
A Simple Left-to-Right Algorithm for Minimal Weight
Signed Radix-r Representations

James A. Muir∗

School of Computer Science
Carleton University, Ottawa, Canada

http://www.scs.carleton.ca/∼jamuir

23 October 2006 12:57:11 EDT

Abstract

We present a simple algorithm for computing thearithmetic weightof an integer with respect to a
given radixr ≥ 2. The arithmetic weight ofn is the minimum number of nonzero digits in any signed
radix-r representation ofn. This algorithm leads to a new family ofminimal weightsigned radix-r
representations which can be constructed using aleft-to-right on-line algorithm. These representations
are different from the ones previously discovered by Joye and Yen [3]. The idea behind our algorithm
is that of choosingclosestelements which was introduced by Muir and Stinson [5]. Our results have
applications in coding theory and in the efficient implementation of public-key cryptography.

Index Terms computer arithmetic, signed radix-r representations, redundant representations, mini-
mal weight representations, left-to-right recoding, elliptic curve cryptography.

1 Introduction

In this paper, we are concerned withradix-r representationswherer ≥ 2.

Definition 1. A radix-r representationis afinite sum of the form
∑

i≥0 ai r i .

Since the sum above is finite, this implies that all but a finitenumber of theai are equal to zero. Ifn is
an integer andn =

∑
i≥0 ai r i , we say that

∑
i≥0 ai r i is a radix-r representation of n. To denote radix-r

representations, the following notation is commonly used:

(. . . a3a2a1a0)r = · · · + a3r
3+ a2r

2 + a1r
1 + a0.

Eachai is called adigit.
It is well-known that every non-negative integer has auniqueradix-r representation with digits from the

set{0, 1, 2, . . . , r − 1}. Usually, when one speaks of “radix-r representations”, what is meant is radix-r
representations which use these digits. However, we do not need to restrict ourselves to only these digits.
Signedradix-r representations use the digits{0,±1,±2 . . . ,±(r − 1)}. We will often write 1, 2, . . . to
stand for−1,−2, Every integer, except for zero, has several different signed radix-r representations. In
fact, every nonzero integer has aninfinite number of such representations (e.g. 42= (222)4 = (1222)4 =

∗J.A. Muir is supported by a Natural Sciences and EngineeringResearch Council of Canada Postdoctoral Fellowship.

1

http://www.scs.carleton.ca/~jamuir

(13222)4 = (133222)4 = · · ·). Of theseredundantrepresentations, it is possible to select one which hasas
few nonzero digits as possible. We say that such representations haveminimal weight.

Signed radix-r representations of minimal weight have been studied by various subgroups of computer
scientists; two, in particular, are coding theorists and cryptographers.

AN codesare a family of error detecting and correcting codes ([6] andChapter 12 of [4] provide good
overviews of AN codes). The messages for these codes are integers. Message encoding and decoding has
the advantage that it is done using regular integer multiplication and division. Integersn0, n1 are encoded as
An0, An1, whereA is a fixed integer. Note that

An0 + An1 = A(n0+ n1);

so the sum of two codewords is a codeword. Because of this property, AN codes are useful for detecting
errors in computer arithmetic. IfS is the result of a computation andS 6≡ 0 (mod A), then an error has
occurred. The distance function used inAN codes is based on signed radix-r representations.

Definition 2. Thearithmetic weightof an integern, with respect to a given radixr , is the number of nonzero
digits in a minimal weight signed radix-r representation ofn.

The distance betweenx andy is the arithmetic weight ofx − y. Finding AN codes that correct more than
one error requires a way of computing an integer’s arithmetic weight.

A method of constructing minimal weight representations, for a general radixr ≥ 2, was provided by
Clark and Liang [1]. This construction reveals an integer’sarithmetic weight. Clark and Liang call their
representationsgeneralized nonadjacent forms(GNAFs) since they generalize Reitwiesner’snonadjacent
forms [7] which are defined in the caser = 2. Clark and Liang’s algorithm builds a GNAF from least
significant digit to most significant digit.

Cryptographers became interested in minimal weight representations because of their utility in making
the algebraic operations used in public-key cryptography more efficient. As a concrete example, consider
the Elliptic Curve Digital Signature Algorithm (ECDSA) [2]. Signing a message using ECDSA requires a
computation of the form

nP := P + P + · · · + P︸ ︷︷ ︸
n

,

wheren is an integer andP is an elliptic curve point. Two well-known algorithms for computing nP
are presented in Figure 1; both are based on replacingn with a signed radix-r representation. The main
difference in the two algorithms is that one processes the digits of (aℓ−1 . . . a1a0)r = n from left to right and
the other does so fromright to left. Note thatanysigned radix-r representation ofn may be used in these
algorithms. However, some work can be saved if a minimal weight representation is used. This is because,
for every nonzero digit in(aℓ−1 . . . a1a0)r , an elliptic curve addition or subtraction is performed.

