A Simple Left-to-Right Algorithm for Minimal Weight
Signed Radix- Representations

James A. Muit
School of Computer Science
Carleton University, Ottawa, Canada
http://ww. scs. carl eton.cal/] anulr

23 October 2006 12:57:11 EDT

Abstract

We present a simple algorithm for computing timéthmetic weightof an integer with respect to a
given radixr > 2. The arithmetic weight ofi is the minimum number of nonzero digits in any signed
radix+ representation ofi. This algorithm leads to a new family ahinimal weightsigned radix-
representations which can be constructed usilgjtdo-right on-line algorithm. These representations
are different from the ones previously discovered by Joyke¥Yan [3]. The idea behind our algorithm
is that of choosinglosestelements which was introduced by Muir and Stinsdn [5]. Osults have
applications in coding theory and in the efficient implenagion of public-key cryptography.

Index Terms computer arithmetic, signed radixrepresentations, redundant representations, mini-
mal weight representations, left-to-right recoding jtiti curve cryptography.

1 Introduction

In this paper, we are concerned witdix-r representationsvherer > 2.
Definition 1. A radix-r representationis afinite sum of the form>_; o ar'.

Since the sum above is finite, this implies that all but a finikenber of thea; are equal to zero. Ifi is
an integer anth = > ,ar', we say tha;_,ar' is aradix-r representation of n To denote radix-
representations, the following notation is commonly used:

(...a3a2a1a0)r :...+a3r3+a2r2+alrl+a0‘

Eachg is called adigit.

It is well-known that every non-negative integer hasmaqueradix+ representation with digits from the
set{0,1,2,...,r —1}. Usually, when one speaks of “radixrepresentations”, what is meant is radix-
representations which use these digits. However, we doeed o restrict ourselves to only these digits.
Signedradix+ representations use the digi® +1, £2..., +(— 1)}. We will often write 1,2, ... to
stand for—1, —2, Every integer, except for zero, has several differentegigiadixf representations. In
fact, every nonzero integer has ifinite number of such representations (e.g.=43222), = (1222, =

*J.A. Muir is supported by a Natural Sciences and Engined®iegearch Council of Canada Postdoctoral Fellowship.

http://www.scs.carleton.ca/~jamuir

(13222), = (133222, = - - -). Of theseredundantrepresentations, it is possible to select one whichasas
few nonzero digits as possiblé/e say that such representations hanmimal weight

Signed radix- representations of minimal weight have been studied byuarsubgroups of computer
scientists; two, in particular, are coding theorists angbtrgraphers.

AN codesare a family of error detecting and correcting codés ([6] @hapter 12 of([4] provide good
overviews of AN codes). The messages for these codes ageisteMessage encoding and decoding has
the advantage that it is done using regular integer mutagibn and division. Integers, n, are encoded as
Ang, Ang, whereA is a fixed integer. Note that

Ang + Ang = A(Ng + Ny);

so the sum of two codewords is a codeword. Because of thiefg@AN codes are useful for detecting
errors in computer arithmetic. is the result of a computation arfiZ 0 (mod A), then an error has
occurred. The distance function usedAN codes is based on signed radixepresentations.

Definition 2. Thearithmetic weighof an integemn, with respect to a given radix is the number of nonzero
digits in a minimal weight signed radix+epresentation at.

The distance betweenandy is the arithmetic weight ok — y. Finding AN codes that correct more than
one error requires a way of computing an integer’s arithenegight.

A method of constructing minimal weight representations,& general radix > 2, was provided by
Clark and Liangl(llL]. This construction reveals an integarghmetic weight. Clark and Liang call their
representationgeneralized nonadjacent fornff&NAFs) since they generalize Reitwiesnansnadjacent
forms[[7] which are defined in the cagse= 2. Clark and Liang’s algorithm builds a GNAF from least
significant digit to most significant digit.

Cryptographers became interested in minimal weight remtasions because of their utility in making
the algebraic operations used in public-key cryptograplyenefficient. As a concrete example, consider
the Elliptic Curve Digital Signature Algorithm (ECDSA)[2Bigning a message using ECDSA requires a
computation of the form

nP.=P+P+---+P,

n

wheren is an integer and® is an elliptic curve point. Two well-known algorithms for roputing n P
are presented in Figufé 1; both are based on replatiwith a signed radix- representation. The main
difference in the two algorithms is that one processes thiesdif (a,_; . . . aya9)r = n from left to right and
the other does so fromght to left Note thatany signed radix- representation af may be used in these
algorithms. However, some work can be saved if a minimal ttaigpresentation is used. This is because,
for every nonzero digit ifa,_; . .. a;a9)r, an elliptic curve addition or subtraction is performed.

