Provably Secure Substitution of Cryptographic Tools

Lea Kissner David Molnar
leak@cs.cmu.edu dmolnar@cs.berkeley.edu

Abstract

Many cryptographic protocols secure against malicious players use specially designed cryptographic
tools. Essentially, these special tools function much like less-expensive tools, but give extra ‘powers’
to a reduction or simulation algorithm. Using these powers, cryptographers can construct a proof
of security using standard techniques. However, these powers are not available to either the honest
parties or the adversary. In a large class of protocols, by replacing the expensive, specially designed
cryptographic tool with a corresponding less-expensive tool, we can improve the protocol’s efficiency
without changing the functionality available to either the adversary or the honest parties. The key
motivating question we address in this paper is whether the new, ‘substituted’ protocol is still secure.

We introduce a framework for reasoning about this question. Our framework uses translators:
special purpose oracles that map outputs of one cryptographic tool to corresponding outputs of a
different tool. Translators are similar to, but generally weaker than, the “angels” of Prabhakaran and
Sahai [29]. We introduce the notion of substitution-friendly protocols and show that such protocols
remain secure after substitution in our framework. We also leverage existing proofs of security; there
is no need to re-prove security from scratch. We demonstrate our framework with a non-interactive
non-malleable bit commitment protocol.

Keywords: secure substitution, proof techniques, simulation proof, protocols

1 Introduction

In the past two decades, researchers have developed techniques to construct proofs of security for cryp-
tographic protocols. These methods have greatly advanced our ability to make rigorous guarantees of
security. Often, however, one must introduce additional overhead to the protocol or utilize additional
assumptions in order to prove security using these techniques.

As an illustration, consider trapdoor commitment schemes. These are commitment schemes with a
“public key”’; knowledge of the corresponding private key allows one to open commitments to any value.
In some protocols, the private key is available only to the simulator in the proof and used only in the
proof of security. In this case, intuitively, the trapdoor commitment ‘behaves like’ a standard commitment
scheme to both the honest and malicious players. Unfortunately, trapdoor commitments are far more
expensive than the non-trapdoor variety.

Use of trapdoor commitments is just one example of a widespread pattern in proofs of security for
cryptographic protocols. Protocols include a ‘back door’, often at great expense, necessary for the proof
of security yet inaccessible during normal execution (e.g. [17, 2, 9, 18, 32, 15, 12, 5] and others). Indeed,
if these back doors were accessible, then adversaries could use them to break the security of the protocol.
Unfortunately, adding such a ‘back door’ may require an expensive cryptographic tool. However, it was an
open question whether these expensive tools are needed for secure protocols and whether removing these
back doors (and thus increasing efficiency) can be done without compromising the protocol’s security.

In this paper, we introduce a new framework to analyze the security of such modified protocols, in
which tools with back doors are replaced by ‘workalike’ tools without back doors. This substitution allows

us to greatly increase the efficiency of many protocols and often to remove extraneous assumptions and
the necessity for trusted setup.

Our argument, unfortunately, is not as simple as taking the adversary against the substituted protocol
and performing a standard reduction. An adversary can easily detect that the cryptographic tool he is
using has changed! However, many protocols utilize an expensive cryptographic tool as a black box. We
leverage this property to show that the execution of the protocol using this black-box cryptographic tool
is, in a meaningful sense, equivalent to execution with a workalike tool. As the original protocol has
already been proved secure against malicious players, we can thus conclude that the protocol utilizing a
workalike tool is also secure.

Overall, we make the following contributions. In Section 4, we introduce a novel framework for
proving security in which translators map outputs of one cryptographic tool to outputs of a different
cryptographic tool, and define sufficient conditions for secure substitution of one cryptographic primitive
for another in a protocol. We show in Section 5 that if these conditions are met, then many cryptographic
security properties are preserved after substitution. Our security proofs allow us to re-use existing proofs
of security for cryptographic protocols. To show the simplicity of applying secure substitution, we walk
through a coin-flipping example in Section 7. Finally, in Section 8, we show how our techniques yield
a non-interactive, non-malleable commitment scheme without a common reference string, which to the
best of our knowledge has not been constructed in the standard model.

We stress that this work is intended as a preliminary step towards reconciling practical and provable
protocols. In particular, we do not address the question of general composition of cryptographic proto-
cols, in the sense of Canetti’s universal composability framework. Nothing in our framework precludes
composition, but we focus first on showing secure substitution for single protocols. A second limita-
tion is that our current work takes translators as special entities with special powers used only for the
purposes of the proof, in a manner similar to Prabhakaran and Sahai’s “angels” [29]; in Section 2 we
discuss this and other related work. In Section 6 we suggest possible ways to realize translators without
special assumptions, but we have no such constructions at this time. Nevertheless, we show that one can
use the translator framework to leverage existing proofs of security to obtain new proofs of security for
more efficient, related protocols. Before this work there were no known analysis techniques for this class
of protocols, and thus our work represents an important step towards improving the state of provable
security for efficient protocols.

2 Related Work

Virtually all previous work on protocols provably secure against malicious players utilizes expensive
cryptographic tools or additional assumptions necessary only for the proof of security. For example, in
a simulation proof with a common reference string, the simulator can create the CRS so that he knows
the secret trapdoor key. This secret key can be utilized to allow the simulator to ‘cheat’ by opening a
trapdoor commitment to any value. During normal execution, however, the CRS is chosen uniformly at
random. Therefore, in normal execution, no party knows the secret key; with overwhelming probability,
neither adversaries nor honest parties can cheat when opening a trapdoor commitment.

Many examples exist of “special powers” available only to the simulator; we list only a few in this
section. Blum, Feldman, and Micali create a non-interactive zero-knowledge proof using a CRS divided
into elements of Z¥; the simulator can generate a CRS in such a way that it knows which elements are
quadratic residues, but neither the adversary nor the honest player can determine this without violating
the Quadratic Residuosity Assumption [8]. Feige, Lapidot, and Shamir use a witness-hiding proof of
a disjunction that either a string z is in a language L or that part of a common reference string is
pseudorandom [17]. A simulator can create a pseudorandom CRS, but normal players cannot. Damgard

showed how a simulator that knows a secret trapdoor commitment key can perform concurrent simulation
by opening trapdoor commitments after seeing a verifier’s challenges [13]. More recently, Barak’s non-
black-box techniques in zero-knowledge protocols involve proving, roughly, that either a statement is
correct or that the prover knows the verifier’'s code [2]. A simulator can know the verifier’s code, but
normal players cannot.

In the area of commitment schemes, Di Crescenzo, Ishai, and Ostrovsky used an equivocal commitment
with the secret key known to the simulator to construct a non-mallable commitment [15]. The efficiency
of such a scheme was improved by Di Crescenzo, Katz, Ostrovsky, and Smith [12]. Canetti and Fischlin
used a scheme with two different types of trapdoors to create a universally composable commitment [9)].
Damgard and Nielsen improved on the efficiency of their construction [32]. Gennaro introduced “multi-
trapdoor” commitments, in which each party of a protocol might have a different trapdoor key [18].

Los Angeles Network Security, Universal Composability, indifferentiability, and the Reactive Systems
framework are techniques to prove the security of the composition of multiple cryptographic systems [30,
10, 28]. Our current work does not address such composition, although it is not ruled out by our approach;
in future work, we intend to apply our techniques to composed settings. Instead our work focuses on
formalizing an intuitive sense that two protocols which effectively differ very little during normal execution
are ‘equivalent’ in practice. We do not construct protocol simulators to prove security, like those used in
the above techniques. This allows us to analyze a large class of protocols for which we are aware of no
previous security results.

In some sense, our translators resemble the “imaginary angels” in the Los Angeles Network-Aware
Security framework of Prabhakaran and Sahai [30]. Prabhakaran and Sahai’s superpolynomial angels
find collisions for certain carefully-chosen instances of a collision-resistant hash function. Like angels, our
translators are entites introduced for purposes of a security proof. Our translators, in contrast, do not
explicitly “break” any security properties, nor must they necessarily be superpolynomial. Instead, they
map outputs of one tool to outputs of a different tool.

3 Preliminaries

Allowed malicious adversaries. We use the notion of an allowed adversary; this means that we
consider adversaries in a particular class of algorithms, such as all probabilistic polynomial time (PPT)
algorithms. however, our results do not depend on the choice of the class. The standard definition of
cryptographic security for multi-party computation (see, e.g., [19]) is based on a comparison between the
ideal model and a trusted third party (TTP), where a malicious party may give arbitrary input to the
TTP. This security definition is also limited to the case where at least one of the parties is honest.

A simulation proof is a common method of proving security under such a definition: the simulator G
provides a concrete method of translating any strategy executed by I' to a strategy in the TTP model.
We illustrate such a proof in Figure 1.

Indistinguishability. Let D;, D> be probability distributions over arbitrary domains. Denote the
samples x1 < D1, x9 < Dy. x1 ~ x9 if, for any allowed algorithm D (i.e. an allowed adversary) D,
|Pr[D(x1) = 1] — Pr[D(x2) = 1]| is negligible [24]. If the allowed class of adversaries consists of proba-
bilistic polynomial time adversaries, we say that D; and Ds are computationally indistinguishable [24].