The left-to-right algorithm in Figure 1 is generally preferred since the value of the variablesPi , which
are set in the first “for” loop, can be precomputed off-line and stored. This is advantageous ifnP must be
computed for various values ofn (e.g. when a number of different messages must be signed using ECDSA).
Joye and Yen [3] considered the following problem. Suppose we already have a radix-r representation ofn
at the start of the left-to-right algorithm (this might be provided as input). They asked: if that representation
does not have minimal weight, is there a way to compute the digits of a minimal weight representation of
n from left to right? If so, then the digits of this minimal weight representation do not need to be stored
since they can be computed inside the main “for” loop as they are needed. This would reduce the amount of
memory necessary to computenP.

In [3], Joye and Yen present an algorithm which builds a minimal weight representation from left to
right. The genesis of their algorithm is in identifying and replacing “elementary blocks” in an integer’s
GNAF. This approach initially seems somewhat ad hoc, but their final algorithm speaks for itself.

2

Left-to-Right

Q←∞
for i = 1 . . . r − 1

do
{

Q← Q + P
Pi ← Q

Q←∞
compute(aℓ−1 . . . a1a0)r = n
for i = ℓ− 1 . . . 0

do





Q← r Q
if ai 6= 0

then





if ai > 0
then Q← Q + Pai

elseQ← Q− P−ai

return Q

Right-to-Left

for i = 1 . . . r − 1
do Pi ←∞

Q← P
compute(aℓ−1 . . . a1a0)r = n
for i = 0 . . . ℓ− 1

do





if ai 6= 0

then





if ai > 0
then Pai ← Pai + Q
elseP−ai ← P−ai − Q

Q← r Q
Q←∞, R←∞
for i = 1 . . . r − 1

do
{

Q← Q + Pi

R← R+ Q
return R

FIGURE 1: Left-to-right and right-to-left versions of the radix-r method for computingnP.

It turns out that there is a more natural and simplistic solution to Joye and Yen’s problem. It is based
on a technique introduced by Muir and Stinson [5]. To construct a minimal weight representation ofn from
left to right, we choose an integerc, with arithmetic weight equal to one, that isclosestto n. The purpose of
the current paper is to explain this technique.

Outline The main part of the paper begins with §2 where we review some basic facts about modular
arithmetic and present some notation. In §3, we explain whatwe mean by “choosing closest elements” and
demonstrate how this can be efficiently done. Our algorithm for computing an integer’s arithmetic weight
is presented in §4 with the necessary proofs. In §5, we give our left-to-right algorithm for building minimal
weight representations and compare it with Joye and Yen’s. We end with some concluding remarks in §6.

2 Preliminaries

The quotient-remainder theorem tells us that, for any integersn andm > 0, there existuniqueintegersq
and p such that

n = q ·m+ p where 0≤ p < m.

The valuep is commonly denoted by “n mod m”. It follows that there also existuniqueintegerŝq and p̂
such that

n = q̂ ·m+ p̂ where −m/2≤ p̂ < m/2.

We will denote the valuêp by “n mods m”. Note that p̂ is equal to eitherp or p−m.
Let Dr be the set consisting of the signed radix-r digits:

Dr := {0,±1,±2, . . . ,±(r − 1)}.

If α is a string of digits, we denote the number of nonzero digits in α by wt(α). We refer towt(α) as the
weightof the stringα. The set of all strings composed of digits inDr is denoted byDr

∗.

3

For an integern, we define

wt∗(n) := min{wt(α) : α ∈ Dr
∗, (α)r = n}.

So, wt∗(n) is the minimum number of nonzero digits required to represent n using aDr -radix-r repre-
sentation. Thus,wt∗(n) is the arithmetic weight ofn. If α ∈ Dr

∗ and (α)r = n then it must be that
wt(α) ≥ wt∗(n); if wt(α) = wt∗(n) we say thatα hasminimal weight.

3 Closest Elements

Let C be the set of integers which have arithmetic weight equal to one:

C :=
{
dr i : i ∈ Z, i ≥ 0, d ∈ Dr \ {0}

}
. (1)

Given a nonzero integer,n, we are interested in finding an element inC that isclosestto n, with respect
to the standard Euclidean distance (i.e.|x − y|). The following lemma helps us recognize whenc ∈ C is
closest ton.

Lemma 3. Let n be a nonzero integer, i=
⌊
logr |n|

⌋
and c∈ C. If r i ≤ |c| ≤ r i+1, then c is closest to n if

and only if

|n− c| ≤
r i

2
.

Proof. We will assumen is positive; the argument forn < 0 is the same except for some sign changes. We
have

r i ≤ n < r i+1.

Consider the elements ofC in the interval [r i , r i+1]; there are exactlyr of them:

r i , 2r i , 3r i , . . . , (r − 1)r i , r i+1.

The distance between each pair of consecutive elements isr i . Thus, ifc ∈ C andc ∈ [r i , r i+1], thenc is
closest ton if and only if |n− c| ≤ r i /2.

For n 6= 0, consider the following function

closest(n) := n− (n mods r ⌊logr |n|⌋).

By applyinguniquenessfrom the definition of “mods”, we can deduce thatclosest(n) equals a multiple of
r ⌊logr |n|⌋ that is closest to n. However, not all multiples ofr ⌊logr |n|⌋ are inC, and there are elements ofC
which are not multiples ofr ⌊logr |n|⌋. Despite this, our next result shows thatclosest(n) does what we want.