The left-to-right algorithm in FigurEl1 is generally prafed since the value of the variabl®s, which
are set in the first “for” loop, can be precomputed off-lin@l a@tored. This is advantageousmiP must be
computed for various values of(e.g. when a number of different messages must be signegl BEIDSA).
Joye and Yen]3] considered the following problem. Supposealready have a radixyepresentation af
at the start of the left-to-right algorithm (this might bepided as input). They asked: if that representation
does not have minimal weight, is there a way to compute thigsdif a minimal weight representation of
n from left to right? If so, then the digits of this minimal wéigrepresentation do not need to be stored
since they can be computed inside the main “for” loop as tiheyaeded. This would reduce the amount of
memory necessary to comput®.

In [3], Joye and Yen present an algorithm which builds a malimeight representation from left to
right. The genesis of their algorithm is in identifying areplacing “elementary blocks” in an integer’s
GNAF. This approach initially seems somewhat ad hoc, but fimal algorithm speaks for itself.

2

Left-to-Right Right-to-Left
Q« fori=1...r—-1
fori=1...r-1 doPR « o0
4o [QeQ+P Q« P
P «<Q compute(ay_1...a189) =N
Q« fori=0...-1
compute(a,_y...a189)r =N (if & #£0
fori=¢-1...0 ifgg >0
Q«rQ do then then P, « Py +Q
if & #0 elseP_; < P4 — Q
do ifgg >0 Q«rQ
then then Q <« Q + Py Q< o0, R« 0
elseQ « Q- P_, fori=1...r-1
return Q 4o [Q«< Q+PR
R+« R+Q
return R

FIGURE 1: Left-to-right and right-to-left versions of the radixmethod for computingn P.

It turns out that there is a more natural and simplistic sofuto Joye and Yen’s problem. It is based
on a technique introduced by Muir and Stinson [5]. To comstauminimal weight representation nfrom
left to right, we choose an integeywith arithmetic weight equal to one, thatdsestto n. The purpose of
the current paper is to explain this technique.

Outline The main part of the paper begins withl 82 where we review soasécacts about modular
arithmetic and present some notation. [[h §3, we explain wieainean by “choosing closest elements” and
demonstrate how this can be efficiently done. Our algoritbncbmputing an integer’s arithmetic weight
is presented in[84 with the necessary proofs[In 85, we givéeftdto-right algorithm for building minimal
weight representations and compare it with Joye and Yenéseld with some concluding remarks [d 86.

2 Preliminaries

The quotient-remainder theorem tells us that, for any eteg andm > 0, there exisuniqueintegersq
and p such that
n=q-m+p where 0<p<m

The valuep is commonly denoted byt mod m”. It follows that there also existiniqueintegersg and p
such that
N=4-m+p where —m/2<p<m/2

We will denote the valu® by “n mods m”. Note thatp is equal to eithep or p — m.
Let D, be the set consisting of the signed radigigits:

Dy = {0, &1, £2, ..., 4+(r — 1)}.

If « is a string of digits, we denote the number of nonzero digits by wt(a). We refer towt(a) as the
weightof the stringa. The set of all strings composed of digitsin is denoted byD, *.

For an integen, we define
wt*(n) := min{wt(a) : o € D", (a); = n}.

So, wt*(n) is the minimum number of nonzero digits required to represensing aD,-radix+ repre-
sentation. Thuswt*(n) is the arithmetic weight oh. If o € D;* and (a); = n then it must be that
wt(a) > wt*(n); if wt(a) = wt*(n) we say that: hasminimal weight

3 Closest Elements
Let C be the set of integers which have arithmetic weight equaht o
C:={dr':i eZ,i>0,deD\{0}. 1)

Given a nonzero integen, we are interested in finding an element(inthat is closestto n, with respect
to the standard Euclidean distance (ie.— y|). The following lemma helps us recognize wher C is
closest tan.