Indifferentiability. Let two tools Z,) have private interfaces (accessible to the honest play-
ers T) Z!, Y' and public interfaces (accessible to the malicious players I') 22,)2, respec-
tively.)Y is indifferentiable from Z, denoted Y C Z, if there exists an algorithm & such

The simulator communicates with the malicious parties ' according to the

protocol. Using his special abilities as a simulator, he obtains their private

inputs, submits this data to the trusted third party, and communicates the
result returned by the trusted third party to the malicious parties.

Private inputs of
malicious parties

Private
input

Trusted
third party

Result
~ resie i':g\;?te Result
party
Figure 1: Basic outline of a standard simulation proof.
CRS TPk CRS TPk
T(Z) rz) | | 1) L) | | 1) Q)

C1=TCOmTpk(b1) 01:Com(b1) c1:C0m(b1)
co=T ComTpy(b2) ca=Com(b2) ca=Com(b2)

co=ba,r2 ca=ba,r2 ca=ba,r2

c1=b1,m c1=b1,m c1=b1,m
Result b; P by Result b; ® by Result b; & by

(a) Simulatable with CRS

(b) Efficient with CRS

(c) Efficient without CRS

Figure 2: Three variants of a coin-flipping protocol. In (a), a trapdoor commitment scheme TCom with a common
reference string (CRS) allows a simulator to manipulate the result of the protocol. The protocol in (b) more
efficiently duplicates this functionality for all real-world players using a more-efficient commitment scheme Com.
In protocol (c¢), we have removed the common reference string required in protocol (a).

that for any allowed distinguisher D, ‘Pr [Dyl’yQ = 1] —Pr [D317322 = 1” (in the original notation,
|Pr [D(V',)?) = 1] — Pr [D(2',8(2?)) = 1]|) is negligible [23].

4 Definitions

In this section, we formally define the novel terms used in this paper. For clarity, we show how each of
these terms applies to the example protocols in Figure 2.

The protocol of Figure 2(a) utilizes TCom, while the protocols of Figure 2(b) and 2(c) utilize Com.
Both TCom and Com are examples of cryptographic tools.

Definition 1. A cryptographic tool is a Turing machine that has a defined set of interfaces, utilized
in cryptographic protocols. Fach interface operates as follows: when data is written to an input tape, the
corresponding function (defined as part of the cryptographic tool) is computed on that input. The result of
that computation is written to the corresponding output tape. The tool may also specify that only certain
players may have access to an interface; this restriction is generally enforced by means of a secret key,
such as in decryption.

Both TCom and Com are concrete instantiations of a single ideal cryptographic tool; this tool has
interfaces for commitment and decommitment. In addition, this ideal tool has a ‘cheating’ interface which

is only accessible to the simulator, as used in the TCom tool. Because this interface is not accessible to
players in the real world, both TCom and Com effectively function like this ideal tool.

Definition 2. An ideal tool I is a cryptographic tool, which may be accessed as an oracle by all players,
with a defined set of interfaces Iy, ..., Ip.

One way that a concrete tool can ‘function like’ an ideal tool is through simulation security. TCom
is simulation-secure with respect to the ideal commitment tool.

Definition 3. A tool Z is simulation-secure with respect to some ideal tool I if there exists a
simulator that establishes that no adversary I' can, with non-negligible probability, gain more information
by interaction with the interfaces of Z than by use of I. That s, there exists a PPT algorithm S such that
the distribution of transcriptions of the interaction of any allowed adversary I' with Z is indistinguishable
from the interaction of I" with S(I).

Another way that a concrete tool can ‘function like’ an ideal tool is by indifferentiability. Com is
indifferentiable from a suitably-defined ideal commitment tool. Because both TCom and Com function
like a suitably-defined ideal tool, Com is a workalike of TCom.

Definition 4. Tool Y is a workalike of tool Z for ideal tool I if: 1) Z is simulation-secure with respect
to I and 2) YCI for all players. For simplicity, we denote interfaces of ¥ and Z in the arbitrary order
used to label the interfaces of I; that is, Vi, Z;, and Z; (1 <i < F) are corresponding interfaces.

Note that, for practical choices of Com, for any equivocal commitment scheme TCom, Com Z TCom.
For example, the Pederson commitment scheme [27] is differentiable from the Naor commitment
scheme [25], as they utilize different domains for their commitments. We call these outputs that make
the tools indifferentiable handles.

Definition 5. Let HO be a minimal set of interfaces such that {I;}igno is indistinguishable from
{Z}igno to any allowed adversary. The output of any interface in HO is a handle.

As we cannot compare handles output by different tools directly, we instead compare the inputs that
were used to create those handles. We do not need to extract these inputs; it is sufficient for our proof to
show that they are computationally indistinguishable. Equal-sized lists of handles created by Com and
TCom from indistinguishable (to allowed adversaries) inputs are translation-indistinguishable.

Definition 6. Let Hy, Hz be equal-sized, ordered lists of handles. (associated with cryptographic tools Y
and Z, respectively). Let the interfaces of two tools Z and Y that accept |Hy| = |Hz| handles as input
be denoted HI. We recursively define Hy and Hz to be translation-indistinguishable if

® Vocio1y 1Vi(Hy, z)bierr ~ {2i(Hz,) bienr
o Let corresponding subsets H’y,H’Z be defined such that for some list L of set indices which specify

subsets of size |[Hy| —1, L € (\7[%?}—”1)’ j €L s (Hy)j € Hy AN (Hz); € H. All corresponding

subsets HY,, H'’z must be translation-indistinguishable.

Lists of handles created by Com and TCom from indistinguishable sets of inputs are handleset-
indistinguishable; these input sets and lists may be of different sizes.

Definition 7. Let Hi, Ha be ordered lists of handles. Let CD((H1);) (1 < j < |Hil|) be the
list of bit strings passed to a cryptographic tool to output handle (Hi)j. The lists of handles Hi
and Hy are handleset indistinguishable, denoted Hi~,Hz, if {CD((H1)1),...,CD((H1)ipy)} ~
{CD((H2)1), - - -, CD((Ha)4)) }-

In our proofs, we utilize a translator: a mapping between handles output by cryptographic tools. In
our example, a translator from TCom to Com would output Com(3) on input TCom(3).

Definition 8. Let cryptographic tool A be a workalike of tool B, or vice versa, with respect to ideal tool
I. A translator 7 inputs handles from A, and outputs the corresponding handles (handles output by the
corresponding functionality) from B; formally, T = {TH17""THO\HO\}’ 7; : Range(A;) — Range(B;)
(i € HO).

Such translation is correct in the presence of an allowed adversary I' if, with overwhelming probability,
for an x € {0,1}* and i € HO both chosen by T' after interaction with T, A, B:

o Let hy «— Al(l'), ho «— BZ(ZL‘)
o T(h1) ~ hs

e 7 (ha) and hy are translation-indistinguishable

In most cases, we will utilize translators that are correct against a class of adversaries, e.g. all probabilistic
polynomial time adversaries. In this case, we will drop the explicit dependence on I' and simply refer to
a correct translator 7.

Our main security result states that, for any cryptographically secure replacement friendly protocol
using a cryptographic tool Z, if the protocol is also secure when using an ideal tool I, then it is secure
when using a workalike tool). We give sufficient conditions for a replacement-friendly protocol:

Definition 9. A replacement-friendly protocol using tool Z is one in which: 1) no player is required
to compute a function of any handle from Z, other than through black-box invocation of an interface of
Z. 2) There exists a PPT eavesdropper algorithm that can determine with overwhelming probability, for
each handle the protocol requires a player to send, the interface i (i € HO) that an honest player would
have used to construct that handle.

Note that copying a handle does not disqualify a protocol from being replacement-friendly, but com-
puting any non-identity function of a handle (such as equality) does. Thus, replacement-friendly protocols
do not include certain pathological protocols, such as those of [11], that ‘detect’ that they are using a
certain tool and purposely break. It does, however, include a large class of protocols, such as the example
protocols in Figure 2.

5 Proof of Secure Replacement

Before sketching our proof, we prove several lemmas in Section 5.1. We then give a general proof sketch
of secure translation, given abstract translators 7" and T. In Section 6, we explore several scenarios in
which we may construct such translators; these constructions prove security in each scenario.

5.1 Indistinguishability Lemma

Because of the excessive length of our general proof of security, we give only a proof sketch in this section,
deferring the full proof to Appendix B. The operation of players in a protocol can be viewed as a series of
function computations. As these functions fall into the ‘allowed’ range of adversary operation, the results
cannot aid any allowed adversary in distinguishing previously indistinguishable data. We formalize this
intuition in the following lemma.

Lemma 1. For all functions f computable by an allowed adversary, x ~y — f(x) ~ f(y).

Malicious Honest Malicious Honest

players players
(using Y) (using Y)

players players
(using Y) (using 2)

(b)

Figure 3: To prove security, we prove that I" cannot distinguish between scenarios: (a) the normal operation of
the protocol using Y; (b) translations of handles to and from the honest players, where Y utilizes Z.