Theorem 4. closest(n) is an element ofC that is closest to n.

Proof. Let i =
⌊
logr |n|

⌋
and p̂ = n mods r i . Note thatclosest(n) = n− p̂. We will assumen > 0; the

proof forn < 0 is similar.
We have

n = q̂r i + p̂,

for some integer̂q. Sincer i ≤ n < r i+1 and−r i /2≤ p̂ < r i /2, it must be that

q̂ ∈ {1, 2, . . . , r }.

4

So we see thatn− p̂ = q̂r i ∈ C. As well, we get the bound

r i + p̂ ≤ n ≤ r i+1 + p̂,

and thusn− p̂ ∈ [r i , r i+1].
To finish the argument, observe

| p̂| ≤ r i /2

H⇒ |n− (n− p̂)| ≤ r i /2.

So, by Lemma 3,n− p̂ = closest(n) is an element ofC closest ton.

Note that, depending on the choice ofr , some values ofn can havetwo closest elements inC. For such
integers,closest(n) is equal to thelargestclosest element inC.

4 Minimality

Consider the following procedure:

Algorithm W

INPUT: integersn, r wherer ≥ 2.

OUTPUT: an integerw.

w← 0
while n 6= 0

do





w← w + 1
c← closest(n)

n← n− c
return w

Our main result is that Algorithm W computes the arithmetic weight ofn. However, before we get to that,
we first need to prove that Algorithm W terminates for all inputs (i.e. we need to prove that “Algorithm” W
really is an algorithm).

Fix somer ≥ 2 and take anyn ∈ Z. If n = 0 then Algorithm W clearly terminates, so we need only
considern 6= 0. It suffices to show that|n| > |n− c| wherec = closest(n). Suppose to the contrary that
|n| ≤ |n− c|. Then,

|n| ≤ |n− c|

H⇒ |n| ≤ r ⌊logr |n|⌋/2 (by Lemma 3)

H⇒ r ⌊logr |n|⌋ ≤ r ⌊logr |n|⌋/2

H⇒ 2≤ 1,

which is a contradiction. Thus, we see that the value of the variablen in the execution of Algorithm W must
go to 0, hence Algorithm W will always terminate. So, “Algorithm” W is aptly named.

Example 5. We build on an example from [3]. Here is the sequence of valuesthat the variablec assumes
during the execution of Algorithm W on inputn = 208063846 andr = 4:

201326592, 8388608, − 2097152, 524288, − 65536, − 12288, − 768, 128, − 32, 8, − 2.

The value returned by Algorithm W is 11 which is equal to the number of integers in this sequence. ♦

5

If we let w be the value returned by Algorithm W on inputn andr , then we claim thatw = wt∗(n). We
will prove this by showing thatw ≥ wt∗(n) andw ≤ wt∗(n). We start withw ≥ wt∗(n).

Let c1, c2, . . . cw be the sequence of values that the variablec assumes in the execution of Algorithm W.
We have

c1 is closest ton

c2 is closest ton− c1

c3 is closest ton− c1− c2

...

cw is closest ton− c1− c2− . . .− cw−1.

Because the algorithm terminates, we have

n− c1− c2 − . . .− cw−1 − cw = 0

H⇒ n = c1+ c2+ · · · + cw.

We show that theci form a radix-r representation ofn. For eachci , write

ci = di r
ei where di ∈ Dr \ {0}.

Lemma 6. e1 > e2 > · · · > ew.

Proof. Since we can replace the inputn with n− c1, it suffices to prove thate1 > e2. From the definition of
closest(n) we have

e1 ∈
{⌊

logr |n|
⌋

,
⌊
logr |n|

⌋
+ 1

}
,

e2 ∈
{⌊

logr |n− c1|
⌋

,
⌊
logr |n− c1|

⌋
+ 1

}
.

By Lemma 3, we have

|n− c1| ≤ r ⌊logr |n|⌋/2

H⇒ |n− c1| < r ⌊logr |n|⌋

H⇒ r ⌊logr |n−c1|⌋ < r ⌊logr |n|⌋

H⇒
⌊
logr |n− c1|

⌋
+ 1≤

⌊
logr |n|

⌋

Thus, the smallest value ofe1 is≥ the largest value ofe2. Hence,e1 ≥ e2.
Supposee1 = e2. From the argument we gave to prove that Algorithm W terminates, we have|n| >

|n− c1| > |(n− c1)− c2|. Thus,
|n− c1| > |n− (c1+ c2)| .

So the integerc1 + c2 is closer ton thanc1. However,e1 ≥
⌊
logr |n|

⌋
sor ⌊logr |n|⌋ dividesc1 = d1r e1. And,

becausee2 = e1, r ⌊logr |n|⌋ also dividesc2. This implies thatc1 + c2 is a multiple ofr ⌊logr |n|⌋. But this is a
contradiction becausec1 is a multiple ofr ⌊logr |n|⌋ that is closest ton (recall thatc1 = n−(n mods r ⌊logr |n|⌋)).
Hence, it must be thate1 6= e2, and thuse1 > e2, as required.