Lemma 3. Let n be a nonzero integer,=+ Llogr |n|J andce C. Ifr' < |c| < r'*!, then c is closest to n if
and only if _
rl
In—c| < —.
2
Proof. We will assumen is positive; the argument far < 0 is the same except for some sign changes. We
have

r' <n<rtt
Consider the elements 6fin the interval f', r'+]; there are exactly of them:
rort 3, (r =Dl rit

The distance between each pair of consecutive elements Ehus, ifc € C andc e [r', r'*!], thenc is
closesttanifand only if [n — c| < r'/2. O

Forn s 0, consider the following function
closest(n) := n — (n modsr L'o%]y,

By applyinguniquenes$rom the definition of “mods”, we can deduce tl@sest(n) equals a multiple of
r Llognl] that is closest to n However, not all multiples of L°% "] are inC, and there are elements @f
which are not multiples af "% "] Despite this, our next result shows tickdsest(n) does what we want.

Theorem 4. closest(n) is an element of that is closest to n.

Proof. Leti = Llogr |n|J andp = n modsr'. Note thatclosest(n) = n — p. We will assumen > 0; the
proof forn < 0 is similar.
We have

>

I
)
|

for some integeq. Sincer’ < n < r'tland—r'/2 < p < r'/2, it must be that

ge{l,2,....r}L

So we see that — p=Gr' e C. As well, we get the bound
r+p<ns<r*4mp,

and thusn — p e [r', r'+1].
To finish the argument, observe

1Pl <r'/2
= In—(h—-pP)| <r'/2.

So, by Lemmal3n — p = closest(n) is an element of closest tm. O

Note that, depending on the choicergfsome values afi can havawo closest elements ii. For such
integersclosest(n) is equal to thdargestclosest element ig.

4 Minimality

Consider the following procedure:

Algorithm W

INPUT: integersn, r wherer > 2.
OUTPUT. an integenw.

w <« 0
whilen #£ 0
we—w+1l
do 1c « closest(n)
nN«<n-—c
return w

Our main result is that Algorithm W computes the arithmetiight ofn. However, before we get to that,
we first need to prove that Algorithm W terminates for all itgo(i.e. we need to prove that “Algorithm” W
really is an algorithm).

Fix somer > 2 and take any € Z. If n = 0 then Algorithm W clearly terminates, so we need only
considem = 0. It suffices to show thgh| > |n — c| wherec = closest(n). Suppose to the contrary that
In| < |[n—c|. Then,

In| < |n—cl
— |n| < rllogn] /2 (by LemmdB)
" rLIOgran S r|_|0gr|n|J /2
= 2<1,

which is a contradiction. Thus, we see that the value of thialken in the execution of Algorithm W must
go to 0, hence Algorithm W will always terminate. So, “Algtwin” W is aptly named.

Example 5. We build on an example froni|[3]. Here is the sequence of vathaisthe variable assumes
during the execution of Algorithm W on inpat= 208063846 and = 4:

201326592 8388608 — 2097152 524288 — 65536 — 12288 — 768 128 —32 8, —2.

The value returned by Algorithm W is 11 which is equal to thenber of integers in this sequence. ¢

5

If we let w be the value returned by Algorithm W on inpuandr, then we claim thaiv = wt*(n). We
will prove this by showing thatv > wt*(n) andw < wt*(n). We start withw > wt*(n).

Letcy, cy, ... C, be the sequence of values that the variadssumes in the execution of Algorithm W.
We have

c, is closest tn
Gy is closest tan — ¢;
Cczisclosesttan —c; — ¢

C,isclosestton—c;—C—...—Cp_1.
Because the algorithm terminates, we have
n—¢c—C—...—Cy_1—06, =0
—N=C+C+-+C,.
We show that the; form a radixf representation af. For eact;, write
¢ =dr® where d e D\ {0}
Lemmab6.e > > --- > e,.

Proof. Since we can replace the inputvith n — ¢y, it suffices to prove that; > e,. From the definition of
closest(n) we have

e € {[log, In|], [log Inl| + 1},
& € {[log, In —c4], |log, In—ca| | +1}.
By LemmdB, we have
In— ¢y < r w2
= In—c¢q| <r |log Inl]
— r LlogrIn—cal] _ LlogIni]
= |log, In—ci|] +1 < [log; In|]
Thus, the smallest value ef is > the largest value of,. Henceg, > 6.
Supposes; = e,. From the argument we gave to prove that Algorithm W terneisatve haven| >
In —c1| > |(n —¢1) — Cy|. Thus,
In—=ci| > In— (1 +C)l.
So the integec; + ¢, is closer ton thanc,. However,e; > |log, In|| sor Llog Inl] dividesc; = dyre. And,
because, = ey, r %N also dividesc,. This implies that; + ¢, is a multiple ofr L'°a)| Byt this is a

contradiction becausg is a multiple ofr L'°%1"] that is closest ta (recall thatc; = n—(n modsr L'og ni])),
Hence, it must be tha; # &, and thuse; > &, as required. O

Example 7. Continuing from our previous example with= 208063846 and = 4, the sequence of values
that the variable assumes during the execution of Algorithm W gives the foilmwrepresentation:

208063846= (30222103032222),.

