gcd(N, 6(4a3 + 27b2)) = 1.

Let M = |E(Fp)| · |E(Fq)| be the order of E(Z/NZ). Then knowledge of M is

polynomial-time equivalent to knowledge of the fa
torisation of N = pq (see

[42℄). Furthermore, if p, q are known then M 
an be 
omputed in polynomial

time using the S
hoof-Atkin-Elkies algorithm (see e. g. [11℄).

• Choose a point Q = (x : y : z) with ord(Q)|M in E(Z/N2Z). Sin
e we have

|E(Z/N2Z)| = MN (see Se
tion 4.1), this point 
an be found by taking a

random point Q′ = (x′ : y′ : z′) ∈ E(Z/N2Z) and setting Q = NQ′
.

Let P1 := (N : 1 : 0) ∈ E(Z/N2Z).
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The publi
 key 
onsists of the modulus N (and hen
e the point P1), the 
oe�
ients

(a, b) of the ellipti
 
urve, and the point Q.

The se
ret key is the order M of the group E(Z/NZ).

As already mentioned in Se
tion 4.1 it holds that mP1 = Pm = (mN : 1 : 0) for

0 ≤ m < N . Sin
e

(m+N)P1 = ((m+N)N : 1 : 0) = (mN : 1 : 0) ∈ E(Z/N2Z)

we 
an also de�ne mP1 = Pm form ∈ Z
/NZ. This is also valid for the generalisations

given in the following se
tions.

En
ryption:

To en
rypt a message m ∈ Z
/NZ 
hoose a random integer 1 ≤ r < N and 
ompute

the point

C = rQ+mP1 = rQ+ Pm.

The 
iphertext is the point C ∈ E(Z/N2Z).

De
ryption:

To de
rypt the 
iphertext C use the se
ret key M to 
ompute

MC = r (MQ)︸ ︷︷ ︸
O

+MPm = PmM = (mMN : 1 : 0).

Given the x-
oordinate mMN interpreted in Z we 
an divide by N to obtain

mM ∈ Z
/NZ and then multiply by the inverse of M mod N to re
over the mes-

sage m ∈ Z
/NZ. (Note that we have

Z
/NZ ≃ E1(Z/N2Z) as mentioned in Se
tion

4.1.)

Homomorphi
 Property:

This s
heme is additively homomorphi
 sin
e given en
ryptions C1 = r1Q+m1P1 of

m1 and C2 = r2Q+m2P1 ofm2 an en
ryption (C1+C2) = (r1+r2)Q+(m1+m2)P1 of

(m1+m2) 
an be 
omputed just by adding the 
iphertexts C1 and C2. Hen
e, we 
an

de�ne the algorithm Add as Add(E(m1), E(m2)) := E(m1) +E(m2) = E(m1 +m2)

or as

Add(E(m1), E(m2)) := E(m1) + E(m2) + r′Q = E(m1 +m2)
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with 1 ≤ r′ < N in order to blind the result. Sin
e the message set M equals

Z
/NZ

the 
ryptosystem is also s
alar homomorphi
 and the algorithm Mixed-Mult 
an be

implemented using repeatedly the algorithm Add and some blinding algorithm as

already mentioned in Chapter 2.

Remark 4.2.1. For en
ryption we must guarantee that the random value r is 
hosen

from a set that is large enough, i. e., we 
hoose r ∈ {1, . . . , N−1}. When adding two


iphertexts C1 = r1Q+m1P1 and C2 = r2Q+m2P1 we might obtain a value r1 + r2

whi
h is larger than N − 1. We 
an ignore this as long as for the so obtained new


iphertext C it holds that C 6= (mN : 1 : 0), whi
h 
an easily be veri�ed. Otherwise

we have to blind the messages by adding r′Q where r′ ∈ {1, . . . , N − 1} is randomly


hosen. When using the homomorphi
 property in the following (i. e., also in the

generalisations) this 
he
k is always impli
itly in
luded.

The se
urity analysis is very similar to that of Paillier's original s
heme. Note that

the ellipti
 
urve E in this s
heme is 
hosen randomly. Hen
e, it does not leak

any extra information to an adversary whi
h would help to fa
torise N . Here, the

semanti
 se
urity (as de�ned in [44℄) in the 
ase of passive adversaries depends

on the hardness of the following problem whi
h we 
all the ellipti
 
urve Paillier

assumption: Given a point Q ∈ E(Z/N2Z) of order dividing |E(Z/NZ)| where N is

the produ
t of two large primes, and given a random point C ∈ E(Z/N2Z) determine

whether C lies in the subgroup generated by Q.

Note that this hardness assumption slightly di�ers from Paillier's assumption, in

whi
h he assumes the hardness of the following problem: Given N = pq and a

number c that is either random in (Z/N2Z)∗ or a random N 'th power in (Z/N2Z)∗

de
ide whether c lies in the subgroup of N 'th powers.

It is possible to apply standard methods to obtain more robust se
urity properties

from a semanti
ally se
ure 
ryptosystem. For instan
e, in [69℄ a 
onstru
tion is

des
ribed whi
h 
onverts Paillier's s
heme so that it is semanti
ally se
ure against

an adaptive 
hosen 
iphertext atta
k in the random ora
le model.

See [42℄ for further se
urity dis
ussions or for examples.
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4.3 A Generalisation of the Ellipti
 Curve Paillier

S
heme

In a similar way as Damgård and Jurik [30℄ have given a generalisation of the original

Paillier s
heme to make it more interesting for appli
ations Galbraith generalised

the ECPS [42℄. His generalisation for the ellipti
 
urve 
ase will be presented in this

se
tion and later on we will generalise it further to a threshold version. Furthermore,

we will give a length-�exible variant of the generalised ellipti
 
urve Paillier s
heme.

These generalisations use higher powers of N and have 
ertain advantages as 
an

be seen in [30℄. So, instead of 
onsidering the 
iphertext group E(Z/N2Z) we now


onsider ellipti
 
urves over E(Z/Ns+1Z) for s > 0. In this pro
ess we have to take


are of subtleties relating to the formal group, see Se
tion 4.1, [80℄ and [42℄.

Key generation:

To generate a key

• 
hoose a modulus N = pq as a produ
t of two primes greater than 3 and


hoose s > 0. (Thus the message set will be the group

Z
/NsZ.)

• Choose a random ellipti
 
urve E : y2z = x3 + axz2 + bz3
over

Z
/NZ, i. e.,

gcd(N, 6(4a3 + 27b2)) = 1. Let M = |E(Fp)| · |E(Fq)|.

• Choose a point Q = (x : y : z) with ord(Q)|M in E(Z/Ns+1Z). This point Q


an be found by taking a random point Q′ = (x′ : y′ : z′) ∈ E(Z/Ns+1Z) and

setting Q = N sQ′
. (We have |E(Z/Ns+1Z)| = MN s

(see Se
tion 4.1).)

Now let P1 := (N : 1 : w(N)) = (N : 1 : N3 + aN7 + · · · ) ∈ E(Z/Ns+1Z).

We take terms in the z-
oordinate until the degree is greater than s + 1 (see

Se
tion 4.1). One 
an show that P1 has order N
s
, i. e., N sP1 = O.

The publi
 key 
onsists of N, s, the 
oe�
ients (a, b) of the ellipti
 
urve, and the

point Q.

The 
orresponding se
ret key is the order M of the group E(Z/NZ).

En
ryption:

To en
rypt a message m ∈ Z
/NsZ 
hoose a random integer 1 ≤ r < N s

and 
ompute
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the point C = rQ +mP1 using Equation 4.1 of Se
tion 4.1 (sin
e divisions are not

de�ned here). The 
iphertext is the point C ∈ E(Z/Ns+1Z).

De
ryption:

To re
over the message m ∈ Z
/NsZ 
ompute

MC = r(MQ) +mMP1 = mMP1 := m′P1 = (m′N + · · · : 1 : (m′N)3 + · · · ).

Then m′ ∈ Z
/NsZ 
an be 
omputed iteratively and after multiplying the result by

M−1 mod N s
we obtain the message as m = m′M−1 mod N s

. Note that owing to

the fa
t that for s > 2 the map ψ is not a group isomorphism but indu
es only

the group isomorphism from N j(Z/NsZ)/N j+1(Z/NsZ) to Ej(Z/NsZ)/Ej+1(Z/NsZ),

divisions are not de�ned here, see Se
tion 4.1.

The iteration is as follows: We write m′ =
∑

im
′
iN

i
in terms of its base-N repre-

sentation. Let the point m′P1 = (x : y : z) be given. The x-
oordinate of this point

equals

∑
im

′
iN

i ·N + · · · = m′
0N +m′

1N
2 + · · · + · · · . We 
an determine the value

of m′
0 as m

′
0 = x

N
mod N . We 
an then subtra
t m′

0P1 from m′P1 (using Equation

4.1) to obtain a new point (x : y : z). From this point we 
an re
over m′
1 = x

N2

mod N and the pro
ess is iterated.

Note that for s = 1 we obtain the basi
 ellipti
 
urve Paillier s
heme.

Obviously this generalisation has the same homomorphi
 properties as the basi


s
heme. This time its semanti
 se
urity is based on the assumed hardness of the

following assumption, whi
h we 
all generalised ellipti
 
urve Paillier assumption:

Given a point Q ∈ E(Z/Ns+1Z) of order dividing |E(Z/NZ)| where N is the produ
t

of two large primes and given a random point C ∈ E(Z/Ns+1Z) determine whether

C lies in the subgroup generated by Q.

4.4 A Threshold Version of the Ellipti
 Curve Pail-

lier S
heme

In [30℄ Damgård and Jurik proposed a threshold de
ryption version of their gener-

alised Paillier s
heme based on an idea by Shoup [79℄. This threshold version has
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many interesting properties and is useful for numerous appli
ations as was shown

in e. g. [30, 24, 33, 32℄. In this se
tion we adopt their approa
h to apply it to

the generalised ellipti
 
urve Paillier s
heme. This leads to a k out of ℓ threshold

de
ryption version of the generalised ECPS, whi
h 
an be applied in a similar way

to various appli
ations, see Se
tions 4.6 and 4.7. Our appli
ations are based on

several proto
ols whi
h we develop in Se
tion 4.5. These proto
ols are the �rst el-

lipti
 
urve versions of this kind. Furthermore, in Subse
tion 4.4.1 we will des
ribe

a length-�exible version of the threshold ECPS that may be useful to build e. g.

mix-nets.

The idea behind threshold 
ryptography is to distribute the power of one authority

to a group of players. For instan
e in a threshold de
ryption s
heme, the se
ret key

is shared in su
h a way that only a group of players is able to de
rypt a 
iphertext

and not just one person. Here, we suggest a k out of ℓ threshold de
ryption s
heme,

whi
h is a proto
ol that distributes the se
ret key of the generalised ECPS to a set

of ℓ players so that it allows any subset of at least k out of ℓ players to de
rypt

a 
iphertext 
orre
tly and e�
iently, while it disallows any subset of less than k

players to 
ompute a de
ryption or to obtain any useful information. This property

should also hold if an adversary 
orrupts some subset of less than k players working

together. Obviously this should be done while keeping the homomorphi
 property

and without degrading the se
urity of the system.