Example 7. Continuing from our previous example withn = 208063846 andr = 4, the sequence of values
that the variablec assumes during the execution of Algorithm W gives the following representation:

208063846= (30222103032222)4.

Notice that this representation has 11 nonzero digits. Thus11≥ wt∗(208063846). ♦

6

Lemma 8. Letw be the value returned by Algorithm W on input n and r≥ 2. Thenw ≥ wt∗(n).

Proof. By Lemma 6, the sequence ofw values that the variablec assumes during the execution of Algo-
rithm W gives us a stringα ∈ Dr

∗ with (α)r = n andw = wt(α). Thus,w = wt(α) ≥ wt∗(n).

Next, we need to prove thatw ≤ wt∗(n). The following two short lemmas will be of help.

Lemma 9. Let (aℓ−1 . . . a1a0)r be any representation of n with each digit in Dr and aℓ−1 6= 0. Let i =⌊
logr |n|

⌋
. Then,ℓ− 1≥ i .

Proof. Note thataℓ−1 6= 0 impliesn 6= 0 and so both logr |n| andi are defined. Sincen = (aℓ−1 . . . a1a0)r ,
we have|n| < r ℓ. From the definition ofi , we haver i ≤ |n|. Thus,r i ≤ |n| < r ℓ, which givesr i < r ℓ and
the result follows.

Lemma 10. Let (aℓ−1 . . . a1a0)r be any representation of n with each digit in Dr and aℓ−1 6= 0. Let
i =

⌊
logr |n|

⌋
. Then, there are at most two possible values for(aℓ−1 . . . ai)r · r i ; moreover, both of these

values are inC, and one is equal toclosest(n).

Proof. Consider the constrained Diophantine equation

n = xr i + y, − r i < y < r i . (2)

It is easily seen that (2) has at most two solutions. More precisely, whenr i dividesn there is exactly one
solution, and whenr i does not dividen there are exactly two solutions. In either case, settingy = n mods r i

always gives a solution, and for the resultingx value we havexr i = n− (n mods r i) = closest(n).
By the definition ofi we have that−r i+1 < n < r i+1. Combining this bound with the fact that

−r i < −y < r i we get

− r i+1 − r i < n− y < r i+1 + r i

H⇒ − r − 1 < (n− y)/r i < r + 1

H⇒ − r ≤ x ≤ r.

If x = 0, then (2) implies that−r i < n < r i , contrary to the definition ofi . Thus,x 6= 0 and hencexr i ∈ C.
Now, to complete the proof, we simply observe that the representation(aℓ−1 . . . a1a0)r gives us a solution

to (2) because
n = (aℓ−1 . . . ai)r · r

i + (ai−1 . . . a0)r ,

and−r i < (ai−1 . . . a0)r < r i . Note that, by Lemma 9, the range of digitsaℓ−1 . . . ai is well defined because
ℓ− 1≥ i .

We can now present our final lemma.

Lemma 11. Letw be the value returned by Algorithm W on input n and r≥ 2. Thenw ≤ wt∗(n).

Proof. If n = 0, thenw = 0 = wt∗(0), and so the Lemma holds in this case. Supposen 6= 0. Let
c1, c2, . . . , cw be the sequence of values that the variablec assumes during the execution of Algorithm W.
Let (aℓ−1 . . . a1a0)r be an arbitrary representation ofn with digits in Dr andaℓ−1 6= 0. Let i =

⌊
logr |n|

⌋
.

Then
n = (aℓ−1 . . . ai)r r

i + (ai−1 . . . a0)r .

7

We want to replace(aℓ−1 . . . ai)r r i with c1 in the equation above. If(aℓ−1 . . . ai)r r i is equal toc1, then this
is easily done, but it is not always true that(aℓ−1 . . . ai)r r i = c1. If (aℓ−1 . . . ai)r r i 6= c1, we can still carry
out the replacement and maintain equality if we also replaceai−1 with a new digit̂ai−1 defined as follows:

âi−1 :=





ai−1 if c1 = (aℓ−1 . . . ai)r r i ,

ai−1 − r if c1 6= (aℓ−1 . . . ai)r r i andai−1 > 0,

ai−1 + r if c1 6= (aℓ−1 . . . ai)r r i andai−1 < 0.

(3)

Observe that̂ai−1 ∈ Dr . We will show that

n = c1 + (̂ai−1 . . . a0)r . (4)

Before we prove (4), we first make a note about the definition ofâi−1. It may seem as though the
case(aℓ−1 . . . ai)r r i 6= c1 andai−1 = 0 is missing from (3), but this is not so. Consider the difference
n− (aℓ−1 . . . ai)r r i = (ai−1 . . . a0)r . Whenai−1 = 0 we have

∣∣n− (aℓ−1 . . . ai)r r
i
∣∣ = |(0ai−2 . . . a0)r | < r i−1 ≤

r i

2
.

By Lemma 3, this bound implies that(aℓ−1 . . . ai)r r i = closest(n) = c1. Thus when(aℓ−1 . . . ai)r r i 6= c1,
ai−1 must be nonzero.