Notice that this representation has 11 nonzero digits. Thus wt*(20806384%. %

6

Lemma 8. Letw be the value returned by Algorithm W on input n and 2. Thenw > wt*(n).

Proof. By Lemmal®, the sequence of values that the variable assumes during the execution of Algo-
rithm W gives us a string € D,* with (a); = nandw = wt(a). Thus,w = wt(a) > wt*(n). O

Next, we need to prove that < wt*(n). The following two short lemmas will be of help.

Lemma 9. Let (a,_1 ... a18), be any representation of n with each digitin Bnd a_; # 0. Leti =
[log; In||. Thent — 1 > i.

Proof. Note thata,_; # 0 impliesn # 0 and so both login| andi are defined. Since = (a;_1 ... a&ao)r,
we haveln| < r¢. From the definition of, we hava’ < |n|. Thus,r' < |n| < r¢, which givesr’ < r¢ and
the result follows. O

Lemma 10. Let (a,_1...a18), be any representation of n with each digit in &nd &_; # 0. Let
i = |log, In||. Then, there are at most two possible values(fr ;... &), - r'; moreover, both of these
values are irC, and one is equal tolosest(n).

Proof. Consider the constrained Diophantine equation
n=xr +y, —r <y<r'. (2)

It is easily seen thafl2) has at most two solutions. Moreipec whenr' dividesn there is exactly one
solution, and when' does not dividen there are exactly two solutions. In either case, setfirgn modsr!
always gives a solution, and for the resultigalue we havecr’ = n — (n modsr') = closest(n).

By the definition ofi we have that-r'*! < n < r'*1, Combining this bound with the fact that
—r' < —y <r' we get

CpH ooy <y
— —r—1l<(-y)r <r+1
— —r <X<r.

If x = 0, then[R) implies that-r' < n < r', contrary to the definition df. Thus,x # 0 and hencer' e C.
Now, to complete the proof, we simply observe that the regrtegion(a,_1 . . . a180), gives us a solution
to (@) because _
N=@-1...&) I+ @-1...30),
and—r' < (g_1...a9), <r'. Note that, by LemmBE9, the range of digits.; . . . 3 is well defined because
{—1>1i. O

We can now present our final lemma.
Lemma 11. Letw be the value returned by Algorithm W on input n and 2. Thenw < wt*(n).

Proof. If n = 0, thenw = 0 = wt*(0), and so the Lemma holds in this case. Supposg 0. Let
c1, Cy, ..., C, be the sequence of values that the variabdéssumes during the execution of Algorithm W.
Let (a,_1...a189)r be an arbitrary representation mivith digits in D, anda,_1 # 0. Leti = Llogr |n|J.
Then

N=(a-1...8)r" +(@-1...a).

We want to replacéa,_; ...a),r' with c; in the equation above. IB,_;...a)r' is equal toc;, then this
is easily done, but it is not always true th@i_1...a),r' = ci. If (a,_1...a)r' # ¢y, we can still carry
out the replacement and maintain equality if we also repéacewith a new digita;_; defined as follows:

a_1 if 1= (ap—1...a)r,
G_1:=1a_1—r ifci# (a-1...a)r" anda_; > 0, (3)
a_1+r ifci# (a_1...8)r anda_; <O.
Observe thaf,_; € D,. We will show that
N=c+ @_1...a). (4)
Before we provelld), we first make a note about the definitio@ of. It may seem as though the
case(a,_1...a)r' # ¢, anda_; = 0 is missing from[(B), but this is not so. Consider the diffee
n—(a—1...a)r = (@-_1...a),. Whena_, = 0 we have

-1

In—(@-1...a)r'|=10a-2...8)| <r' ™ <

ri
E.
By Lemmal3, this bound implies théa,_; ...a)r' = closest(n) = c;. Thus when(a,_1...a)r' # c,
a;_1 must be nonzero.

