# Finding Characteristic Polynomials with Jump Indices

## **Steve Babbage**

### **Matthew Dodd**

Vodafone Group R&D, Newbury, UK

**Independent consultant** 

 ${\tt steve.babbage@vodafone.com}$ 

matthew@mdodd.net
www.mdodd.net

# **Issue 2.0, 13<sup>th</sup> January 2006**

**Abstract:** Jansen introduced a technique for building LFSRs that can be clocked a large number of times with a single simple operation. These may be useful in the construction of stream ciphers based on clock-controlled LFSRs. However, for LFSR sizes of typical interest, it appears generally hard to find such jumping LFSRs with particular desired parameters. In this note we explain a trick which we used to find the jumping LFSRs in MICKEY and MICKEY-128, and which may be useful for future applications.

Keywords: MICKEY, stream cipher, ECRYPT, irregular clocking.

#### 1. Introduction

In [2] and [3], Cees Jansen introduces a technique for use in the construction of keystream generators based on clock-controlled LFSRs<sup>1</sup>. This technique is used in the stream ciphers MICKEY and MICKEY-128 [1].

Using naïve methods, it appears impractical to construct applications of this technique except on very short LFSRs. In this note we explain how the LFSRs in MICKEY and MICKEY-128 were created, using a simple algebraic trick which may be useful for future applications.

## 2. Jumping LFSRs

Jansen's technique is easy to explain. Suppose that the characteristic polynomial of an n-stage binary LFSR is C(x); and suppose that  $C(x) \mid x^J + x + 1$  for some integer J. We call J a  $jump\ index$  of C(x).

Then the following two operations produce the same result:

- clocking the LFSR J times;
- clocking the LFSR once, and then XORing on the original state.

The following example is taken from [2]. Consider the LFSR shown in Figure 1, with characteristic polynomial  $C(x) = x^7 + x^6 + 1$ . Now  $x^7 + x^6 + 1$  divides  $x^{121} + x + 1$ , so 121 is a

<sup>1</sup> In fact Jansen's theory covers more general Linear Finite State Machines, but we focus specifically on LFSRs in this paper.

jump index for C(x). The operation shown in Figure 2 is therefore equivalent to clocking the LFSR 121 times.



**Figure 1:** An LFSR with characteristic polynomial  $x^7 + x^6 + 1$ 



Figure 2: The "clock and XOR" operation equivalent to clocking the same register 121 times

[2] talks only about LFSRs with Fibonacci-style clocking, but it is clear that the same approach is valid with Galois-style clocking (which is used in the MICKEY ciphers).

This construction may be used in stream cipher designs based on clock-controlled LFSRs. By using a clock control bit to select between the types of clocking shown in Figure 1 and Figure 2, we can clock the LFSR either 1 or J times.

It is important to note that:

- (a) not all characteristic polynomials have a jump index;
- (b) for a given characteristic polynomial, it is not generally easy to determine the jump index<sup>2</sup>, if it exists (this is essentially a discrete log problem).

## 3. Finding the characteristic polynomials for the MICKEY ciphers

For MICKEY, we wanted an LFSR of degree 80, whose primitive characteristic polynomial C(x) had a jump index J close to  $2^{40}$ . Using naïve search methods, it would be impossibly time-consuming to find such a polynomial. However, we were able to apply a simple algebraic trick to make the problem much more tractable.

So let  $J = 2^{40} - \delta$ , where  $\delta$  is a small positive integer. C(x) must divide  $x^{2^{40} - \delta} + x + 1$ ; hence

$$C(x) \mid x^{2^{40}} + x^{\delta + 1} + x^{\delta}$$
 (1)

<sup>&</sup>lt;sup>2</sup> If *J* is a jump index for C(x), i.e.  $C(x) \mid x^J + x + 1$ , and if J' > J is another jump index, then necessarily  $C(x) \mid x^{J'} + x^J$ , and hence  $C(x) \mid x^{J'-J} + 1$ . From this we can see that the jump indices for a polynomial C(x) are all congruent modulo p, where p is the least positive integer such that  $C(x) \mid x^p + 1$ . p is in fact the period of the LFSR with characteristic polynomial C(x). When we talk about *the* jump index (if one exists at all) we mean the unique jump index J in the range 1 < J < p.

We want C(x) to be primitive, so it must divide  $x^{2^{80}} + x$ ; so

$$C(x) | (x^{2^{40}})^{2^{40}} + x$$
 (2)

By (1), we can substitute  $x^{\delta+1} + x^{\delta}$  for  $x^{2^{40}}$  on the right hand side of this expression, so

$$C(x) | (x^{\delta+1} + x^{\delta})^{2^{40}} + x$$
 (3)

which, using the fact that exponentiation to the power  $2^i$  is linear, we can rewrite as

$$C(x) \mid (x^{2^{40}})^{\delta+1} + (x^{2^{40}})^{\delta} + x$$
 (4)

Then we can again substitute  $x^{\delta+1} + x^{\delta}$  for  $x^{2^{40}}$  to give

$$C(x) \left| \left( x^{\delta+1} + x^{\delta} \right)^{\delta+1} + \left( x^{\delta+1} + x^{\delta} \right)^{\delta} + x \right|$$
 (5)

We have thus found a very low degree polynomial (parameterised by  $\delta$ ) which must have C(x) as a factor.

To find a suitable the characteristic polynomial C(x) for MICKEY, we therefore applied the following algorithm, starting at  $\delta = \lceil \sqrt{80} \rceil - 1 = 8$ :

- Construct  $G_{\delta}(x) = (x^{\delta+1} + x^{\delta})^{\delta+1} + (x^{\delta+1} + x^{\delta})^{\delta} + x$ , and see whether it has any factor F(x) of degree 80
- If it does, check whether F(x) is primitive
- If it is, then check whether F(x) really does divide  $x^{2^{40}-\delta} + x + 1$
- If it does, then set C(x) = F(x)
- If C(x) not yet found, then increment  $\delta$  and start again

With this method we quickly found a degree 80 characteristic polynomial with jump index  $J = 2^{40} - 23$ . For MICKEY-128, we also found a degree 128 characteristic polynomial with jump index  $J = 2^{64} - 55$ .

#### 4. Generalisations

Let *n* be the desired degree of a characteristic polynomial.

Although we will not fill in any details here, the trick shown above can easily be adapted to finding:

- a characteristic polynomial with jump index  $J = 2^{an/b} \delta$ , where a and b are small positive integers (b a divisor of n) with a < b;
- a characteristic polynomial with jump index  $J = 2^{an/b} + \delta$ .

#### 5. References

[1] S.H.Babbage, M.W.Dodd, stream ciphers MICKEY and MICKEY-128, available at <a href="http://www.ecrypt.eu.org/stream">http://www.ecrypt.eu.org/stream</a>.

- [2] C.J.A.Jansen, *Streamcipher Design: Make your LFSRs jump!*, presented at the ECRYPT SASC (State of the Art in Stream Ciphers) workshop, Bruges, October 2004, and in the workshop record at <a href="http://www.isg.rhul.ac.uk/research/projects/ecrypt/stvl/sasc-record.zip">http://www.isg.rhul.ac.uk/research/projects/ecrypt/stvl/sasc-record.zip</a>.
- [3] C.J.A.Jansen, Stream Cipher Design Based on Jumping Finite State Machines, <a href="http://eprint.iacr.org/2005/267">http://eprint.iacr.org/2005/267</a>.