Now we return to establishing (4) for each case listed in (3).In the first case there is nothing to prove.
Consider the second case. Suppose that(aℓ−1 . . . ai)r r i 6= c1 andai−1 > 0. Then it is easily checked that

x = (aℓ−1 . . . ai)r , y = (ai−1 . . . a0)r

and
x = (aℓ−1 . . . ai)r + 1, y = (ai−1 . . . a0)r − r i

are the two solutions to the constrained Diophantine equation n = xr i + y,−r i < y < r i . Since
(aℓ−1 . . . ai)r r i 6= c1, it must be that((aℓ−1 . . . ai)r + 1)r i = c1 (this follows from Lemma 10). Now,

n = ((aℓ−1 . . . ai)r + 1) r i +
(
(ai−1 . . . a0)r − r i

)

= c1+ (̂ai−1 . . . a0)r ,

which is what we wanted to show. The third case,(aℓ−1 . . . ai)r r i 6= c1 andai−1 < 0, is established in the
same way (takex = (aℓ−1 . . . ai)r − 1, y = (ai−1 . . . a0)r + r i). Thus, no matter what representation ofn
we begin with, (4) always holds.

We have

n = c1+ (̂ai−1 . . . a0)r

H⇒ n− c1 = (̂ai−1 . . . a0)r .

Note that̂ai−1 is nonzero if and only ifai−1 is nonzero. Thus,(ai−1 . . . a0)r and (̂ai−1 . . . a0)r contain the
same number of nonzero digits.If n − c1 6= 0, then(̂ai−1 . . . a0)r must contain another nonzero digit. In
this case, we can do another replacement and incorporate thevaluec2 by repeating the above process with
n− c1 in place ofn. Thus, we see that we can carry out exactlyw of these replacements. After we bringcw

into our equation, there can be no more nonzero digits in whatremains of the representation(. . . a1a0)r ; this
is becausen− c1− · · · − cw = 0.

Each time we carry out a replacement, we eliminateat leastone digit that was nonzero inα = aℓ−1 . . . a0

and we do not create any new ones. Thus, an upper bound on the number of replacements that can be applied
is wt(α). So,w ≤ wt(α).

This process works for anyα ∈ Dr
∗ with (α)r = n. By takingα with wt(α) = wt∗(n) (i.e. by taking a

minimal weight representation ofn) we getw ≤ wt∗(n), as desired.

8

Example 12. We illustrate the transformation used in the proof of Lemma 11. The sequence of values that
the variablec assumes during the execution of Algorithm W on inputn = 43 andr = 3 is 54,−9,−2. We
can transform any signed radix-3 representation of 43 into the sum 54+ (−9)+ (−2) using the rules listed
in (3). Consider the representation(1121)3 = 43. Since

⌊
log3 43

⌋
= 3 we write

43= (1)3 · 3
3+ (121)3.

Now, (1)3 · 33 6= 54 anda2 = 1 is positive, thus we have

43= 54+ (221)3.

(221)3 is a representation of−11. Since
⌊
log3 |−11|

⌋
= 2 we write

43= 54+ (2)3 · 3
2+ (21)3.

−9 is closest to−11, and(2)3 · 32 6= −9 with a1 = 2 positive. Thus, we have

43= 54+ (−9)+ (11)3.

Finally, (11)3 is a representation of−2. Since
⌊
log3 |−2|

⌋
= 0 we write

43= 54+ (−9)+ (11)3 · 3
0.

−2 is closest to−2, and(11)3 · 30 = −2 so we have

43= 54+ (−9)+ (−2).

Notice that the final substitution eliminated two nonzero digits while the first two substitutions each elim-
inated one. If we had instead started with the representation (2102)2 = 43, then our substitutions would
proceed as follows:

43= (2102)2

= (2)3 · 3
3+ (102)3

= 54+ (102)3

= 54+ (1)3 · 3
2 + (02)3

= 54+ (−9)+ (02)3

= 54+ (−9)+ (−2).

For this representation, each substitution eliminates onenonzero digit. ♦

After all those lemmas, we can now state a theorem.

Theorem 13. Letw be the value returned by Algorithm W on input n and r≥ 2. Thenw = wt∗(n).

Proof. Apply Lemma 8 and Lemma 11.

9

5 Constructing Representations

We now know that by using the functionclosest(n) we can build a minimal weight signed radix-r repre-
sentation of an integer. This representation is implicitlyconstructed in Algorithm W. Here we present an
on-linealgorithm which outputs the digits of a minimal weight representation from left to right. As we will
see, when the radixr is even, the representation built by the on-line algorithm matches that of Algorithm W;
whenr is odd, however, the two representations can differ.

The input to our algorithm is a representation(bℓ−1 . . . b1b0)r where eachbi ∈ {0, 1, 2, . . . , r − 1}. It is
possible to describe a more general algorithm which takes arbitrary signed radix-r representations as input.
However, restricting the input to representations with non-negative digits simplifies our discussion. As well,
it allows us to compare our algorithm more directly with Joyeand Yen’s [3].