Now we return to establishin@l(4) for each case listeddin (8}he first case there is nothing to prove.
Consider the second case. Supposehat, . .. a)r' # ¢, anda_1 > 0. Then it is easily checked that

X=(@-1...8),yY=(q-1...30)r
and
X=(-1...8) +1y=(a_1...8) —r
are the two solutions to the constrained Diophantine egoati = xr' + vy, —r' < y < r'. Since
(@_1...@)r' # ¢y, itmust be that(a,_1 ... &), + 1r' = ¢, (this follows from Lemm&Zl0). Now,

n=(@-1...a8) +Hr' + (@-1...a) —1')
=C+ @-1...a0)r,

which is what we wanted to show. The third ca&®, ;... a),r' # ¢, anda_; < 0, is established in the
same way (tak& = (a;_1...a) — 1,y = (@_1...a0) +r'). Thus, no matter what representationnof
we begin with, [#) always holds.

We have

N==ci+ @_1...a0)r
= N—C = @_1...a).

Note thatd_; is nonzero if and only ify_; is nonzero. Thus(a_; ...ag); and(g_; ...ag); contain the
same number of nonzero digitd. n — ¢; # 0, then(@_; ... ap); must contain another nonzero digit. In
this case, we can do another replacement and incorporataliiiec, by repeating the above process with
n — ¢, in place ofn. Thus, we see that we can carry out exaetlpf these replacements. After we briog
into our equation, there can be no more nonzero digits in vémains of the representation . a;ap), ; this

is becausen — ¢y —---—c¢, =0.

Each time we carry out a replacement, we elimirstieastone digit that was nonzeroin=a,_; ... &
and we do not create any new ones. Thus, an upper bound onrtfienof replacements that can be applied
iswt(a). So,w < wt(a).

This process works for any € D, * with (), = n. By takinga with wt(a) = wt*(n) (i.e. by taking a
minimal weight representation a) we getw < wt*(n), as desired. O

8

Example 12. We illustrate the transformation used in the proof of LenifflaThe sequence of values that
the variablec assumes during the execution of Algorithm W on input 43 andr = 3is 54 —9, —2. We
can transform any signed radix-3 representation of 43 méastim 54+ (—9) + (—2) using the rules listed
in @). Consider the representati¢hl2]); = 43. Since| log; 43| = 3 we write

43= (1)3- 3 + (121)s.
Now, (1) - 3° # 54 anda, = 1 is positive, thus we have
43 = 54+ (221)3.
(221)3 is a representation ef11. Since| log, |—11] | = 2 we write
43 =54+ (2)3- 3% + (21)s.
—9is closest to-11, and(2)3 - 3% # —9 with a; = 2 positive. Thus, we have
43 =54+ (=9) + (11)s.
Finally, (11); is a representation 6f2. Since|log; |[—2| | = 0 we write
43 =54+ (-9) + (11)3- 3.
—2 s closest to-2, and(11)3 - 3° = —2 so we have
43 =54+ (-9 + (-2).

Notice that the final substitution eliminated two nonzergitsiwhile the first two substitutions each elim-
inated one. If we had instead started with the represent&fib02), = 43, then our substitutions would
proceed as follows:
43 = (2102),

= (2)3- 3+ (102)3

=544 (102)3

=54+ (1)3- 3 + (02)3

= 544 (—9) + (02)3

=54+ (-9 + (—2).

For this representation, each substitution eliminatesnamzero digit. ¢
After all those lemmas, we can now state a theorem.
Theorem 13. Letw be the value returned by Algorithm W on input n and 2. Thenw = wt*(n).

Proof. Apply Lemmd®3 and Lemnialil. O

5 Constructing Representations

We now know that by using the functiariosest(n) we can build a minimal weight signed radixrepre-
sentation of an integer. This representation is impliatibystructed in Algorithm W. Here we present an
on-linealgorithm which outputs the digits of a minimal weight regmatation from left to right. As we will
see, when the radixis even, the representation built by the on-line algorithatahes that of Algorithm W;
whenr is odd, however, the two representations can differ.

The input to our algorithm is a representatidn_; . . . b;bg), where eachy; € {0,1,2,...,r —1}. Itis
possible to describe a more general algorithm which takeigrany signed radix- representations as input.
However, restricting the input to representations with-negative digits simplifies our discussion. As well,
it allows us to compare our algorithm more directly with Jayal Yen's[3].

Our algorithm uses a “for” loop to construct its output resgnetation(a, . . . a;ap),. At the beginning of
each iteration of the “for” loop, the algorithm has the faliag information:

n = (Bibi_1...bg), whereb =b + A and A € {0, —r}. (5)

Initially, i = ¢ — 1 andA = 0. The value of; is determined by, andbi_;. Often,b; andb;_; reveal the
value ofclosest(n;), but this is not always the case. Observe,

n = (bibi_1...bo)

—=bir' <n <O +Dr'. (6)
Now consider the possible valuesﬁpf SinceA € {0, —r}andb; € {0,1,2,...,r — 1}, we have
be{-r,—0—-1),...,-1,0,1,...,r —1}.

