
Formal Proof for the Correctness of RSA-PSS ?

Christina Lindenberg, Kai Wirt, and Johannes Buchmann

Darmstadt University of Technology
Department of Computer Science

Darmstadt, Germany
{lindenberg,wirt}@informatik.tu-darmstadt.de

buchmann@cdc.informatik.tu-darmstadt.de

Abstract. Formal verification is getting more and more important in
computer science. However the state of the art formal verification meth-
ods in cryptography are very rudimentary. This paper is one step to
provide a tool box allowing the use of formal methods in every aspect
of cryptography. In this paper we give a formal specification of the RSA
probabilistic signature scheme (RSA-PSS) [4] which is used as algorithm
for digital signatures in the PKCS #1 v2.1 standard [7]. Additionally we
show the correctness of RSA-PSS. This includes the correctness of RSA,
the formal treatment of SHA-1 and the correctness of the PSS encoding
method. Moreover we present a proof of concept for the feasibility of
verification techniques to a standard signature algorithm.

Keywords: cryptography, specification, verification, digital signature

1 Motivation

Todays software often contains many errors which are not discovered during the
development. Although erroneous software is mostly only annoying, bugs may
lead to severe security issues as well. Moreover bugs even can have huge impacts
if they appear in software used for critical applications such as controlling soft-
ware in nuclear power plants. There are various examples of computer related
accidents which led to loss of lives like the crash of the Korean Air Lines B747
in Guam 1997 or the Therac-25 radiation-therapy machine which gave patients
massive overdoses between 1985 and 1987 [11], [9], [16]. The reason for such poor
software is, that not all errors can be found by tests. Even if programs are very
intensively tested they may still contain several more or less severe bugs.

A possible solution to this dilemma is the formal verification of software. The
goal of the application of formal methods in program verification is to prove the
correctness of software, that is to give a mathematical proof that the software
fulfills its specification. If a formal proof for the correctness of a program is

? This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project
under grant 01 IS C38. The responsibility for this article lies with the authors.



given, there is no need for any tests. Hence, the verified systems are of extreme
quality as required in many industrial sectors, such as automotive engineering,
security, and medical technology. However to give a formal proof one needs to
have a formal specification of the software in question1.

In this paper we give such a formal specification of the RSA probabilistic
signature scheme (RSA-PSS) [4] which is used as algorithm for digital signatures
in the PKCS #1 v2.1 standard [7]. For our work we used the Isabelle/HOL
theorem prover [13] [10] which is developed at Cambridge University and TU
Munich. Simply speaking a theorem prover is a computer assistant for formal
proofs.

The major advantage of RSA-PSS over the widely used older PKCS #1 v1.5
standard, which simply uses a padded message digest as input to the signa-
ture algorithm, is, that RSA-PSS can be proven secure in the Random Oracle
Model [2]. Additionally it does not contain certain critic points of the older
standard. Therefore, new signature applications should use the probabilistic sig-
nature scheme. Our intention is to provide a basis for a rigorous treatment of
RSA-PSS using formal methods. Therefore we present a correctness proof of
RSA-PSS. This means we formally show, that a signature can always be ver-
ified (i.e. functional correctness). Our work allows one to verify if an actual
implementation of RSA-PSS is correct according to the specification. This is not
possible using the PKCS document alone. Additionally we see our work as proof
of concept in the sense that we show, that it is possible to use formal methods in
cryptography. This is not obvious because of the inherent complexity of practical
cryptosystems like RSA-PSS. This can be clearly seen at our herein presented
correctness proof for which we had to show theorems on the RSA function, the
secure hash algorithm and the probabilistic signature scheme, or in other words,
to show a certain property of a standard cryptographic method one has to rea-
son about various cryptographic primitives. As far as we know, our work is the
first attempt to use formal methods to verify properties of complete standard
cryptographic signature schemes.

While formal verification of programs becomes more and more important,
formal verification of cryptographic primitives is still in the fledgling stages. The
need for a fundamental set of formal theories covering a broad range of methods
from cryptography arises because of the demand for continuity in formal proofs
of security relevant applications. The presented framework is one step on the
way to the construction of a tool box allowing the application of formal methods
to cryptography. For related research we refer to the publications of Backes and
Pfitzmann [1], Boyer and Moore [5], and Dolev-Yao [6].

The paper is organized as follows: In section 2 we present the RSA-PSS sig-
nature scheme and give our formal specification. The complete correctness proof
is the topic of section 3. We conclude in section 4. The complete formal specifi-
cation and the proof scripts for Isabelle/HOL are contained in an appendix.

1 There exist automatic tools to translate software source code into the language
of a theorem proving environment. In this environment it is possible to show the
equivalence of the translated source code and the formal specification.

2



2 The Digital Signature Scheme RSA-PSS and its Formal
Specification

In this section we give a short survey of RSA and RSA-PSS. We also present
our formal specification of RSA and PSS. For RSA we geared to [5]. The SHA-
1 specification is directly derived from [8] and the PSS encoding method was
specified according to [7]. Since the PSS encoding method is generic in the sense
that the signature algorithm and the hash function used are not specified our
RSA-PSS theory is combining the different parts mentioned above.

2.1 Introduction

One important component of secure data communication is a digital signature. It
assures authentication, authorization and non-repudiation. The digital signature
we consider here is RSA-PSS. RSA-PSS is a signature scheme with appendix.
Such a scheme consists of a signature-generation operation and a signature-
verification operation. A signature is produced for a message with the signers
private key. To verify if a signature is valid the verifier needs the signature, the
message for which the signature was produced and the public key of the signer.
Signature schemes with appendix are distinguished from signature schemes with
message recovery, see [12].

2.2 Public-Key Signatures

A public-key signature scheme consists of a signing procedure and a verification
procedure. For a message m the signer creates a signature s with his private key.
Then he sends the pair (m, s) to a person who wants to verify his signature.
The verifier uses the public key of the signer to check, if the signature s is a
valid signature for the message m. One possible public-key signature scheme is
the RSA signature scheme. Instead of decrypting a message m, the signer uses
his private key to generate a signature s of the message m. A verifier can now
use the public key of the signer to check the signature. If the decryption of the
signature s is equal to m, then s is a valid signature of the message m.

2.3 Asymmetric cryptographic system - RSA

In an asymmetric cryptographic system every user has a public key and a cor-
responding private key. The public key is available for everyone, the private key
has to be kept secret. Of course it is hard to derive the private key from the pub-
lic key. With an encryption algorithm and a public key every user can encrypt
a message. The decryption of the message can only be done by the user who
knows the corresponding private key. Mathematically seen, a public key system
assumes the existence of trapdoor one-way functions.

The most common public key cryptosystem is RSA which was invented by
R. Rivest, A. Shamir and L. Adleman [14] in 1978. Since then the algorithm

3



has been analyzed by many experts from all over the world but the security has
never been disproved neither proved. The great advantage of this cryptosystem
is the simplicity of understanding and its application. The security of RSA is
assumed on the intractability of the integer-factorization problem. We will now
give a short sketch of RSA.

Let p and q be random prime numbers with p 6= q. Compute n = pq. Select a
random number e, with 1 < e < (p−1)(q−1), such that gcd (e, (p− 1)(q − 1)) =
1. Furthermore compute the unique integer d, 1 < d < (p− 1)(q − 1), such that
ed ≡ 1 mod (p− 1)(q − 1). The public key is (n, e) and the private key is d.
The integer e is called the encryption exponent, d the decryption exponent and
n the modulus. The encryption of a message m, 0 ≤ m < n, is computed by
c = me mod n, where c is called the cipher text of the message m. To recover the
message m from the cipher text c, compute m = cd mod n. For the correctness
proof see [14], [5].

For the specification of our RSA function we use the same “binary method”
as [5] (fast exponentiation).

me mod n =
{

(me/2)2 mod n : if e is even
m(me/2)2 mod n : if e is odd

Additionally we formally show, that our method which performs the fast expo-
nentiation indeed calculates the ordinary exponentiation. This can be done by
simple induction on the exponent.

2.4 The Secure Hash Algorithm

In the encoding process of PSS a hash function is required. A hash function
takes an input of variable length and maps it to a so-called message digest of
fixed size. A cryptographic hash function has to satisfy three security properties.
First it has to be collision resistant, that is, it must be computationally infeasible
to find any two messages which lead to the same hash value. Second, given a
hash value, it must be infeasible to find a message which hashes to that value
(first preimage resistance) and third it has to be difficult given one message to
find another message such that both hash to the same value (second preimage
resistance).

In our work we used the Secure Hash Algorithm (SHA-1) [8]. SHA-1 was
widely believed to have the above mentioned security properties. However re-
cently a technical report by Wang, Yin and Yu [15] was published which claims
to break the collision resistance property. Since the hash function is exchange-
able in the PSS construction the concrete internals of SHA-1 are irrelevant for
the correctness proof. However they are necessary for the formal specification,
i.e. if one wishes to verify a software implementation. We stress, that using our
techniques it is possible to exchange the hash function in the formal proof as
a response to the above mentioned attack but we decided to hold on to SHA-1
because of the fact, that it is the most commonly used hash function today.

Our SHA-1 specification is a direct application of the FIPS standard [8]. The
main problem on the realization in a formal proof system is, that SHA-1 doesn’t

4



have an easy mathematical structure but operates on the bit level. Therefore
somehow the concept of bit vectors has to be added to the proof system. One
has to add support to the proof system for hexadecimal numbers and methods
to convert these to bit vectors thus providing an easy way to model constants
used in the description of SHA-1. Additionally one has to define logical and,
inclusive and exclusive or operations on bit vectors as well as the circular shift.
Additionally we need a way to break bit vectors into components, we need an
addition modulo 232 and a way to create arbitrary long bit vectors which are
completely 0.

Using this extensions it becomes possible to define the message padding for
SHA-1, which is given by appending 0 and the 64-bit representation of the orig-
inal message length such that the length of the padded message is a multiple of
512 bits.

The SHA-1 theory contains the actual specification for SHA-1. This spec-
ification is split into various functions similar to the description in the FIPS
document.

2.5 The PSS encoding method

The PSS encoding method was developed by Bellare and Rogaway in [3] and [4].
A variant of this scheme is described in the PKCS v 1.5 [7] standard document.
Our specification is a direct application of this standard. Our specification makes
use of the length of the used hash function. We have implemented the SHA-1
function since it is the state of the art hash. However it is possible to exchange
the used hash function without major changes on the rest of the specification or
our proofs. PSS essentialy uses two functions. The first one generates the encoded
fingerprint of a given message. The other one takes the encoded fingerprint along
with a message and checks wether the encoding of the fingerprint is correct for
the message.

EMSA-PSS-Encoding Operation. The PSS encoding method is described
in algorithm 1 and figure 1. Our formal specification is a direct implementation
of this algorithm. In our specification salt is the empty string, which has the
length 0. That is a typical salt length according to [7]. As hash function we use
sha1, which is specified in 2.4.

EMSA-PSS-Decoding Operation. If a signature is a valid signature of a
message, it can be verified by algorithm 2.

Mask Generation Function. Mask generation functions take an arbitrary
value x and the desired length l for the output and compute a hash value of length
l. Mask generation functions are deterministic, i.e. the output is completely
determined by the input value. Also the output should be pseudo-random this
means that given one part of the output and not the input it should be infeasible

5



saltpadding2

MGF

Hash

Hash

saltpadding1 mHash

Message

maskedDB H bc

Fig. 1. encoding operation

Algorithm 1 EMSA-PSS-Encode
Input: message m to be encoded, an octet string

maximal bit length emBits of the output message, at least 8hLen + 8sLen + 9
Options: Hash function (hLen is the length in octets of the hash function output)

sLen intended length in octets of the salt
Output: encoded message em, an octet string of length emLen = demBits/8e
1: if length of m is greater than input limitation for the hash function output “error”
2: mHash ← Hash(m)
3: if emLen < hLen + sLen + 2 output “error”
4: generate a random octet string salt of length sLen
5: m′ ← (0x)00 00 00 00 00 00 00 00 ‖ mHash ‖ salt
6: H ← Hash(m′)
7: generate a octet string PS consisting of emLen − sLen − hLen − 2 zero octets, the

length may be 0
8: DB ← PS ‖ 0x01 ‖ salt
9: dbMask ← MGF(H, emLen − hLen − 1)

10: maskedDB ← DB ⊕ dbMask
11: set the leftmost 8emLen − emBits bits of the leftmost octet in maskedDB to zero
12: em ← maskedDB ‖ H ‖ 0xBC

to get some information about another part of the output. Mask generation
functions can be build from hash functions (e.g. SHA-1). The security of RSA-
PSS depends on the randomness of the mask generation function and this again
on the randomness of the used hash function. We used the mask generation
function described in Algorithm 3.

6



Algorithm 2 EMSA-PSS-Decoding
Input: message m to be verified, an octet string

encoded message em, an octet string of length emLen = demBits/8e
maximal bit length emBits of the output message, at least 8hLen + 8sLen + 9

Options: Hash function (hLen is the length in octets of the hash function output)
sLen intended length in octets of the salt

Output: “valid” or “invalid”
1: if length of m is greater than the input limitation for the hash function output

“invalid”
2: mHash ← Hash(m)
3: if emLen < hLen + sLen + 2 output “invalid”
4: if the rightmost octet of em does not have hexadecimal value 0xBC, output “in-

valid”
5: maskedDB ← the leftmost emLen − hLen − 1 octets of em and
6: H ← the next hLen octets
7: if the 8emLen − emBits bits of the leftmost octet in maskedDB are not all equal

to zero, output “invalid”
8: dbMask ← MGF(H, emLen − hLen − 1)
9: DB ← maskedDB ⊕ dbMask

10: set the leftmost 8emLen − emBits bits of the leftmost octet in DB to zero
11: if the emLen−hLen− sLen−2 leftmost octets of DB are not zero or if the octet at

position emLen − hLen − sLen − 1 does not have hexadecimal value 0x01, output
“invalid”

12: salt ← the last sLen octets of DB
13: m′ ← (0x)00 00 00 00 00 00 00 00 ‖ mHash ‖ salt
14: H ′ ← Hash(m′)
15: if H = H ′ then output “valid”, otherwise output “invalid”

Algorithm 3 MGF1
Input: mgfSeed: seed from which the mask is generated, an octet string

maskLen: intended length in octets of the mask, at most 232hLen
Output: mask: an octet sting of length maskLen
1: if maskLen > 232hLen then output “error”
2: T ⇐= ε
3: for counter = 0 todmaskLen

hLen
e − 1 do

4: T ⇐= T ‖ Hash(mgfSeed ‖ C), where C is the counter converted to an octet
string of length 4

5: end for
6: mask ⇐= the leading maskLen octets of T

2.6 Construction of RSA-PSS

RSA-PSS is the combination of the previously described primitives. RSA-PSS
uses the RSA function to sign the PSS encoded data. The verification is achieved
by using the public key to ”encrypt” the signature which again yields the PSS
encoded fingerprint. The fingerprint is then checked for consistency using the
above described decoding procedure.

7



The complete RSA-PSS Signature Scheme consists of the following functions:

RSASP1 ((n, d),m) The RSA signature-primitive computes for the input pri-
vate key (n, d) and a message m, 0 ≤ m < n the signature
s = md mod n.