The idea of threshold s
hemes goes ba
k to Shamir who des
ribed in [78℄ how to

share a se
ret via Lagrange's interpolation. It is based on the fa
t that a polynomial

of degree k − 1 is uniquely determined by k points. Thus given k or more points of

a polynomial of degree k − 1 it is possible to re
onstru
t it while less than k points

do not leak any information about the polynomial.

In [79℄ Shoup proposed an e�
ient threshold variant of RSA signatures. He men-

tioned two main properties of su
h a s
heme whi
h also hold for our s
heme: Non-

forgeability means that less than k players are not able to forge a signature while

robustness means that 
orrupted players are not able to prevent un
orrupted players

from generating signatures. Our s
heme 
an be proven se
ure in the random ora
le

model assuming the hardness of the generalised ellipti
 
urve Paillier assumption.

Furthermore, our threshold ECPS provides the property of Shoup's threshold sig-
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nature s
heme in the sense that share de
ryption and veri�
ation are 
ompletely

non-intera
tive, and that the size of an individual share is independent from the

number of players. These properties hold in a stati
 
orruption model , where an

adversary 
hooses whi
h players to 
orrupt at the very beginning of the atta
k and

is not able to 
hange his mind during the exe
ution of the proto
ol.

The main part of Shoup's threshold RSA signature s
heme is a proto
ol that enables

a set of players to e�
iently and 
olle
tively raise an input to a se
ret exponent d

modulo an RSA modulus N , i. e., on input x ea
h player 
omputes a share of the

result. Along with this goes a proof of 
orre
tness, i. e., a proof that the player

honestly used his share in a 
orre
t way. This insures that dishonest and 
orrupted

players 
an be identi�ed by any player and observer and then disquali�ed. Su�-


iently many 
orre
t shares of the result 
an be e�
iently 
ombined to 
ompute

xd mod N . This method by Shoup was also used in [30℄ and 
an be applied to share


ombining in our 
ase. Here the players multiply an input 
iphertext with their

se
ret share in su
h a way that these results 
an be 
ombined to obtain the produ
t

MC of the 
iphertext C and the se
ret value M . Subsequently, the remaining part

of the de
ryption pro
edure 
an be done easily without knowledge ofM . As already

mentioned this method needs as a subroutine a proof of 
orre
tness. Here this proof

is a proof of the equality of dis
rete logarithms that proves that the player behaved

honestly and 
omputed the 
orre
t value. It will be given in Se
tion 4.5.

Our threshold s
heme needs a trusted dealer in the key generation phase to set up

the keys. This is a on
e and for all operation, i. e., the trusted dealer is not ne
essary

for the en
ryption, share de
ryption or share 
ombining phase. Furthermore, after

distributing the keys the trusted party 
an delete all se
ret information. However,

we 
an get along using multiparty 
omputation te
hniques whi
h allow us to do the

key generation without a trusted party.

Analogously to Shoup we 
an summarise our model and se
urity requirements as

follows:

As parti
ipants in our s
heme we have a set of ℓ players, a trusted dealer, and an

adversary. The number of message shares needed to de
rypt a 
iphertext is k and

the number of 
orrupted players is t. We require that t ≤ k − 1 and that the

adversary sele
ts a subset of t players to 
orrupt from the beginning. Our s
heme
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an be divided into the following phases : In the key generation phase the trusted

dealer generates a publi
 key ke along with se
ret key shares s1, . . . , sℓ, and the

veri�
ation keys V and V1, . . . , Vℓ. After that we 
an assume that the adversary

knows the se
ret shares of the 
orrupted players, the publi
 key, and the veri�
ation

keys. During the en
ryption phase a message is en
rypted under the publi
 key.

Then in the share de
ryption phase ea
h player 
omputes a message share given the


iphertext. This message share is published together with a proof of the 
orre
tness

of the 
omputation. In the share 
ombining phase k message shares for whi
h there

exists a proof of 
orre
tness are 
ombined using the publi
 key in order to re
eive

the desired de
ryption (the message) of the 
iphertext. In our model the adversary

is allowed to submit de
ryption requests to the un
orrupted players for 
iphertexts

of his 
hoi
e. Upon su
h a request, the players output a message share for the given


iphertext. We say that the adversary forges a message if he is able to output a

valid message 
orresponding to a 
iphertext that was not submitted as a de
ryption

request to at least k − t un
orrupted players. The s
heme is non-forgeable if it is


omputationally infeasible for the adversary to forge a message, i. e., if the view

of the adversary that 
orrupts up to t players does not enable him to 
ompute

de
ryptions on his own. Our threshold s
heme is said to be robust if the honest

players are able to 
ompute a valid de
ryption - no matter what the 
orrupted t

players do (see e. g. [56℄).

We now 
ome to the des
ription of our threshold ECPS, TECPS for short. The key

generation of the generalised ECPS has to be extended as follows:

Key generation:

• Choose N = pq, where p, q > 3 are primes, and some s > 0.

• Choose a random ellipti
 
urve E : y2z = x3 + axz2 + bz3
over

Z
/NZ, i. e.,

gcd(N, 6(4a3 + 27b2) = 1. Let M = |E(Fp)| · |E(Fq)|.

• Choose a point Q with ord(Q)|M in E(Z/Ns+1Z). Let P1 := (N : 1 : w(N)) in

E(Z/Ns+1Z). (For the de�nition of w(N) see Se
tion 4.1 and [80℄.)

• Pi
k M ′
to satisfy M ′ = 0 mod M and M ′ = 1 mod N s

. (We may always
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assume that gcd(M,N s) = 1.) Constru
t the polynomial

f(x) =
k−1∑

i=0

aix
i ∈ Z[x]

by pi
king random ai ∈ Z for 0 < i < k that are large enough

2

and a0 = M ′
.

The se
ret key share of player i is si = f(i) for 1 ≤ i ≤ ℓ and the publi
 key is

(N, s, (a, b), Q).

For veri�
ation of the a
tions of the players, we further need the following �xed

publi
 values: V ∈ E(Z/Ns+1Z), so that 〈V 〉 = G and the 
y
li
 group G should

have large order, e. g. |G| = N s
. Furthermore, for ea
h player we need a veri�
ation

key Vi := (∆si)V in E(Z/Ns+1Z), where ∆ = ℓ!. Hen
e, after the key generation

phase, the publi
 key 
onsists of (N, s, (a, b), Q) and the se
ret key share of player i

is si. Furthermore, V and all Vi 
an be seen as part of the publi
 key as well. But

note that the publi
 values V and all Vi are only needed during the share de
ryption

phase (see below) and not to 
ompute an en
ryption. Hen
e they 
an be omitted in

most of the 
ases and most of the proto
ols presented in Se
tion 4.5.

Remark 4.4.1. Note that for any subset of k points in {1, . . . , ℓ} the values of f

at these k points uniquely determine the 
oe�
ients ai for 0 < i < k of f and hen
e

the value of f at any other point in {1, . . . , ℓ}. Furthermore, for any subset of k− 1

points in {1, . . . , ℓ} the distributions of the values of f at these points are uniform

and mutually independent.

The en
ryption phase of our threshold s
heme remains the same as in the generalised

ECPS:

En
ryption:

To en
rypt a messagem ∈ Z
/NsZ, 
hoose a random integer 1 ≤ r < N s

and 
ompute

the 
iphertext as C = rQ+mP1 ∈ E(Z/Ns+1Z).

The de
ryption phase is divided into two steps: First share de
ryption, in whi
h

ea
h player 
omputes his share of the de
ryption using his share of the se
ret key.

2

If s, ai ∈ Z, f(0) = M ′
and |M ′| := K then it 
an be shown that ai with |ai| = log ℓ!+K+k+σ,

where σ denotes the se
urity parameter, are suitable.
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Then during share 
ombining the di�erent shares of the de
ryption are 
ombined to

obtain the message.

Share de
ryption:

Given the 
iphertext C, player i 
omputes and publishes Ci := (∆si)C together

with a proto
ol run whi
h proves that logC(Ci) = logV (Vi) and that does not reveal

any additional information. This 
onvin
es the other players as well as any external

observer that player i has indeed multiplied by his se
ret share si. In Se
tion 4.5

a non-intera
tive proto
ol for this task will be presented whi
h is based on the


orresponding one in [79℄.

For any subset S of k points in {1, . . . , ℓ} and for i ∈ S we de�ne

λS
0,i = ∆

∏

i′∈ S\{i}

−i′

i− i′
∈ Z.

These values are dire
tly derived from Lagrange's interpolation formula. Sin
e the

denominator divides i!(ℓ − i)! whi
h in turn divides ℓ! = ∆ these values are inte-

gers. Furthermore, they 
an be 
omputed e�
iently. From Lagrange's interpolation

formula it follows that

∆f(0) =
∑

i∈S

λS
0,if(i) =

∑

i∈S

λS
0,isi.

Share 
ombining:

Assume that we have the required k or more shares Ci together with a proof of


orre
tness. We 
an then obtain the 
orresponding de
ryption by 
ombining them,

i. e., we take a subset S of k shares and 
ombine them to

C ′ :=
∑

i∈S

λS
0,iCi = ∆

∑

i

λS
0,isiC = ∆2f(0)C = ∆2M ′C.

Sin
e ord(Q)|M ⇒ ord(Q)|M ′
and N sP1 = (0 : 1 : 0) and M ′ = 1 mod N s

we have

C ′ = ∆2M ′rQ︸ ︷︷ ︸
O

+∆2M ′mP1 = ∆2M ′mP1 = ∆2mP1,
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where m is the desired plaintext. Hen
e we 
an 
ompute m iteratively as before (see

Se
tion 4.4.1) and multiply the result by (∆2)−1 mod N s. Note that we 
an always

assume that p, q ≫ ℓ.

Sin
e the en
ryption pro
edure remains un
hanged it 
an easily be seen that this

threshold version has the same homomorphi
 properties as the original ellipti
 
urve

Paillier s
heme.

As already mentioned, the proof of 
orre
tness of logC(Ci) = logV (Vi) enables every

player and observer of the s
heme to verify the 
orre
t behaviour of player i and

hen
e to disqualify him if the proof does not su

eed. The proof will be des
ribed in

Se
tion 4.5. It uses a 
ryptographi
 hash fun
tion to make it non-intera
tive. There-

fore our proof of se
urity will be given in the random ora
le model. This means that


ryptographi
 hash fun
tions are repla
ed by a random ora
le. This random ora
le

model was informally introdu
ed by Fiat and Shamir [40℄ and later formalized in

Bellare and Rogaway [6℄. Thereafter it was adapted in many papers. If we would

do the proofs of 
orre
tness intera
tively instead, we 
ould omit the random ora
le.

We now prove that assuming the hardness of the generalised ellipti
 
urve Paillier

assumption this threshold de
ryption version of the ECPS is as se
ure as a 
en-

tralised s
heme with one trusted player who performs the de
ryption, i. e., as se
ure

as the generalised ECPS. This proof will be done in a stati
 
orruption model where

an adversary 
orrupts up to k − 1 players from the beginning. We use a standard

te
hnique to redu
e the se
urity of our threshold version to the se
urity of its single-

de
ryption-server 
ounterpart, i. e., the generalised ECPS: We exhibit a simulator

whi
h has no a

ess to any se
ret information but whi
h has an ora
le a

ess to the

single-de
ryption-server realisation of the underlying 
ryptosystem (see e. g. [56℄).