Proof. 1f f(z) is distinguishable from f(y) by an allowed adversary, then there exists an adversary who
can distinguish x and y through calculation of f. By the definition of indistinguishability, there exists no
such adversary. Thus, by contradiction, f(x) is indistinguishable from f(y). O

Corollary 2. Lemma 1 holds for any number of function parameters £. Formally, if each parameter
xj~y; (1 <5 <U), then for all {w, ..., we | w; € {xj,y;}}, flwi,...,wp) are mutually computationally
indistinguishable.

Corollary 3. Let A and B be black-box subroutines such that ¥ c(o 1y A(z) ~ B(x). Lemma 1 also holds
for functions f which receive access to either A or B. Formally, for all functions f, x ~y — fA(a:) ~
B(x) ~ fA%y) ~ fB(y). Similarly to Lemma 2, this lemma may be extended to allow for any number of
function parameters.

5.2 Proof of Security Under Substitution

We now sketch the proof of a general theorem of security against allowed adversaries for substitution
of the workalike cryptographic tool) for the tool Z. This theorem requires correct translators from)
to Z and vice versa. To ensure security, we prove an indistinguishability condition is preserved through
execution of the generic replacement-friendly protocol P(-), essentially that execution using) and Z is
indistinguishable to I'. We denote as P(Z) (resp. P())) the protocol using the tool Z (resp.)).

Theorem 4. Let Y be a workalike of Z with respect to ideal tool I. Let P(Z) be a replacement-friendly
protocol. Let the translator T' (T" = {Ty, , ... ’T;iw\}’ T! : Range(Y;) — Range(Z;) (i € H)) correctly
translate handles from Y to Z. Let the translator T' (T' = {Ty,, ..., Tn,, }, T; + Range(Z;) — Range(;)
(i € H)) correctly translate handles from Z to).

Any allowed adversary I utilizing P (Y) cannot distinguish between a scenario in which he interacts with
Y wutilizing P(Y), and a scenario in which he interacts (through T and T') with Y wutilizing P(Z), as
shown in Figure 3.

Proof. We prove that any allowed adversary I" cannot distinguish between scenarios (a) and (b) of Figure 3
by proving that the view of I' is indistinguishable between these scenarios. To formalize the views of I’
and T, we give a general functional decomposition of a generic protocol in Figure 4. The operation of
any protocol can be represented as a call-and-response style generic protocol between the adversaries I'
and honest players T. In this generic protocol, I' is given the opportunity to send some data oy to T,
who may respond with of; T" then responds with o;. The protocol continues sequentially from there until
the honest player makes the last move o/,_; or the malicious player makes the last move o,. Note that

Protocol Operation:

I 09 —
—o, T
I o1 —

Scenario (a):
Malicious Players Honest Players ())
08, s& «— I'y(initial inputs)
0y, 8’ « Y (initial inputs, od)
Ocll’ scll — Fl(sgv 0/8)

’a /a y ra a
01,81 = Ty (8" 9,07 1)

a oa a Y
2 Sz FZ(Stho zfl)

o

Scenario (b):
Malicious Players Honest Players (Z)
0§, s < T'o(initial inputs)
05,8’ « Y& (initial inputs, T7(0§))
0,55 — T (56, T(o5)

0’2—17 5’2—1 — TZZ—1(3/Z—2a T'(05_1))

st —T.(s2 4, T(0'2 1))

Figure 4: Let the Protocol Operation show the operation of a generic protocol. The operation of malicious players
T" in such a protocol may be represented as a series of functions I'g,...,I",. We may thus represent the operation
of the malicious and honest players in scenarios (a) and (b) of Figure 3. We call this a functional representation of
a protocol.

i,refs. to handles, substitute refs.

save/substitute non-handle results,
non-handle data for handles >

handles for refs ref. to handle results

Figure 5: In our proof, T utilizes subroutines A or B to perform all calculation on handles. We illustrate their
operation here: they take an interface identifier ¢, and arguments to that interface (but using handle references
instead of handles); the subroutine then substitutes handles for handle references, applies the cryptographic tool’s
ith interface, and erases all intermediate results; the subroutine then saves any new handles created (substituting
handle references) and returns the results.

any real protocol may use any combination of possible communication between groups of malicious and
honest adversaries; we have given a completely generic representation of any protocol P for purposes of

our proof.
In this generic protocol, we can break the computation performed by I' in the steps 0,...,z into
a series of functions I'y,...,I",. Each of these functions at step ¢ takes as input the last state of I,

denoted s;_1, and the last move of Y, denoted 0}_,, and outputs new state s, and output o, to be sent
to T. We may also perform a similar decomposition on the operation of Y. We describe a full functional
decomposition, for both scenarios (a) and (b) in Figure 4.

We can then examine the outputs created by I' and T at each stage; if all data seen by I' is indistin-
guishable between scenarios (a) and (b), then P()) is secure. We may prove this by induction. In order
to complete our inductive proof, we also prove that all non-handle data in the state of Y is indistinguish-
able between the two scenarios, and all that all handles calculated by T are handleset-indistinguishable
between the two scenarios. Let v(-) output the set of handles included in its argument, and #(-) output
all non-handle data in its argument.

As the base case, note that I' is calculating an identical function 'y on identical data in scenarios (a)
and (b). Thus, by Lemma 2, the outputs of this function are indistinguishable between these scenarios.

initial inputs ~ initial inputs
[p(initial inputs) ~ Tg(initial inputs)
{s6.06} ~ {s000}
v(of) ~ (%)
To complete the inductive proof, we must prove that when either T or any allowed adversary I'
computes output as part of the protocol, any data visible to I' is indistinguishable between the two
scenarios. (Due to length considerations, we defer the detailed version of this proof to Appendix B.)

I" steps. Consider some step £ of the protocol, in which I' calculates I'y. By the inductive hypothesis,
we know that all data previously available to I' is indistinguishable between scenarios (a) and (b). By
Lemma 2, any function calculated as a function of that data outputs indistinguishable data as well. Thus,
the outputs of I" at any step ¢ are indistinguishable between scenarios (a) and (b).

b
{st.0"} ~ {s}.T(c})}
b
Topr(sf,00") ~ Tesa(sh, T(0}"))
b b
{3?+170(El+1} ~ {Sz+1a04+1}

b
V(O?—H) ~v V(0€+1)

T steps. Consider some step ¢ of the protocol, in which T calculates T,. By the inductive hypothesis,
we know that the non-handle data ©(sg—1),7(0¢) is indistinguishable between scenarios (a) and (b), and
that the handles v(s;—1), (o) are handleset-indistinguishable between scenarios (a) and (b). Note that
handleset-indistinguishability is preserved under translation.

In order to complete this section of the inductive proof, we must examine the class of functions that
T may compute as part of a replacement-friendly protocol. The most important properties, at this
juncture, are that: (1) P(-) requires no player to compute a function of any handle; and (2) P(Z) (resp.,
P(Y)) requires no non-black-box usage of Z (resp., V). We may observe from this that Y does not
require the handles themselves in order to calculate Ty, if it can indirectly specify the handles needed for
cryptographic computation.

We will therefore, without loss of generality, represent the execution of the function Y, as a function
f (identical in scenarios (a) and (b)) computed upon non-handle data, with access to the cryptographic
tool via a subroutine. In order to specify a handle for cryptographic computation, Y, will utilize a
reference to the handle. These references are simply non-handle data utilized to specify a handle, such as
numbers assigned in the order the handles were calculated. We illustrate the operation of this subroutine
in Figure 5.

Note that the non-handle and handle portions of the output of T, can be calculated without access to
any handles, only references. Intuitively, as this non-handle data is indistinguishable between scenarios
(a) and (b), the non-handle output is indistinguishable between (a) and (b), and the handles computed
are handleset-indistinguishable. By suitable application of Lemma 3, we can show that all handles output
by Y, are handleset-indistinguishable between scenarios (a) and (b), and that that all non-handle data
is indistinguishable between scenarios (a) and (b). By the definition of correct translation, the handles
seen by I' in the next step of the protocol are indistinguishable between scenarios (a) and (b). Thus, the
inductive hypothesis holds for this step of the protocol as well.]

Corollary 5. Let Y be a workalike of Z with respect to ideal tool 1. Let P (Z) be a replacement-friendly
protocol. Let the translator T" (T" = {Ty,, ... ’T;f\m}’ T! : Range(Y;) — Range(Z;) (i € H)) correctly
translate handles from Y to Z. Let the translator T (T = {Tx,, ... ’THIHI}’ T; : Range(Z;) — Range();)
(i € H)) correctly translate handles from Z to).

If P(Z) and P (1) are cryptographically secure against any allowed adversary T, then P(Y) is also cryp-
tographically secure against I'.