RSAVP1 ((n, e), s) The RSA verification-primitive computes for the input pub-
lic key (n, e) and the signature s the corresponding message
m = se mod n.

Hash(m) A hash function (e.g. SHA-1) which computes for a message
m with arbitrary length a hash value of fixed length.

We also define two functions (emsapss encode m emBits), which encodes the
fingerprint of a message m in a bit string of maximum length emBits and
(emsapss decode m em emBits), which decides for a message m, an encoded fin-
gerprint em and the maximum length emBits of em, if em is a valid encoding of
m. The following algorithms are specified in [7], see there for a full description.

Signature-Generation Operation. In algorithm 4 we describe the generation
of a RSA-PSS signature. This algorithm is the basis for our formal specification.

Algorithm 4 RSA-PSS signature generation
Input: signer’s RSA private key (n, d)

message m to be signed, an octet string
Output: signature s, an octet string
1: modBits ← bit length of the RSA modulus n
2: em ← emsapss encode(m,modBits − 1)
3: s← RSASP1 ((n, d), em)

Signature-Verification Operation. The verification of a RSA-PSS signature
is done in two steps. First, the RSAVP1 function is applied to the signature to
get the encoded message. After this, the emsapss decode operation is applied to
the message and the encoded message to determine wether they are consistent,
see algorithm 5.

3 Correctness Proof

It becomes very difficult and complex to show the correctness directly for the
complete RSA-PSS encoding method. However it is possible to split this task into
several smaller parts which can then be verified much easier. Our approach is to
first give a proof for the pure RSA function, namely (me)d mod n = m. Secondly
we prove: (emsapss decode m (emsapss encode m emBits) emBits) = True. The
last step of the complete proof is to combine the individual parts. Although this
step seems simple at first sight, there are various obstacles which we will point
out in the corresponding subsection.

8



Algorithm 5 RSA-PSS signature verification
Input: signer’s RSA private key (n, d)

message m whose signature is to be verified, an octet string
signature s to be verified, an octet string

Output: valid or invalid signature
1: modBits ←− bit length of the RSA modulus n
2: em ←− RSAVP1 ((n, e), s)
3: Result ←− emsapss decode(m, em,modBits − 1)
4: if Result = “valid” then output “valid signature” otherwise “invalid signature”

3.1 Correctness of RSA

The correctness proof of the RSA function makes use of Fermat’s little theorem.
Due to space limitations we omit the formal proof of this theorem at this point
and state simply the theorem itself which is then used in the further proof.

lemma fermat : [[p ∈ prime; m mod p 6= 0 ]] =⇒ mˆ(p−(1 ::nat)) mod p = 1

The correctness statement of RSA in Isabelle notation is:

lemma cryptinverts:
[[p ∈ prime; q ∈ prime; p 6= q ; n = p∗q ; m < n;
e∗d mod ((pred p)∗(pred q)) = 1 ]] =⇒
rsa-crypt (rsa-crypt (m,e,n), d , n) = m

which basically says, that if one uses the private key to encrypt (i.e. sign) a
message m and afterwards uses the public key to encrypt (i.e. verify) the result,
then one again has m.

Since the RSA correctness proof is mainly number theoretic it can be easily
shown in a theorem proving environment. The main tools one needs are lemmata
on modular arithmetic and on properties of primes. Fermat’s little theorem is
then established using some theorems on permutations of natural numbers.

Our proof closely abides by the prior work of Boyer-Moore [5] however we
were not able to translate it one to one to Isabelle due to differences in the basic
libraries of the theorem provers. Therefore we had to extend Boyer and Moores
proof in order to adapt it to Isabelle.

3.2 Length of SHA-1

In this section we present the proof of the length of SHA-1 which is required to
show the correctness of the RSA-PSS signature scheme. In principle it would also
be possible to define an abstract hash function and give the correctness proof
for every such function, which has a certain minimal length. However since we
decided to give a specification which can be used to verify actual implementations
we specified the SHA-1 hash function and have to give a proof for the length of
this certain function. The concrete proof is quite easy since the length of SHA-1
is the addition of five 32-bit blocks as can be seen from the definition of SHA-1.

9



3.3 Correctness of the PSS-Encoding Method

In this section we give the formal proof, that for a message m, and the encoded
message em of m, with em 6= [] the function emsapss decode returns True.

The proof basically is established by looking at a encoded message showing,
that this message has a certain format. The first step is to show that the least
significant eight bits of the encoded message are 0xBC. We then have to show,
that the leftmost bits are equal to zero. This is an important property for the
complete proof, because it ensures, that the encoded message when interpreted
as natural number is smaller than the RSA modulus, which allows us to apply
the RSA correctness proof.

Another important tool is to show, that the application of two times bitwise
xor with the same mask leaves a bitvector unchanged. Therefore it is possible
to cancel out the effect of the masking operation. This yields the padding2
string which can be checked for correctness and the salt, which can then be used
together with the padding1 string to verify the actual fingerprint.

The rest of this proof can be shown by straightforward substitutions and
the application of the above mentioned theorems. The main problems here are
of technical nature. Due to the complexity of the expressions it becomes com-
plicated to keep the track of the proof. Our research indicated, that theorem
provers which are used to verify cryptographic algorithms should somehow ease
the reasoning with complex expressions.

3.4 Combination of the single proofs

We now show that a RSA-PSS signature s for a message m can always be verified
with our RSA-PSS specification from section 2.6. Formally we prove the following

lemma rsa-pss-verify :
[[p ∈ prime; q ∈ prime; p 6= q ; n = p∗q ;

e∗d mod ((pred p)∗(pred q)) = 1 ; rsapss-sign m e n 6= [];
s = rsapss-sign m e n]]

=⇒ rsapss-verify m s d n = True.

In the following we use | · | to denote the length of the bitvector representing
the number ·.

In order to apply the correctness lemma for RSA which gives us em in the
verification step, we have to show that em < n. This indeed is the major obstacle
in combining the single proofs described above.

To show that em < n we use the preconditions p, q ∈ prime, p 6= q and
n = p · q. Our approach is to distinguish wether em starts with 0 or 1-bits. The
first case is easy because we can show that preceding zeroes do not change the
value of a bit vector. In other words if we denote with em? the value of em with
the leading zeros removed we can show that em? = em and |em?| < |n|. Since
we have |em?| < |n| ⇒ em? < n we have shown the first case (Note, that n does
always start with a 1-bit because of our specification).

10



In the second case we can show that |em| = |p · q| − 1 and 0 < p · q − 1.
Additionaly we have 0 < p · q − 1 ⇒ 2|p·q|−1 ≤ p · q. Thus all that remains to
show is that 2|p·q|−1 6= p · q. This can be done by showing that the only possible
product of two prime numbers which is a power of 2 is 2 · 2. This however is not
allowed since we have the precondition that p 6= q.

Another problem is again the inherent complexity of the occuring expres-
sions. In this step one has to switch between natural numbers and the bitvector
description of the numbers which always introduces one layer of indirection. This
issue is typical for the verification of cryptographic algorithms since they mix
operations in different fields like GF (2) and Zn in order to prevent attacks. One
possible solution is to show theorems which allow to cancel out the transforma-
tion functions. However care must be taken with the order of the application
of the functions since for example the conversion from bitvector to natural and
back removes leading zeros from the bitvector description.

4 Conclusion

In this paper we presented a formal specification of the RSA probabilistic signa-
ture scheme. Moreover we verified the functional correctness property of RSA-
PSS using formal methods. Further research in this area is very important be-
cause of the lack of formal tools which can be used to verify certain cryptographic
algorithms. Our aim is to formalize the paper and pencil security proof given
for RSA-PSS. On this way there are many interesting topics which have to be
done first. One very important point to mention is to formally describe the ran-
dom oracle model. Also there is not much theory on how to analyse programs
with respect to their time and space complexity which would allow to model
adversaries for a theorem proving environment.

Using the herein presented specification of RSA-PSS it becomes possible to
verify the correctness of actual implementations of RSA-PSS. Up until now, this
could only be done by using so called test vectors, which is an indication of the
correctness but it constitutes no proof. Although we know, that our work is only
one step on a complete formal treatment of RSA-PSS, we feel that the presented
proofs encourage further research in this area as they show, that it is possible
to verify complex cryptographic protocols like RSA-PSS.

As a closing remark we stress, that formal methods are also of great use to
understand proofs. Using theorem proving environments one becomes aware of
pitfalls which arise during the proof and which often are overlooked, when doing
proofs on paper.

References

1. Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable
dolev-yao style cryptographic library. In CSFW, pages 204–218, 2004.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security, pages 62–73, 1993.

11



3. Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures —
How to Sign with RSA and Rabin. Lecture Notes in Computer Science, 1070:399–
416, 1996.

4. Mihir Bellare and Phillip Rogaway. PSS: Provably Secure Encoding Method for
Digital Signatures. Submission to IEEE P1363, 1998.

5. Robert S. Boyer and J. Strother Moore. Proof checking the rsa public key en-
cryption algorithm. Technical Report 33, Institute for Computing Science and
Computer Applications, University of Texas, 1982.

6. Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

7. PKCS Editor. PKCS#1 v2.1: RSA Cryptography Standard. Technical report,
RSA Laboratories, 2002.

8. Federal Information Processing Standards. Secure hash standard. Technical Report
FIPS 180-2, National Institute of Standards and Technology, 2002.

9. Thomas Huckle. Collection of software bugs.
http://www5.in.tum.de/˜huckle/bugse.html, 2004.

10. Development website of isabelle at the tu munich. http://isabelle.in.tum.de.
11. Peter B. Ladkin. Computer related incidents with commercial aircraft.

http://www.rvs.uni-bielefeld.de/publications/Incidents/.
12. Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.
13. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
14. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

15. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Collision search attacks on sha1.
http://theory.csail.mit.edu/˜yiqun/shanote.pdf, 2005.

16. Article computer bug. http://en.wikipedia.org/wiki/Computer bug.

A Formal Specification of RSA

theory Crypt = Mod :

constdefs
even :: nat ⇒ bool
even n == 2 dvd n

consts
rsa-crypt :: nat × nat × nat => nat

recdef rsa-crypt measure(λ(M ,e,n).e)
rsa-crypt (M ,0 ,n) = 1
rsa-crypt (M ,Suc e,n) = (if even (Suc e) then
((rsa-crypt (M , (Suc e) div 2 ,n))ˆ2 mod n) else
(M ∗ ((rsa-crypt (M , Suc e div 2 ,n))ˆ2 mod n)) mod n)

lemma div-2-times-2 :
(if (even m) then (m div 2 ∗ 2 = m) else (m div 2 ∗ 2 = m − 1 ))

12



by (simp add : even-def dvd-eq-mod-eq-0 mult-commute mult-div-cancel)

theorem cryptcorrect [rule-format ]:
((n 6= 0 ) & (n 6= 1 )) −→ (rsa-crypt(M ,e,n) = Mˆe mod n)
apply (induct-tac M e n rule: rsa-crypt .induct)
by (auto simp add : power-mult [THEN sym] div-2-times-2 remainderexp

timesmod1 )

end

B Fermat’s little theorem

theory Fermat = Pigeonholeprinciple:

consts
pred :: nat ⇒ nat
S :: nat ∗ nat ∗ nat ⇒ nat list

primrec
pred 0 = 0
pred (Suc a) = a

recdef S measure(λ(N ,M ,P).N )
S (0 ,M ,P) = []
S (N ,M ,P) = (((M ∗N ) mod P)#(S ((N−(1 ::nat)),M ,P)))

lemma remaindertimeslist :
timeslist (S(n,M ,p)) mod p = fac n ∗ Mˆn mod p
apply (induct-tac n M p rule: S .induct)
apply (auto)
apply (simp add : add-mult-distrib)
apply (simp add : mult-assoc [THEN sym])
apply (subst add-mult-distrib [THEN sym])
apply (subst mult-assoc)
apply (subst mult-left-commute)
apply (subst add-mult-distrib2 [THEN sym])
apply (simp add : mult-assoc)
apply (subst mult-left-commute)
apply (simp add : mult-commute)
apply (subst mod-mult1-eq ′ [THEN sym])
apply (drule remainderexplemma)
by (auto)

lemma sucassoc: (P + P∗w) = P ∗ Suc w
by (auto)

lemma modI [rule-format ]: 0 < (x ::nat) mod p −→ 0 < x
by (induct-tac x , auto)

13



lemma delmulmod : [[0 < x mod p;a < (b::nat)]] =⇒ x∗a < x∗b
by (simp, rule modI , simp)

lemma swaple [rule-format ]:
(c < b) −→ ((a::nat) ≤ b − c) −→ c ≤ b − a
apply (induct-tac a, auto)
apply (subgoal-tac c∼= b − n, auto)
apply (drule le-neq-implies-less[of c])
apply (simp)+
by (arith)+

lemma exchgmin: [[(a::nat) < b;c ≤ a−b]] =⇒ c ≤ a − a
by (auto)

lemma sucleI : Suc x ≤ 0 =⇒ False
by (auto)

lemma diffI :
V

b. (0 ::nat) = b − b
by (auto)

lemma alldistincts [rule-format ]:
(p: prime) −→ (m mod p 6= 0 ) −→ (n2 < n1 ) −→ (n1 < p) −→
¬(((m∗n1 ) mod p) mem (S (n2 ,m,p)))
apply (induct-tac rule: S .induct)
apply (auto)
apply (drule equalmodstrick2 )
apply (subgoal-tac M+M ∗w < M ∗n1 )
apply (auto)
apply (drule dvdI )
apply (simp only : sucassoc diff-mult-distrib2 [THEN sym])
apply (drule primekeyrewrite, simp)
apply (simp add : dvd-eq-mod-eq-0 )
apply (drule-tac n=n1 − Suc w in dvd-imp-le, simp)
apply (rule sucleI , subst diffI [of n1 ])
apply (rule exchgmin, simp)
apply (rule swaple, auto)
apply (subst sucassoc)
apply (rule delmulmod)
by (auto)

lemma alldistincts2 [rule-format ]:
(p: prime) −→ (m mod p 6= 0 ) −→ (n < p) −→
alldistinct (S (n,m,p))
apply (induct-tac rule: S .induct)
apply (simp)+
apply (subst sucassoc)
apply (rule impI )+
apply (rule alldistincts)
by (auto)