If the adversary is not able to distinguish the view of an exe
ution of the threshold

proto
ol and a simulated exe
ution that uses as ora
le the single-de
ryption-server

realisation, our threshold s
heme is as se
ure as the generalised ECPS.

Theorem 4.4.2. Assume the random ora
le model and a stati
 adversary that 
or-

rupts up to k − 1 players from the beginning. Furthermore, assume the hardness of

the generalised ellipti
 
urve Paillier assumption.

Then the above s
heme is 
orre
t, i. e., given any 
iphertext, the de
ryption proto
ol

outputs the 
orre
t plaintext, ex
ept with negligible probability.



4.4 A Threshold Version of the Ellipti
 Curve Paillier S
heme 64

Given an ora
le that on a given 
iphertext returns the 
orresponding plaintext, the

adversary's view of the de
ryption proto
ol 
an be e�
iently simulated with a statis-

ti
ally indistinguishable distribution. Hen
e the above threshold s
heme is as se
ure

as the generalised ECPS, robust and non-forgeable.

The proof follows very 
losely the 
orresponding proofs in [57℄ and [79℄.

Proof. If we assume that an adversary 
an only 
ontribute in
orre
t values for the

Ci's with negligible probability, 
orre
tness of the s
heme follows immediately. This,

in turn, is ensured by the spe
ial soundness of the proto
ol for the equality of dis-


rete logarithms given for ea
h Ci, whi
h will be introdu
ed and proven in Subse
tion

4.5.2.

Assume an ora
le is given that on a given 
iphertext as input returns the 
orre-

sponding plaintext. To simulate the adversary's view of the de
ryption proto
ol we

start from the publi
 key (N, s, (a, b), Q). Let i1, . . . , ik−1 ∈ {1, . . . , ℓ} be the set of

the 
orrupted players. We 
an now simulate the adversary's view by 
hoosing the

shares si1 , . . . , sik−1
of the 
orrupted players as random integers. We have already

argued (see Remark 4.4.1) that these values will be statisti
ally indistinguishable

from the real values. Re
all that M ′ = f(0) and si = f(i) and M ′
is fully deter-

mined by the 
hoi
e of the publi
 values N, s, and (a, b). On
e M ′
is determined

and the values si1 , . . . , sik−1
are 
hosen the shares si for i ∈ {1, . . . , ℓ}\{i1, . . . , ik−1}

for the un
orrupted players and the polynomial f are �xed as well. We have

f(i1) = si1 , . . . , f(ik−1) = sik−1
, but M ′

and f 
annot be 
omputed by the sim-

ulator. Hen
e, the shares si1 , . . . , sik−1
of the 
orrupted players do not leak any

information about the shares of the un
orrupted players, the se
ret value M ′
or the

polynomial f . The reason is that the adversary is not able to distinguish the values


ommuni
ated during the proto
ol from random values.

Now we argue that the values Vj of the un
orrupted players and their shares Cj of

a 
iphertext C that 
an be seen during the share de
ryption phase do not give any

extra information to an adversary. As des
ribed below these values 
an easily be

simulated so that they �t to the above shares of the un
orrupted players: For this

part of the proof we assume that the simulator has a

ess to a de
ryption ora
le,

i. e., to a 
entralised de
ryption version - the generalised ECPS.

We now 
onsider the veri�
ation key V as a 
iphertext V = rQ+m0P1 inE(Z/Ns+1Z)
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for whi
h the simulator asks the ora
le for the 
orresponding plaintextm0. By doing

so we 
an 
ompute

f(0)V = M ′V = M ′rQ+m0M
′P1 = m0M

′P1 = m0P1.

Let S be the set {0, i1, . . . , ik−1}, and let

λS
j,i = ∆

∏

i′∈ S\{i}

j − i′

i− i′

be the Lagrange 
oe�
ients for interpolating the values of a polynomial in point j

(times ∆) from its values in points in S, i. e., ∆f(j) =
∑

i∈S λ
S
j,if(i). Then we 
an

easily 
ompute values Vj with Vj = ∆sjV = ∆f(j)V for the un
orrupted players,

i. e., j ∈ {1, . . . , ℓ}\{i1, . . . , ik−1}, as

Vj =
∑

i∈S

λS
j,i · (f(i)V ).

When re
eiving a 
iphertext point C as input, we ask the ora
le for the 
orresponding

plaintext m. This gives us the possibility to 
ompute the points

f(0)C = M ′C = mP1

whi
h means that we 
an interpolate and 
ompute the 
ontributions Ci = ∆siC for

the un
orrupted players in the same way as above. This argument shows why we

de�ned the shares Ci to be ∆siC instead of, say, siC.

Obviously the so obtained values are 
orre
tly distributed.

4.4.1 A Length-Flexible Variant

In [30℄ Damgård and Jurik proposed a length-�exible variant of their generalisation

of Paillier's en
ryption s
heme. In a similar way we show in this subse
tion how it is

possible to adjust the blo
k length of our threshold s
heme, i. e., we propose a variant

of our TECPS that 
an e�
iently handle messages m of arbitrary length m < N s′

where s′ ≤ s, whereas the publi
 key and the se
ret key shares remain of �xed sizes.
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More pre
isely, it is possible to de
ide on a value for s′ ≤ s, so that the message

spa
e M will be

Z
/Ns

′

Z with 
orresponding 
iphertext spa
e C = E(Z/Ns
′
+1Z) at

any point after the keys have been generated. Even the sender 
an de
ide on the �y

on a value for s′ when en
rypting a message. Su
h a length-�exible system works as

follows:

The key generation 
an be done in the same way as above where s should be 
ho-

sen large enough. Let s′ ≤ s. Note that the order M is independent of s and

that for a point Q with ord(Q)|M in E(Z/Ns+1Z) it also holds that ord(Q)|M in

E(Z/Ns
′
+1Z). Furthermore, for P1 = (N : 1 : w(N)) ∈ E(Z/Ns

′
+1Z) it holds that

N s′P1 = (0 : 1 : 0) (see Se
tion 4.1), and for M ′ = 1 mod N s
it also holds that

M ′ = 1 mod N s′
.

En
ryption:

To en
rypt a message m represented as a non-negative integer, 
hoose s′ ≤ s so that

m < N s′
, 
hoose a random integer 1 ≤ r < N s′

and 
ompute C = rQ + mP1 in

E(Z/Ns
′
+1Z). Along with the 
iphertext the value of s′ is transmitted.

Share de
ryption and share 
ombining work exa
tly the same way as before using

s′ instead of s.

It immediately follows that the above variant is semanti
ally se
ure if the original

s
heme is semanti
ally se
ure.

For instan
e, this property of length-�exibility together with the homomorphi
 prop-

erty of the s
heme is useful for ele
tion s
hemes as well as to build mix-nets (see

Se
tion 2.2). Mix-nets are proto
ols whi
h provide anonymity for senders by 
ol-

le
ting en
rypted messages from several users. Then a 
olle
tion of servers pro
esses

these, so that at the end the plaintext messages are output in randomly permuted

order and sent to the intended re
eivers. Hen
e, it is not possible to tra
e ba
k the

messages from the re
eiver to the 
orresponding sender. The length-�exibility of the

underlying en
ryption s
heme ensures that the mix-net is able to handle messages

of arbitrary size, i. e., although all messages submitted in a single run of the mix-net

must have the same length in order to provide anonymity, this 
ommon length 
an

be 
hosen freely for ea
h run of the mix-net, without having to 
hange any pub-

li
 information. This is espe
ially useful for providing anonymity, e. g. for emails.



4.5 Auxiliary Proto
ols 67

See [31℄ for details of mix-nets and further appli
ations of length-�exible threshold


ryptosystems to ele
troni
 voting.

4.5 Auxiliary Proto
ols

As mentioned above we need as a subroutine in the share de
ryption phase a proto
ol

for the equality of dis
rete logarithms, i. e., a proof that given values C, C̃, V, Ṽ in

E(Z/Ns+1Z) where 〈V 〉 = G and |G| large, it holds that logC(C̃) = logV (Ṽ ). Su
h a

proto
ol will be presented in Subse
tion 4.5.2.

In [24℄ Cramer et al. introdu
ed a new approa
h to multiparty 
omputation based on

homomorphi
 threshold 
ryptosystems. The idea of this appli
ation of homomorphi



ryptosystems will be des
ribed in Se
tion 4.6. Besides the usual properties of a

threshold homomorphi
 
ryptosystem some auxiliary proto
ols are needed for this

approa
h. More pre
isely, we need

• a proto
ol for 
he
king if a value is a valid 
iphertext,

• a proto
ol for proving the 
orre
tness of the multipli
ation of an en
rypted

value by a 
onstant,

• a proto
ol for proving the knowledge of a plaintext.

For the appli
ation of our threshold homomorphi
 
ryptosystem to ele
troni
 voting

whi
h will be des
ribed in Se
tion 4.7 another auxiliary proto
ol is needed: a proto
ol

for proving that an en
ryption 
ontains one out of two given values, without revealing

whi
h one it is. In this se
tion we are going to develop these proto
ols for our

homomorphi
 threshold 
ryptosystem in an analogous manner as it was done for

the generalised Paillier s
heme in [30, 24, 57, 32℄. The spe
ial type of proto
ols we

need are 
alled Σ-Proto
ols. They will be shortly de�ned in the following subse
tion.

4.5.1 Σ-Proto
ols

Σ-proto
ols are two-party zero-knowledge proto
ols of a parti
ular form. Let R be

a relation 
onsisting of pairs (x,w), where we think of x being a publi
 instan
e of
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some 
omputational problem, and w being a witness , i. e., a solution to that instan
e.

We will be 
on
erned with proto
ols of the following form: This proto
ol gets x as

a 
ommon input for the prover P and the veri�er V , and the prover additionally

knows a witness w as a private input su
h that (x,w) ∈ R.

1. P sends a message a to V .

2. V sends a random t-bit 
hallenge e to P .

3. P sends a reply z.

4. V de
ides to a

ept or reje
t based on the data he has seen, i. e., x, a, e, z.

Figure 4.1: Σ-Proto
ol

We will assume that both P and V are probabilisti
, polynomial time ma
hines.

Hen
e, P 's only advantage over V is the knowledge of the witness w.

De�nition 4.5.1. A proto
ol is said to be a Σ-proto
ol for relation R if we have

the following:

• The proto
ol is of the above form.

• Completeness : If P and V follow the proto
ol, the veri�er always a

epts.

• There exists a polynomial-time simulator, whi
h on input x and a random


hallenge e outputs an a

epting 
onversation of the form (a, e, z) with the

same probability distribution as 
onversations between honest P and V on

input x and 
hallenge e. This property is 
alled spe
ial honest-veri�er zero-

knowledge.
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• Spe
ial soundness : A 
heating prover 
an answer only one of the possible


hallenges. More pre
isely, from any 
ommon input x and any pair of a

epting


onversations (a, e, z) and (a, e′, z′) where e 6= e′, we 
an e�
iently 
ompute w

so that (x,w) ∈ R.

Note that the notion honest-veri�er zero-knowledge proof 
an also be found in the

literature instead of Σ-proto
ols.

It is easy to verify that the properties of Σ-proto
ols are invariant under parallel


omposition. For more details and properties of Σ-proto
ols see [29℄ and [24℄.