6 Toward Real-World Translators

So far in this work, we have considered translators as special oracles used only as part of the proof
of security. A key open question is whether translators can be instantiated for pairs of interesting
cryptographic tools in the ‘real world’. We point out two possible directions. First, we might make a
non-black-box assumption about a cryptographic tool sufficient to construct a translator. While non-
black-box assumptions are controversial, they have been studied in several contexts [14, 20, 21, 6, 4].
Note T may cooperate with the translator, making a non-black-box assumption necessary only for the
tool V.

Second, proxy re-encryption and re-signatures are two exisiting cryptographic primitives that exhibit
‘translator-like’ behavior: a semi-trusted proxy translates from one secret key to another [7, 16, 1].
Further, we show in Appendix C how to translate between two Pedersen commitments [27] with different
public parameters. While this does not allow us to appreciably reduce the complexity of a protocol, it does
show that some kind of translation is possible using only standard cryptographic assumptions. Techniques
from these examples may lead to concrete constructions of translators for use in our framework.

7 Substitution in the Coin-Flipping Example

To show the simplicity of applying our techniques, we formalize the proof of security for the coin flipping
example of Figure 2 before proceeding to our main application result in Section 8. To apply our security
result, we must: (1) identify a suitable ideal tool; (2) show that the protocol is replacement-friendly; (3)
show that) is a workalike of Z.

We first define the ideal tool I for a trapdoor commitment scheme as a cryptographic tool with
the interfaces (ICom,|DCom, IFakeCom, IFakeDCom) shown in Figure 6. The protocol P(I) satisfies the
properties of a mutually independent announcement, as defined by Liskov et al. [22], i.e. the commitments

10

Tool state: a table T = {0, 1}* x {0, 1}*.

ICom(m): Pick 7, « {0,1}*. Insert (r,,,m) into T. Return ry,.

IDCom(r,m): If there exists (r,m) € T, then return true else return false.

IFakeCom(): Pick r; « {0, 1}*. Insert (ry,fake) into 7. Return ry.

IFakeDCom(r,m): If there exists (r,fake) € T, then insert (r,m) into T" and return r, else return L.

Figure 6: The ideal tool I for a trapdoor commitment scheme.

of both players are guaranteed to be uncorrelated at the time of announcing the decommitments. For
completeness, we include the relevant definitions in Appendix E. P(Z) is a replacement-friendly protocol
with respect to I, because the commitment scheme is utilized as a black box.

By the definition of a secure trapdoor commitment scheme, we see that such a tool Z is simulation-
secure with respect to the ideal tool I. Also, a standard commitment scheme) with appropriate domain
and range is indifferentiable from the ideal tool I; we prove this in Appendix E.1.

Lemma 6. Let Y be the commitment scheme (Com,DCom). Let Uy denote the uniform distribution over
{0, 1}*. Suppose Vye(0,13-Com(z) ~ Uy. Suppose the domain of DCom is {0,1}*. Then Y C T.

We can then conclude that Y = (Com,DCom) is a workalike of Z =
(TCGen, TCom, TDCom, TFakeCom, TFakeDCom) with respect to the ideal tool I. Thus, if we can
translate handles of Z to) (and vice versa), we have satisfied all conditions of Theorem 5, and can apply
it to prove the security of P(}) in our translator framework. We note that the resulting protocol does

not use the CRS. As a result, we can remove the CRS without penalty; a proof appears in Appendix
C.3.

Theorem 7. Let the translator T' correctly translate handles of Y to handles of Z. Let the translator T
correctly translate handles of Z to handles of Y. The protocol P (Y) is simulatable and provides mutually
independent announcements against all allowed adversaries.

Proof. In this section, we have proved that all conditions for applying our technique of secure substitution
apply: P(Z) is a replacement-friendly protocol that is simulatable and provides mutually independent
announcements against all allowed adversaries, Z is simulation-secure with respect to I, P(I) is secure
against all allowed adversaries, and Y1 for all players. Thus, by application of Theorem 5, P(}) is also
simulatable and provides mutually indpendent announcements against all allowed adversaries. O

8 Non-Interactive, Non-Malleable Commitment Without CRS

As an example application of our techniques for secure substitution of cryptographic tools, we construct
a novel non-interactive, non-malleable commitment scheme without CRS from a scheme that utilizes a
CRS. Currently known protocols for this task require either a CRS or a constant number of rounds of
communication [3, 26].

Intuitively, a commitment is non-malleable if no adversary can, after seeing a commitment, construct
a commitment that depends in a ‘non-trivial’ way on the committed value. For example, if an adversary
can construct a commitment to 1 —b given a commitment to b, the scheme is malleable. Non-malleability
is a stronger property than the classical hiding property of a commitment scheme because an adversary
may see the decommitment key for a target value before making its own decommitment.

Definition 10. Let D be an efficiently sampleable distribution and let R be a PPT-computable relation.
Consider the two security experiments of Figure 7. A commitment scheme is non-malleable with

11

Experiment Exp, (I, R)

1. o — {0,1}™
Experiment Exp, ... (T, R) 2. s —>rD
1. s<—grD 3. (comy,decy) < Com(a,s)
2. t «—TI'(D) 4. comg — I'(0,comy,decy)
5.

AdVa—priori(F,) = PT[R(S, t) = 1] deco — F(07 comy,comsa, decl)
Adv,_post(I') = Pr[DCom(c, comy, decy) = sA

DCom (o, coma, deca) =t A comy # coma A R(s,t) = 1]

Figure 7: The “a priori” and “a posteriori” experiments for non-malleability with respect to opening of
a commitment scheme (Com,DCom). Note that the common reference string is n® bits long, for some
constant a.

respect to opening if for each PPT adversary T', there exists an adversary simulator I such that
Adv, post (T, R) — AdVa—_priori(I', R) is negligible.

We begin with a protocol for non-interactive, non-malleable commitment due to Di Crescenzo et
al. [15]. (For clarity, we have included this protocol in Appendix D.) This scheme makes use of both
equivocable and standard commitments. An equivocable commitment is a special commitment scheme
in the common reference string model in which a simulator can ‘cheat’ during the proof. The faking
algorithm M outputs a commitment value com, two decommitment values decy,decy, and a random
string o/. When o’ is used as the common reference string, either decommitment dec; may be used to
decommit the value com to the bit 7. Because a simulator in the common reference string model may set
the CRS, the simulator can ‘cheat’!. Note that this cheating functionality is unavailable during normal
execution of the protocol. To apply our techniques, we must: (1) identify a suitable ideal tool, (2) verify
that the protocol is replacement-friendly, (3) apply our security theorem, (4) remove the CRS as in
Section 7.

At first glance, we might simply adapt the ideal tool for trapdoor commitments of Figure 6. However,
the protocol requires players to compute a ‘tag’ value as a function of a commitment handle. Instead, we
integrate this tag functionality to obtain the equivocal commit-with-MAC tool I in Figure 8. The protocol
is replacement-friendly with regard to this ideal tool.

This choice of ideal tool introduces a complication, as we have changed the interfaces to the crypto-
graphic tool. For players in the real world, the changes are simply in interface names. For the simulator,
we have introduced an additional parameter to IFakeCom: a ‘hint’ to enable correct translation. Luckily,
the original protocol’s simulator and proof of security [15] can be slightly changed to accommodate this.
We defer discussion of this transformation to Appendix D.

We denote as Z the cryptographic tool composed of the ax + b MAC together with the equivocable
commitment, while the tool) refers to the same MAC, but composed with a standard commitment.
There is a well-defined mapping between commitments of Z and Y; the simulator will only open a fake
commitment according to the hint given to IFakeCom, so these commitments may be treated just as ICom
commitments. Note also that) is a workalike of Z with regards to I; we may thus apply Theorem 5 to
prove the non-malleable commitment protocol using) is secure.

Theorem 8. Let the translator T’ correctly translate handles of YV to handles of Z. Let the translator
T correctly translate handles of Z to handles of Y. Then the protocol P(Y) is a non-malleable bit

1We note that this commitment protocol is not ‘reusable’, meaning that the CRS may be used for only one commitment.
More recent work, e.g. [31], removes this limitation. Nevertheless, we believe this commitment is a useful example.

12

Tool state: a table T = {0, 1}* x {0,1}* x {0, 1}*.

|Com (m, Kpmae): Pick 1, < {0,1}*. Insert (7, Kinae,m) into T. Return r,,.

IDCom(r, Kpac, m): If there exists (r, K}, 40, m) or (1, K], .., (fake,m)) in T such that Kac = K},
then return true

else return false.

IFakeCom (K mqc, hint): Pick ry « {0,1}*. Insert (ry, Kinac, (fake, hint)) into 7. Return ry.
IFakeDCom(r, Kynqc, m): If there exists (7, Kpmac, (fake,)) € T,

then remove (r, Kinac, (fake,), insert (7, Kynae, m) into T and return r,

else return L.

Figure 8: The ideal tool T for equivocable commit-with-MAC. Here hint is a single bit indicating to IFakeCom how
the commitment might be opened.

commitment scheme.

We prove this theorem in Appendix D. As in Section 7, we can thus securely remove the CRS from
the resulting protocol.