Whenb; ¢ {—1,0} then from [) we see th&ir' and (b; + 1)r' are two consecutive, nonzero elements
of C that boundn;. Thus,closest(n;) equals eithebir' or (Bi + Dr'. Whenr is even, the value d_,
always reveals which of the two possibilities is correctb;if; > r/2 thenclosest(n;) = (b + r', and
closest(n;) = bir' otherwise. Whenm is odd, this is not necessarily true.

Example 14. For the radixr = 3, suppose we hauwg = (21b;_,b;_3...)3. The most significant digit of
this representatiorty = 2, tells us that < n; < 3r'. Unfortunately, the next digith_; = 1, does
not reveal which of these two values is closer. Obs¢Pdéh;_s . ..)s is closer to 2', but (212, _3...)3is
closer to 8'; similarly for (2110...)3 and(2112...)s. By putting a long run of 1's to the right df;, we
see that reading any finite number of digits immediately goright ofb; will not suffice to determine the
closest choice; thus, no on-line algorithm is able to malkedhtermination. O

Whenr is odd, we can deduce the following: bf_; > [r/2], thenclosest(n;) = O + Dr; if
bi_1 < [r/2], thenclosest(n;) = Hr‘; but, if bj_; = [r/2], the value ofclosest(n;) cannot be decided.
Fortunately, wherbj_; = |[r/2], it does not matter whether we choose to dse+ Dr' or bir' in our
representation afi; both choices yield minimal weight representations.

Lemma 15. Letr > 2be odd. If n = (bibi_; ... bo), withb & {—1,0} and h_, = [r/2], then
wt* (n; — closest(n;)) = wt*(n — bir').

Proof. If closest(n;) = bir', then there is nothing to prove. Assume thlaisest(n;) = o + Dri. From
the closest choice representatiompfwe have

n=0O+Lr +co+c+ -+,

10

Because; < (61 + Dr' it must be that, < 0. We claim that, = dr'~. To see this, observe

bir' 4 [r/2)r' "t < <bir' 4+ (Ir/2) + Hri-t
= —r' /2l s = B+ Drf < —r' (/2] + rit
— (Ir/2] =< — O +Dr' < ([r/2) —r +r'7t

By writing r = 2x + 1 wherex > 1, it can be shown thatr /2] —r < —2. Thus, we have two consecutive
nonzero elements @fthat bounch; — (bj +1)r'; soclosest(n; — (b + 1)r') = dr'~* whered is a negative
digitin {{r/2] —r, [r/2] —r + 1}. Now,

N =(6| +1)I’i +dr' 4+ c3+---+c,
=bri+ ¢ +drt4+cz+--+c,.

Note thatr + d is a valid (positive) digit. Because the first representatias minimal weight, so too does
the second. Hence, the result follows. O

In light of LemmdIh, when we cannot decide on the correctevaficlosest(n;) becausd;_; = [r/2],
we can safely takbir' without sacrificing minimality. However, a consequencehis strategy is that when
r is odd, the minimal weight representation built by our arelalgorithm can be different from the closest
choice representation.

Here is how our algorithm works. Whén & {- 1, 0}, it setsa to equal eitheb; orb; + 1, and it does
so in the following way. At first, it takeg; = bl, but then, ifb_; > r/2, it takesa, = b + 1 1. Afterg; is
determined A is updated; ifa; = b + 1thenA = —r, otherwiseA = 0. Itis possible thab + 1 =r, in
which case we cannot take = b; + 1 because is not a valid digit for our output representation. However,
this possibility is easily detected and can be dealt withditirga . ; = 1 anda; = 0 (we will see that the
previous value o;; is necessarily zero so overwriting it does not cause a probl is also possible that
bi = —r. This is dealt with similarly; we sed;.; = —1 anda; = 0 (again, this causes no problem). In the
subsequent loop iteration, we have, = (Ei_lbi_z ... bo) =ni —ar'.

Two cases which we have not yet addressed are Wwhen(—1, 0}. For these valued](6) becomes

O<n <r', and —r' <n; <O.