14



lemma notdvdless: ¬ a dvd b =⇒ 0 < (b::nat) mod a
apply (rule contrapos-np, simp)
by (simp add : dvd-eq-mod-eq-0 )

lemma allnonzerop [rule-format ]: (p: prime) −→
(m mod p 6= 0 ) −→ (n < p) −→ allnonzero (S (n,m,p))
apply (induct-tac rule: S .induct)
apply (simp)+
apply (auto)
apply (subst sucassoc)
apply (rule notdvdless)
apply (clarify)
apply (drule primekeyrewrite)
apply (assumption)
apply (simp add : dvd-eq-mod-eq-0 )
apply (drule-tac n=Suc w in dvd-imp-le)
by (auto)

lemma predI [rule-format ]: a < p −→ a ≤ pred p
apply (induct-tac p)
by (auto)

lemma predd : pred p = p−(1 ::nat)
apply (induct-tac p)
by (auto)

lemma alllesseqps [rule-format ]:
p 6= 0 −→ alllesseq (S (n,m,p)) (pred p)
apply (induct-tac n m p rule: S .induct)
apply (auto)
by (simp add : predI mod-less-divisor)

lemma lengths: length (S (n,m,p)) = n
apply (induct-tac n m p rule: S .induct)
by (auto)

lemma suconeless [rule-format ]: p: prime −→ p − 1 < p
apply (induct-tac p)
by (auto simp add :prime-def )

lemma primenotzero: p: prime =⇒ p 6=0
by (auto simp add :prime-def )

lemma onemodprime [rule-format ]: p:prime −→ 1 mod p = (1 ::nat)
apply (induct-tac p)
by (auto simp add :prime-def )

lemma fermat : [[p ∈ prime; m mod p 6= 0 ]] =⇒ mˆ(p−(1 ::nat)) mod p = 1
apply (frule onemodprime [THEN sym], simp)
apply (frule-tac n =p− Suc 0 in primefact)

15



apply (drule suconeless, simp)
apply (erule ssubst)
back
apply (rule-tac M = fac (p − Suc 0 ) in primekeytrick)
apply (subst remaindertimeslist [of p − Suc 0 m p, THEN sym])
apply (frule-tac n = p−(1 ::nat) in alldistincts2 , simp)
apply (rule suconeless, simp)
apply (frule-tac n = p−(1 ::nat) in allnonzerop, simp)
apply (rule suconeless, simp)
apply (frule primenotzero)
apply (frule-tac n = p−(1 ::nat) and m = m and p = p in alllesseqps)
apply (frule primenotzero)
apply (simp add : predd)
apply (insert lengths [of p−Suc 0 m p, THEN sym])
apply (insert pigeonholeprinciple [of S (p−(Suc 0 ), m, p)])
apply (auto)
apply (drule permtimeslist)
by (simp add : timeslistpositives)

end

C Correctness Proof for RSA

theory Cryptinverts = Fermat + Crypt :

lemma cryptinverts-hilf1 :
[[p ∈ prime]] =⇒ (m ∗ m ˆ(k ∗ pred p)) mod p = m mod p
apply (case-tac m mod p = 0 )
apply (simp add : mod-mult1-eq ′)
apply (simp only : mult-commute [of k pred p] power-mult mod-mult1-eq

[of m (mˆpred p)ˆk p] remainderexp
[of mˆpred p p k , THEN sym])

apply (insert fermat [of p m])
apply (simp add : predd)
apply (subst sucis)
apply (subst oneexp)
apply (subst onemodprime)
by (auto)

lemma cryptinverts-hilf2 :
[[p ∈ prime]] =⇒ m∗(mˆ(k ∗ (pred p) ∗ (pred q))) mod p = m mod p
apply (simp add : mult-commute [of k ∗ pred p pred q ] mult-assoc

[THEN sym])
apply (rule cryptinverts-hilf1 [of p m (pred q) ∗ k ])
by (simp)

lemma cryptinverts-hilf3 :
[[q ∈ prime]] =⇒ m∗(mˆ(k ∗ (pred p) ∗ (pred q))) mod q = m mod q
apply (simp only : mult-assoc)

16



apply (simp add : mult-commute [of pred p pred q ])
apply (simp only : mult-assoc [THEN sym])
apply (rule cryptinverts-hilf2 )
by (simp)

lemma cryptinverts-hilf4 : [[p ∈ prime; q ∈ prime; p 6= q ; m < p∗q ;
x mod ((pred p)∗(pred q)) = 1 ]] =⇒ mˆx mod (p∗q) = m
apply (frule cryptinverts-hilf2 [of p m k q ])
apply (frule cryptinverts-hilf3 [of q m k p])
apply (frule mod-eqD)
apply (elim exE)
apply (rule specializedtoprimes1a)
by (simp add : cryptinverts-hilf2 cryptinverts-hilf3 mult-assoc
[THEN sym])+

lemma primmultgreater :
[[ p ∈ prime; q ∈ prime; p 6= 2 ; q 6= 2 ]] =⇒ 2 < p∗q
apply (simp add :prime-def )
apply (insert mult-le-mono [of 2 p 2 q ])
by (auto)

lemma primmultgreater2 : [[p ∈ prime; q ∈ prime; p 6= q ]] =⇒ 2 < p∗q
apply (case-tac p=2 )
apply (simp)+
apply (simp add : prime-def )
apply (case-tac q=2 )
apply (simp add : prime-def )
apply (erule primmultgreater)
by (auto)

lemma cryptinverts: [[p ∈ prime; q ∈ prime; p 6= q ; n = p∗q ; m < n;
e∗d mod ((pred p)∗(pred q)) = 1 ]] =⇒
rsa-crypt (rsa-crypt (m,e,n), d , n) = m
apply (insert cryptinverts-hilf4 [of p q m e∗d ])
apply (insert cryptcorrect [of p∗q rsa-crypt (m, e, p ∗ q) d ])
apply (insert cryptcorrect [of p∗q m e])
apply (insert primmultgreater2 [of p q ])
apply (auto simp add : prime-def )
by (auto simp add : remainderexp [of mˆe p∗q d ] power-mult
[THEN sym])

end

D Extensions to the Isabelle Word theory required for
SHA1

theory WordOperations = Word + EfficientNat :

types

17



bv = bit list

datatype
HEX = x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | xA |

xB | xC | xD | xE | xF

consts
bvxor :: bv ⇒ bv ⇒ bv
bvand :: bv ⇒ bv ⇒ bv
bvor :: bv ⇒ bv ⇒ bv
bvrol :: bv ⇒ nat ⇒ bv
bvror :: bv ⇒ nat ⇒ bv
addmod32 :: bv ⇒ bv ⇒ bv
zerolist :: nat ⇒ bv
select :: bv ⇒ nat ⇒ nat ⇒ bv
hextobv :: HEX ⇒ bv
hexvtobv :: HEX list ⇒ bv
bv-prepend :: nat => bit => bv => bv
bvrolhelp :: bv × nat ⇒ bv
bvrorhelp :: bv × nat ⇒ bv
selecthelp1 :: bv × nat × nat ⇒ bv
selecthelp2 :: bv × nat ⇒ bv
reverse :: bv ⇒ bv
last :: bv ⇒ bit
dellast :: bv ⇒ bv

defs
bvxor :
bvxor a b == bv-mapzip (op bitxor) a b

bvand :
bvand a b == bv-mapzip (op bitand) a b

bvor :
bvor a b == bv-mapzip (op bitor) a b

bvrol :
bvrol x a == bvrolhelp(x ,a)

bvror :
bvror x a == bvrorhelp(x ,a)

addmod32 :
addmod32 a b == reverse (select (reverse (nat-to-bv ((bv-to-nat a) +
(bv-to-nat b)))) 0 31 )

bv-prepend :
bv-prepend x b bv == replicate x b @ bv

primrec

18



zerolist 0 = []
zerolist (Suc n) = (zerolist n)@[Zero]

defs
select :
select x i l == (selecthelp1 (x ,i ,l))

primrec
hextobv x0 = [Zero,Zero,Zero,Zero]
hextobv x1 = [Zero,Zero,Zero,One]
hextobv x2 = [Zero,Zero,One,Zero]
hextobv x3 = [Zero,Zero,One,One]
hextobv x4 = [Zero,One,Zero,Zero]
hextobv x5 = [Zero,One,Zero,One]
hextobv x6 = [Zero,One,One,Zero]
hextobv x7 = [Zero,One,One,One]
hextobv x8 = [One,Zero,Zero,Zero]
hextobv x9 = [One,Zero,Zero,One]
hextobv xA = [One,Zero,One,Zero]
hextobv xB = [One,Zero,One,One]
hextobv xC = [One,One,Zero,Zero]
hextobv xD = [One,One,Zero,One]
hextobv xE = [One,One,One,Zero]
hextobv xF = [One,One,One,One]

primrec
hexvtobv [] = []
hexvtobv (x#r) = (hextobv x )@hexvtobv r

recdef
bvrolhelp measure(λ(a,x ).x )
bvrolhelp (a,0 ) = a
bvrolhelp ([],x ) = []
bvrolhelp ((x#r),(Suc n)) = bvrolhelp((r@[x ]),n)

recdef
bvrorhelp measure(λ(a,x ).x )
bvrorhelp (a,0 ) = a
bvrorhelp ([],x ) = []
bvrorhelp (x ,(Suc n)) = bvrorhelp((last x )#(dellast x ),n)

recdef
selecthelp1 measure(λ(x ,i ,n). i)
selecthelp1 ([],i ,n) = (if (i <= 0 ) then (selecthelp2 ([],n))
else (selecthelp1 ([],i−(1 ::nat),n−(1 ::nat))))
selecthelp1 (x#l ,i ,n) = (if (i <= 0 ) then (selecthelp2 (x#l ,n))
else (selecthelp1 (l ,i−(1 ::nat),n−(1 ::nat))))

recdef
selecthelp2 measure(λ(x ,n). n)

19



selecthelp2 ([],n) = (if (n <= 0 ) then [Zero]
else (Zero#selecthelp2 ([],n−(1 ::nat))))
selecthelp2 (x#l ,n) = (if (n <= 0 ) then [x ]
else (x#selecthelp2 (l ,(n−(1 ::nat)))))

primrec
reverse [] = []
reverse (x#r) = (reverse r)@[x ]

primrec
last [] = Zero
last (x#r) = (if (r=[]) then x else (last r))

primrec
dellast [] = []
dellast (x#r) = (if (r = []) then [] else (x#dellast r))

lemma selectlenhelp: ALL l . length (selecthelp2 (l ,i)) = (i + 1 )
proof
show

V
l . length (selecthelp2 (l ,i)) = i+1

proof (induct i)
fix l
show length (selecthelp2 (l , 0 )) = 0 + 1
proof (cases l)
case Nil
hence selecthelp2 (l , 0 ) = [Zero] by (simp)
thus ?thesis by (simp)

next
case (Cons a list)
hence selecthelp2 (l , 0 ) = [a] by (simp)
thus ?thesis by (simp)

qed
next
fix l
case (Suc x )
show length (selecthelp2 (l , (Suc x ))) = (Suc x ) + 1
proof (cases l)
case Nil
hence (selecthelp2 (l , (Suc x ))) = Zero#selecthelp2 (l , x )
by (simp)

thus length (selecthelp2 (l , (Suc x ))) = (Suc x ) + 1 using Suc
by (simp)

next
case (Cons a b)
hence (selecthelp2 (l , (Suc x ))) = a#selecthelp2 (b, x )
by (simp)

hence length (selecthelp2 (l , (Suc x ))) =
1+(length (selecthelp2 (b,x ))) by (simp)

thus length (selecthelp2 (l , (Suc x ))) = (Suc x ) + 1 using Suc

20



by (simp)
qed

qed
qed

lemma selectlenhelp2 :V
i . ALL l j . EX k . selecthelp1 (l ,i ,j ) = selecthelp1 (k ,0 ,j−i)

proof (auto)
fix i
show

V
l j . ∃ k . selecthelp1 (l , i , j ) = selecthelp1 (k , 0 , j − i)

proof (induct i)
fix l and j
have selecthelp1 (l ,0 ,j ) = selecthelp1 (l ,0 ,j−(0 ::nat)) by (simp)
thus EX k . selecthelp1 (l , 0 , j ) = selecthelp1 (k , 0 , j − (0 ::nat))
by (auto)

next
case (Suc x )
have b: selecthelp1 (l ,(Suc x ),j ) = selecthelp1 (tl l , x , j−(1 ::nat))
proof (cases l)
case Nil
hence selecthelp1 (l ,(Suc x ),j ) = selecthelp1 (l ,x ,j−(1 ::nat))
by (simp)

moreover have tl l = l using Nil by (simp)
ultimately show ?thesis by (simp)

next
case (Cons head tail)
hence selecthelp1 (l ,(Suc x ),j ) = selecthelp1 (tail ,x ,j−(1 ::nat))
by (simp)

moreover have tail = tl l using Cons by (simp)
ultimately show ?thesis by (simp)

qed
have ∃ k . selecthelp1 (l , x , j ) = selecthelp1 (k , 0 , j − (x ::nat))
using Suc by (simp)

moreover have EX k . selecthelp1 (tl l ,x ,j−(1 ::nat)) =
selecthelp1 (k ,0 ,j−(1 ::nat)−(x ::nat))
using Suc [of tl l j−(1 ::nat)] by auto

ultimately have EX k . selecthelp1 (l , Suc x , j ) =
selecthelp1 (k ,0 ,j−(1 ::nat) − (x ::nat)) using b by (auto)

thus EX k . selecthelp1 (l , Suc x , j ) =
selecthelp1 (k , 0 , j − (Suc x )) by (simp)

qed
qed

lemma selectlenhelp3 : ALL j . selecthelp1 (l ,0 ,j ) = selecthelp2 (l ,j )
proof
fix j
show selecthelp1 (l , 0 , j ) = selecthelp2 (l , j )
proof (cases l)
case Nil
assume l=[]

21



thus selecthelp1 (l , 0 , j ) = selecthelp2 (l , j ) by (simp)
next
case (Cons a b)
thus selecthelp1 (l ,0 ,j ) = selecthelp2 (l ,j ) by (simp)

qed
qed

lemma selectlenhelp4 : length (selecthelp1 (l ,i ,j )) = (j−i + 1 )
proof −
from selectlenhelp2 have