Our algorithm uses a “for” loop to construct its output representation(aℓ . . . a1a0)r . At the beginning of
each iteration of the “for” loop, the algorithm has the following information:

ni = (̂bi bi−1 . . . b0)r where b̂i = bi +1 and 1 ∈ {0,−r }. (5)

Initially, i = ℓ − 1 and1 = 0. The value ofai is determined bŷbi andbi−1. Often,b̂i andbi−1 reveal the
value ofclosest(ni), but this is not always the case. Observe,

ni = (̂bi bi−1 . . . b0)r

H⇒ b̂i r
i ≤ ni < (̂bi + 1)r i . (6)

Now consider the possible values ofb̂i . Since1 ∈ {0,−r } andbi ∈ {0, 1, 2, . . . , r − 1}, we have

b̂i ∈ {−r,−(r − 1), . . . ,−1, 0, 1, . . . , r − 1}.

When b̂i 6∈ {−1, 0} then from (6) we see that̂bi r i and (̂bi + 1)r i are two consecutive, nonzero elements
of C that boundni . Thus,closest(ni) equals either̂bi r i or (̂bi + 1)r i . Whenr is even, the value ofbi−1

always reveals which of the two possibilities is correct: ifbi−1 ≥ r/2 thenclosest(ni) = (̂bi + 1)r i , and
closest(ni) = b̂i r i otherwise. Whenr is odd, this is not necessarily true.

Example 14. For the radixr = 3, suppose we haveni = (21bi−2bi−3 . . .)3. The most significant digit of
this representation,bi = 2, tells us that 2r i ≤ ni < 3r i . Unfortunately, the next digit,bi−1 = 1, does
not reveal which of these two values is closer. Observe(210bi−3 . . .)3 is closer to 2r i , but (212bi−3 . . .)3 is
closer to 3r i ; similarly for (2110. . .)3 and(2112. . .)3. By putting a long run of 1’s to the right ofbi , we
see that reading any finite number of digits immediately to the right ofbi will not suffice to determine the
closest choice; thus, no on-line algorithm is able to make this determination. ♦

When r is odd, we can deduce the following: ifbi−1 > ⌊r/2⌋, thenclosest(ni) = (̂bi + 1)r i ; if
bi−1 < ⌊r/2⌋, thenclosest(ni) = b̂i r i ; but, if bi−1 = ⌊r/2⌋, the value ofclosest(ni) cannot be decided.
Fortunately, whenbi−1 = ⌊r/2⌋, it does not matter whether we choose to use(̂bi + 1)r i or b̂i r i in our
representation ofni ; both choices yield minimal weight representations.

Lemma 15. Let r ≥ 2 be odd. If ni = (̂bi bi−1 . . . b0)r with b̂i 6∈ {−1, 0} and bi−1 = ⌊r/2⌋, then

wt∗(ni − closest(ni)) = wt∗
(
ni − b̂i r

i
)
.

Proof. If closest(ni) = b̂i r i , then there is nothing to prove. Assume thatclosest(ni) = (̂bi + 1)r i . From
the closest choice representation ofni , we have

ni = (̂bi + 1)r i + c2+ c3+ · · · + cw.

10

Becauseni < (̂bi + 1)r i it must be thatc2 < 0. We claim thatc2 = dr i−1. To see this, observe

b̂i r
i + ⌊r/2⌋ r i−1 ≤ ni < b̂i r

i + (⌊r/2⌋ + 1)r i−1

H⇒ −r i + ⌊r/2⌋ r i−1 ≤ ni − (̂bi + 1)r i < −r i + (⌊r/2⌋ + 1)r i−1

H⇒ (⌊r/2⌋ − r)r i−1 ≤ ni − (̂bi + 1)r i < (⌊r/2⌋ − r + 1)r i−1.

By writing r = 2x + 1 wherex ≥ 1, it can be shown that⌊r/2⌋ − r ≤ −2. Thus, we have two consecutive
nonzero elements ofC that boundni − (̂bi +1)r i ; soclosest

(
ni − (̂bi + 1)r i

)
= dr i−1 whered is a negative

digit in {⌊r/2⌋ − r, ⌊r/2⌋ − r + 1}. Now,

ni = (̂bi + 1)r i + dr i−1 + c3+ · · · + cw

= b̂i r
i + (r + d)r i−1 + c3+ · · · + cw.

Note thatr + d is a valid (positive) digit. Because the first representation has minimal weight, so too does
the second. Hence, the result follows.

In light of Lemma 15, when we cannot decide on the correct value ofclosest(ni) becausebi−1 = ⌊r/2⌋,
we can safely takêbi r i without sacrificing minimality. However, a consequence of this strategy is that when
r is odd, the minimal weight representation built by our on-line algorithm can be different from the closest
choice representation.

Here is how our algorithm works. When̂bi 6∈ {−1, 0}, it setsai to equal either̂bi or b̂i + 1, and it does
so in the following way. At first, it takesai = b̂i , but then, ifbi−1 ≥ r/2, it takesai = b̂i + 1. After ai is
determined,1 is updated; ifai = b̂i + 1 then1 = −r , otherwise1 = 0. It is possible that̂bi + 1 = r , in
which case we cannot takeai = b̂i + 1 becauser is not a valid digit for our output representation. However,
this possibility is easily detected and can be dealt with by settingai+1 = 1 andai = 0 (we will see that the
previous value ofai+1 is necessarily zero so overwriting it does not cause a problem). It is also possible that
b̂i = −r . This is dealt with similarly; we setai+1 = −1 andai = 0 (again, this causes no problem). In the
subsequent loop iteration, we haveni−1 = (̂bi−1bi−2 . . . b0)r = ni − ai r i .