4.5.2 Proto
ol for the Equality of Dis
rete Logarithms

For the share de
ryption phase we need a subroutine proving that given values

C, C̃, V, Ṽ in E(Z/Ns+1Z) where 〈V 〉 = G and |G| is large, it holds that

logC(C̃) = logV (Ṽ ).

With su
h a proto
ol run 
oming together with the published result C̃ (the 
iphertext

share Ci) of a player Pi, the other players (and any observer) of our threshold

de
ryption s
heme will be 
onvin
ed of the 
orre
tness of his 
omputation. Thus

here the player Pi is the prover. The values C, C̃, V, Ṽ as well as the publi
 key are

publi
 values in our proto
ol. Player Pi knows additionally ∆si =: y whi
h is his

se
ret input.

We need a Σ-proto
ol for the relation

R = {((C, C̃, V, Ṽ ), y) | C, C̃, V, Ṽ ∈ E(Z/Ns+1Z), y = logC(C̃) = logV (Ṽ )}.

It works as follows:

Proto
ol for the equality of dis
rete logarithms

Input: ke = (N, s, (a, b), Q), C, C̃, V, Ṽ ∈ (E(Z/Ns+1Z),+), where 〈V 〉 = G and

|G| is large

Private input for the prover: y su
h that y = logC(C̃) = logV (Ṽ ).

Note that in our appli
ation the length of y will be bounded by s|N ||M | bit sin
e
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V ∈ E(Z/Ns+1Z). Here, |N | and |M | denote the bit length of N andM , respe
tively.

W.l.o.g. these bit lengths are known as well.

1. The prover P 
hooses a random number r of bit length s|N ||M | + 2t, where

t is a se
ondary se
urity parameter. He 
omputes A = rC and B = rV in

E(Z/Ns+1Z) and sends (A,B) to the veri�er V .

2. The veri�er 
hooses a random t-bit 
hallenge e whi
h he sends to the prover.

3. P 
omputes the number z = r + ey and sends it to V .

4. The veri�er a

epts the proof if and only if zC = A + eC̃ and zV = B + eṼ

in E(Z/Ns+1Z).

Lemma 4.5.2. The above proto
ol for the equality of dis
rete logarithms is a Σ-

proto
ol.

Proof. The 
ompleteness of this proto
ol under an honest prover is obvious. Spe
ial

honest-veri�er zero-knowledge holds be
ause, for a random t-bit number e and a

random s|N ||M | + 2t-bit number z we have that ((zC − eC̃, zV − eṼ ), e, z) is an

a

epting 
onversation with the same probability distribution. For spe
ial soundness

we assume that P does not know y. If the prover 
an send 
orre
t responses z and

z′ to two di�erent 
hallenges e and e′ that satisfy the veri�er's 
he
k where w.l.o.g.

e > e′, i. e.,

zC = A+ eC̃ and zV = B + eṼ ,

z′C = A+ e′C̃ and z′V = B + e′Ṽ

then

(z − z′)C = (A+ eC̃) − (A+ e′C̃) = (e− e′)C̃

and

(z − z′)V = (B + eṼ ) − (B + e′Ṽ ) = (e− e′)Ṽ ,

and hen
e

logC(C̃) = logV (Ṽ ) = (z − z′)(e− e′)−1
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the dis
rete logarithms is e�
iently 
omputable. This 
ontradi
tion shows that the

prover is able to answer at most one 
hallenge e 
orre
tly. Therefore the probability

of a

eptan
e of a dishonest prover is 2−t
whi
h is negligible in t.

Figure 4.2: Proto
ol for the Equality of Dis
rete Logarithms

Using the Fiat-Shamir heuristi
 [40℄ whi
h requires a hash fun
tion this proto
ol 
an

be made non-intera
tive, where se
urity 
an be proven in the random ora
le model:

Let H be a hash fun
tion, whose output is a t-bit integer (t = 128, say).

1. The prover P 
hooses a random number r of bit length s|N ||M | + 2t. He


omputes A = rC and B = rV in E(Z/Ns+1Z), sets e = H(A,B,C, C̃) and


omputes z = r+ey. He de�nes the proof of 
orre
tness to be (e, z) and sends

this to the veri�er V .

2. To verify this proof V 
he
ks that e = H(zC − eC̃, zV − eṼ , C, C̃).

In this non-intera
tive version of the proto
ol we 
an ex
lude V, Ṽ in the input to H

sin
e in our appli
ation, they are �xed and 
hosen by a honest dealer as being the

veri�
ation keys. If we assume the prover's 
laim to be true, i. e., the equality of the

dis
rete logarithms holds then the 
orre
tness of this proto
ol follows immediately.

Assuming the random ora
le model, i. e., repla
ing H by a random fun
tion, we 
an

show soundness and spe
ial honest-veri�er zero-knowledge as above.

The Fiat-Shamir heuristi
 
an also be used to make all of the following proto
ols of

this se
tion non-intera
tive.
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4.5.3 Che
k of Ciphertextness

Now we will des
ribe a proto
ol that given a value C and the publi
 key ke 
he
ks

whether C is a valid 
iphertext. For the parameters of our threshold s
heme that

means that given a point C and the publi
 key ke = (N, s, (a, b), Q) 
he
k whether

there exists a message m ∈ Z
/NsZ and a random element 0 ≤ r < N s

su
h that

C = Eke,r(m) = rQ + mP1 ∈ E(Z/Ns+1Z). Note that the values V and all Vi are

only needed for the share de
ryption phase in our threshold s
heme. They 
an be

omitted as publi
 inputs in all our following proto
ols.

The property C = rQ + mP1 is obviously equivalent to C − mP1 = rQ, i. e., to

C −mP1 being an en
ryption Eke,r(0) of 0 under the publi
 key ke and a random

number r.

Hen
e, we would like to 
onstru
t a Σ-proto
ol for the relation

R = {((ke, C), r) | C = Eke,r(0) where ke is the publi
 key}.

A proto
ol for this 
an easily be obtained from the 
orresponding one in [57℄:

Proto
ol for 
he
king whether an element is an en
ryption of 0

Input: ke = (N,S, (a, b), Q), C

Private input for the prover: r with 0 ≤ r < N s
so that C = rQ = Eke,r(0).

1. The prover P 
hooses r′ with 0 ≤ r′ < N s
at random. He 
omputes

A = r′Q = Eke,r′(0)

and sends A to the veri�er V .

2. V 
hallenges P with a random t-bit string e.

3. P 
omputes z = r′ + er and sends z to V .

4. V 
he
ks whether A,C ∈ E(Z/Ns+1Z) and that Eke,z(0) = A+ eC. He a

epts

if and only if this is the 
ase.

Lemma 4.5.3. The above proto
ol for 
he
king whether an element is an en
ryption

of 0 is a Σ-proto
ol.
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Proof. For 
ompleteness we have to show that the veri�er always a

epts if the

prover and the veri�er follow the proto
ol. This holds as follows:

A+ eC = r′Q+ eC = r′Q+ erQ = (r′ + er)Q = zQ = Eke,z(0).

For spe
ial honest veri�er zero-knowledge we have to simulate a 
onversation (A, e, z)

with the same probability distribution. Therefore the simulator 
hooses z and e

randomly in their respe
tive domains. He sets A = Eke,z(0) − eC and outputs

(A, e, z), whi
h is obviously a 
onversation with the same probability distribution.

For spe
ial soundness we assume that there are two a

epting 
onversations (A, e, z)

and (A, e′, z′) where e 6= e′ and w.l.o.g. e > e′. Hen
e, we obtain

Eke,z(0) = A+ eC and Eke,z′(0) = A+ e′C.

Therefore

(e− e′)C = Eke,(z−z′)(0) = (z − z′)Q.

Sin
e e 6= e′ we 
an set v := (z − z′)(e− e′)−1
. So,

C = (z − z′)(e− e′)−1Q = vQ = Eke,v(0),

i. e., the ne
essary values for an en
ryption of 0 
an indeed be e�
iently 
omputed.

In our appli
ation of this and the following proto
ols we assume that the modulus

N = pq has two prime fa
tors of roughly the same size. Hen
e, if |N | is the bit

length of N , we 
an set t = |N |/2 to ensure that the probability of a 
heating prover

to make the veri�er a

ept is ≤ 2−t
.

4.5.4 Proof of Corre
t Multipli
ation

We now des
ribe a proto
ol for proving that a given 
iphertext is the produ
t of an

en
rypted value by a plaintext. Hen
e, we de�ne the relation

R = {((Cm1
, Cm2

, D), (m2, r2, r3)) | Cm1
= E(m1), Cm2

= Er2
(m2), D = m2Cm1

+r3Q},



4.5 Auxiliary Proto
ols 74

where all en
ryptions are done under the same publi
 key ke = (N, s, (a, b), Q).

Using the algorithm Mixed-Mult to express the relation this means that

D = Mixed-Mult(m2, Cm1
),

i. e., D is an en
ryption of m2m1. A proto
ol for this relation is similar to the one

proposed in [24℄ for the threshold Paillier s
heme:

Proto
ol for proving 
orre
t multipli
ation

Input: ke = (N, s, (a, b), Q) and Cm1
, Cm2

, D, so that

Cm1
= r1Q+m1P1, Cm2

= r2Q+m2P1, D = m2Cm1
+ r3Q

Private input for the prover: m2 and r2, r3

1. The prover P 
hooses m ∈ Z
/NsZ and 0 ≤ v, u < N s

at random. He 
omputes

A = mCm1
+ vQ and B = mP1 + uQ.

P sends (A,B) to the veri�er V .

2. V sends a random t-bit 
hallenge e to P .

3. The prover P 
omputes

w = m+ em2, y = v + er3, z = u+ er2

and sends (w, y, z) to V .

4. The veri�er 
he
ks that

wP1 + zQ = B + eCm2
, wCm1

+ yQ = A+ eD.

He a

epts if and only if this is the 
ase.

Lemma 4.5.4. The above proto
ol for proving 
orre
t multipli
ation is a Σ-proto
ol

proving knowledge of m2, r2, r3 su
h that Cm2
= r2Q+m2P1 and D = m2Cm1

+r3Q,

i. e., proving that D en
rypts m2m1.
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Proof. Showing 
ompleteness is straightforward sin
e

wP1 + zQ = (m+ em2)P1 + (u+ er2)Q = mP1 + uQ+ e(r2Q+m2P1) = B + eCm2

and

wCm1
+yQ = (m+em2)Cm1

+(v+er3)Q = mCm1
+vQ+e(m2Cm1

+r3Q) = A+eD.

For spe
ial honest veri�er zero-knowledge, given any 
hallenge e a 
orre
tly dis-

tributed 
onversation 
an be simulated as follows: the simulator 
hooses the values

w, y, z at random in their respe
tive domains. He then 
omputes mat
hing values

A,B using the equations wP1 + zQ = B + eCm2
and wCm1

+ yQ = A+ eD.

For soundness we assume that for some value of (A,B) the prover P 
an 
orre
tly

answer two di�erent 
hallenges e, e′ where w.l.o.g. e > e′. Hen
e, the following

equations are satis�ed

wP1 + zQ = B + eCm2
, wCm1

+ yQ = A+ eD

and

w′P1 + z′Q = B + e′Cm2
, w′Cm1

+ y′Q = A+ e′D.

This implies that

(w − w′)P1 + (z − z′)Q = (e− e′)Cm2

and

(w − w′)Cm1
+ (y − y′)Q = (e− e′)D.