With respect to determininglosest(n;), these bounds are not of much use. Regardless, the algaritisn
seta to some value. In these cases, weaget 0. More precisely, wheﬁi = 0, we selg; = 0 and update
A to equal 0; and wheb = —1, we setg; = 0 and updateA to equal—r. In either situation, it can be
shown that updating the value afis unnecessary. For instance, since ® <r — 1 andA € {0, —r}, if

E =bi + A =0, then it must be thdl;, = 0 andA = 0; sinceA is already 0, we do not need to update it.

This strategy for dealing with, e {—1, 0} works well except when it happens tigt= —1. In this case,
we would selgy = 0 and pas\ = —r into the subsequent loop iteration. However, tHengo subsequent
loop iteration. We deal with this problem by checking theueabf A after the “for” loop completes. If
A = —r, then we sefy = —1.

We still need to justify that setting .1 = 1 anda; = 0 instead ofy; = r does not overwrite a nonzero
digit. This could only happen i +1=r. From [%), we see that this impliés =r — 1 andA = 0. The
value of A was determined in the previous loop iteration when theahitalue ofa;; was set. Ifgj,; was
nonzero, then the fact thet =r — 1 > r /2 would imply A = —r, contrary to the fact thah = 0. So, the
initial value ofg;; must have been zero. The case where we;set= —1 anda; = O instead oy = —
can be justified similarly. This happens onIﬁif: —r. From [3), we can deduce thiat= 0 andA = —r.
The value ofA was determined in the previous loop iteration. If the ihiti@ue ofa ., was nonzero then

11

we would haveA = 0 becausd;, = 0 < r/2, contrary to the fact thak = —r. So, again, the initial value
of g, 1 must have been zero.

This method of constructing minimal weight signed radirepresentations is implemented in Algo-
rithm R.

Algorithm R

INPUT: (b;_1...bibg)r where eacly; € {0,1,...,r — 1}
OUTPUT. (& ...&1a0)r

b_1 <0 a «<0, A«<O0
fori=¢-1...0
B%Q + A
if be {—1,0}thenb « 0
ifbj_y>r/2
else] thenA « —r,be«Db+1
elseA <0
if b=rthena,, « 1, a « 0
elseifb = —r thena 4 « —1, & « 0
elsea; < b
if A=—rthenag « —1
return (a...a18o)r

do

Algorithm R can be adapted so that it outputs an integerthragtic weight. This is done in Appendi{ A.
Computing the arithmetic weight in this way does not reqtiee computation of logarithms or divisions;
these operations are used in Algorithm W.

Algorithm R can be combined with the left-to-right radixnethod of computing P in Figurell. How-
ever, the fact that digi# 1 can be overwritten after the value afis determined requires some consider-
ation. One easy way to deal with this is to simply allow digadake the valuesr. This can be accom-
plished by replacing the “if-else-else” statement at thédoo of the “for” loop in Algorithm R with the
statemens; « b. Note that this change requires the paikt to be precomputed in addition to the points
1P, 2P, ..., (r = 1)P.

An initial question that we might ask about Algorithm R is \liner or not it is equivalent to Joye and
Yen's (see Figure 1, page 380, bf [3]). It is not, and this ot be easily demonstrated.

Example 16. Letr = 3. The{0, 1, 2}-radix-3 representation of 41 {d1123. Here are three minimal
weight{0, 1, +2}-radix-3 representations constructed by three algorithms

Algorithm R (1121)3
Joye & Yen (1211),
GNAF (2111)5.

The GNAF of 41 was constructed using Theorem 3 froim [1]. Notitat each output is different from the
others. Thus, we can conclude that the algorithms whichetdhese outputs are not equivalent. Note also
that the closest choice representation of 41 is-54-9) + (—3) + (—1) = (2111)3 which is different from
the output of Algorithm R. O

Example 17. The output of Algorithm R on input3012123031121)2 = 208063846 was listed in Exam-
ple 6 (note that is even). Joye and Yen give the output of their algorithrmin [3

Algorithm R (302210303222),
Joye & Yen (3012203031212,
GNAF (30212103031212,.

12

Again, these outputs demonstrate that the algorithms drequivalent. ¢

More generally, it can be shown that, for any> 2, the smallest positive integer for which the the two
algorithms produce different representationais r + [r/2].

Algorithm R does not always produce a different represemaban Joye and Yen’s algorithm. In the
case whem = 2, it appears that the outputs of the two algorithms coincifiere taker = 4 and consider
the representations constructed by the two algorithmshiiritegers 1. .63, then all but eleven of them
are equal; different representations are output for thegis 6, 13, 22, 24, 25, 38, 39, 52, 53, 54 and 55.