Two cases which we have not yet addressed are whenb̂i ∈ {−1, 0}. For these values, (6) becomes

0≤ ni < r i , and − r i ≤ ni < 0.

With respect to determiningclosest(ni), these bounds are not of much use. Regardless, the algorithmmust
setai to some value. In these cases, we setai = 0. More precisely, when̂bi = 0, we setai = 0 and update
1 to equal 0; and when̂bi = −1, we setai = 0 and update1 to equal−r . In either situation, it can be
shown that updating the value of1 is unnecessary. For instance, since 0≤ bi ≤ r − 1 and1 ∈ {0,−r }, if
b̂i = bi +1 = 0, then it must be thatbi = 0 and1 = 0; since1 is already 0, we do not need to update it.

This strategy for dealing witĥbi ∈ {−1, 0}works well except when it happens thatb̂0 = −1. In this case,
we would seta0 = 0 and pass1 = −r into the subsequent loop iteration. However, thereis no subsequent
loop iteration. We deal with this problem by checking the value of 1 after the “for” loop completes. If
1 = −r , then we seta0 = −1.

We still need to justify that settingai+1 = 1 andai = 0 instead ofai = r does not overwrite a nonzero
digit. This could only happen if̂bi + 1 = r . From (5), we see that this impliesbi = r − 1 and1 = 0. The
value of1 was determined in the previous loop iteration when the initial value ofai+1 was set. Ifai+1 was
nonzero, then the fact thatbi = r − 1 ≥ r/2 would imply1 = −r , contrary to the fact that1 = 0. So, the
initial value ofai+1 must have been zero. The case where we setai+1 = −1 andai = 0 instead ofai = −r
can be justified similarly. This happens only ifb̂i = −r . From (5), we can deduce thatbi = 0 and1 = −r .
The value of1 was determined in the previous loop iteration. If the initial value ofai+1 was nonzero then

11

we would have1 = 0 becausebi = 0 < r/2, contrary to the fact that1 = −r . So, again, the initial value
of ai+1 must have been zero.

This method of constructing minimal weight signed radix-r representations is implemented in Algo-
rithm R.

Algorithm R

INPUT: (bℓ−1 . . . b1b0)r where eachbi ∈ {0, 1, . . . , r − 1}.
OUTPUT: (aℓ . . . a1a0)r

b−1← 0, aℓ ← 0, 1← 0
for i = ℓ− 1 . . . 0

do





b̂← bi +1

if b̂ ∈ {−1, 0} then b̂← 0

else





if bi−1 ≥ r/2
then 1←−r, b̂← b̂+ 1
else1← 0

if b̂ = r then ai+1← 1, ai ← 0
else if b̂ = −r then ai+1←−1, ai ← 0
elseai ← b̂

if 1 = −r then a0←−1
return (aℓ . . . a1a0)r

Algorithm R can be adapted so that it outputs an integer’s arithmetic weight. This is done in Appendix A.
Computing the arithmetic weight in this way does not requirethe computation of logarithms or divisions;
these operations are used in Algorithm W.

Algorithm R can be combined with the left-to-right radix-r method of computingnP in Figure 1. How-
ever, the fact that digitai+1 can be overwritten after the value ofai is determined requires some consider-
ation. One easy way to deal with this is to simply allow digitsto take the values±r . This can be accom-
plished by replacing the “if-else-else” statement at the bottom of the “for” loop in Algorithm R with the
statementai ← b̂. Note that this change requires the pointr P to be precomputed in addition to the points
1P, 2P, . . . , (r − 1)P.

An initial question that we might ask about Algorithm R is whether or not it is equivalent to Joye and
Yen’s (see Figure 1, page 380, of [3]). It is not, and this factcan be easily demonstrated.

Example 16. Let r = 3. The{0, 1, 2}-radix-3 representation of 41 is(1112)3. Here are three minimal
weight{0,±1,±2}-radix-3 representations constructed by three algorithms:

Algorithm R (1121)3

Joye & Yen (1211)3

GNAF (2111)3.

The GNAF of 41 was constructed using Theorem 3 from [1]. Notice that each output is different from the
others. Thus, we can conclude that the algorithms which created these outputs are not equivalent. Note also
that the closest choice representation of 41 is 54+ (−9)+ (−3)+ (−1) = (2111)3 which is different from
the output of Algorithm R. ♦

Example 17. The output of Algorithm R on input(30121230311212)4 = 208063846 was listed in Exam-
ple 6 (note thatr is even). Joye and Yen give the output of their algorithm in [3]:

Algorithm R (30222103032222)4

Joye & Yen (30122103031212)4

GNAF (30212103031212)4.

12

Again, these outputs demonstrate that the algorithms are not equivalent. ♦

More generally, it can be shown that, for anyr > 2, the smallest positive integer for which the the two
algorithms produce different representations isn = r + ⌊r/2⌋.