EX k . selecthelp1 (l ,i , j ) = selecthelp1 (k ,0 ,j−i) by (simp)
hence EX k . length (selecthelp1 (l , i , j )) =

length (selecthelp1 (k ,0 ,j−i)) by (auto)
hence c: EX k . length (selecthelp1 (l , i , j )) =

length (selecthelp2 (k ,j−i)) using selectlenhelp3 by (simp)
from c obtain k where d : length (selecthelp1 (l , i , j )) =

length (selecthelp2 (k ,j−i)) by (auto)
have 0<=j−i by (arith)
hence length (selecthelp2 (k ,j−i)) = j−i+1 using selectlenhelp
by (simp)

thus length (selecthelp1 (l ,i ,j )) = j−i+1 using d by (simp)
qed

lemma selectlen:length (select bv i j ) = (j−i)+1
proof (simp add : select)
from selectlenhelp4 show length (selecthelp1 (bv ,i ,j )) = Suc (j−i)
by (simp)

qed

lemma reverselen: length (reverse a) = length a
proof (induct a)
show length (reverse []) = length [] by (simp)

next
case (Cons a1 a2 )
have reverse (a1#a2 ) = reverse (a2 )@[a1 ] by (simp)
hence length (reverse (a1#a2 )) = Suc (length (reverse (a2 )))
by (simp)

thus length (reverse (a1#a2 )) = length (a1#a2 ) using Cons
by (simp)

qed

lemma addmod32len:
V

a b. length (addmod32 a b) = 32
proof (simp add : addmod32 )
fix a and b
have length (select (reverse (nat-to-bv (bv-to-nat a +

bv-to-nat b))) 0 31 ) = 32 using selectlen [of - 0 31 ] by (simp)
thus length (reverse (select (reverse (nat-to-bv (bv-to-nat a +

bv-to-nat b))) 0 31 )) = 32 using reverselen by (simp)
qed

22



end

E Message Padding for SHA-1

theory SHA1Padding = WordOperations:

consts
sha1padd :: bv ⇒ bv
helppadd :: (bv × bv × nat) ⇒ bv
zerocount :: nat ⇒ nat

defs
sha1padd :
sha1padd x == helppadd (x ,nat-to-bv (length x ),(length x ))

recdef helppadd measure(λ (x ,y ,n). n)
helppadd (x ,y ,n) = x@[One]@(zerolist (zerocount n))@
(zerolist (64−length y))@y

defs
zerocount :
zerocount n == ((((n+64 ) div 512 )+1 )∗512 )−n−(65 ::nat)

end

F Formal definition of the secure hash algorithm (SHA-1)

theory SHA1 = SHA1Padding :

consts
sha1 :: bv ⇒ bv
sha1expand :: bv × nat ⇒ bv
sha1expandhelp :: bv × nat ⇒ bv
sha1block :: bv × bv × bv × bv × bv × bv × bv ⇒ bv
sha1compressstart :: nat ⇒ bv ⇒ bv ⇒ bv ⇒ bv ⇒ bv ⇒ bv ⇒ bv
sha1compress :: nat ⇒ bv ⇒ bv ⇒ bv ⇒ bv ⇒ bv ⇒ bv ⇒ bv
IV1 :: bv
IV2 :: bv
IV3 :: bv
IV4 :: bv
IV5 :: bv
K1 :: bv
K2 :: bv
K3 :: bv
K4 :: bv
kselect :: nat ⇒ bv
fif :: bv ⇒ bv ⇒ bv ⇒ bv

23



fxor :: bv ⇒ bv ⇒ bv ⇒ bv
fmaj :: bv ⇒ bv ⇒ bv ⇒ bv
fselect :: nat ⇒ bv ⇒ bv ⇒ bv ⇒ bv
getblock :: bv ⇒ bv
delblock :: bv ⇒ bv
delblockhelp :: bv × nat ⇒ bv

defs
sha1 :
sha1 x == (let y = sha1padd x in (sha1block (
getblock y ,delblock y ,IV1 ,IV2 ,IV3 ,IV4 ,IV5 )))

recdef
sha1expand measure(λ(x ,i). i)
sha1expand (x ,i) = (if (i < 16 ) then x else
(let y = sha1expandhelp(x ,i) in (sha1expand(x@y ,i−(1 ::nat)))))

recdef
sha1expandhelp measure(λ(x ,i). i)
sha1expandhelp (x ,i) = (let j = (79+16−i) in
(bvrol (bvxor(bvxor(select x (32∗(j−(3 ::nat))) (31+(32∗(j−(3 ::nat)))))
(select x (32∗(j−(8 ::nat))) (31+(32∗(j−(8 ::nat))))))
(bvxor(select x (32∗(j−(14 ::nat))) (31+(32∗(j−(14 ::nat)))))
(select x (32∗(j−(16 ::nat))) (31+(32∗(j−(16 ::nat))))))) 1 ))

defs
getblock :
getblock x == select x 0 511

delblock :
delblock x == delblockhelp (x ,512 )

recdef delblockhelp measure (λ(x ,n).n)
delblockhelp ([],n) = []
delblockhelp (x#r ,n) = (if (n <= 0 ) then (x#r) else
(delblockhelp (r ,n−(1 ::nat))))

lemma sha1blockhilf : length (delblock (x#a)) < Suc (length a)
proof (simp add : delblock)
have

V
n. length (delblockhelp (a,n)) <= length a

proof −
fix n
show length (delblockhelp (a,n)) <= length a
by (induct n rule: delblockhelp.induct , auto)

qed
thus length (delblockhelp (a, 511 )) < Suc (length a)
using le-less-trans [of length (delblockhelp(a,511 )) length a]
by (simp)

qed

24



recdef sha1block measure(λ(b,x ,A,B ,C ,D ,E).length x )
sha1block(b,[],A,B ,C ,D ,E) = (let H = sha1compressstart 79 b A B C D E

in (let AA = addmod32 A (select H 0 31 );
BB = addmod32 B (select H 32 63 );
CC = addmod32 C (select H 64 95 );
DD = addmod32 D (select H 96 127 );
EE = addmod32 E (select H 128 159 )

in AA@BB@CC@DD@EE))
sha1block(b,x ,A,B ,C ,D ,E) = (let H = sha1compressstart 79 b A B C D E

in (let AA = addmod32 A (select H 0 31 );
BB = addmod32 B (select H 32 63 );
CC = addmod32 C (select H 64 95 );
DD = addmod32 D (select H 96 127 );
EE = addmod32 E (select H 128 159 )

in sha1block(getblock x ,delblock x ,AA,BB ,
CC ,DD ,EE)))

(hints recdef-simp:sha1blockhilf )

defs
sha1compressstart :
sha1compressstart r b A B C D E ==
sha1compress r (sha1expand(b,79 )) A B C D E

primrec
sha1compress 0 b A B C D E = (let j = (79 ::nat) in
(let W = select b (32∗j ) ((32∗j )+31 ) in
(let AA = addmod32 (addmod32 (addmod32 W
(bvrol A 5 )) (fselect j B C D)) (addmod32 E (kselect j ));
BB = A; CC = bvrol B 30 ; DD = C ; EE = D in AA@BB@CC@DD@EE)))
sha1compress (Suc n) b A B C D E = (let j = (79 − (Suc n)) in
(let W = select b (32∗j ) ((32∗j )+31 ) in
(let AA = addmod32 (addmod32 (addmod32 W (bvrol A 5 ))
(fselect j B C D)) (addmod32 E (kselect j ));
BB = A; CC = bvrol B 30 ; DD = C ; EE = D in
sha1compress n b AA BB CC DD EE)))

defs
IV1 :
IV1 == hexvtobv [x6 ,x7 ,x4 ,x5 ,x2 ,x3 ,x0 ,x1 ]

IV2 :
IV2 == hexvtobv [xE ,xF ,xC ,xD ,xA,xB ,x8 ,x9 ]

IV3 :
IV3 == hexvtobv [x9 ,x8 ,xB ,xA,xD ,xC ,xF ,xE ]

IV4 :
IV4 == hexvtobv [x1 ,x0 ,x3 ,x2 ,x5 ,x4 ,x7 ,x6 ]

IV5 :

25



IV5 == hexvtobv [xC ,x3 ,xD ,x2 ,xE ,x1 ,xF ,x0 ]

K1 :
K1 == hexvtobv [x5 ,xA,x8 ,x2 ,x7 ,x9 ,x9 ,x9 ]

K2 :
K2 == hexvtobv [x6 ,xE ,xD ,x9 ,xE ,xB ,xA,x1 ]

K3 :
K3 == hexvtobv [x8 ,xF ,x1 ,xB ,xB ,xC ,xD ,xC ]

K4 :
K4 == hexvtobv [xC ,xA,x6 ,x2 ,xC ,x1 ,xD ,x6 ]

kselect :
kselect r == (if (r < 20 ) then K1 else (if (r < 40 ) then K2
else (if (r < 60 ) then K3 else K4 )))

fif :
fif x y z == bvor (bvand x y) (bvand (bv-not x ) z )

fxor :
fxor x y z == bvxor (bvxor x y) z

fmaj :
fmaj x y z == bvor (bvor (bvand x y) (bvand x z )) (bvand y z )

fselect :
fselect r x y z == (if (r < 20 ) then (fif x y z ) else
(if (r < 40 ) then (fxor x y z ) else
(if (r < 60 ) then (fmaj x y z ) else (fxor x y z ))))

lemma sha1blocklen: length (sha1block (b,x ,A,B ,C ,D ,E)) = 160
proof (induct b x A B C D E rule: sha1block .induct)
show !!b A B C D E . length (sha1block (b, [], A, B , C , D , E)) = 160
by (simp add : Let-def addmod32len)

show !!b z aa A B C D E .
ALL EE H DD CC BB AA.
EE = addmod32 E (select H 128 159 ) &
DD = addmod32 D (select H 96 127 ) &
CC = addmod32 C (select H 64 95 ) &
BB = addmod32 B (select H 32 63 ) &
AA = addmod32 A (select H 0 31 ) &
H = sha1compressstart 79 b A B C D E −−>
length (sha1block
(getblock (z # aa), delblock (z # aa), AA, BB , CC , DD , EE)) = 160
==> length (sha1block (b, z # aa, A, B , C , D , E)) = 160

by (simp add : Let-def )
qed

26



lemma sha1len: length (sha1 m) = 160
proof (simp add : sha1 )
show length (let y = sha1padd m

in sha1block (getblock y , delblock y , IV1 , IV2 , IV3 , IV4 , IV5 )) =
160 by (simp add : sha1blocklen Let-def )

qed

end

G Extensions to the Word theory required for PSS

theory Wordarith = WordOperations + Primes:

consts
nat-to-bv-length :: nat ⇒ nat ⇒ bv
roundup :: nat ⇒ nat ⇒ nat
remzero :: bv ⇒ bv

defs
nat-to-bv-length:
nat-to-bv-length n l == if length(nat-to-bv n) ≤ l then
bv-extend l 0 (nat-to-bv n) else []

roundup:
roundup x y == if (x mod y = 0 ) then (x div y) else (x div y) + 1

primrec
remzero [] = []
remzero (a#b) = (if (a = 1) then (a#b) else (remzero b))

lemma length-nat-to-bv-length [rule-format ]:
nat-to-bv-length x y 6= [] −→ length (nat-to-bv-length x y) = y
by (simp add : nat-to-bv-length )

lemma bv-to-nat-nat-to-bv-length [rule-format ]:
nat-to-bv-length x y 6= [] −→ bv-to-nat (nat-to-bv-length x y) = x
by (simp add : nat-to-bv-length)

lemma max-min: max (a::nat) (min b a) = a
apply (case-tac a < b)
apply (simp add : min-def )
by (simp add :max-def )

lemma rnddvd : [[b dvd a]] =⇒ roundup a b ∗ b = a
by (auto simp add : roundup dvd-eq-mod-eq-0 )

lemma remzeroeq : shows bv-to-nat a = bv-to-nat (remzero a)
proof (induct a)
show bv-to-nat [] = bv-to-nat (remzero []) by simp

27



next
case (Cons a1 a2 )
show bv-to-nat (a1#a2 ) = bv-to-nat (remzero (a1#a2 ))
proof (cases a1 )
assume a: a1 = 0 hence bv-to-nat (a1#a2 ) = bv-to-nat a2
by simp

moreover have remzero (a1 # a2 ) = remzero a2 using a by simp
ultimately show ?thesis using Cons by simp

next
assume a1 = 1 thus ?thesis by simp

qed
qed

lemma len-nat-to-bv-pos:
assumes x : 1 < a
shows 0 < length (nat-to-bv a)

proof (auto)
assume nat-to-bv a = []
moreover have bv-to-nat [] = 0 by simp
ultimately have bv-to-nat (nat-to-bv a) = 0 by simp
moreover from x have bv-to-nat (nat-to-bv a) = a by simp
ultimately have a=0 by simp
thus False using x by simp

qed

lemma remzero-replicate: remzero ((replicate n 0)@l) = remzero l
by (induct n, auto)

lemma length-bvxor-bound : a ≤ length l =⇒ a ≤ length (bvxor l l2 )
proof (induct a)
show 0 ≤ length (bvxor l l2 ) by simp

next
case (Suc a)
assume a: Suc a ≤ length l
hence b: a ≤ length (bvxor l l2 ) using Suc by simp
thus Suc a ≤ length (bvxor l l2 )
proof (case-tac a = length (bvxor l l2 ))
have length l ≤ max (length l) (length l2 ) by (simp add : max-def )
hence Suc a ≤ max (length l) (length l2 ) using a by simp
thus Suc a ≤ length (bvxor l l2 ) using bvxor by simp

next
assume a 6= length (bvxor l l2 )
hence a < length (bvxor l l2 ) using b by simp
thus ?thesis by simp

qed
qed

lemma len-lower-bound :
0 < n =⇒ 2ˆ(length (nat-to-bv n) − Suc 0 ) ≤ n

proof (case-tac 1 < n)

28



assume 1 < n
thus 2 ˆ (length (nat-to-bv n) − Suc 0 ) ≤ n
proof (simp add : nat-to-bv-def ,induct n rule: nat-to-bv-helper .induct ,

auto)
fix n
assume a: Suc 0 < (n::nat) and b: ¬ Suc 0 < n div 2
hence n = 2 ∨ n = 3
proof (case-tac n ≤ 3 )
assume n ≤ 3 and Suc 0 < n
thus n = 2 ∨ n = 3 by auto

next
assume ¬n ≤ 3 hence 3 < n by simp
hence 1 < n div 2 by arith
thus n = 2 ∨ n = 3 using b by simp

qed
thus 2 ˆ (length (nat-to-bv-helper n []) − Suc 0 ) ≤ n
proof (case-tac n = 2 )
assume a: n = 2 hence nat-to-bv-helper n [] = [1, 0]
proof −
have nat-to-bv-helper n [] = nat-to-bv n using b
by (simp add : nat-to-bv-def )

thus ?thesis using a by (simp add : nat-to-bv-non0 )
qed
thus 2 ˆ (length (nat-to-bv-helper n []) − Suc 0 ) ≤ n using a
by simp

next
assume n = 2 ∨ n = 3 and n 6= 2
hence a: n=3 by simp
hence nat-to-bv-helper n [] = [1, 1]
proof −
have nat-to-bv-helper n [] = nat-to-bv n using a
by (simp add : nat-to-bv-def )

thus ?thesis using a by (simp add : nat-to-bv-non0 )
qed
thus 2ˆ(length (nat-to-bv-helper n []) − Suc 0 ) ≤ n using a
by simp

qed
next
fix n
assume a: Suc 0<n and b: 2 ˆ (length (nat-to-bv-helper

(n div 2 ) []) − Suc 0 ) ≤ n div 2
have (2 ::nat) ˆ (length (nat-to-bv-helper n []) − Suc 0 ) =

2ˆ(length (nat-to-bv-helper (n div 2 ) []) + 1 − Suc 0 )
proof −
have length (nat-to-bv n) = length (nat-to-bv (n div 2 )) + 1
using a by (simp add : nat-to-bv-non0 )

thus ?thesis by (simp add : nat-to-bv-def )
qed
moreover have (2 ::nat)ˆ(length (nat-to-bv-helper (n div 2 ) []) +

1 − Suc 0 ) = 2ˆ(length (nat-to-bv-helper (n div 2 ) []) − Suc 0 )∗2

29



proof auto
have (2 ::nat)ˆ(length (nat-to-bv-helper (n div 2 ) []) −Suc 0 )∗2 =

2ˆ(length (nat-to-bv-helper (n div 2 ) []) − Suc 0 + 1 ) by simp
moreover have (2 ::nat)ˆ(length (nat-to-bv-helper (n div 2 ) []) −