9 Conclusion and Future Work

We have taken a first step toward justifying the security of “practical” protocols by comparing them to
protocols with a simulation proof of security. Several open problems present themselves. First, we believe
our requirements for replacement-friendly protocols are overly restrictive and may be relaxed. Second, we
would like to understand the interaction between translators and generic protocol composition. Finally,
finding pairs of cryptographic tools that admit constructions of translators without additional assumptions
would allow us to extend our results to the standard model, or alternatively we might hope to show that
no such translators exist.

References

[1] G. Ateniese and S. Hohenberger. Proxy re-signatures: New definitions, algorithms, and applications.
In ACM CCS, 2005.

[2] B. Barak. How to go beyond the black-box zk barrier. In IEEE Symposium on Foundations of
Computer Science, 2001.

[3] B. Barak. Constant-round coin-tossing with a man in the middle or realizing the shared random
string model. In Foundations of Computer Science (FOCS), 2002.

[4] Boaz Barak. Non-Black-Box Techniques in Cryptography. PhD thesis, Weizmann Institute of Science,
January 2004.

[5] D. Beaver. Adaptive zero knowledge and computational equivocation. In Symposium on the Theory
of Computing STOC, 1996.

[6] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Matthew K. Franklin, editor, CRYPTOQO, volume 3152 of Lecture Notes in
Computer Science, pages 273-289. Springer, 2004.

13

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography. In
Proceedings of Eurocrypt, volume 1403, pages 127-144, 1998.

M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In
Symposium on the Theory of Computing STOC, 1988.

R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO, 2001.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryp-
tology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. ACM,
51(4):557-594, 2004.

G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and non-interactive non-malleable
commitment. In FUROCRYPT, 2001.

I. Damgard. Efficient concurrent zero-knowledge in the auxiliary string model. In EUROCRYPT,
2000. http://www.daimi.au.dk/~ivan/papers/concurrent.ps.

Ivan Damgard. Towards practical public-key cryptosystems provably-secure against chosen-
ciphertext attacks. In Proceedings of CRYPTO, 1991.

G. DiCrescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable commitment. In
Symposium on the Theory of Computing (STOC), 1998.

Y. Dodis and A. Ivan. Proxy cryptography revisited. In Proceedings of NDSS, February 2003.

U. Feige, D. Lapidor, and A. Shamir. Multiple non-interactive zero-knowledge proofs based on a
single random string. In 31st Annual IEEE Symposium on Foundations of Computer Science, pages
308-317, 1990.

R. Gennaro. Multi-trapdoor commitments and their applications. Cryptology ePrint Archive, Report
2003/214, 2003. http://eprint.iacr.org/2003/214/.

Oded Goldreich. The foundations of cryptography - volume 2.
http://www.wisdom.weizmann.ac.il/ oded/foc-vol2.html.

S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In Proceedings of
CRYPTO, 1998.

S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols.
http://eprint.iacr.org/1999/009/, 1999. Final version of “On the Existence of 3-Round Zero-
Knowledge Protocols”.

M. Liskov, A. Lysyanskaya, S. Micali, L. Reyzin, and A. Smith. Mutually independent commitments.
In ASTACRYPT, 2001.

Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In Proc. of Theory of Cryptography
Conference, 2004.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography.
CRC Press, October 1996.

14

[25] M. Naor. Bit commitment using pseudo-randomness. J. Cryptology, 4(2):151-158, 1991.

[26] R. Pass and A. Rosen. Concurrent non-malleable commitments. In Foundations of Computer Science

[27]

[31]

(FOCS), 2005.

Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, Proceedings of CRYPTO, volume 576, pages 129-140. Springer-Verlag,
1991.

Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reactive
systems. In ACM Conference on Computer and Communications Security, pages 245-254, 2000.

Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC ’04: Proceedings of the thirty-sizth annual ACM symposium on
Theory of computing, pages 242-251, New York, NY, USA, 2004. ACM Press.

Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC ’04: Proceedings of the thirty-sizth annual ACM symposium on
Theory of computing, pages 242-251, New York, NY, USA, 2004. ACM Press.

I. Damgard and J. Groth. Non-interactive and reusable non-malleable commitment schemes. In
Symposium on the Theory of Computing (STOC), pages 426-437, 2003.

[32] I. Damgard and J. Nielsen. Perfect hiding and perfect binding universally composable commitment

A

schemes with constant expansion factor. In CRYPTO, 2001.

Acknowledgments: We would like to thank Dawn Song for her valuable insights and advice. We
thank Ivan Damgard, Nick Hopper, Shabsi Walfish, David Wagner, Hoeteck Wee, and Matt Lepinski for
invaluable comments. We thank Chris Colohan for providing a laptop and for hospitality.

Notation

a,b - scenarios used in the general proof of security (see Figure 4)

[x] - the set {1,...,n}

Dom(f) - domain of function f

Range(f) - range of function f

neg(-) - a negligible function

x ~ gy - is distributed indistinguishably from y, given some specified information
(i) - all subsets of S of size x

Y - an efficient cryptographic tool, a workalike of Z

Z - an expensive cryptographic tool.) is a workalike

I - an ideal functionality for both) and Z

P(Z2) - a replacement-friendly protocol

T’ - translator from handles of) to handles of Z

T - translator from handles of Z to handles of)

z - an input to a cryptographic tool

D1, Dy - probability distributions over some domain

h - a handle

hi~yho - hy is indistinguishably translation-indistinguishable from ho if the handles were con-
structed from indistinguishable data

15

v(-) - the handle portion of the argument data

e (-) - the non-handle portion of the argument data

R(-) - non-handle references to the handles contained in the argument data, utilized in the proof of
Theorem 5

CD(h) - the data used to create handle h

A - a generic oracle, indistinguishable from B
B - a generic oracle, indistinguishable from A
I' - a malicious PPT adversary

T - honest players

X - a non-black-box extractor

D - distinguisher for indifferentiability

S - sanitizer for indifferentiability

f - generic function

x,T1,...,Tp - generic function parameters

Y, Y1,...,Yyr - generic function parameters, distributed computationally indistinguishably from
LTy T1y.--,Ty

wi, ..., wy - generic function parameters, w; € {z;,y;} (1 <j <¥)

r - random function parameter

£ - number of function parameters to a generic function

j - index over function parameters or sets

1 - index over interfaces

£ - index over protocol steps

F' - number of interfaces of ideal tool I

‘H - the set of interfaces that produce handles for some pair of workalikes), Z, with respect to
ideal tool I; ' H C F

L - a set of indicies into another set

z - number of steps in functional representation of protocol

- output of honest and malicious players in functional representation of protocol
1 - internal state of honest and malicious players in functional representation

00,0z, 0fy - - -,0,_4
S0y vy Szy Syevns S
of protocol

(Com,DCom) - a standard commitment scheme

(TCGen, TCom, TDCom, TFakeCom, TFakeDCom) - a trapdoor commitment scheme
(TPk, TSk) - public and secret key for trapdoor commitment scheme

(ICom, IDCom, IFakeCom, IFakeDCom) - an ideal commitment scheme

D - distribution given as part of definition of non-malleability

‘R - probabilistic polynomial time “relation approximator”

(A, B) - a standard commitment scheme used in the DIO protocol

(C, D) - an equivocable commitment scheme used in the DIO protocol

ACom - commitment value in DIO protocol

CCom - commitment value in DIO protocol

ADCom - decommitment value in DIO protocol

CDCom - decommitment value in DIO protocol

NMCom - output of DIO protocol

NMDCom - output of DIO protocol

QCom - part of output of Algorithm @Q in DIO proof

QDCom - part of output of Algorithm Q in DIO proof

I - an ideal cryptographic tool for the ideal commitment scheme

< P,V > (x) - interaction of prover and verifier on input z in interactive proof

16

(P,,V,) - prover and verifier in 3-round honest-verifier zero-knowledge protocol

(Py, V) - prover and verifier in Damgard modification of 3-round honest-verifier zero-knowledge
protocol

(P,.,V.) - prover and verifier in Damgard modified protocol with trapdoor commitment replaced by
standard commitment

(Py, Vy) - prover and verifier in Damgard modified protocol with trapdoor commitment replaced by
standard commitment and common reference string removed

B Proof of Secure Replacement

In order to complete our proofs, we prove several lemmas in Appendix B.1. We then give a general proof
of secure translation, given abstract translators 7" and T

B.1 Lemmas

Lemma 9. For all functions f computable by an allowed adversary, x ~y — f(x) ~ f(y).

Proof. If f(z) is distinguishable from f(y) by an allowed adversary, then there exists an adversary who
can distinguish z and y, through calculation of f. By the definition of indistinguishability, there exists
no such adversary. Thus, by contradiction, f(x) is indistinguishable from f(y). O

Corollary 10. Lemma 9 holds for any number of function parameters €. Formally, if each parameter
xj~y; (1 <5 <4L), then for all {wy, ..., we | wj € {xj,y;}}, flwi,...,we) are mutually computationally
indistinguishable.