Hen
e

Cm2
= (w − w′)(e− e′)−1P1 + (z − z′)(e− e′)−1Q

and

D = (w − w′)(e− e′)−1Cm1
+ (y − y′)(e− e′)−1Q.

We 
an 
on
lude that m2 = (w − w′)(e − e′)−1, r2 = (z − z′)(e − e′)−1
and that

r3 = (y − y′)(e− e′)−1
. Thus D is indeed an en
ryption of m2m1.
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4.5.5 Proof of Plaintext Knowledge

We want to obtain a Σ-proto
ol that given an en
ryption C = Eke
(m) of m proves

that P knows the 
orresponding message m. Su
h a proto
ol is 
ontained impli
itly

in the above proto
ol for proving 
orre
t multipli
ation. Here, the relation R is

obviously

R = {(ke, Cm2
), (m2, r2)) | m2 ∈ M, Cm2

= Eke,r2
(m2)}.

Proto
ol for proving plaintext knowledge

Input: ke = (N,S, (a, b), Q) and Cm2
= r2Q+m2P1

Private input for the prover: m2 and r2

1. P 
hoosesm ∈ Z
/NsZ and 0 ≤ u < N s

at random. He 
omputesB = mP1 + uQ

and sends B to V .

2. V sends a random t-bit 
hallenge e to P .

3. P 
omputes w = m+ em2, z = u+ er2 and sends (w, z) to V .

4. V 
he
ks that wP1 + zQ = B+ eCm2
and a

epts if and only if this is the 
ase.

Lemma 4.5.5. The above proto
ol for proving plaintext knowledge is a Σ-proto
ol

proving knowledge of m2 and r2 su
h that Cm2
= r2Q+m2P1.

The proof follows immediately from Lemma 4.5.4.

4.5.6 1-out-of-2 Proto
ol

We now des
ribe a Σ-proto
ol that given two 
iphertexts C1, C2, and the publi
 key

ke proves that the prover knows one of the 
orresponding messages without revealing

whi
h one it is. This property is 
alled witness indistinguishability. As before this

is equivalent to proving that the prover knows one 
orresponding random value r

to two en
ryptions of 0, i. e., if C1 = Eke,r1
(0) = r1Q and C2 = Eke,r2

(0) = r2Q

are en
ryptions under the same publi
 key ke and the random number r1 and r2,
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respe
tively, to show that P knows either r1 or r2 without revealing either of the

values. Due to Lemma 4.5.3 and using the te
hniques from [25℄ we 
an immediately

build su
h a proto
ol. We will assume without loss of generality that the prover

knows r1 su
h that C1 = Eke,r1
(0) and where S denotes the honest-veri�er simulator

for the proto
ol for 
he
king whether an element is an en
ryption of 0 of Subse
tion

4.5.3.

1-out-of-2 proto
ol

Input: ke = (N,S, (a, b), Q), C1, C2

Private input for the prover: r1 with 0 ≤ r1 < N s
so that C1 = r1Q = Eke,r1

(0).

1. The prover P 
hooses randomly r with 0 ≤ r < N s
. He invokes the honest-

veri�er simulator S on inputs ke, C2 to obtain a 
onversation (A2, e2, z2). P


omputes A1 = rQ = Eke,r(0) and sends A1 and A2 to the veri�er V .

2. V 
hooses randomly a t-bit 
hallenge e and sends it to P .

3. P 
omputes e1 = e − e2, where w.l.o.g. e > e2, and z1 = r + e1r1. He sends

e1, z1, e2, z2 to V .

4. V 
he
ks whether A1, A2, C1, C2 ∈ E(Z/Ns+1Z) and that Eke,z1
(0) = A1 + e1C1

and Eke,z2
(0) = A2 + e2C2. He a

epts if and only if this is the 
ase.

Now Lemma 4.5.3 and the proof te
hniques from [25℄ imply the following Lemma.

Lemma 4.5.6. The above 1-out-of-2 proto
ol is a Σ-proto
ol.

4.6 Appli
ation to Multiparty Computation

Given a semanti
ally se
ure threshold homomorphi
 
ryptosystem and some aux-

iliary proto
ols it is possible to obtain general multiparty 
omputation proto
ols

whi
h are se
ure against an a
tive and stati
 adversary that 
orrupts any minority

of the players, see [24℄. For our threshold version of the generalised ellipti
 
urve

Paillier s
heme we 
onstru
ted the auxiliary proto
ols that are needed (see Se
tion

4.5). Hen
e, the proposed s
heme 
an be used to build su
h multiparty 
omputation
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proto
ols. In this se
tion we will summarise the results and ideas of the approa
h

by Cramer et al. [24℄.

The idea of multiparty 
omputation dates ba
k to the papers by Goldrei
h, Mi
ali,

Wigderson [46℄ and by Yao [84℄. They were able to prove that n players 
an e�-


iently 
ompute an agreed n-input fun
tion of their inputs in a se
ure way. In su
h

a multiparty 
omputation proto
ol se
urity means that everyone learns the 
orre
t

output while the priva
y of ea
h player's input is guaranteed. Note that the s
e-

narios 
onsidered in Chapter 3 belong to the same area. There are several di�erent

types of adversaries possible for su
h kind of problem, and we 
an distinguish be-

tween a
tive and passive 
orruption. If an adversary 
an 
orrupt a set of players

to make them behave the way he wants, we say that the adversary is a
tive, else if

the adversary obtains �only� the 
omplete information held by the 
orrupted players

while the players still are able to exe
ute the proto
ol 
orre
tly, he is 
alled passive.

If the set of 
orrupted players is �xed from the beginning, the adversary is 
alled

stati
. If the adversary 
an at any time during the proto
ol 
hoose to 
orrupt a

new player based on all information he has at this time, he is 
alled adaptive. The

proto
ols by Goldrei
h et al. and Yao 
an be proven se
ure against an a
tive, stati
,

polynomial time bounded adversary who 
an 
orrupt any set of at most n/2 − 1

players.

Several proto
ols for multiparty 
omputations have been proposed over the years to

improve e�
ien
y, see e. g. [23℄. Most of the proposed proto
ols have been based on

veri�able se
ret sharing s
hemes. A veri�able se
ret sharing s
heme allows a dealer

to se
urely distribute a se
ret s among a set of players, where the dealer and/or

some players may be 
heating. Here it is guaranteed that if the dealer is honest,

then the 
heaters obtain no information about s, and all honest players are able to

re
onstru
t the se
ret s even against the a
tions of the 
heating players.

The proposal by Cramer et al. basing multiparty 
omputation proto
ols on a thresh-

old homomorphi
 
ryptosystem instead of se
ret sharing s
hemes leads to more ef-

�
ient proto
ols sin
e it redu
es the total number of bits that have to be sent to

O(nσ|C|), where n is the number of players, σ is the se
urity parameter and |C| the

size of the 
ir
uit C 
omputing the desired fun
tion. All previous proto
ols whi
h

were se
ure against a
tive adversaries required Ω(n2σ|C|) bits to broad
ast.

The idea of Cramer et al. is basi
ally as follows: given a semanti
ally se
ure publi
-
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key 
ryptosystem with threshold de
ryption where the message spa
e M is assumed

to be a ring. (In our 
ase we have M = Z
/NsZ). The following homomorphi


properties are required: given en
ryptions E(a) and E(b) of a and b under the

same publi
 key we 
an e�
iently 
ompute an en
ryption of the sum E(a + b).

Furthermore, from an en
ryption E(b) and a plaintext a ∈ M it should be easy

to 
ompute a random en
ryption of E(ab). Obviously these properties are just the

additively homomorphi
 property and the s
alar-multipli
ativity whi
h hold for our

threshold de
ryption ECPS.

Finally, some se
ure sub-proto
ols must be available: a proto
ol for 
he
king if a

value is a valid 
iphertext, a proto
ol for proving the 
orre
tness of the multipli
ation

of an en
rypted value by a 
onstant, and a proto
ol for proving the knowledge of a

plaintext. Based on our s
heme these proto
ols were des
ribed in Se
tion 4.5.

To se
urely 
ompute an n-input fun
tion we 
onsider a 
ir
uit with addition and

multipli
ation gates 
omputing the fun
tion and evaluate the 
ir
uit gate by gate.

To start the multiparty 
omputation proto
ol ea
h player Pi, for 1 ≤ i ≤ n, publishes

an en
ryption E(xi) of his private input xi together with a Σ-proto
ol proving

his knowledge of xi, see Subse
tion 4.5.3. Any operation involving addition or

multipli
ation by a 
onstant 
an then be performed without further intera
tion

using the algorithms Add and Mixed-Mult of the en
ryption s
heme. Hen
e, we just

need a proto
ol for se
urely 
omputing an en
ryption of the produ
t E(c) = E(a · b)

given en
ryptions of E(a) and E(b) but not the values a and b themselves. This in

turn 
an be done by the following proto
ol:

Multiparty 
omputation proto
ol for multipli
ation of 
iphertexts

Input: E(a), E(b)

Output: E(c) = E(a · b)

1. Ea
h player Pi 
hooses a random value ri ∈ M and broad
asts an en
ryption

E(ri) of it. Furthermore, all players prove that they know their value ri using

the 
orresponding sub-proto
ol.

2. Let r = r1 + · · ·+ rn. All players 
an now 
ompute an en
ryption E(a+ r) by

applying iteratively the algorithm Add on E(a) and E(r1), . . . , E(rn). The so
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obtained 
iphertext E(a+r) is then de
rypted using the proto
ol for threshold

de
ryption. Now all players know a+ r.

3. Player P1 sets a1 = (a + r) − r1 while all other players Pi for 1 < i ≤ n set

ai = −ri. Note that every player is able to 
ompute an en
ryption of ea
h ai

and that we have a = a1 + · · · + an.

4. Ea
h player Pi 
omputes an en
ryption E(aib) = Mixed-Mult(ai, E(b)) and

broad
asts it together with a proof for the 
orre
tness of the multipli
ation us-

ing the 
orresponding sub-proto
ol from Subse
tion 4.5.4 on inputs E(b), E(ai)

and E(aib).

5. Let S be the set of players for whi
h the previous step su

eeded, and let Sc
be

the 
omplement of S. We now �rst 
ompute E(
∑

i∈Sc ai) using the algorithm

Add. Then using threshold de
ryption we de
rypt this 
iphertext E(
∑

i∈Sc ai)

whi
h gives us the value aSc :=
∑

i∈Sc ai. This allows everyone to 
ompute

an en
ryption E(aScb) by using the algorithm Mixed-Mult. From this and the

en
ryptions E(aib) for i ∈ S, all players are able to 
ompute an en
ryption

E(
∑

i∈S aib+ aScb), whi
h is indeed an en
ryption of ab.

At the �nal state the known en
ryptions of the output values 
an be de
rypted

using threshold de
ryption to obtain the fun
tion value. Intuitively this is se
ure if

the underlying 
ryptosystem is se
ure, sin
e (apart from the output) all values that

are de
rypted are either random values or values already known to the adversary.

The e�
ien
y of this proto
ol depends entirely on the e�
ien
y of the underlying

threshold de
ryption s
heme and the 
orresponding sub-proto
ols.

For a formal des
ription, a proof of se
urity and details see [24℄.