Suc 0 + 1 ) = 2ˆ(length (nat-to-bv-helper (n div 2 ) []))
proof −
have 0 < n div 2 using a by arith
hence 0 < length (nat-to-bv (n div 2 ))
by (simp add : nat-to-bv-non0 )

hence 0 < length (nat-to-bv-helper (n div 2 ) []) using a
by (simp add : nat-to-bv-def )

thus ?thesis by simp
qed
ultimately show

(2 ::nat) ˆ length (nat-to-bv-helper (n div 2 ) []) =
2 ˆ (length (nat-to-bv-helper (n div 2 ) []) − Suc 0 ) ∗ 2
by simp

qed
ultimately show 2 ˆ (length (nat-to-bv-helper n []) − Suc 0 ) ≤ n
using b by (simp add : nat-to-bv-def , arith)

qed
next
assume 0 < n and c: ¬ 1 < n
thus 2 ˆ (length (nat-to-bv n) − Suc 0 ) ≤ n
proof (auto, case-tac n=1 )
assume a: n = 1 hence nat-to-bv n = [1]
by (simp add : nat-to-bv-non0 )

thus 2ˆ(length (nat-to-bv n) − Suc 0 ) ≤ n using a by simp
next
assume 0 < n and n 6= 1 thus

2ˆ(length (nat-to-bv n) − Suc 0 ) ≤ n using c by simp
qed

qed

lemma length-lower :
assumes a: length a < length b and b: (hd b) 6= 0
shows bv-to-nat a < bv-to-nat b

proof −
have ha: bv-to-nat a < 2ˆlength a
by (simp add : bv-to-nat-upper-range)

have b 6= [] using a by auto
hence b = (hd b)#(tl b) by simp
hence bv-to-nat b = bitval (hd b) ∗ 2ˆ(length (tl b)) +

bv-to-nat (tl b) using bv-to-nat-helper [of hd b tl b] by simp
moreover have bitval (hd b) = 1
proof (cases hd b)
assume hd b = 0
thus bitval (hd b) = 1 using b by simp

next
assume hd b = 1

30



thus bitval (hd b) = 1 by simp
qed
ultimately have hb: 2ˆlength (tl b) <= bv-to-nat b by simp
have 2ˆ(length a) ≤ (2 ::nat)ˆlength (tl b) using a by (auto,arith)
thus ?thesis using hb and ha by arith

qed

lemma nat-to-bv-non-empty :
assumes a: 0 < n
shows nat-to-bv n 6= []

proof −
from nat-to-bv-non0 [of n]
have EX x . nat-to-bv n = x@[if n mod 2 = 0 then 0 else 1] using a
by simp

thus ?thesis by auto
qed

lemma hd-append : x 6= [] =⇒ hd (x@y) = hd x
by (induct x , auto)

lemma hd-one: 0 < n =⇒ hd (nat-to-bv-helper n []) = 1
proof (induct rule: nat-to-bv-helper .induct)
fix n
assume l : n 6= 0 −→ 0 < n div 2 −→

hd (nat-to-bv-helper (n div 2 ) []) = 1 and 0 < n
thus hd (nat-to-bv-helper n []) = 1
proof (case-tac 1 < n)
assume a: 1 < n hence n 6= 0 by simp
hence b: 0 < n div 2 −→ hd (nat-to-bv-helper (n div 2 ) []) = 1
using l by simp

from a have c: 0 < n div 2 by arith
hence d : hd (nat-to-bv-helper (n div 2 ) []) = 1 using b by simp
also from a have 0<n by simp
hence hd (nat-to-bv-helper n []) = hd (nat-to-bv (n div 2 ) @

[if n mod 2 = 0 then 0 else 1]) using nat-to-bv-def and
nat-to-bv-non0 [of n] by auto

hence hd (nat-to-bv-helper n []) = hd (nat-to-bv (n div 2 ))
using nat-to-bv-non0 [of n div 2 ] and c and

nat-to-bv-non-empty [of n div 2 ] and
hd-append [of nat-to-bv (n div 2 )] by auto

hence hd (nat-to-bv-helper n []) =
hd (nat-to-bv-helper (n div 2 ) [])
using nat-to-bv-def by simp

thus hd (nat-to-bv-helper n []) = 1 using b and c by simp
next
assume ¬ 1 < n and 0 < n hence c: n = 1 by simp
have (nat-to-bv-helper 1 []) = [1]
by (simp add : nat-to-bv-helper .simps)

thus hd (nat-to-bv-helper n []) = 1 using c by simp
qed

31



qed

lemma prime-hd-non-zero:
assumes a: p ∈ prime and b: q ∈ prime
shows hd (nat-to-bv (p∗q)) 6= 0

proof −
have c:

V
p. p ∈ prime =⇒ (1 ::nat) < p

proof −
fix p
assume d : p ∈ prime
thus 1 < p by (simp add : prime-def )

qed
have 1 < p using c and a by simp
moreover have 1 < q using c and b by simp
ultimately have 0 < p∗q by simp
thus ?thesis using hd-one [of p∗q ] and nat-to-bv-def by auto

qed

lemma primerew : [[m dvd p; m 6= 1 ; m 6= p]] =⇒ ¬ (p ∈ prime)
by (auto simp add : prime-def )

lemma two-dvd-exp: 0 < x =⇒ (2 ::nat) dvd 2ˆx
apply (induct x )
by (auto)

lemma exp-prod1 : [[1 < b; 2ˆx = 2∗(b::nat)]] =⇒ 2 dvd b
proof −
assume a: 1 < b and b: 2ˆx = 2∗(b::nat)
have s1 : 1 < x
proof (case-tac 1 < x )
assume 1 < x thus ?thesis by simp

next
assume x : ¬ 1 < x hence 2ˆx ≤ (2 ::nat) using b
proof (case-tac x = 0 )

assume x = 0 thus 2ˆx ≤ (2 ::nat) by simp
next
assume x 6= 0 hence x = 1 using x by simp
thus 2ˆx ≤ (2 ::nat) by simp

qed
hence b ≤ 1 using b by simp
thus ?thesis using a by simp

qed
have s2 : 2ˆ(x − (1 ::nat)) = b
proof −
from s1 have 2ˆ((x − Suc 0 ) + 1 ) = 2∗b by (simp)
hence 2∗2ˆ(x − Suc 0 ) = 2∗b by simp
thus 2ˆ(x − (1 ::nat)) = b by simp

qed
from s1 and s2 show ?thesis using two-dvd-exp [of x − (1 ::nat)]

32



by simp
qed

lemma exp-prod2 : [[1 < a; 2ˆx = a∗2 ]] =⇒ (2 ::nat) dvd a
proof −
assume 2ˆx = a∗2
hence 2ˆx = 2∗a by simp
moreover assume 1 < a
ultimately show 2 dvd a using exp-prod1 by simp

qed

lemma odd-mul-odd : [[¬ (2 ::nat) dvd p; ¬ 2 dvd q ]] =⇒ ¬ 2 dvd p∗q
apply (simp add : dvd-eq-mod-eq-0 )
by (simp add : mod-mult1-eq)

lemma prime-equal : [[p ∈ prime; q ∈ prime; 2ˆx = p∗q ]] =⇒ (p = q)
proof −
assume a: p ∈ prime and b: q ∈ prime and c: 2ˆx = p∗q
from a have d : 1 < p by (simp add : prime-def )
moreover from b have e: 1 < q by (simp add : prime-def )
show p = q
proof (case-tac p = 2 )
assume p: p = 2 hence 2 dvd q using c and

exp-prod1 [of q x ] and e by simp
hence 2 = q using primerew [of 2 q ] and b by auto
thus ?thesis using p by simp

next
assume p: p 6= 2 show p = q
proof (case-tac q = 2 )
assume q : q = 2 hence 2 dvd p using c and

exp-prod1 [of p x ] and d by simp
hence 2 = p using primerew [of 2 p] and a by auto
thus ?thesis using p by simp

next
assume q : q 6= 2 show p = q
proof −
from p have ¬ 2 dvd p using primerew and a by auto
moreover from q have ¬ 2 dvd q using primerew and b
by auto

ultimately have ¬ 2 dvd p∗q by (simp add : odd-mul-odd)
moreover have (2 ::nat) dvd 2ˆx
proof (case-tac x = 0 )
assume x = 0 hence (2 ::nat)ˆx = 1 by simp
thus ?thesis using c and d and e by simp

next
assume x 6= 0 hence 0 < x by simp
thus ?thesis using two-dvd-exp by simp

qed
ultimately have 2ˆx 6= p∗q by auto
thus ?thesis using c by simp

33



qed
qed

qed
qed

lemma nat-to-bv-length-bv-to-nat [rule-format ]:
length xs = n −→ xs 6= [] −→
nat-to-bv-length (bv-to-nat xs) n = xs
apply (simp only : nat-to-bv-length)
apply (auto)
by (simp add : bv-extend-norm-unsigned)

end

H EMSA-PSS encoding and decoding operation

theory EMSAPSS = SHA1 + Wordarith + Ring-and-Field :

We define the encoding and decoding operations for the probabilistic signa-
ture scheme. Finally we show, that encoded messages always can be verified

consts
BC :: bv
salt :: bv
sLen :: nat
generate-M ′ :: bv ⇒ bv ⇒ bv
generate-PS :: nat ⇒ nat ⇒ bv
generate-DB :: bv ⇒ bv
generate-H :: bv ⇒ nat ⇒ nat ⇒ bv
generate-maskedDB :: bv ⇒ nat ⇒ nat ⇒ bv
generate-salt :: bv ⇒ bv
show-rightmost-bits :: bv ⇒ nat ⇒ bv
MGF :: bv ⇒ nat ⇒ bv
MGF1 :: bv ⇒ nat ⇒ nat ⇒ bv
MGF2 :: bv ⇒ nat ⇒ bv
maskedDB-zero :: bv ⇒ nat ⇒ bv
emsapss-encode :: bv ⇒ nat ⇒ bv
emsapss-encode-help1 :: bv ⇒ nat ⇒ bv
emsapss-encode-help2 :: bv ⇒ nat ⇒ bv
emsapss-encode-help3 :: bv ⇒ nat ⇒ bv
emsapss-encode-help4 :: bv ⇒ bv ⇒ nat ⇒ bv
emsapss-encode-help5 :: bv ⇒ bv ⇒ nat ⇒ bv
emsapss-encode-help6 :: bv ⇒ bv ⇒ bv ⇒ nat ⇒ bv
emsapss-encode-help7 :: bv ⇒ bv ⇒ nat ⇒ bv
emsapss-encode-help8 :: bv ⇒ bv ⇒ bv
emsapss-decode :: bv ⇒ bv ⇒ nat ⇒ bool
emsapss-decode-help1 :: bv ⇒ bv ⇒ nat ⇒ bool
emsapss-decode-help2 :: bv ⇒ bv ⇒ nat ⇒ bool
emsapss-decode-help3 :: bv ⇒ bv ⇒ nat ⇒ bool
emsapss-decode-help4 :: bv ⇒ bv ⇒ bv ⇒ nat ⇒ bool

34



emsapss-decode-help5 :: bv ⇒ bv ⇒ bv ⇒ bv ⇒ nat ⇒ bool
emsapss-decode-help6 :: bv ⇒ bv ⇒ bv ⇒ nat ⇒ bool
emsapss-decode-help7 :: bv ⇒ bv ⇒ bv ⇒ nat ⇒ bool
emsapss-decode-help8 :: bv ⇒ bv ⇒ bv ⇒ bool
emsapss-decode-help9 :: bv ⇒ bv ⇒ bv ⇒ bool
emsapss-decode-help10 :: bv ⇒ bv ⇒ bool
emsapss-decode-help11 :: bv ⇒ bv ⇒ bool

defs
show-rightmost-bits:
show-rightmost-bits bvec n == rev(take n (rev bvec) )

BC :
BC == [One, Zero, One, One, One, One, Zero, Zero]

salt :
salt == []

sLen:
sLen == length salt

generate-M ′:
generate-M ′ mHash salt-new == (bv-prepend 64 0 []) @ mHash @
salt-new

generate-PS :
generate-PS emBits hLen == bv-prepend ((roundup emBits 8 )∗8 − sLen −
hLen − 16 ) 0 []

generate-DB :
generate-DB PS == PS @ [Zero, Zero, Zero, Zero, Zero, Zero, Zero, One]
@ salt

maskedDB-zero:
maskedDB-zero maskedDB emBits == bv-prepend ((roundup emBits 8 ) ∗ 8 −
emBits) 0 (drop ((roundup emBits 8 )∗8 − emBits) maskedDB)

generate-H :
generate-H EM emBits hLen == take hLen (drop ((roundup emBits 8 )∗8 −
hLen − 8 ) EM )

generate-maskedDB :
generate-maskedDB EM emBits hLen == take ((roundup emBits 8 )∗8 −
hLen − 8 ) EM

generate-salt :
generate-salt DB-zero == show-rightmost-bits DB-zero sLen

MGF :
MGF Z l == if l = 0 ∨ 2ˆ32∗(length (sha1 Z )) < l then []

35



else MGF1 Z ( roundup l (length (sha1 Z )) − 1 ) l

MGF1 :
MGF1 Z n l== take l (MGF2 Z n)

emsapss-encode:
emsapss-encode M emBits == if (2ˆ64 ≤ length M ∨ 2ˆ32 ∗ 160 < emBits)
then [] else emsapss-encode-help1 (sha1 M ) emBits

emsapss-encode-help1 :
emsapss-encode-help1 mHash emBits ==
if emBits < length (mHash) + sLen + 16 then []
else emsapss-encode-help2 (generate-M ′ mHash salt) emBits

emsapss-encode-help2 :
emsapss-encode-help2 M ′ emBits ==
emsapss-encode-help3 (sha1 M ′) emBits

emsapss-encode-help3 :
emsapss-encode-help3 H emBits ==
emsapss-encode-help4 (generate-PS emBits (length H )) H emBits

emsapss-encode-help4 :
emsapss-encode-help4 PS H emBits ==
emsapss-encode-help5 (generate-DB PS) H emBits

emsapss-encode-help5 :
emsapss-encode-help5 DB H emBits ==
emsapss-encode-help6 DB (MGF H (length DB)) H emBits

emsapss-encode-help6 :
emsapss-encode-help6 DB dbMask H emBits == if dbMask = [] then []
else emsapss-encode-help7 (bvxor DB dbMask) H emBits

emsapss-encode-help7 :
emsapss-encode-help7 maskedDB H emBits ==
emsapss-encode-help8 (maskedDB-zero maskedDB emBits) H

emsapss-encode-help8 :
emsapss-encode-help8 DBzero H == DBzero @ H @ BC

emsapss-decode:
emsapss-decode M EM emBits ==
if (2ˆ64 ≤ length M ∨ 2ˆ32∗160<emBits) then False
else emsapss-decode-help1 (sha1 M ) EM emBits

emsapss-decode-help1 :
emsapss-decode-help1 mHash EM emBits ==
if emBits < length (mHash) + sLen + 16 then False
else emsapss-decode-help2 mHash EM emBits