Corollary 11. Let A and B be black-box subroutines such that Ve 1y-A(x) ~ B(x). Lemma 9 also
holds for functions f which receive access to either A or B. Formally, for all functions f, x ~ y —
fA) ~ fB(x) ~ fA(y) ~ fB(y). Similarly to Lemma 10, this lemma may be extended to allow for any
number of function parameters.

B.2 General proof of security.

We now prove a general theorem of security against allowed adversaries for substitution of the workalike
cryptographic tool) for the tool Z. This theorem requires generic correct translators from) to Z and
vice versa. To ensure security, we prove an indistinguishability condition is preserved through execution
of the generic replacement-friendly protocol P(-). We denote as P(Z) (resp. P())) the protocol using
the tool Z (resp.).

Theorem 12. Let Y be a workalike of Z with respect to ideal tool I. Let P (Z) be a replacement-friendly
protocol. Let the translator T" (T" = {Ty,, ... ,T;iw}, T! : Range(Y;) — Range(Z;) (i € H)) correctly
translate handles from Y to Z. Let the translator T' (T' = {Ty,, ..., Tnp,, }, T; + Range(Z;) — Range(;)
(i € H)) correctly translate handles from Z to).

Any allowed adversary I utilizing P (Y) cannot distinguish between a scenario in which he interacts with
T wutilizing P(Y), and a scenario in which he interacts (through T and T') with T wutilizing P(Z), as
shown in Figure 9.

Proof. We prove that any allowed adversary I" cannot distinguish between scenarios (a) and (b) of Figure 9
by proving that the view of I' is indistinguishable between these scenarios. To formalize the views of I’
and Y, we give a general functional decomposition of a generic protocol in Figure 10. The operation of

17

Honest
players
(using Y)

Malicious

players
(using Y)

(a) (b)

Honest
players
(using 2)

Malicious

players
(using Y)

Figure 9: To prove security, we prove that I' cannot distinguish between scenarios: (a) the normal operation of
the protocol using Y; (b) translations of handles to and from the honest players, where Y utilizes Z.

Protocol Operation:

I 09 —
«— O/O
I o1 —
/
01
I 0, —

Scenario (a):
Malicious Players
08, s& «— I'p(initial inputs)

/1a

a a a ’a
of,s{ < T'1(sf,0'p)

/a

a ga

a Y)
219z

o Fz(stho z—1

0y, 5"y « YY (initial inputs, of)

ra Yy ’a a
01,81 = Ty (8" 9,07 1)

Honest Players ())

Scenario (b):
Malicious Players
0§, s < T'o(initial inputs)
of, 5§ — T'1(s§, T(0p))

/C

05,8’ « Y& (initial inputs, T"(0§))

z—1>

Honest Players (2)

s'C 1 = T2 (s 5, T (05)

Figure 10: Let the Protocol Operation show the operation of a generic protocol. The operation of malicious players

T" in such a protocol may be represented as a series of functions Iy, . .

.,I',. We may thus represent the operation

of the malicious and honest players in scenarios (a) and (b) of Figure 9. We call this a functional representation of

a protocol.

18

Crypto
Tool,
interface i

i,refs. to handles, substitute refs.
non-handle data for handles

save/substitute non-handle results,
handles for refs ref. to handle results »

Figure 11: In our proof, T utilizes subroutines A or B to perform all calculation on handles. We illustrate their
operation here: they take an interface identifier i, and arguments to that interface (but using handle references
instead of handles); the subroutine then substitutes handles for handle references applies the cryptographic tool’s
1th interface, and erases all intermediate results; the subroutine then saves any new handles created (substituting
handle references) and returns the results.

Tool Y Tool Z Tool Z
in (a) in (a) in (b)

~ e
~ '

Figure 12: When examining the operation of T, we may note that the results of using tool) in scenario (a) is
indistinguishable from using tool Z in scenario (a). We may then observe that the result of using tool Z in scenario
(a) is indistinguishable from using tool Z in scenario (b). We may thus conclude that using tool) in scenario (a)
gives indistinguishable results from using tool Z in scenario (b).

any protocol can be represented as a call-and-response style generic protocol between the adversaries I'
and honest players T. In this generic protocol, I' is given the opportunity to send some data oy to T,
who may respond with of; T" then responds with o;. The protocol continues sequentially from there until
the honest player makes the last move o/,_; or the malicious player makes the last move o,. Note that
any real protocol may use any combination of possible communication between groups of malicious and
honest adversaries; we have given a completely generic representation of any protocol P for purposes of

our proof.
In this generic protocol, we can break the computation performed by I' in the steps 0,...,z into
a series of functions I'y,...,I",. Each of these functions at step ¢ takes as input the last state of I,

denoted s;—1, and the last move of Y, denoted 0}_;, and outputs new state s, and output o, to be sent
to T. We may also perform a similar decomposition on the operation of Y. We describe a full functional
decomposition, for both scenarios (a) and (b) in Figure 10.

Thus, given this representation, to prove that no I' can distinguish scenarios (a) and (b), we prove that
the view of I' is indistinguishable between the two scenarios. All indistinguishability in this proof is given

the previous execution visible to I'. Formally, we must prove that: {sg,...,s% 08,...,0%,0p%, ...,0,_“} ~
b b b b 1b b
{sgs.-.,52,08,...,02,T(0q),...,T(0,_1")}.

We prove this through use of induction on the steps of the protocol. In fact, we prove a more
restrictive statement. Let v(-) output the set of handles included in its argument, and 7(-) output all non-
handle data in its argument. We prove that {sg,...,s%,0%,...,0%, 00", ...,0,_1* 0(s4")s. .., 0(sL_1")} ~
{sb, ... 82,00, ..., 0t T(oh"), ..., T(,), (sh?), ..., (s ")} and {w(sh%),. .., v(s, "), v(0%), ..., v(02), v(0h™),
{V(Séb)7] V(S{zflb)v V(08)7] I/(Og), T(V(O6b))7 T 7T(’/(Olzflb))}'

Our inductive base case is that the execution of the protocols P()) (in scenario (a)) and P(Z) (in
scenario (b)) is indistinguishable. To prove this, we may simply observe that (by Lemma 10 and the

19

definitions of the variables in our functional decomposition of Figure 10):

initial inputs ~ initial inputs
[p(initial inputs) ~ Tp(initial inputs)
{s6,06} ~ {s5.00}
v(of) ~ ()

In the remainder of the proof, we make the inductive assumption that all execution up to the current
step ¢ has been indistinguishable between scenarios (a) and (b). In order to apply the strong inductive
principle, we must now prove that the next step of execution is also indistinguishable between scenarios
(a) and (b). To do this, we divide the proof into two possible cases: one in which Y last sent data to I,
and one in which I last sent data to Y.

Honest mover. We now prove that {sg,...,s§, 08, ...,08,00°%, ...,0," 0(s("),...,v(s)")} ~
{sg,.. L8b0b ol T (o), T (), o(sh?), ..., (s, ")} and
{v(s5"), - - ('a)ﬂ/(6)s - v(0f), v(0g"), -, v(0)")
{(s6"), . v(s,"), v(0}), -aV(Olé)’T(0" TN} = {sfirs0fay ~ {shi0p,) and

V(O?H)NVV(OZH)
We may prove the truth of this statement as follows (by Lemma 10, the definition of correct translation,
and the definitions of the variables in our functional decomposition of Figure 10):

b
{st.0)"} ~ {shT()"))
b
Len(sf.0p) ~ Ten(shT(0)")
b b
{3?+1=0?+1} ~ {Se+1704+1}

b
V(OZZH) ~y V(0£+1)

Malicious mover. We now prove that {s§,...,s{, 08,.. 00,00, .. 0 1%, D(s”),...,17(55 1)} ~

b b b — a
{38,.;,32,08,...,32,T(06)soo s T(0y_1"), o(s(), - I/(Sg 1)}and {v(sp?),...,v (se 1), v(o 2) v(o}),v
{(s6"), - (s, ") v(0h), o v(0)), T(W(0h")), - T(w(of "))} — {w(s)"), 0/} ~ {V()0 g} and

{v(0"), v(sy") b~ A (T (0))), v(s,")}

In order to complete this section of the inductive proof, we must examine the class of functions that
T may compute as part of a replacement-friendly protocol. The most important properties, at this
juncture, are that: (1) P(-) requires no player to compute a function of any handle; and (2) P(Z) (resp.,
P(Y)) requires no non-black-box usage of Z (resp., V). We may observe from this that T does not
require the handles themselves in order to calculate Ty, if it can indirectly specify the handles needed for
cryptographic computation.

We will therefore, without loss of generality, represent the execution of the function Y, as a function f
(identical in scenarios (a) and (b)) computed upon non-handle data, with access to the cryptographic tool
via a subroutine. In order to specify a handle for cryptographic computation, YT, will utilize a reference
to the handle, denoted R(-). These references are simply non-handle data utilized to specify a handle,
such as numbers assigned in the order the handles were calculated.