4.7 Appli
ation to Ele
troni
 Voting

In this se
tion we will des
ribe how our homomorphi
 threshold 
ryptosystem 
an

be used to obtain a multi-authority se
ret-ballot ele
tion s
heme that guarantees

robustness, universal veri�ability and 
omputational priva
y. Our 
onstru
tion is
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based on an idea of Cramer, Gennaro and S
hoenmakers [27℄ who proposed su
h

an ele
tion s
heme based on a threshold version of the ElGamal s
heme [37℄ (see

Se
tion 3.4.1). We build our voting proto
ol in an analogous way as the Damgård

et al. proto
ol presented in [32℄.

The s
heme des
ribed by Cramer et al. is based on a model by Benaloh et al.

[21, 9, 7℄ where the a
tive parties are divided into a set of voters V1, . . . ,Vm and a

set of tallying authorities A1, . . . ,An. Furthermore, a so-
alled bulletin board B is

needed whi
h is a

essible by all parties even passive observers to a
hieve universal

veri�ability. Su
h a bulletin board is like a publi
 broad
ast 
hannel with memory.

It has the property that any a
tive or passive party is able to read the 
ontents of it.

Furthermore, there is a designated se
tion for ea
h a
tive parti
ipant where he 
an

post his messages. Hen
e we 
an identify whi
h player ea
h message 
omes from.

Additionally it is not possible to delete any information from the bulletin board.

For instan
e, su
h a bulletin board 
an be implemented in a se
ure way by using

an already deployed publi
 key infrastru
ture and a server repli
ation te
hnique to

prevent denial of servi
e atta
ks.

In our voting proto
ol a voter simply posts a parti
ular en
ryption under the TECPS

of the vote to the bulletin board a

ompanied by a proof of validity that shows that

the ballot indeed 
ontains a valid vote. Here the ballot is en
rypted with the publi


key of the authorities. Sin
e the en
ryption method used is additively homomorphi
,

the �nal tally 
an be obtained as �sum� of all votes. Furthermore, it is veri�able

by any observer of the ele
tion against the �sum� of all submitted ballots. Due to

the properties of our threshold de
ryption s
heme the benign or malign failure of

some tallying authorities 
an be tolerated while the priva
y of the individual votes

will be guaranteed, i. e., the 
orre
tness of the de
ryption will be assured even in

the presen
e of mali
ious authorities whi
h ensures universal veri�ability. In the

proposed proto
ol the private key is never re
onstru
ted, and only used impli
itly

when the authorities 
ooperate to de
rypt the �nal tally.

We assume that the purpose of the ele
tion is to ele
t a winner among L 
andidates,

and that ea
h voter is allowed to vote for t < L 
andidates.
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Properties of ele
tions

There are many properties of ele
tion s
hemes that should be 
onsidered. We list

the properties that were 
onsidered in the approa
h by [27℄. These properties also

hold for our proto
ol.

Eligibility: Only eligible voters are able to vote and ea
h eligible voter 
an 
ast a

single vote.

Sin
e we assume that a bulletin board is available this property follows immediately.

Universal Veri�ability: The fairness of the ele
tion 
an be 
he
ked by any party

in
luding passive observers. That means that any party is able to 
he
k that the

published �nal tally is 
onsistent with the 
orre
tly 
ast ballots. This property also

in
ludes that any party 
an 
he
k whether ballots are 
orre
tly 
ast, and that only

invalid ballots are dis
arded.

Priva
y: Priva
y of an individual vote is assured against any reasonably sized


oalition of parti
ipants (ex
luding the voter himself), i. e., unless the number of


olluding parties ex
eeds our threshold k, di�erent ballots are indistinguishable irre-

spe
tive of the 
ontained votes. Information-theoreti
 priva
y is a
hieved when the

ballots are indistinguishable independent of any 
ryptographi
 assumption; other-

wise 
omputational priva
y is a
hieved.

Robustness: The faulty behaviour either benign or mali
ious of any reasonably

sized 
oalition of parties 
an be tolerated. This in
ludes the property that no 
oali-

tion of voters of any size 
an disrupt a large-s
ale ele
tion, i. e., we 
an dete
t and

dis
ard any 
heating voter.

No vote dupli
ation: It should be impossible to 
opy another voter's vote even

without knowing what the 
opied vote is.

No intera
tion between voters: During the exe
ution of the voting proto
ol the

voters do not have to intera
t with ea
h other.

As mentioned in Se
tion 4.5 we use the Fiat-Shamir heuristi
 whi
h enables us to

make our proofs non-intera
tively. The hash fun
tion needed will be denoted by h.

Sin
e we base the voting proto
ol on the TECPS, we further assume that an in-

stan
e of the threshold ECPS with publi
 key (N, s, (a, b), Q) has been set up. The
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tallying authorities Ai for 1 ≤ i ≤ n will a
t as de
ryption servers. To guarantee

the 
orre
tness of the �nal tally we also have to assume that N s > mL
, where m is

the number of voters and L the number of 
andidates. Note that this 
an always be

ful�lled by 
hoosing s or N large enough.

In the following voting proto
ol for two 
andidates we will use the notation ProofVi
(S)

as introdu
ed in [32℄. Here S denotes a logi
al statement whi
h indi
ates whi
h pro-

to
ol from Se
tion 4.5 will be used. ProofVi
(S) = (e, z) will be a bit string 
reated

by voter Vi. Vi uses the appropriate proto
ol that 
an be used to intera
tively prove

S. He 
omputes the �rst message a in this proto
ol, 
omputes e = h(a, S, ID(Vi))

where ID(Vi) is a unique publi
 string identifying Vi. He takes the result e of this

as the 
hallenge from the veri�er and 
omputes the 
orresponding answer z. Note

that we have to in
lude ID(Vi) in the input of h to prevent vote dupli
ation. Fur-

thermore, note that in all auxiliary proto
ols it 
an always be easily 
omputed what

a should have been given S, z, e, had the proof been 
orre
t. This is done by just

plugging z and e into the veri�ers 
he
k. Thus, su
h a proof 
an be 
he
ked e�-


iently by 
he
king whether e = h(a, S, ID(Vi)).

Now we are able to explain a proto
ol for the 
ase L = 2, i. e., a proto
ol in whi
h

the voter votes for one out of two 
andidates. Sin
e this is equivalent to a yes/no

vote, ea
h vote 
an be 
onsidered as '0' for no and '1' for yes.

Voting proto
ol for two 
andidates

1. Ea
h voter Vi de
ides on his vote vi. He 
omputes Ci = E(vi, ri), where ri

is 
hosen at random. He 
reates ProofVi
(Ci or Ci − P1 is an en
ryption of 0)

based on the 1-out-of-2 proto
ol of Subse
tion 4.5.6. He posts his en
rypted

vote together with the proof to the bulletin board B.

2. Ea
h tally authority Aj does the following:

• Set C = O.

• For all i: 
he
k the proof written by Vi on B. If it is valid, then set

C := C + Ci ∈ E(Z/Ns+1Z).

• Aj uses C as the input 
iphertext and exe
utes his part of the threshold

de
ryption proto
ol. He posts his result to the bulletin board B.
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3. After dis
arding invalid messages, the 
ombining of these de
ryption shares

written by the Aj's 
an now be done by anyone, i. e., the re
onstru
tion of the

plaintext 
orresponding to E. For simpli
ity we assume now that all votes are

valid. Then we obtain

C =
∑

i

E(vi, ri) = E(
∑

i

vi mod N s,
∑

ri mod N s).

Hen
e, the result of the de
ryption, i. e., the �nal tally is

∑
i vi mod N s

whi
h

is

∑
i vi sin
e we have N

s > m.

Analogously to [27℄ we 
an now prove the following:

Lemma 4.7.1. Assuming the hardness of the generalised ellipti
 
urve Paillier as-

sumption, our ele
tion s
heme provides universal veri�ability, 
omputational priva
y,

robustness and prevents vote dupli
ation. Furthermore, in the random ora
le model

no intera
tion between voters is needed.

Proof. Sin
e the proofs of validity for the ballots Ci are made non-intera
tively, they

are veri�able by any observer. Furthermore, any observer 
an 
he
k the �nal tally

with respe
t to all valid ballots. This gives us universal veri�ability.

Assuming the hardness of the generalised ellipti
 
urve Paillier assumption the k

out of ℓ TECPS is semanti
ally se
ure and hen
e no information about the vote

is leaked given E(vi, ri). If we assume that at most k − 1 tallying authorities are


orrupted, we obtain 
omputational priva
y of the individual votes.

Note that the proof of validity 
ast with ea
h vote is witness indistinguishable, i. e.,

it gives no hint on the 
orresponding witness used in the proof. Thus it does not

help to break priva
y.

Spe
ial soundness of the proofs of validity guarantees that a voter 
annot 
ast bogus

ballots. This ensures robustness with respe
t to mali
ious voters. Robustness with

respe
t to at most n − k mali
ious authorities is inherited from the robustness of

the key generation and de
ryption proto
ols.

The hash fun
tion h needed for the proofs of validity gets the user identity as input.

This prevents vote dupli
ation.
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Extension to Multi-Candidate Ele
tions

Instead of making a 
hoi
e between two 
andidates it is often required to 
hoose one

or more out of several 
andidates. There are several ways to ta
kle this problem,

i. e., to generalise the above approa
h to L > 2 
andidates. A very simple way as

des
ribed in [32℄ is to make L parallel yes/no votes as above. A voter votes 1 for

the 
andidates he wants and 0 for the others. Hen
e, ea
h voter Vi sends L votes in

parallel whi
h are of the following form:

Cij = E(vij, rij)

where 0 ≤ j ≤ L−1. Here, rij are 
hosen at random and vij is Vi's vote for 
andidate

number j. He also 
reates ProofVi
(Cij or Cij − P1 is an en
ryption of 0) based on

the 1-out-of-2 proto
ol of Subse
tion 4.5.6. He then 
omputes

∑L−1
j=0 rij mod N s

and

posts it to the bulletin board B. This proves that he voted for exa
tly t out of L


andidates sin
e any observer 
an 
he
k that

∑L−1
j=0 E(vij, rij) is an en
ryption of

t. Due to the proof of validity we know that all individual votes are either 0 or 1

whi
h shows that this 
he
k is su�
ient. Now by de
ryption of the L values Cij the

number of votes ea
h 
andidates re
eived is obtained.

Note that the 
omplexity of the des
ribed proto
ol is as well linear in the number

of voters as in the number of 
andidates.

4.8 Appli
ation to Commitment S
hemes

For a 
ommitment s
heme a new and very strong se
urity notion 
alled universal


omposability was introdu
ed by Canetti and Fis
hlin [17℄. This notion was adopted

by Damgård and Nielsen [33℄ who presented a new 
onstru
tion of universally 
om-

posable 
ommitment s
hemes based on so 
alled spe
ial mixed 
ommitment s
hemes.

Furthermore, they have shown that it is possible to base su
h a spe
ial mixed 
om-

mitment s
heme on the Paillier s
heme. Using their results we show that it is

possible to base a spe
ial mixed 
ommitment s
heme on a slightly modi�ed version

of the ECPS, and thus on the ellipti
 
urve Paillier assumption instead of Paillier's
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original assumption. The 
onstru
tion of Damgård and Nielsen is based on q one-

way homomorphisms whi
h will be introdu
ed in Subse
tion 4.8.2. Furthermore,

they prove that for the so obtain spe
ial mixed 
ommitment s
heme it is possible

to build proto
ols for proving Boolean relations between 
ommitted values de�ned

by any Boolean fun
tion as well as proto
ols for proving additive and multipli
ative

relations.