One difference between the outputs produced by AlgorithmméRthose produced by Joye and Yen's
algorithm is that Algorithm R’s outputs sometimes have &rolength. For = 4, when we compare
the outputs of the two algorithms for the integers. 12047, we find that 85 representations computed
by Algorithm R are shorter (by one digit in each case) and l@ffesentations have the same length.
This difference indicates that the algorithms for compuitirP in Figure[d perform slightly better with the
representations constructed by Algorithm R.

Algorithm R also differs from Joye and Yen’s in that it onlyaeminestwo input digits,b;, bj_;, before
it sets the value of; Joye and Yen'’s algorithm examingseedigits, b, bj_1, bi_zﬂ As well, Algorithm R
requirest loop iterations while Joye and Yen’s algorithm requifes 1; here? is the length of the input
representation. However, deciding which of the two aldonis is more efficient is a subjective task; this is
dependent on what resources (e.g. memory) are availabteitopdementor. In software, there seems to be
little reason to choose one over the other. In hardware attetfiat Algorithm R requires fewer temporary
variables may be of some benefit. A non-academic reason tisehigorithm R is that it is not encumbered
by patents. For = 2, Joye and Yen'’s technique has been patented in Francet(pate2811168) and in
the USA (patent no. 6903663); for> 2, patents are pending in France and the USA.

6 Concluding Remarks

In this paper, we have presented a new algorithm for comgukia arithmetic weight of an integer. This
algorithm leads to a new family of minimal weight signed radirepresentations which can be constructed
using a left-to-right on-line algorithm. The idea behind algorithm is simply that of choosing closest
elements. This is a very general approach and it may be usefdnstructing other families of minimal
weight integer representations. Use of our algorithm issmeumbered by patents.

Acknowledgements

The author is indebted to Harry Reimann for pointing out anren Algorithm R in a previous version of
this paper.

References

[1] W. CLARK AND J. LIANG. On arithmetic weight for a general radix representatiomt#gers.|EEE
Transactions on Information Theofy® (1973), 823-826.

[2] FIPS 186-2.Digital Signature Standard (DSSyederal Information Processing Standards Publication
186-2, U.S. Department Of Commerce / National Institutetah8ards and Technology, 2000.
Available fromnt't p: / 7/ www. cSrc. ni St. gov/ publications/fi ps/

IMore precisely, in each loop iteration, Joye and Yen’s atljor executes one of three cases. In the second case, tiree in
digits must be examined to determine an output digit; in ttst &ind third cases, only two input digits need to be examined

13

http://www.csrc.nist.gov/publications/fips/

[3] M. JoYE AND S. YEN. New minimal modified radix- representation with applications to smart cards.
Public Key Cryptography 2002,ecture Notes in Computer Scierz274(2002), 375—-383.

[4] J.vAN LINT. Introduction to Coding TheonBrd edition, Springer, 1999.

[5] J. MUIR AND D. STINSON. New minimal weight representations for left-to-right wow methods.
Cryptographers’ Track at the RSA Conference 2005;ture Notes in Computer Scieng76(2005),
366-383.

[6] T. Ra0o AND O. GARCIA Cyclic and multiresidue codes for arithmetic operatidB€E Transactions
on Information Theory7 (1971), 85-91.

[7] G. REITWIESNER. Binary arithmetic. InAdvances in Computers, Vol, Academic Press, 1960, pp.
231-308.

A An Alternate Implementation of Algorithm W

When Algorithm W executeglosest(n) is evaluated a number of times. Evaluatitigsest(n) requires

computation of a logarithm and a division; these are necgssaeterming log, n| | and n modsr LlogrIni]

If we already have the radix+epresentation of the inpuat then these computations can be avoided.
Below is an alternate implementation of our algorithm fomgmiting an integer’s arithmetic weight.

Algorithm W' takes the radix- representation af as input and computest* (n) without using logarithms

or divisions.

Algorithm W’

INPUT: (b;_1...bibg), where eacly; € {0,1,...,r — 1}
OUTPUT. the arithmetic weight o = (b,_; ... bybg)r

b_1 <0 w0 A«0O
fori=¢-1...0

B “— bi + A
if b e {—1, 0} then do nothing
w—w+1l
do olse B2 27/2
then A < —r
| elseA <0
if A=—-rthenw < w+1
return w

14

	Introduction
	Preliminaries
	Closest Elements
	Minimality
	Constructing Representations
	Concluding Remarks
	An Alternate Implementation of Algorithm W