Instead of allowing f to calculate black-box cryptographic results directly, we give it access to an
subroutine, run internally by Y. All workings of this subroutine, including the intermediate results of
black-box computation, are erased by T after use. Formally, we define two subroutines, A and B, used
by T to perform all computation on handles from) and Z, respectively. These subroutines take as input
an interface identifier ¢ (1 < ¢ < F), all non-handle data to be used as input to the interface);, and a
list of handle references for all handles to be used as input to the cryptographic tool. The subroutine the

20

v

%

0)7 .

applies the tool, removes and saves any handles in the result (substituting a reference to the handle), and
returns the result to f. We illustrate the operation of these subroutines in Figure 11.

A request from f for cryptographic tool computation by A (or B) is denoted: the interface identifier
i® (or i) (1 < i < F), non-handle arguments ¢ (or), and a list of references to the handle arguments
L® (or L%). By the inductive assumption:

(8,08} ~ {sh.o}}
v(of) ~ (o}
(W(of), v(si1")} ~u {v(0}),v(si_,")}

Thus, by Lemma 10 for the first such call, note that the requests made of A (in scenario (a)) and B (in
scenario (b)) are indistinguishable:

{(7(s7_1), 7(0"), RUv (st). (06}~ {i(si_y") #(0), R({v(s)_,"), (o) 1)}
F@(si_1), 7(06%), R{Hw(s41 ") v(0e)}) ~ f(o(sh1"), 7(0), RU{v(si_1"), v(0®)}))
{i%, 2%, LYY~ {i® ab L°}

N

We may also note that, by Lemma 10, the set of handles specified by the handle references L or L?,
denoted {v(s)_;"),v(0s")} e or {I/(Sz_lb), v(0¢%)} 1, are handleset-indistinguishable:
L* ~ b
(s o)}~ (s, ved)}
(s "), v(0) e~ {v(shm”),v(0) }
Thus, by the correctness of translation and Lemma 10, all non-handle data computed in response

to the request by f is indistinguishable, and the handles computed are handleset-indistinguishable: (we
illustrate the transitivity property exploited in this section of the proof in Figure 12)

)
R
ﬂ
—~
—
<
—
w_
(\
,_.
\/
<
QS
~
)
h
o
SN—
N~—
N—

V(yza(“,{V(Sé_la),V(sz“)}La
P(Zia (2, T'({v(sp1")
()
v(

S

N7
v(Za (2 T' ({v(s)_,"

Via (2, {v(s71*

v(Vio (2, {v(s71"), v(00") } o)

We may now observe that, for the first call made to A or B, A ~ B; the output of the subroutines

is indistinguishable. Similarly, by following the proof given above for the first call (but using Lemma 11

to examine the subsequent operation of f), we may observe that for all calls made to A or B by f, the
data returned to f is indistinguishable: A ~ B. Thus, by Lemma 11, we give the concise proof of our

—_ -
™~
—~
QS
~
Q
~—
——
~
)

—
i~

inductive statement:

(sp 1" 0f) ~ Dspy T (o))
v(sp 1" 08) ~ vlsp " T(0))
P(fAsp 4% 08) ~ o(fB(sp ", T (o))
H(Ce(sp 1" 0)) ~ 2(Telsp " T (o))
v(To(s)p 1% 08) ~ v(Te(si ", T'(o})))
v(Ye(s) 1% 0f)) ~ Tw(T(sp_y" T'(0}))))

O]

Corollary 13. Let Y be a workalike of Z with respect to ideal tool I. Let P (Z) be a replacement-friendly
protocol. Let the translator T' (T" = {Ty, , ... ’T;f\m}’ T! : Range(Y;) — Range(Z;) (i € H)) correctly
translate handles from Y to Z. Let the translator T (T = {Ty,, ..., Tn,, }, T; : Range(Z;) — Range(Y;)
(i € H)) correctly translate handles from Z to).

If P(Z) and P (1) are cryptographically secure against any allowed adversary I, then P(Y) is also cryp-
tographically secure against T'.

C Translating Pedersen Commitments

Pedersen commitments are an example of a tool where a nearly-correct translator can be constructed under
standard assumptions [27]. Given the parameters ¢ (prime), g, g1, 92 < Z;, recall that the computation
of a commitment to z with opening data r is defined as

ro— Z
Comg g (z) = g9

Note that the commitment opening DComyg 4, (z,7) returns true.
We may observe the following;:

91 = g5
Comg g () = g°g1
= ¢"(¢9)"
= Comgg,(x)

However, DComy g, (z,r) returns false, while DComg 4, (2, yr) returns true. We must mark thus the
opening data as a handle, and construct a translator function for it. Let 7’ be a translator for
handles of (Comg gy, ,DComg,) to handles of (Comgy,,DComy,), and T a translator for handles of
(Comy 4,, DComy 4,) to handles of (Comg,,,DComg,). We can easily construct these translator func-
tions under standard assumptions, given knowledge of y.

T(r) = yr
,r,/
Yy
The functions 7", T' form a correct translation between the handles of the cryptographic tools Comg g,
and Comg 4,. While this translation does not allow us to appreciably reduce the complexity of a protocol,

the example also points to the possibility of finding translators for more interesting pairs of cryptographic
tools, while utilizing only standard cryptographic assumptions.

D Modifying the Simulator for Non-Malleable Commitments

For clarity, we include in Figure 13 the non-malleable commitment protocol we modify in this paper, due
to [15].

The original proof employs an “Algorithm Q7 that makes use of the equivocable property of the
commitment scheme. We show this algorithm in Figure 14. The main idea of the proof is to first show

22

Com(1™,0,b)

1 Parse o as aq,...,a,, 0

2 Let s «p {0,1}". Parse the bits of s as sy,..., s,

dfort=1,...,n

4. Let (ACom;, ADCom;) = A(w, s;)

5.Let ACom = AComy o --- o ACom,,. Let di,...,d, be its binary expansion.
6. Write 8 as 31,00 81,100 B0 0° Bm,1

Tforj=1,....m

8. Let (CComj, CDComj) = C(Bj4;,b)

9.Let CCom = CComy o --- 0 CCom,,

10. Let ¢ = 2/€Coml and 2 = G(s)

11. Parse z as a o b. Interpret a and b as elements of GF(q).

12. Let tag = a - (CCom) + b in GF(q)

13. Let ADCom = ADComj o --- o ADCom,, and CDCom = CDComj o...CDCom,,
14. Output NMCom = (ACom, CCom, tag) and NMDCom = (ADCom, CDCom)

DCom(1™,,b, NMCom = (ACom, CCom, tag), NMDCom = (ADCom, CDCom))
lFori=1,...,n

2. verify that B(«;, ACom;, ADCom;) # L
3Fori=1,...,n

4. Let s; = B(a;, ACom;, ADCom;) and let s =s10--- 08,
5.Let dy o - -+ o dy, be the binary expansion of ACom.

6.Verify that D(3;4,,CCom;,CDCom;) =b for j =1,...,m
7.Set ¢ = 2/€Co™ and z = G(s)

8.Parse z as a o b. Interpret a and b as elements of GF(q).
9.Verify that tag = a - (CCom) + b in GF(q)

1f all verifications pass, accept, else reject.

Figure 13: The non-interactive non-malleable commitment scheme of Di Crescenzo et al. [15]. Here o is
the CRS and b is the bit to which we wish to commit, G is a PRG, (A, B) is a standard commitment
scheme in the CRS model, and (C, D) is an equivocable commitment scheme in the CRS model.

that an adversary cannot distinguish interactions with) from interactions with the real protocol. As a
result, the adversary’s advantage when interacting with) must be close to its advantage when interacting
with the real protocol; see the adversary’s advantage with respect to @ in Figure 15. Next, they argue
that the adversary’s choice of output bit is the same regardless of whether it sees decy or dec; from Q.
Finally, they argue that if the adversary succeeds with non-negligible probability when interacting with
Q, then the adversary could break the non-malleability of the protocol by simply running @ on its own.

At first it seems that we could simply apply translators to interactions between the adversary and
(@ and retain the exact same argument. A subtlety arises, however, because) uses the equivocation
interface, which is not available in our “target” tool of non-equivocable commitments. As a result, it at
first appears that translation of the proof fails. Our key insight for overcoming this problem is that while
algorithm @ can open a commitment to either 0 or 1, in its interactions with the adversary, Q only needs
to open the commitment in one way that is picked independently of the adversary’s action. Therefore,
we can delay translation until after the value of the commitment has been “determined.” We model this

23

Algorithm Q(1™) :

1. Let s +—p {0,1}" and s1 0 --- 0 s, be its binary expansion.

2. Fori=1,...,2n

3. uniformly choose string «;

4. Let (ACom;, ADCom;) «— A(wy, s;)

5. Let ACom = AComj o --- 0 ACom,, and d; o - -- o d, be its binary expansion.

6. Forj=1,...,m

7. Let (75, CComj, CDComj o, CDCom;j 1) be the public random string from
the equivocable commitment faking algorithm,
the commitment value, and decommitments for 0 and 1 respectively.