After explaining the idea behind 
ommitment s
hemes and explaining their main

properties we prove that it is possible to modify the ECPS in su
h a way that it

ful�lls the requirements of a q one-way homomorphism. Hen
e, using the results

of [33℄ we obtain a spe
ial mixed 
ommitment s
heme based on the ellipti
 
urve

Paillier assumption with exa
tly the same properties.

Commitment s
hemes are a fundamental primitive in both theory and pra
ti
e of


ryptography, e. g. for zero-knowledge proofs (e. g., [47, 14, 28℄), general fun
tion

evaluation proto
ols (e. g. [46, 43℄), 
ontra
t-signing, ele
troni
 
ommer
e or 
oin

�ipping. Informally in a 
ommitment s
heme a player P is able to 
ommit to a

self-
hosen value of a �nite set in su
h a way that he 
annot 
hange his mind later

on. Furthermore, he does not have to reveal his 
hoi
e to other players V at this

time, i. e., to reveal to whi
h value he is 
ommitting to. He may to 
hoose to do so

at some later time though.

As an informal example 
onsider the following proto
ol between two players P and

V :

1. P wants to 
ommit to a bit b. To do so, he writes b on a pie
e of paper and

puts the paper in a box. He lo
ks the box using a padlo
k.

2. P gives the box to V .

3. If P de
ides to open the 
ommitment he gives V the key to the padlo
k.

There are two basi
 properties of su
h a s
heme whi
h 
an be satis�ed either un-


onditionally or relative to a 
omplexity assumption: The binding property ensures

that a 
heating player P 
annot 
hange the value he has 
ommitted to at a later

time, i. e., he 
annot 
hange what is inside the box. Hen
e, when the box is opened,

we know what is revealed really was the 
hoi
e that P 
ommitted to originally. The
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hiding property guarantees that a 
heating V 
annot obtain the value P 
ommitted

to until P de
ides to open his 
ommitment sin
e V 
annot look into the box until he

re
eived the key to the padlo
k from P . Note that it is not possible for a s
heme to

be simultaneously perfe
tly binding and perfe
tly hiding. Here, by perfe
t we mean

that an unbounded re
eiver V gets zero information about the bit b, respe
tively an

unbounded 
ommitter P 
an 
hange his mind about b with probability zero.

Many di�erent 
ommitment s
hemes are known in the literature (e. g., [12, 63, 35,

64, 34℄) whi
h are based on di�erent 
omplexity assumptions and various notions

of se
urity. Some of them realise this basi
 fun
tionality by basing it on physi
al

pro
esses like e. g. noisy 
hannels or quantum me
hani
s, while others base it on

distributing information between many players 
onne
ted by a network. In the 
on-

stru
tion by Damgård and Nielsen the 
ommitment s
heme is a proto
ol between

two players although 
ommitment s
hemes may be implemented as a proto
ol be-

tween more players.

Their s
heme is a universally 
omposable 
ommitment s
heme with a 
onstant ex-

pansion fa
tor that 
an be instantiated in either perfe
tly hiding or perfe
tly binding

versions. Universal 
omposability as introdu
ed in [17℄ guarantees that se
urity is

maintained even when an unbounded number of 
opies of the s
heme are running


on
urrently in an adversarially 
ontrolled way. Thus it is a very strong notion of

se
urity. Furthermore, it implies non-malleability and se
urity against adaptive ad-

versaries. Damgård and Nielsen based the 
onstru
tion on a new primitive whi
h

they 
all mixed 
ommitment s
heme and whi
h will be de�ned in Subse
tion 4.8.1.

Basing the implementation on the ECPS we 
an obtain a mixed 
ommitment s
heme

with exa
tly the same properties.

To intuitively explain the main ideas of [33℄ we think of the simplest type of 
ommit-

ment s
hemes where both 
ommitting and opening are non-intera
tive. To 
ommit

to a messagem the 
ommitter runs an algorithm 
ommitK where K denotes a publi


key and whi
h has as input the message m together with a uniformly random string

r. Hen
e, he 
omputes c = 
ommitK(m, r) and sends c to the re
eiver. To open

the 
ommitment, the 
ommitter sends m and r to the re
eiver who veri�es that

c = 
ommitK(m, r). Here hiding means that given just c the re
eiver does not learn

m and binding means that the 
ommitter 
annot 
hange his mind by 
omputing

m′, r′ where c = 
ommitK(m′, r′) and m′ 6= m.
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In a trapdoor 
ommitment s
heme there is a pie
e of trapdoor information tK whi
h

is asso
iated to ea
h publi
 key K. This, if known, allows the 
ommitter to 
hange

his mind. Obviously from the existen
e of su
h trapdoor information it follows that

in su
h a s
heme the binding property 
annot be satis�ed un
onditionally. In most

trapdoor s
hemes it is even possible to 
ompute from tK 
ommitments that 
an be

opened in any way desired. This spe
ial type of trapdoor s
hemes is 
alled equivo-


able.

Furthermore, it is possible to 
onstru
t 
ommitment s
hemes where a di�erent type

of trapdoor information t′K exists, so that the knowledge of t′K guarantees that we


an e�
iently 
ompute m from 
ommit(m, r). This property immediately implies

that su
h s
hemes 
annot be un
onditionally hiding. This type of 
ommitment

s
heme is 
alled extra
table.

In the s
heme of Canetti and Fis
hlin in [17℄ the hiding property and binding prop-

erty are both ful�lled only 
omputationally. This is owing to their 
onstru
tion in

whi
h it seems that a s
heme is needed that is simultaneously extra
table and equiv-

o
able to be universally 
omposable. As already mentioned in [33℄ a new te
hnique

for the 
onstru
tion of universally 
omposable 
ommitments based on a so-
alled

mixed 
ommitment s
heme is proposed. Basi
ally a mixed 
ommitment s
heme is

a 
ommitment s
heme whi
h on some of the keys is perfe
tly hiding and equivo-


able, these keys are 
alled E-keys, and on some of the keys perfe
tly binding and

extra
table, these keys are 
alled X-keys. Note that obviously, a key 
annot be both

X- and E-key. The basi
 
onstru
tion of this te
hnique by Damgård and Nielsen

is neither perfe
tly binding nor perfe
tly hiding. However, it is possible to modify

their basi
 s
heme to obtain a 
ommitment s
heme that 
an be instantiated in either

perfe
tly binding or perfe
tly hiding.

4.8.1 Mixed Commitments

The formal de�nition of mixed 
ommitment s
hemes given in [33℄ is as follows:

De�nition 4.8.1. By a mixed 
ommitment s
heme we mean a 
ommitment s
heme


ommitK with some global system key N , whi
h determines the message spa
e MN

and the key spa
e KN of the 
ommitments. The key spa
e 
ontains two sets, the

E-keys and the X-keys, for whi
h the following holds:
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Key generation:

One 
an e�
iently generate a system key N along with the so-
alled X-trapdoor

tN . One 
an, given the system key N , e�
iently generate random 
ommitment keys

and random X-keys. Given the system key, we 
an e�
iently generate an E-key K

along with the so-
alled E-trapdoor tK .

Key indistinguishability:

Random E-keys and random X-keys are both 
omputationally indistinguishable from

random keys as long as the X-trapdoor is not known.

Equivo
ability:

Given an E-key K and an E-trapdoor tK we 
an generate fake 
ommitments c, dis-

tributed exa
tly as real 
ommitments, whi
h 
an later be opened arbitrarily, i. e.,

given a messagem we 
an 
ompute uniformly random r for whi
h c = 
ommitK(m, r).

Extra
tion:

Given a 
ommitment c = 
ommitK(m, r), where K is an X-key, we 
an, given the X-

trapdoor tN , e�
iently 
ompute m, where m is uniquely determined by the perfe
t

binding.

Note that from key indistinguishability it follows that as long as the X-trapdoor is

not known the s
heme is 
omputationally hiding for all keys. Furthermore, it implies

that as long as neither the X-trapdoor nor the E-trapdoor is known the s
heme is


omputationally binding for all keys.

For the 
onstru
tion based on the idea of Damgård and Nielsen a few spe
ial re-

quirements on the mixed 
ommitment s
heme are needed:

A spe
ial mixed 
ommitment s
heme is a mixed 
ommitment s
heme with the fol-

lowing further properties: The message spa
e MN and the key spa
e KN are �nite

groups in whi
h it is possible to 
ompute e�
iently. Furthermore, the ratio of E-

keys over the total number of keys is negligible and the ratio of X-keys over the total

number of keys is negligible 
lose to 1. This implies that there is only a negligible

fra
tion of keys whi
h is neither E-key nor X-key.

As last requirement the s
heme should be of a parti
ular form. This is ensured by

a transformation. The message spa
e of the so-obtained transformed s
heme is the

same, but the keys are now of the form (K1, K2). The 
orresponding E-keys are
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pairs of E-keys and the 
orresponding X-keys are pairs of X-keys. As before this


onstru
tion leaves only a negligible fra
tion of keys whi
h is neither E-key nor X-

key. To 
ommit to a given message m we 
ompute (
ommitK1
(m̄1),
ommitK2

(m̄2))

where m̄1 and m̄2 are uniformly random values for whi
h m = m̄1 +m̄2. If both keys

are X-keys, then m̄1 and m̄2 and thus m 
an be 
omputed by extra
tion. Note that

all other properties of a spe
ial mixed 
ommitment s
heme are also ful�lled under

this transformation.

4.8.2 Spe
ial Mixed Commitment S
hemes Based on q One-

Way Homomorphisms

In [33℄ the notion of extra
table q one-way homomorphisms was introdu
ed. It

extends the de�nition of q one-way homomorphism generators from Cramer and

Damgård [22℄. Let G and H be �nite abelian groups and let H/f(G) be a 
y
li


group with only large prime fa
tors in its order. The idea is to 
onsider an easily


omputable homomorphism f : G → H. Furthermore, without a trapdoor random

elements of f(G) should be 
omputationally indistinguishable from elements 
hosen

randomly from all over H. Note that this implies that f is hard to invert if no

trapdoor is known. Given su
h a trapdoor asso
iated with f it should be easy to

de
ide about the status of an element in H. More formally, extra
table q one-way

homomorphisms are de�ned as follows [33℄:

A family of extra
table q one-way homomorphisms is given by a probabilisti
 poly-

nomial time generator G whi
h on input 1σ
where σ denotes the se
urity parameter,

outputs a des
ription of an 8-tuple (G,H, f, g, q, b, b′, t), where G and H are groups,

f : G → H is an e�
iently 
omputable homomorphism, g ∈ H\f(G), q, b, b′ ∈ N,

and t is a string 
alled the trapdoor. Let F := f(G). It is required that gF generates

the fa
tor group H/F . Furthermore, ord(g) = |H/F | should be superpolynomial in

the se
urity parameter σ, e. g. 2σ
, ord(g)|q and b is a publi
 lower bound on ord(g),

i. e., 2 ≤ b ≤ ord(g) ≤ q. A generator is said to have publi
 order if b = ord(g) = q.