36



emsapss-decode-help2 :
emsapss-decode-help2 mHash EM emBits ==
if show-rightmost-bits EM 8 6= BC then False
else emsapss-decode-help3 mHash EM emBits

emsapss-decode-help3 :
emsapss-decode-help3 mHash EM emBits ==
emsapss-decode-help4 mHash (generate-maskedDB EM emBits (length mHash))
(generate-H EM emBits (length mHash)) emBits

emsapss-decode-help4 :
emsapss-decode-help4 mHash maskedDB H emBits ==
if take ((roundup emBits 8 )∗8 − emBits) maskedDB 6=
bv-prepend ((roundup emBits 8 )∗8 − emBits) 0 [] then False
else emsapss-decode-help5 mHash maskedDB (MGF H ((roundup emBits 8 )∗8 −
(length mHash) − 8 )) H emBits

emsapss-decode-help5 :
emsapss-decode-help5 mHash maskedDB dbMask H emBits ==
emsapss-decode-help6 mHash (bvxor maskedDB dbMask) H emBits

emsapss-decode-help6 :
emsapss-decode-help6 mHash DB H emBits ==
emsapss-decode-help7 mHash (maskedDB-zero DB emBits) H emBits

emsapss-decode-help7 :
emsapss-decode-help7 mHash DB-zero H emBits ==
if (take ((roundup emBits 8 )∗8 − (length mHash) − sLen − 16 ) DB-zero 6=
bv-prepend ((roundup emBits 8 )∗8 − (length mHash) − sLen − 16 ) 0 []) ∨
(take 8 ( drop ((roundup emBits 8 )∗8 − (length mHash) − sLen − 16 )
DB-zero ) 6= [Zero, Zero, Zero, Zero, Zero, Zero, Zero, One])
then False else emsapss-decode-help8 mHash DB-zero H

emsapss-decode-help8 :
emsapss-decode-help8 mHash DB-zero H ==
emsapss-decode-help9 mHash (generate-salt DB-zero) H

emsapss-decode-help9 :
emsapss-decode-help9 mHash salt-new H ==
emsapss-decode-help10 (generate-M ′ mHash salt-new) H

emsapss-decode-help10 :
emsapss-decode-help10 M ′ H == emsapss-decode-help11 (sha1 M ′) H

emsapss-decode-help11 :
emsapss-decode-help11 H ′ H == if H ′ 6= H

then False
else True

37



primrec
MGF2 Z 0 = sha1 (Z@(nat-to-bv-length 0 32 ))
MGF2 Z (Suc n) = (MGF2 Z n)@(sha1 (Z@(nat-to-bv-length (Suc n) 32 )))

lemma roundup-positiv [rule-format ]:
0 < emBits −→ 0 < (roundup emBits 160 )
by (simp add : roundup, safe, simp)

lemma roundup-ge-emBits [rule-format ]:
0 < emBits −→ 0 < x −→ emBits ≤ (roundup emBits x ) ∗ x
apply (simp add : roundup mult-commute)
apply (safe)
apply (simp)
apply (simp add : add-commute [of x x∗(emBits div x ) ])
apply (insert mod-div-equality2 [of x emBits])
apply (subgoal-tac emBits mod x < x )
apply (arith)
by (simp only : mod-less-divisor)

lemma roundup-ge-0 [rule-format ]:
0 < emBits −→ 0 < x −→ 0 ≤ (roundup emBits x ) ∗ x − emBits
by (simp add : roundup)

lemma roundup-le-7 :
0 < emBits −→ roundup emBits 8 ∗ 8 − emBits ≤ 7
apply (simp add : roundup)
apply (insert div-mod-equality [of emBits 8 1 ])
by (arith)

lemma roundup-nat-ge-8-help [rule-format ]:
length (sha1 M ) + sLen + 16 ≤ emBits −→
8 ≤ ( roundup emBits 8 ) ∗ 8 − (length (sha1 M ) + 8 )
apply (insert roundup-ge-emBits [of emBits 8 ])
apply (simp add : roundup sha1len sLen)
apply (safe)
by (simp, arith)+

lemma roundup-nat-ge-8 [rule-format ]:
length (sha1 M ) + sLen + 16 ≤ emBits −→
8 ≤ ( roundup emBits 8 ) ∗ 8 − (length (sha1 M ) + 8 )
apply (insert roundup-nat-ge-8-help [of M emBits])
by (arith)

lemma roundup-le-ub: [[ 176 + sLen ≤ emBits; emBits ≤ 2ˆ32 ∗ 160 ]] =⇒
(roundup emBits 8 ) ∗ 8 − 168 ≤ 2ˆ32 ∗ 160
apply (simp add : roundup)
apply (safe)
apply (simp)
by (arith)+

38



lemma modify-roundup-ge1 :
[[8 ≤ roundup emBits 8 ∗ 8 − 168 ]] =⇒ 176 ≤ roundup emBits 8 ∗ 8
by (arith)

lemma modify-roundup-ge2 :
[[176 ≤ roundup emBits 8 ∗ 8 ]] =⇒ 21 < roundup emBits 8
by (simp)

lemma roundup-help1 :
[[0 < roundup l 160 ]] =⇒ (roundup l 160 − 1 ) + 1 = (roundup l 160 )
by (arith)

lemma roundup-help1-new :
[[0 < l ]] =⇒ (roundup l 160 − 1 ) + 1 = (roundup l 160 )
apply (drule roundup-positiv [of l ])
by (arith)

lemma roundup-help2 :
[[176 + sLen ≤ emBits]] =⇒ roundup emBits 8 ∗ 8 − emBits ≤
roundup emBits 8 ∗ 8 − 160 − sLen − 16
apply (simp add : sLen)
by (arith)

lemma bv-prepend-equal : bv-prepend (Suc n) b l = b#bv-prepend n b l
by (simp add : bv-prepend)

lemma length-bv-prepend : length (bv-prepend n b l) = n+length l
by (induct-tac n, simp add : bv-prepend)

lemma length-bv-prepend-drop:
a <= length xs −→ length (bv-prepend a b (drop a xs)) = length xs
by (simp add :length-bv-prepend)

lemma take-bv-prepend : take n (bv-prepend n b x ) = bv-prepend n b []
apply (induct-tac n)
by (simp add : bv-prepend)+

lemma take-bv-prepend2 :
take n (bv-prepend n b xs@ys@zs) = bv-prepend n b []
apply (induct-tac n)
by (simp add : bv-prepend)+

lemma bv-prepend-append : bv-prepend a b x = bv-prepend a b [] @ x
by (induct-tac a, simp add : bv-prepend , simp add : bv-prepend-equal)

lemma bv-prepend-append2 : [[x < y ]] =⇒
bv-prepend y b xs = (bv-prepend x b [])@(bv-prepend (y−x ) b [])@xs
by (simp add : bv-prepend replicate-add [THEN sym])

lemma drop-bv-prepend-help2 :

39



[[x < y ]] =⇒ drop x (bv-prepend y b []) = bv-prepend (y−x ) b []
apply (insert bv-prepend-append2 [of x y b []])
by (simp add : length-bv-prepend)

lemma drop-bv-prepend-help3 :
[[x = y ]] =⇒ drop x (bv-prepend y b []) = bv-prepend (y−x ) b []
apply (insert length-bv-prepend [of y b []])
by (simp add : bv-prepend)

lemma drop-bv-prepend-help4 :
[[x ≤ y ]] =⇒ drop x (bv-prepend y b []) = bv-prepend (y−x ) b []
apply (insert drop-bv-prepend-help2 [of x y b] drop-bv-prepend-help3

[of x y b])
by (arith)

lemma bv-prepend-add :
bv-prepend x b [] @ bv-prepend y b [] = bv-prepend (x + y) b []
apply (induct-tac x )
by (simp add : bv-prepend)+

lemma bv-prepend-drop: x ≤ y −→
bv-prepend x b (drop x (bv-prepend y b [])) = bv-prepend y b []
apply (simp add : drop-bv-prepend-help4 [of x y b])
by (simp add : bv-prepend-append [of x b (bv-prepend (y − x ) b [])]

bv-prepend-add)

lemma bv-prepend-split :
bv-prepend x b (left @ right) = bv-prepend x b left @ right
apply (induct-tac x )
by (simp add : bv-prepend)+

lemma length-generate-DB :
length (generate-DB PS) = length PS + 8 + sLen
by (simp add : generate-DB sLen)

lemma length-generate-PS : length (generate-PS emBits 160 ) =
(roundup emBits 8 )∗8 − sLen − 160 − 16
by (simp add : generate-PS length-bv-prepend)

lemma length-bvxor [rule-format ]:
length a = length b −→ length (bvxor a b) = length a
by (simp add : bvxor)

lemma length-MGF2 [rule-format ]: length (MGF2 Z m) =
(Suc m) ∗ length (sha1 (Z@(nat-to-bv-length (m) 32 )))
by (induct-tac m, simp+, simp add : sha1len)

lemma length-MGF1 [rule-format ]:
l <= (Suc n) ∗ 160 −→ length (MGF1 Z n l) = l
apply (simp add : MGF1 length-MGF2 sha1len)

40



by (arith)

lemma length-MGF :
[[0 < l ; l ≤ 2ˆ32 ∗ length (sha1 x ) ]] =⇒ length (MGF x l) = l
apply (simp add : MGF sha1len)
apply (insert roundup-help1-new [of l ])
apply (rule length-MGF1 )
apply (simp)
apply (insert roundup-ge-emBits [of l 160 ])
by (arith)

lemma solve-length-generate-DB :
[[0 < emBits; length (sha1 M ) + sLen + 16 ≤ emBits]] =⇒
length (generate-DB (generate-PS emBits (length (sha1 x )) )) =
(roundup emBits 8 ) ∗ 8 − 168
apply (insert roundup-ge-emBits [of emBits 8 ])
by (simp add : length-generate-DB length-generate-PS sha1len)

lemma length-maskedDB-zero:
[[roundup emBits 8 ∗ 8 − emBits ≤ length maskedDB ]] =⇒
length (maskedDB-zero maskedDB emBits) = length maskedDB
by (simp add : maskedDB-zero length-bv-prepend)

lemma take-equal-bv-prepend :
[[176 + sLen ≤ emBits; roundup emBits 8 ∗ 8 − emBits ≤ 7 ]] =⇒
take (roundup emBits 8 ∗ 8 − length (sha1 M ) − sLen − 16 )
(maskedDB-zero (generate-DB (generate-PS emBits 160 )) emBits) =
bv-prepend (roundup emBits 8 ∗ 8 − length (sha1 M ) − sLen − 16 ) 0 []
apply (insert roundup-help2 [of emBits] length-generate-PS [of emBits])
by (simp add : sha1len maskedDB-zero generate-DB generate-PS

bv-prepend-split bv-prepend-drop)

lemma lastbits-BC : BC = show-rightmost-bits (xs @ ys @ BC ) 8
by (simp add :show-rightmost-bits BC )

lemma equal-zero: [[176 + sLen ≤ emBits; roundup emBits 8 ∗ 8 −
emBits ≤ roundup emBits 8 ∗ 8 − (176 + sLen)]] =⇒ 0 =
roundup emBits 8 ∗ 8 − emBits − (roundup emBits 8 ∗ 8 − (176 + sLen))
by (arith)

lemma get-salt :
[[176 + sLen ≤ emBits; roundup emBits 8 ∗ 8 − emBits ≤ 7 ]] =⇒
(generate-salt (maskedDB-zero (generate-DB (generate-PS
emBits 160 )) emBits)) = salt
apply (insert roundup-help2 [of emBits] length-generate-PS [of emBits]

equal-zero [of emBits])
apply (simp add : generate-DB generate-PS maskedDB-zero)
by (simp add : bv-prepend-split bv-prepend-drop generate-salt

show-rightmost-bits sLen)

41



lemma generate-maskedDB-elim: [[roundup emBits 8 ∗ 8 − emBits ≤
length x ; (roundup emBits 8 ) ∗ 8 − (length (sha1 M )) − 8 =
length (maskedDB-zero x emBits)]] =⇒
generate-maskedDB (maskedDB-zero x emBits @ y @ z ) emBits
(length(sha1 M )) = maskedDB-zero x emBits
apply (simp add : maskedDB-zero)
apply (insert length-bv-prepend-drop

[of (roundup emBits 8 ∗ 8 − emBits) x ])
by (simp add : generate-maskedDB)

lemma generate-H-elim: [[roundup emBits 8 ∗ 8 − emBits ≤ length x ;
length (maskedDB-zero x emBits) = (roundup emBits 8 ) ∗ 8 − 168 ;
length y = 160 ]] =⇒
generate-H (maskedDB-zero x emBits @ y @ z ) emBits 160 = y
apply (simp add : maskedDB-zero)
apply (insert length-bv-prepend-drop

[of roundup emBits 8 ∗ 8 − emBits x ])
by (simp add : generate-H )

lemma length-bv-prepend-drop-special :
[[roundup emBits 8 ∗ 8 − emBits ≤ roundup emBits 8 ∗ 8 − (176 + sLen);
length (generate-PS emBits 160 ) = roundup emBits 8 ∗ 8 − (176 + sLen)]]
=⇒ length ( bv-prepend (roundup emBits 8 ∗ 8 − emBits) 0 (drop
(roundup emBits 8 ∗ 8 − emBits) (generate-PS emBits 160 ))) =
length (generate-PS emBits 160 )
by (simp add : length-bv-prepend-drop)

lemma x01-elim:
[[176 + sLen ≤ emBits; roundup emBits 8 ∗ 8 − emBits ≤ 7 ]] =⇒
take 8 (drop (roundup emBits 8 ∗ 8 − (length (sha1 M ) + sLen + 16 ))
(maskedDB-zero (generate-DB (generate-PS emBits 160 )) emBits)) =
[0, 0, 0, 0, 0, 0, 0, 1]
apply (insert roundup-help2 [of emBits] length-generate-PS [of emBits]

equal-zero [of emBits])
by (simp add : sha1len maskedDB-zero generate-DB generate-PS

bv-prepend-split bv-prepend-drop)

lemma drop-bv-mapzip:
assumes n <= length x length x = length y
shows drop n (bv-mapzip f x y) = bv-mapzip f (drop n x ) (drop n y)

proof −
have !x y . n <= length x −−> length x = length y −−> drop n

(bv-mapzip f x y) = bv-mapzip f (drop n x ) (drop n y)
apply (induct n)
apply simp
apply safe
apply (case-tac x ,case-tac[!] y ,auto)
done

with prems
show ?thesis

42



by simp
qed

lemma [simp]:
assumes length a = length b
shows bvxor (bvxor a b) b = a

proof −
have !b. length a = length b −→ bvxor (bvxor a b) b = a
apply (induct a)
apply (auto simp add : bvxor)
apply (case-tac b)
apply (simp)+
apply (case-tac a1 )
apply (case-tac a)
apply (safe)
apply (simp)+
apply (case-tac a)
apply (simp)+
done

with prems
show ?thesis
by simp

qed

lemma bvxorxor-elim-help [rule-format ]:
assumes x ≤ length a length a = length b
shows bv-prepend x 0 (drop x (bvxor (bv-prepend x 0
(drop x (bvxor a b))) b)) = bv-prepend x 0 (drop x a)

proof −
have (drop x (bvxor (bv-prepend x 0 (drop x (bvxor a b))) b))