8. Set [3j4; = 7; and uniformly choose S 1-4;

9. Set 8= 10001100 Bmobm,1

10 Set o' =ajo0---0a,o0f3

11. Set CCom = CComy o ---0 CCom,, and ¢ = 2|CCom|

12. Compute G(s) = a o b. Interpret a and b as elements of GF(q).

13. Compute tag’ = a - (CCom) + b in GF(q)

14. Let QCom’ = (ACom, CCom, tag’)

15. Let ADCom = ADComj o --- o ADCom,,

16. Let CDCom; = CDCom; ;0 --- 0 CDCom,,; for ¢ = 0,1

17. Output (¢’, QCom’, QDComy, QDCom;)

Figure 14: The algorithm @ used in the proof of non-malleability for the scheme of [15]. As before,
G is a pseudo-random generator, (A, B) is a standard commitment scheme, and (C, D) is an equivocal
commitment. The algorithm @’ takes an extra bit b as an argument and feeds it to the equivocal
commitment scheme as a hint.

formally by adding a “hint” to the ideal tool, which represents the way that the commitment might be
opened in the future. We then define a new algorithm @’ that acts exactly like @, except that Q' uses
the hint.

Theorem 8. Let the translator T' correctly translate handles of Y to handles of Z. Let the translator
T correctly translate handles of Z to handles of Y. Then the protocol P(Y) is a non-malleable bit
commatment scheme.

Proof. (Sketch) Assume for contradiction that we have an adversary I' that breaks the non-malleability
of P(Y). That is, there does not exist an adversary simulator I such that Adv,—posteriori(I', R) —
Adv,_priori(I7, R) is negligible.

We first argue that I' cannot distinguish between translated interactions with algorithm @’ and
interactions in the experiment Exp,_,steriori(I's R) for P(Y). Observe that the distribution of the view
of T' is identical in the experiments Expg (I, R) and Exp (I', R); in both cases it sees a decommitment
string, where the string is chosen via a coin flip from D. By Theorem 4, therefore, if I' succeeds at
distinguishing @’ from P()), then I' translated suceeds at distinguishing algorithm @’ from P(Z), which
is a contradiction.

This tells us Expg (I',R) is non-negligible. Thus, by the argument of [15], the algorithm T that
consists of running Algorithm @', translating and interacting with I succeeds in the “a priori” experi-
ment almost as often as I' succeeds in the “a posteriori” experiment. That is, Adv,—posteriori(I’, R) —
Adva_meTi(F’ ,R) is negligible. This is a contradiction, as we assumed non-malleability of P(}), and

24

Experiment Exp(I', R):

1.(o, com, decy, decy) — Q Experiment Exp, (T, R):
2.com’ — T'(o, com) 1.b D
3.b—D 2.(o, com, decy) — Q' (b)
4.dec’ — T'(o,com,com’, decy) 3.com’ — T'(o, com)
Advg(T',R) = Pr[DCom(c, com, decy) = bA 4.dec — T'(o, com, com/, decy,)
DCom(a, com/, dec’) = dA Advg (T, R) = Pr[DCom(o, com, decy) = bA
com’ # com AN R(b,d) = 1] DCom (o, com/,dec’) = d A com’ # com A R(b,d) = 1]

Figure 15: The Algorithm Q uses the equivocal property of the commitment scheme to potentially open
a commitment to either a 0 or a 1. The adversary, however, only ever sees one such opening, determined
by a coin drawn from D. Experiment (a) is the original security experiment of [15]. Experiment (b) uses
a modified algorithm @’ that passes in a “hint” to the ideal tool.

therefore the non-existence of such a I". O

E Mutually Independent Announcements

For completeness, we now give the definition due to Liskov et al. [22] of a mutually independent announce-
ment protocol, as well as the proofs required for secure substitution in this protocol. As noted above, this
is two-party protocol that ensures non-correlation of secret committed values provided that both parties
open their commitments. Liskov et al. consider several other notions, but we choose to focus only on
mutually independent announcements.

First, however, we fix some notation. A protocol (A, B) is a pair of probabilistic polynomial time
interactive Turing Machines A and B. We further divide into a pair of machines (A¢, B¢) that make
up the commit stage of the protocol, and a pair (Agr, Br) that make up the reveal stage of the protocol.
On each protocol run, both machines receive a security parameter 1¥. The machine A further receives
a private input a and a private random tape r4, while the machine B receives a private input b and a
private random tape rp.

Then, during a protocol run, in the commit stage the machines A¢c and B¢ interact and each outputs
either “accept” or “reject.” Then in the reveal stage, the machines Ar and Bp interact (we assume state
is kept between stages). At the end of the reveal stage, the machine Ar outputs the value 3, which may
be a string or the special symbol “reject”; this value 3 is the value revealed to A by B. The machine Bg
outputs the value «, which is the value revealed to B by A; this may also be a string or “reject.” For
convenience, we impose a consistency condition: if Ac outputs “reject” then Ar must output “reject”
and similarly for Bo and Bg.

Finally, we denote the output of Ax from the interaction between A and B on inputs (1%, a,b, 74, 75)
by OUT4(1%,a,b,74,7p). We denote the output of Bg by OUT(1%, a,b,74,75). When necessary, we
refer to the outputs of Ac and B¢ by making the appropriate substitution of subscripts. When an input
is replaced by the symbol -, we mean the probability space induced when that input is picked uniformly
at random.

Definition 11. A protocol (A, B) is a mutually independent announcement protocol if it satisfies the
following properties:

e A-completeness. If A and B are honest, then A can commit and reveal her value successfully with

25

only a negligible probability of failure. That is, for all inputs a and b and neg(k) negligible, it holds
that Pr[OUTg(1%,a,b,-,-) # a] = 1 — neg(k).

e A-soundness. If A is honest, then for all cheating players B’, the cheating player B’ cannot influence
which value is committed to by A. More formally, for all inputs a,b, and for all random tapes
to,tr, 74, 7B, we have that if OUTAC(lk,a,TA,tC) = “accept” and OUTBR(lk,b, rp,tcotr) = a,
then a = a.

e Computational A-hiding. No cheating adversary B’ interacting only with Ac can break the GM-
security of A’s commitments. That is, for all bit-strings ap and a1 and neg(k) negligible, we have
that Pr[v — {0,1}; 2 — OUTg (ay, (ag,a1),,-) : 2 = v] < 3 + neg(k).

e Perfect A-binding. If the commit stage Bo of B outputs “accept,” then the reveal stage Br will
accept only one revealed value. This value depends only on the transcript of the reveal stage, not on
the private input of B.

e A-non-correlation at opening. The main idea of this definition is that for any polynomial-time
relation R, any cheating adversary B’ that engages in a protocol with A and then opens his committed
value as 8 has no more chance of achieving R(a,3) than a simulator that does not engage in any
interaction with A at all. We explicitly require that R(a, “reject”) = 0, so that forcing A to reject
does not allow B’ to do better than a simulator simply by rejecting always. We call polynomial-time
relations that meet this requirement allowable; note that the identity relation is allowable, so we do
not allow B’ to copy A’s commitment string.

More formally then, we require for all B, there exist a simulator S such that for all allowable R and
all efficiently sampleable distributions D and neg(k) negligible, the following holds: Pr[a < D; [«—
OUTA(1*,a,~,-,) : R(a, B) = 1] < Prla « D; 3 « S(1*,D) : R(a, B) = 1] + neg(k)

e The protocol must also satisfy the versions of these properties defined analogously with respect to
the party B.

E.1 The Ideal Coin-Flipping Tool

Lemma 6. Let Y be the commitment scheme (Com,DCom). Let Uy denote the uniform distribution
over {0,1}*. Suppose Yz, Com(x) ~ Uy. Suppose the domain of DCom is {0,1}*. Then Y C T.

Proof. Note that the adversary has access only to the (ICom, IDCom) interfaces of I. We set the required
algorithm S to be the identity function. Now we claim that no adversary can distinguish interactions
with Y from interactions with I. To do so, notice that by construction, for all z, ICom(z) = Uy. By our
hypothesis, for all =, Com(x) ~ Uj. Therefore, for all z, Com(x) ~ ICom(z). To finish the proof, we note
that by the correctness of DCom, for all strings ¢ € {0,1}*, the behavior of DCom(c) is the same as the
behavior of ICom(c). O

E.2 Removing the CRS

Let the protocol P’(Y) be identical to P(}), except that it functions in a model without a common
reference string. As), unlike Z, does not utilize the CRS, we may now prove that P’()) is secure.

Theorem 14. Let the translator T' correctly translate handles of) to handles of Z. Let the translator
T correctly translate handles of Z to handles of). Then the protocol P'(Y) is simulatable and provides
mutually independent announcements against all allowed adversaries.

26

Proof. Proof sketch. The main idea is that P’(Y) differs from P()) only in the presence of the common
reference string. This common reference string is generated independently of other parts of the view of
an adversary against P(Y). Furthermore, we know that P()) has the desired security properties. We
can then transform an adversary ['p/(y) against P’()) that breaks one of the security properties into
an adversary I'p(y) against P(Y) by randomly generating a CRS and providing it to I'pr(y). Thus, the
adversary I'p/(yy can compromise the security of P’()) with only negligible probability; P’()) is thus
secure. O

27