Also b′ is superpolynomial in σ (e. g. 2σ/2
) and its order is a publi
 lower bound

on the prime fa
tors in ord(g), i. e., all prime fa
tors in ord(g) are at least b′. In


ontrast to [33℄ we write operations in G and H additively. Finally, it is required

that in both groups G and H we 
an add, multiply by an integer, take inverses and
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sample random elements in probabilisti
 polynomial time given (G,H, f, g, q, b, b′).

The �nal 
entral requirements are as follows:

Indistinguishability: Random elements from F are 
omputationally indistinguish-

able from random elements from H given (G,H, f, g, q, b, b′).

Extra
tability: A generator is 
alled fully extra
table if given (G,H, f, g, q, b, b′, t)

and y = ig + f(r) we 
an 
ompute i mod ord(g) in probabilisti
 polynomial time.

Note that given the 8-tuple (G,H, f, g, q, b, b′, t) it is easy to 
ompute ord(g).

q-invertibility: Given (G,H, f, g, q, b, b′) and y ∈ H, it is easy to 
ompute x so

that qy = f(x). Note that this does not 
ontradi
t indistinguishability: sin
e q is a

multiple of ord(g), it is always the 
ase that qy ∈ F .

Using su
h an extra
table q one-way homomorphism Damgård and Nielsen [33℄ de-

s
ribed a way to transform it into a spe
ial mixed 
ommitment s
heme: The message

spa
e of the 
ommitment s
heme will be

Z
/bZ and the key spa
e K will be the group

H. Hen
e both are �nite groups in whi
h we 
an 
ompute e�
iently. To 
ommit

to a message m ∈ Z
/bZ given a key K ∈ K 
hoose r ∈ H randomly and 
ompute

the 
ommitment as c = commitK(m, r) := mK + f(r). The E-keys will be the set

F = f(G) with 
orresponding E-trapdoor tK = f−1(K). Due to the requirement

that ord(g) is superpolynomial in the se
urity parameter σ we ful�ll the requirement

that the number of E-keys is negligible over the total number of keys. The X-keys

will be elements of the form K = ig + f(rK) where i is invertible in Z
/

ord(g)Z with

X-trapdoor t. By the requirement that all prime fa
tors of ord(g) are large, the

ratio of X-keys over the total number of keys is negligible 
lose to 1 as required

for a spe
ial mixed 
ommitment s
heme. Furthermore, the X-keys 
an be sampled

e�
iently given t sin
e ord(g) is know.

Key indistinguishability follows dire
tly from the requirement that random elements

in f(G) and random elements 
hosen from all of H are 
omputationally indistin-

guishable. To show equivo
ability we assume that the E-key K = f(rK) and E-

trapdoor tK = rK is given. A fake 
ommitment is generated as c = f(rc) for rc ∈ H

uniformly random. Assume that we are given m ∈ Z
/bZ. Let r := −mrK + rc. Then

r is uniformly random and c = f(rc) = f(mrK + r) = mK+ f(r) = 
ommitK(m, r).

This proves that tK = rK gives equivo
ability, i. e., fake 
ommitments that are

distributed exa
tly as real 
ommitments and 
an later be opened arbitrarily 
an be
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generated. To show extra
tability we assume thatK is an X-key, i. e.,K = ig+f(rK)

with i invertible in Z
/

ord(g)Z, and a 
ommitment c = mK+f(r) = img+f(mrK +r)

for m ∈ Z
/bZ is given. Using fully extra
tability, i. e., using the X-trapdoor t we


an 
ompute im mod ord(g) from c and furthermore, i mod ord(g) 
an be 
om-

puted from K. Sin
e i is invertible we 
an then 
ompute m mod ord(g) = m. The

transformed s
heme has keys (K1, K2) whi
h are pairs of keys and we 
ommit as


ommitK1,K2
(m, (r1, r2,m1)) = (m1K1 + f(r1),m2K2 + f(r2)) where r1, r2 are ran-

dom elements in H and m2 = m −m1 mod q. Hen
e all requirements for a spe
ial

mixed 
ommitment s
heme are ful�lled.

Furthermore, Damgård and Nielsen develop e�
ient proto
ols for proving in zero-

knowledge relations among 
ommitted values for the spe
ial mixed 
ommitment

s
heme. See [33℄ for details of these proto
ols and for further properties and the

proof of se
urity of the 
ommitment s
heme.

4.8.3 The ECPS as an Example for a q One-Way Homomor-

phism

We 
an now show that a slightly modi�ed version of the ECPS (see Se
tion 4.2) is

an example of a q one-way homomorphism. Hen
e it 
an be used to 
onstru
t a

spe
ial mixed 
ommitment s
heme as des
ribed above.

To develop the 
onstru
tion in an analogous manner as in [33℄ we have to modify

the random 
ontribution of the ECPS to build a q one-way homomorphism and

hen
e to 
onstru
t a spe
ial mixed 
ommitment s
heme: Let N be an RSA modulus

(and let s = 1 if we 
onsider the generalised ECPS). Furthermore, let P1 and M be

the appropriate values 
omputed in the key generation phase of the ECPS for an

ellipti
 
urve with (a, b) as parameters. We have that E(Z/N2Z) ≃ G1 × G2 where

G1 ≃ Z
/NZ, thus |G1| = N and G2 is a group of order M whi
h is hard to 
ompute

unless the fa
torisation of N is known, see [42℄. Before de�ning the homomorphism

f we 
onsider the map Φ : (m,R) 7→ mP1+NR where m ∈ Z
/NZ and R is a random

point on E(Z/N2Z).



4.8 Appli
ation to Commitment S
hemes 93

Remark 4.8.2.

1. Note that we 
annot dire
tly 
hoose a random element in E(Z/N2Z) without

the knowledge of the fa
tors of N . To solve this we �x a number of points

Q1, ..., Qt at key generation time, i. e., when the prime fa
tors of N are known,

and then let R = r1Q1 + · · · + rtQt. By tuning t and the size of the numbers

ri for 1 ≤ i ≤ t this will generate an appropriate approximation to a uniform


hoi
e from E(Z/N2Z). 3

2. Note that the random 
ontribution in this map is de�ned di�erent than in

the original ECPS (see Se
tion 4.2): Instead of de�ning it as a �xed point

Q multiplied by a random number, we take a random point R on the ellipti



urve E(Z/N2Z) multiplied by N whi
h gives us a random element in the group

G2.

Obviously for the map Φ it holds that

kΦ(m1, R1) + Φ(m2, R2) = (km1 +m2)P1 +N(kR1 +R2)

= Φ(km1 +m2, kR1 +R2).

Note that given a point mP1 +NR ∈ E(Z/N2Z) it is possible to 
ompute m ∈ Z
/NZ

e�
iently if M (or equivalently the fa
torisation of N , see [42℄) is known, sin
e

we 
an multiply by M to obtain MmP1 and then pro
eed as in the de
ryption

phase des
ribed in Se
tion 4.2. Furthermore, if the ellipti
 
urve Paillier assumption

holds elements of the form Φ(0, R) are indistinguishable from elements of the form

Φ(m,R), where R is a random point in E(Z/N2Z) and m is any �xed element in

(Z/NZ)∗.

Based on this observation we 
an now show that relative to the ellipti
 
urve Pail-

lier assumption this modi�ed version of the ECPS leads to a fully extra
table gen-

erator with publi
 order: Let N be an RSA modulus with prime fa
tors of bit

length σ/2. Let both groups G and H be E(Z/N2Z) and let f(R) = NR whi
h

is an element in F = G2 and obviously e�
iently 
omputable. Let g = P1, and

3

In parti
ular, by the Chinese Remainder Theorem it follows immediately that t = 5 is enough

to generate random points. However, it 
an also be shown that t = 4 is enough.
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let the trapdoor t be the group order M or equivalently the prime fa
tors of N .

We de�ne b = q = N to obtain a generator with publi
 order. We have that

ord(g) = N = |E(Z/N2Z)/G2|. Hen
e ord(g) as well as b′ = 2σ/2−1
is superpoly-

nomial in σ. Obviously given (G,H, f, g, q, b, b′) we 
an add points on E(Z/N2Z)

(see Se
tion 4.1), multiply them by integers, take inverses of points in E(Z/N2Z)

in probabilisti
 polynomial time. Additionally, we 
an sample random elements in

E(Z/N2Z) as noted above. Furthermore, the ellipti
 
urve Paillier assumption guar-

antees indistinguishability. If we are given (G,H, f, g, q, b, b′) and additionally the

trapdoor t = M we 
an 
ompute i mod N given ig + f(R) = iP1 + NR using the

de
ryption algorithm, i. e., multiplying by M . This shows that the generator is fully

extra
table. The last property that has to be veri�ed is q-invertibility whi
h follows

immediately from the de�nition.

Hen
e, using the result of Damgård and Nielsen [33℄ as des
ribed in Subse
tion 4.8.2

we obtain the following theorem:

Theorem 4.8.3. Based on the ECPS it is possible to build a spe
ial mixed 
om-

mitment s
heme with message spa
e

Z
/NZ with proofs of relations of the form

m = f(m1,m2, . . . ,ml) where f is a Boolean predi
ate and l = O(log(k)) and proofs

of additive and multipli
ative relations modulo N .



Chapter 5

Con
lusions and Open Questions

This thesis dealt with homomorphi
 
ryptosystems and their appli
ations. In Chap-

ter 2 we have e�
iently 
onstru
ted an algebrai
ally homomorphi
 
ryptosystem

given a homomorphi
 
ryptosystem on a spe
ial non-abelian group. Designing su
h

an algebrai
ally homomorphi
 
ryptosystem has been an open problem for more

than 20 years sin
e a positive result leads to e�
ient and simple solutions to several


ryptographi
 proto
ols. We were able to partially solve this long standing open

problem by redu
ing it to the sear
h for spe
ial e�
ient homomorphi
 
ryptosys-

tems.

The solutions presented in Chapter 3 were based on the idea of 
onsidering bran
hing

programs instead of 
ir
uits as a 
omputational model for fun
tions. By su
h means

we were able to provide non-intera
tive and provably se
ure proto
ols to en
rypt

fun
tions given by polynomial bran
hing programs in su
h a way that they are

still exe
utable. Hen
e we enlarge the 
lass of en
ryptable fun
tions from NC1
to

polynomial bran
hing programs. This is an improvement of existing solutions and -

to the best of our knowledge - there are no 
on
rete fun
tions known that 
annot be

represented by polynomial bran
hing programs. Future resear
h will show if there

exist solutions based on homomorphi
 s
hemes that are independent of the size of the

underlying fun
tion. Finally, owing to this enlargement the question arises whether

algebrai
ally homomorphi
 
ryptosystems are still ne
essary for spe
i�
 appli
ations

or whether homomorphi
 
ryptosystems are su�
ient.
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In Chapter 4 we 
onstru
ted a threshold de
ryption version of the ellipti
 
urve

Paillier s
heme. This version is espe
ially suited for many appli
ations sin
e various

powerful auxiliary proto
ols 
an be built based on it. Our proto
ols are the �rst

ellipti
 
urve versions of this kind. It is interesting if there exist further ellipti
 
urve

versions of the Paillier s
heme that are as powerful as our s
heme, i. e. that lead

to the same proto
ols. Furthermore, one 
ould analyse our results to determine the

spe
i�
 properties required of the underlying 
ryptosystem to obtain all mentioned

auxiliary proto
ols.
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