= (drop x a)
apply (unfold bvxor bv-prepend)
apply (cut-tac prems)
apply (insert length-replicate [of x 0 ])
apply (insert length-drop [of x a])
apply (insert length-drop [of x b])
apply (insert length-bvxor [of drop x a drop x b])
apply (subgoal-tac length (replicate x 0 @

drop x (bv-mapzip op ⊕b a b)) = length b)
apply (subgoal-tac b = (take x b)@(drop x b))
apply (insert drop-bv-mapzip [of x (replicate x 0 @

drop x (bv-mapzip op ⊕b a b)) b op ⊕b])
apply (simp)
apply (insert drop-bv-mapzip [of x a b op ⊕b])
apply (simp)
apply (fold bvxor)
apply (simp-all)
done

with prems
show ?thesis

43



by (simp)
qed

lemma bvxorxor-elim:
[[roundup emBits 8 ∗ 8 − emBits ≤ length a; length a = length b]] =⇒
(maskedDB-zero (bvxor (maskedDB-zero (bvxor a b) emBits)b) emBits) =
bv-prepend (roundup emBits 8 ∗ 8 − emBits) 0 (drop
(roundup emBits 8 ∗ 8 − emBits) a)
by (simp add : maskedDB-zero bvxorxor-elim-help)

lemma verify : [[(emsapss-encode M emBits) 6= [];
EM=(emsapss-encode M emBits)]] =⇒ emsapss-decode M EM emBits = True
apply (simp add : emsapss-decode emsapss-encode)
apply (safe, simp+)
apply (simp add : emsapss-decode-help1 emsapss-encode-help1 )
apply (safe, simp+)
apply (simp add : emsapss-decode-help2 emsapss-encode-help2 )
apply (safe)
apply (simp add : emsapss-encode-help3 emsapss-encode-help4

emsapss-encode-help5 emsapss-encode-help6 )
apply (safe)
apply (simp add : emsapss-encode-help7 emsapss-encode-help8

lastbits-BC [THEN sym])+
apply (simp add : emsapss-decode-help3 emsapss-encode-help3

emsapss-decode-help4 emsapss-encode-help4 )
apply (safe)
apply (insert roundup-le-7 [of emBits] roundup-ge-0 [of emBits 8 ]

roundup-nat-ge-8 [of M emBits])
apply (simp add : generate-maskedDB min-def emsapss-encode-help5

emsapss-encode-help6 )
apply (safe)
apply (simp)
apply (simp add : emsapss-encode-help7 )
apply (simp only : emsapss-encode-help8 )
apply (simp only : maskedDB-zero)
apply (simp only : take-bv-prepend2 )
apply (simp)
apply (simp add : emsapss-encode-help5 emsapss-encode-help6 )
apply (safe)
apply (simp)+
apply (insert solve-length-generate-DB [of emBits M

generate-M ′ (sha1 M ) salt ] roundup-le-ub [of emBits])
apply (insert length-MGF [of (roundup emBits 8 ) ∗ 8 − 168

(sha1 (generate-M ′ (sha1 M ) salt))])
apply (insert modify-roundup-ge1 [of emBits] modify-roundup-ge2

[of emBits])
apply (simp add : sha1len emsapss-encode-help7 emsapss-encode-help8 )
apply (insert length-bvxor [of (generate-DB (generate-PS emBits 160 ))

(MGF (sha1 (generate-M ′ (sha1 M ) salt))
((roundup emBits 8 ) ∗ 8 − 168 ))])

44



apply (insert generate-maskedDB-elim [of emBits
(bvxor (generate-DB (generate-PS emBits 160 )) (MGF (sha1
(generate-M ′ (sha1 M ) salt)) ((roundup emBits 8 ) ∗ 8 − 168 )))
M sha1 (generate-M ′ (sha1 M ) salt) BC ])

apply (insert length-maskedDB-zero [of emBits
(bvxor (generate-DB (generate-PS emBits 160 ))(MGF (sha1
(generate-M ′ (sha1 M ) salt)) ((roundup emBits 8 ) ∗ 8 − 168 )))])

apply (insert generate-H-elim [of emBits (bvxor (generate-DB
(generate-PS emBits 160 ))(MGF (sha1 (generate-M ′ (sha1 M ) salt))
(roundup emBits 8 ∗ 8 − 168 )))
sha1 (generate-M ′ (sha1 M ) salt) BC ])

apply (simp add : sha1len emsapss-decode-help5 )
apply (simp only : emsapss-decode-help6 emsapss-decode-help7 )
apply (insert bvxorxor-elim [of emBits

(generate-DB (generate-PS emBits 160 ))
(MGF (sha1 (generate-M ′ (sha1 M ) salt))
((roundup emBits 8 ) ∗ 8 − 168 ))])

apply (fold maskedDB-zero)
apply (insert take-equal-bv-prepend [of emBits M ]

x01-elim [of emBits M ] get-salt [of emBits])
by (simp add : emsapss-decode-help8 emsapss-decode-help9

emsapss-decode-help10 emsapss-decode-help11 )

end

I RSA-PSS encoding and decoding operation

theory RSAPSS = EMSAPSS + Cryptinverts:

consts
rsapss-sign:: bv ⇒ nat ⇒ nat ⇒ bv
rsapss-sign-help1 :: nat ⇒ nat ⇒ nat ⇒ bv
rsapss-verify :: bv ⇒ bv ⇒ nat ⇒ nat ⇒ bool

defs
rsapss-sign:
rsapss-sign m e n ==
if (emsapss-encode m (length (nat-to-bv n) − 1 )) = [] then []
else (rsapss-sign-help1 (bv-to-nat (emsapss-encode m
(length (nat-to-bv n) − 1 )) ) e n)

rsapss-sign-help1 :
rsapss-sign-help1 em-nat e n == nat-to-bv-length (rsa-crypt(em-nat , e,
n)) (length (nat-to-bv n))

rsapss-verify :
rsapss-verify m s d n == if (length s) 6=
length(nat-to-bv n) then False
else let em = nat-to-bv-length (rsa-crypt ((bv-to-nat s), d , n))

45



((roundup (length(nat-to-bv n) − 1 ) 8 ) ∗ 8 ) in
emsapss-decode m em (length(nat-to-bv n) − 1 )

lemma length-emsapss-encode [rule-format ]:
emsapss-encode m x 6= [] −→
length (emsapss-encode m x ) = roundup x 8 ∗ 8
apply (simp add : emsapss-encode)
apply (simp add : emsapss-encode-help1 )
apply (simp add : emsapss-encode-help2 )
apply (simp add : emsapss-encode-help3 )
apply (simp add : emsapss-encode-help4 )
apply (simp add : emsapss-encode-help5 )
apply (simp add : emsapss-encode-help6 )
apply (simp add : emsapss-encode-help7 )
apply (simp add : emsapss-encode-help8 )
apply (simp add : maskedDB-zero)
apply (simp add : length-generate-DB)
apply (simp add : sha1len)
apply (simp add : bvxor)
apply (simp add : length-generate-PS)
apply (simp add : length-bv-prepend)
apply (simp add : MGF )
apply (simp add : MGF1 )
apply (simp add : length-MGF2 )
apply (simp add : sha1len)
apply (simp add : length-generate-DB)
apply (simp add : length-generate-PS)
apply (simp add : BC )
apply (simp add : max-min)
apply (insert roundup-ge-emBits [of x 8 ])
apply (safe)

by (simp)+

lemma bv-to-nat-emsapss-encode-le: emsapss-encode m x 6= [] =⇒
bv-to-nat (emsapss-encode m x ) < 2ˆ(roundup x 8 ∗ 8 )
apply (insert length-emsapss-encode [of m x ])
apply (insert bv-to-nat-upper-range [of emsapss-encode m x ])

by (simp)

lemma length-helper1 : shows length (bvxor (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))))@
sha1 (generate-M ′ (sha1 m) salt) @ BC )
= length (bvxor (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))

46



(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))))) + 168

proof −
have a: length BC = 8 by (simp add : BC )
have b: length (sha1 (generate-M ′ (sha1 m) salt)) = 160
by (simp add : sha1len)

have c:
V

a b c. length (a@b@c) = length a + length b + length c
by simp

from a and b show ?thesis using c by simp
qed

lemma MGFLen-helper : MGF z l 6= [] =⇒ l ≤ 2ˆ32∗(length (sha1 z ))
proof (case-tac 2ˆ32∗length (sha1 z ) < l)
assume x : MGF z l 6= []
assume a: 2 ˆ 32 ∗ length (sha1 z ) < l
hence MGF z l = []
proof (case-tac l=0 )
assume l=0
thus MGF z l = [] by (simp add : MGF )

next
assume l∼=0
hence (l = 0 ∨ 2ˆ32∗length(sha1 z ) < l) = True using a by fast
thus MGF z l = [] apply (simp only : MGF ) by simp

qed
thus ?thesis using x by simp

next
assume ¬ 2 ˆ 32 ∗ length (sha1 z ) < l
thus ?thesis by simp

qed

lemma length-helper2 :
assumes p: p ∈ prime and q : q ∈ prime and
mgf : (MGF (sha1 (generate-M ′ (sha1 m) salt)) (length
(generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))) 6= [] and
len: length (sha1 M ) + sLen + 16 ≤
(length (nat-to-bv (p ∗ q))) − Suc 0
shows length ((bvxor (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))) =
(roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ) ∗ 8 − 168

proof −
have a: length (MGF (sha1 (generate-M ′ (sha1 m) salt))

(length (generate-DB (generate-PS (length

47



(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))) = (length
(generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))

proof −
have 0 < (length (generate-DB

(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))
by (simp add : generate-DB)

moreover have (length (generate-DB (generate-PS
(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))) ≤
2ˆ32 ∗ length (sha1 (sha1 (generate-M ′ (sha1 m) salt)))
using mgf and MGFLen-helper by simp

ultimately show ?thesis using length-MGF by simp
qed
have b: length (generate-DB (generate-PS

(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))) =
((roundup ((length (nat-to-bv (p ∗ q))) − Suc 0 ) 8 ) ∗ 8 − 168 )

proof −
have 0 <= (length (nat-to-bv (p ∗ q))) − Suc 0
proof −
from p have p2 : 1<p by (simp add : prime-def )
moreover from q have 1<q by (simp add : prime-def )
ultimately have p<p∗q by simp
hence 1<p∗q using p2 by arith
thus ?thesis using len-nat-to-bv-pos by simp

qed
thus ?thesis using solve-length-generate-DB using len by simp

qed
have c: length (bvxor

(generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))))) =
roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8 − 168
using a and b and length-bvxor by simp

then show ?thesis by simp
qed

lemma emBits-roundup-cancel : emBits mod 8 6= 0 =⇒
(roundup emBits 8 )∗8 − emBits = 8 − (emBits mod 8 )
apply (auto simp add : roundup)
by (arith)

lemma emBits-roundup-cancel2 : emBits mod 8 6= 0 =⇒
(roundup emBits 8 ) ∗ 8 − (8 − (emBits mod 8 )) = emBits

48



apply (auto simp add : roundup)
by (arith)

lemma length-bound : [[emBits mod 8 6= 0 ; 8 ≤ (length maskedDB)]] =⇒
length (remzero ((maskedDB-zero maskedDB emBits)@a@b)) ≤
length (maskedDB@a@b) − (8 − (emBits mod 8 ))

proof −
assume a: emBits mod 8 6= 0
assume len: 8 ≤ (length maskedDB)
have b:

V
a. length (remzero a) ≤ length a

proof −
fix a
show length (remzero a) ≤ length a
proof (induct a)
show (length (remzero [])) ≤ length [] by (simp)

next
case (Cons hd tl)
show (length (remzero (hd#tl))) ≤ length (hd#tl)
proof (cases hd)
assume hd = 0
hence remzero (hd#tl) = remzero tl by simp
thus ?thesis using Cons by simp

next
assume hd = 1
hence remzero (hd#tl) = hd#tl by simp
thus ?thesis by simp

qed
qed

qed
from len
show length (remzero (maskedDB-zero maskedDB emBits @ a @ b)) ≤

length (maskedDB @ a @ b) − (8 − emBits mod 8 )
proof −
have remzero(bv-prepend ((roundup emBits 8 ) ∗ 8 − emBits)
0 (drop ((roundup emBits 8 )∗8 − emBits) maskedDB)@a@b) =
remzero ((drop ((roundup emBits 8 )∗8 −emBits) maskedDB)@a@b)
using remzero-replicate by (simp add : bv-prepend)

moreover from emBits-roundup-cancel
have roundup emBits 8 ∗ 8 − emBits = 8 − emBits mod 8
using a by simp

moreover have length ((drop (8−emBits mod 8 ) maskedDB)@a@b) =
length (maskedDB@a@b) − (8−emBits mod 8 )

proof −
show ?thesis using length-drop[of (8−emBits mod 8 ) maskedDB ]
proof (simp)
have 0 <= emBits mod 8 by simp
hence 8−(emBits mod 8 ) <= 8 by simp
thus length maskedDB − (8 − emBits mod 8 ) +

(length a + length b) = length maskedDB +
(length a + length b) − (8 − emBits mod 8 ) using len by arith

49



qed
qed
ultimately show ?thesis using b

[of (drop ((roundup emBits 8 )∗8 − emBits) maskedDB)@a@b]
by (simp add : maskedDB-zero)

qed
qed

lemma length-bound2 : 8 ≤ length ((bvxor (generate-DB (generate-PS
(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))))))

proof −
have 8 ≤ length (generate-DB

(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
by (simp add : generate-DB)

thus ?thesis using length-bvxor-bound by simp
qed

lemma length-helper :
assumes p: p ∈ prime and q : q ∈ prime and
x : (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 6= 0 and
mgf : (MGF (sha1 (generate-M ′ (sha1 m) salt)) (length
(generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))) 6= [] and
len: length (sha1 M ) + sLen + 16 ≤
(length (nat-to-bv (p ∗ q))) − Suc 0
shows length (remzero (maskedDB-zero (bvxor (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(length (nat-to-bv (p ∗ q)) − Suc 0 ) @
sha1 (generate-M ′ (sha1 m) salt) @ BC ))
< length (nat-to-bv (p ∗ q))

proof −
from mgf have round : 168 ≤

roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8
proof (simp only : sha1len sLen)
from len have 160 + sLen +16 ≤ length (nat-to-bv (p ∗ q)) − Suc 0
by (simp add : sha1len)

hence len1 : 176 <= length (nat-to-bv (p ∗ q)) − Suc 0 by simp
have length (nat-to-bv (p∗q)) − Suc 0 ≤

(roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ) ∗ 8
apply (simp only : roundup)

proof (case-tac (length (nat-to-bv (p∗q)) − Suc 0 ) mod 8 = 0 )

50



assume len2 : (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 = 0
hence (if (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 = 0 then

(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 else
(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 + 1 ) ∗ 8 =
(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 ∗ 8 by simp

moreover have (length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 ∗ 8 =
(length (nat-to-bv (p ∗ q)) − Suc 0 ) using len2
by (auto simp add : div-mod-equality
[of length (nat-to-bv (p ∗ q)) − Suc 0 8 0 ])

ultimately show length (nat-to-bv (p ∗ q)) − Suc 0 ≤
(if (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 = 0 then
(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 else
(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 + 1 ) ∗ 8 by simp

next
assume len2 : (length (nat-to-bv (p∗q)) − Suc 0 ) mod 8 6= 0
hence (if (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 = 0 then