Algorithm R does not always produce a different representation than Joye and Yen’s algorithm. In the
case whenr = 2, it appears that the outputs of the two algorithms coincide. If we taker = 4 and consider
the representations constructed by the two algorithms for the integers 1. . . 63, then all but eleven of them
are equal; different representations are output for the integers 6, 13, 22, 24, 25, 38, 39, 52, 53, 54 and 55.

One difference between the outputs produced by Algorithm R and those produced by Joye and Yen’s
algorithm is that Algorithm R’s outputs sometimes have shorter length. Forr = 4, when we compare
the outputs of the two algorithms for the integers 1. . . 2047, we find that 85 representations computed
by Algorithm R are shorter (by one digit in each case) and 1962representations have the same length.
This difference indicates that the algorithms for computing nP in Figure 1 perform slightly better with the
representations constructed by Algorithm R.

Algorithm R also differs from Joye and Yen’s in that it only examinestwo input digits,bi , bi−1, before
it sets the value ofai ; Joye and Yen’s algorithm examinesthreedigits,bi , bi−1, bi−2.1 As well, Algorithm R
requiresℓ loop iterations while Joye and Yen’s algorithm requiresℓ + 1; hereℓ is the length of the input
representation. However, deciding which of the two algorithms is more efficient is a subjective task; this is
dependent on what resources (e.g. memory) are available to an implementor. In software, there seems to be
little reason to choose one over the other. In hardware, the fact that Algorithm R requires fewer temporary
variables may be of some benefit. A non-academic reason to choose Algorithm R is that it is not encumbered
by patents. Forr = 2, Joye and Yen’s technique has been patented in France (patent no. 2811168) and in
the USA (patent no. 6903663); forr ≥ 2, patents are pending in France and the USA.

6 Concluding Remarks

In this paper, we have presented a new algorithm for computing the arithmetic weight of an integer. This
algorithm leads to a new family of minimal weight signed radix-r representations which can be constructed
using a left-to-right on-line algorithm. The idea behind our algorithm is simply that of choosing closest
elements. This is a very general approach and it may be usefulin constructing other families of minimal
weight integer representations. Use of our algorithm is notencumbered by patents.

Acknowledgements

The author is indebted to Harry Reimann for pointing out an error in Algorithm R in a previous version of
this paper.

References

[1] W. CLARK AND J. LIANG. On arithmetic weight for a general radix representation ofintegers.IEEE
Transactions on Information Theory19 (1973), 823–826.

[2] FIPS 186-2.Digital Signature Standard (DSS). Federal Information Processing Standards Publication
186-2, U.S. Department Of Commerce / National Institute of Standards and Technology, 2000.
Available fromhttp://www.csrc.nist.gov/publications/fips/

1More precisely, in each loop iteration, Joye and Yen’s algorithm executes one of three cases. In the second case, three input
digits must be examined to determine an output digit; in the first and third cases, only two input digits need to be examined.

13

http://www.csrc.nist.gov/publications/fips/

[3] M. JOYE AND S. YEN. New minimal modified radix-r representation with applications to smart cards.
Public Key Cryptography 2002,Lecture Notes in Computer Science2274(2002), 375–383.

[4] J. VAN L INT. Introduction to Coding Theory, 3rd edition, Springer, 1999.

[5] J. MUIR AND D. STINSON. New minimal weight representations for left-to-right window methods.
Cryptographers’ Track at the RSA Conference 2005,Lecture Notes in Computer Science3376(2005),
366–383.

[6] T. RAO AND O. GARCIA Cyclic and multiresidue codes for arithmetic operations.IEEE Transactions
on Information Theory17 (1971), 85–91.

[7] G. REITWIESNER. Binary arithmetic. InAdvances in Computers, Vol. 1, Academic Press, 1960, pp.
231–308.

A An Alternate Implementation of Algorithm W

When Algorithm W executes,closest(n) is evaluated a number of times. Evaluatingclosest(n) requires
computation of a logarithm and a division; these are necessary to determine

⌊
logr |n|

⌋
and n mods r ⌊logr |n|⌋.

If we already have the radix-r representation of the inputn, then these computations can be avoided.
Below is an alternate implementation of our algorithm for computing an integer’s arithmetic weight.

Algorithm W’ takes the radix-r representation ofn as input and computeswt∗(n) without using logarithms
or divisions.

Algorithm W’

INPUT: (bℓ−1 . . . b1b0)r where eachbi ∈ {0, 1, . . . , r − 1}.
OUTPUT: the arithmetic weight ofn = (bℓ−1 . . . b1b0)r

b−1← 0, w← 0, 1← 0
for i = ℓ− 1 . . . 0

do





b̂← bi +1

if b̂ ∈ {−1, 0} then do nothing

else





w← w + 1
if bi−1 ≥ r/2

then 1←−r
else1← 0

if 1 = −r then w← w + 1
return w

14

	Introduction
	Preliminaries
	Closest Elements
	Minimality
	Constructing Representations
	Concluding Remarks
	An Alternate Implementation of Algorithm W