(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 else
(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 + 1 ) ∗ 8 =
((length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 + 1 ) ∗ 8 by simp

moreover have length (nat-to-bv (p∗q)) − Suc 0 ≤
((length (nat-to-bv (p∗q)) − Suc 0 ) div 8 + 1 )∗8

proof (auto)
have length (nat-to-bv (p ∗ q)) − Suc 0 =

(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 ∗ 8 +
(length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8
by (simp add : div-mod-equality
[of length (nat-to-bv (p ∗ q)) − Suc 0 8 0 ])

moreover have
(length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 < 8 by simp

ultimately show length (nat-to-bv (p ∗ q)) − Suc 0 ≤
8 + (length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 ∗ 8 by arith

qed
ultimately show length (nat-to-bv (p ∗ q)) − Suc 0 ≤

(if (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 = 0 then
(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 else
(length (nat-to-bv (p ∗ q)) − Suc 0 ) div 8 + 1 ) ∗ 8 by simp

qed
thus 168 ≤ roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8
using len1 by simp

qed
from x have a: length

(remzero (maskedDB-zero (bvxor (generate-DB (generate-PS
(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(length (nat-to-bv (p ∗ q)) − Suc 0 ) @
sha1 (generate-M ′ (sha1 m) salt) @ BC )) <= length ((bvxor

51



(generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS
(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))))) @
sha1 (generate-M ′ (sha1 m) salt) @ BC ) − (8 −
(length (nat-to-bv (p∗q)) − Suc 0 ) mod 8 )
using length-bound and length-bound2 by simp

have b: length (bvxor (generate-DB (generate-PS
(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))) @
sha1 (generate-M ′ (sha1 m) salt) @ BC ) =
length (bvxor (generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) −
Suc 0 ) (length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt)) (length (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))))) + 168
using length-helper1 by simp

have c: length (bvxor (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 ) (length (sha1 (generate-M ′

(sha1 m) salt))))) (MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 ) (length (sha1 (generate-M ′

(sha1 m) salt)))))))) =
(roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ) ∗ 8 − 168
using p and q and length-helper2 and mgf and len by simp

from a and b and c have length (remzero (maskedDB-zero (bvxor
(generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(length (nat-to-bv (p ∗ q)) − Suc 0 ) @
sha1 (generate-M ′ (sha1 m) salt) @ BC )) ≤
roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8 − 168 + 168 −
(8 − (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 ) by simp

hence length (remzero (maskedDB-zero (bvxor (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(length (nat-to-bv (p ∗ q)) − Suc 0 ) @

52



sha1 (generate-M ′ (sha1 m) salt) @ BC )) ≤
roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8 − (8 −
(length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 ) using round by simp

moreover have roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8 −
(8 − (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 ) =
(length (nat-to-bv (p∗q))−Suc 0 )
using x and emBits-roundup-cancel2 by simp

moreover have 0 < length (nat-to-bv (p∗q))
proof −
from p have s: 1 < p by (simp add : prime-def )
moreover from q have 1 < q by (simp add : prime-def )
ultimately have p < p∗q by simp
hence 1 < p∗q using s by arith
thus ?thesis using len-nat-to-bv-pos by simp

qed
ultimately show ?thesis by arith

qed

lemma length-emsapss-smaller-pq : [[p ∈ prime; q ∈ prime;
emsapss-encode m (length (nat-to-bv (p ∗ q)) − Suc 0 ) 6= [];
(length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 6= 0 ]] =⇒
length (remzero (emsapss-encode m (length (nat-to-bv (p ∗ q)) −
Suc 0 ))) < length (nat-to-bv (p∗q))

proof −
assume a: emsapss-encode m (length (nat-to-bv (p ∗ q)) − Suc 0 ) 6=

[] and p: p ∈ prime and q : q ∈ prime and
x : (length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 6= 0

have b: emsapss-encode m (length (nat-to-bv (p ∗ q)) − Suc 0 ) =
emsapss-encode-help1 (sha1 m)(length (nat-to-bv (p ∗ q)) − Suc 0 )

proof (simp only : emsapss-encode)
from a show (if ((2ˆ64 ≤ length m) ∨

(2ˆ32 ∗ 160 < (length (nat-to-bv (p∗q)) − Suc 0 ))) then [] else
(emsapss-encode-help1 (sha1 m) (length (nat-to-bv (p∗q)) −
Suc 0 ))) =
(emsapss-encode-help1 (sha1 m) (length (nat-to-bv (p∗q)) − Suc 0 ))
by (auto simp add : emsapss-encode)

qed
have c: length (remzero (emsapss-encode-help1 (sha1 m)

(length (nat-to-bv (p ∗ q)) − Suc 0 ))) < length (nat-to-bv (p∗q))
proof (simp only : emsapss-encode-help1 )

from a and b have d : (if ((length (nat-to-bv (p ∗ q)) − Suc 0 ) <
(length (sha1 m) + sLen + 16 )) then [] else
(emsapss-encode-help2 (generate-M ′ (sha1 m) salt)
(length (nat-to-bv (p ∗ q)) − Suc 0 ))) =
(emsapss-encode-help2 ((generate-M ′ (sha1 m)) salt)
(length (nat-to-bv (p∗q)) − Suc 0 ))
by (auto simp add : emsapss-encode emsapss-encode-help1 )

from d have len: length (sha1 m) + sLen + 16 ≤
(length (nat-to-bv (p∗q))) − Suc 0

proof (case-tac length (nat-to-bv (p ∗ q)) − Suc 0 <

53



length (sha1 m) + sLen + 16 )
assume length (nat-to-bv (p ∗ q)) − Suc 0 <

length (sha1 m) + sLen + 16
hence len1 : (if length (nat-to-bv (p ∗ q)) − Suc 0 <

length (sha1 m) + sLen + 16 then [] else
emsapss-encode-help2 (generate-M ′ (sha1 m) salt)
(length (nat-to-bv (p ∗ q)) − Suc 0 )) = [] by simp

assume len2 : (if length (nat-to-bv (p ∗ q)) − Suc 0 <
length (sha1 m) + sLen + 16 then [] else
emsapss-encode-help2 (generate-M ′ (sha1 m) salt)
(length (nat-to-bv (p ∗ q)) − Suc 0 )) =
emsapss-encode-help2 (generate-M ′ (sha1 m) salt)
(length (nat-to-bv (p ∗ q)) − Suc 0 )

from len1 and len2 and a and b
show length (sha1 m) + sLen + 16 ≤

length (nat-to-bv (p ∗ q)) − Suc 0
by (auto simp add : emsapss-encode emsapss-encode-help1 )

next
assume ¬ length (nat-to-bv (p ∗ q)) − Suc 0 <

length (sha1 m) + sLen + 16
thus length (sha1 m) + sLen + 16 ≤

length (nat-to-bv (p ∗ q)) − Suc 0 by simp
qed
have e: length (remzero (emsapss-encode-help2 (generate-M ′

(sha1 m) salt) (length (nat-to-bv (p ∗ q)) − Suc 0 ))) <
length (nat-to-bv (p ∗ q))

proof (simp only : emsapss-encode-help2 )
show length (remzero

(emsapss-encode-help3 (sha1 (generate-M ′ (sha1 m) salt))
(length (nat-to-bv (p ∗ q)) − Suc 0 )))
< length (nat-to-bv (p ∗ q))

proof (simp add : emsapss-encode-help3 emsapss-encode-help4
emsapss-encode-help5 )

show length (remzero (emsapss-encode-help6 (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt)) (length
(generate-DB (generate-PS (length (nat-to-bv (p ∗ q)) −
Suc 0 ) (length (sha1 (generate-M ′ (sha1 m) salt)))))))
(sha1 (generate-M ′ (sha1 m) salt))
(length (nat-to-bv (p ∗ q)) − Suc 0 ))) <
length (nat-to-bv (p ∗ q))
proof (simp only : emsapss-encode-help6 )
from a and b and d
have mgf : MGF (sha1 (generate-M ′ (sha1 m) salt))

(length (generate-DB (generate-PS
(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))) 6= []
by (auto simp add : emsapss-encode emsapss-encode-help1

emsapss-encode-help2 emsapss-encode-help3

54



emsapss-encode-help4 emsapss-encode-help5
emsapss-encode-help6 )

from a and b and d
have f : (if MGF (sha1 (generate-M ′ (sha1 m) salt))

(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))) = []
then [] else (emsapss-encode-help7
(bvxor (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(sha1 (generate-M ′ (sha1 m) salt))
(length (nat-to-bv (p ∗ q)) − Suc 0 ))) =
(emsapss-encode-help7 (bvxor (generate-DB (generate-PS
(length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(sha1 (generate-M ′ (sha1 m) salt))
(length (nat-to-bv (p ∗ q)) − Suc 0 ))
by (auto simp add : emsapss-encode emsapss-encode-help1

emsapss-encode-help2 emsapss-encode-help3
emsapss-encode-help4 emsapss-encode-help5
emsapss-encode-help6 )

have length (remzero (emsapss-encode-help7
(bvxor (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 ) (length (sha1
(generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(sha1 (generate-M ′ (sha1 m) salt))
(length (nat-to-bv (p ∗ q)) − Suc 0 ))) <
length (nat-to-bv (p ∗ q))

proof (simp add : emsapss-encode-help7 emsapss-encode-help8 )
from p and q and x show length

(remzero (maskedDB-zero (bvxor (generate-DB
(generate-PS (length (nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))

55



(length (nat-to-bv (p ∗ q)) − Suc 0 ) @
sha1 (generate-M ′ (sha1 m) salt) @ BC )) <
length (nat-to-bv (p ∗ q))
using length-helper and len and mgf by simp

qed
then show length

(remzero (if MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))) = []
then []
else emsapss-encode-help7
(bvxor (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt)))))
(MGF (sha1 (generate-M ′ (sha1 m) salt))
(length (generate-DB (generate-PS (length
(nat-to-bv (p ∗ q)) − Suc 0 )
(length (sha1 (generate-M ′ (sha1 m) salt))))))))
(sha1 (generate-M ′ (sha1 m) salt))
(length (nat-to-bv (p ∗ q)) − Suc 0 ))) <
length (nat-to-bv (p ∗ q)) using f by simp

qed
qed

qed
from d and e show length (remzero (

if length (nat-to-bv (p ∗ q)) − Suc 0 <
length (sha1 m) + sLen + 16 then []
else emsapss-encode-help2 (generate-M ′ (sha1 m) salt)
(length (nat-to-bv (p ∗ q)) − Suc 0 ))) <
length (nat-to-bv (p ∗ q)) by simp

qed
from b and c show ?thesis by simp

qed

lemma bv-to-nat-emsapss-smaller-pq :
assumes a: p ∈ prime and b: q ∈ prime and pneq : p ∼= q and
c: emsapss-encode m (length (nat-to-bv (p ∗ q)) − Suc 0 ) 6= []
shows bv-to-nat (emsapss-encode m (length
(nat-to-bv (p ∗ q)) − Suc 0 )) < p∗q

proof −
from a and b and c show ?thesis
proof (case-tac 8 dvd ((length (nat-to-bv (p ∗ q))) − Suc 0 ))
assume d : 8 dvd ((length (nat-to-bv (p ∗ q))) − Suc 0 )
hence 2 ˆ (roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8 ) <

p∗q
proof −
from d have e: roundup (length (nat-to-bv (p ∗ q)) −

Suc 0 ) 8 ∗ 8 = length (nat-to-bv (p ∗ q)) − Suc 0
using rnddvd by simp

56



have p∗q = bv-to-nat (nat-to-bv (p∗q)) by simp
hence 2 ˆ (length (nat-to-bv (p ∗ q)) − Suc 0 ) < p∗q
proof −
have 0<p∗q
proof −
have 0<p using a by (simp add : prime-def , arith)
moreover have 0<q using b by (simp add : prime-def , arith)
ultimately show ?thesis by simp

qed
moreover have 2ˆ(length (nat-to-bv (p∗q)) − Suc 0 ) ∼= p∗q
proof (case-tac 2ˆ(length (nat-to-bv (p∗q)) − Suc 0 ) = p∗q)
assume 2ˆ(length (nat-to-bv (p∗q)) − Suc 0 ) = p∗q
then have p=q using a and b and prime-equal by simp
thus ?thesis using pneq by simp

next
assume 2ˆ(length (nat-to-bv (p∗q)) − Suc 0 ) ∼= p∗q
thus ?thesis by simp

qed
ultimately show ?thesis using len-lower-bound [of p∗q ]
by (simp)

qed
thus ?thesis using e by simp

qed
moreover from c have bv-to-nat (emsapss-encode m (length

(nat-to-bv (p ∗ q)) − Suc 0 )) < 2 ˆ (roundup (length
(nat-to-bv (p ∗ q)) − Suc 0 )8 ∗ 8 )
using bv-to-nat-emsapss-encode-le
[of m (length (nat-to-bv (p ∗ q)) − Suc 0 )] by auto

ultimately show ?thesis by simp
next
assume y : ∼(8 dvd (length (nat-to-bv (p∗q)) − Suc 0 ))
thus ?thesis
proof −
from y have x : ∼((length (nat-to-bv (p ∗ q)) − Suc 0 ) mod 8 = 0 )
by (simp add : dvd-eq-mod-eq-0 )

from remzeroeq have d : bv-to-nat (emsapss-encode m (length
(nat-to-bv (p ∗ q)) − Suc 0 )) = bv-to-nat (remzero
(emsapss-encode m (length (nat-to-bv (p ∗ q)) − Suc 0 )))
by simp

from a and b and c and x and
length-emsapss-smaller-pq [of p q m]

have bv-to-nat (remzero (emsapss-encode m (length
(nat-to-bv (p ∗ q)) − Suc 0 ))) < bv-to-nat (nat-to-bv (p∗q))
using length-lower [of remzero (emsapss-encode m (length

(nat-to-bv (p ∗ q)) − Suc 0 )) nat-to-bv (p ∗ q)] and
prime-hd-non-zero[of p q ] by (auto)

thus bv-to-nat (emsapss-encode m (length
(nat-to-bv (p ∗ q)) − Suc 0 )) < p ∗ q using d and bv-nat-bv
by simp

qed

57



qed
qed

lemma rsa-pss-verify : [[p ∈ prime; q ∈ prime; p 6= q ; n = p∗q ;
e∗d mod ((pred p)∗(pred q)) = 1 ; rsapss-sign m e n 6= [];
s = rsapss-sign m e n]] =⇒ rsapss-verify m s d n = True
apply (simp only : rsapss-sign rsapss-verify)
apply (simp only : rsapss-sign-help1 )
apply (auto)
apply (simp add : length-nat-to-bv-length)
apply (simp add : Let-def )
apply (simp add : bv-to-nat-nat-to-bv-length)
apply (insert length-emsapss-encode

[of m (length (nat-to-bv (p ∗ q)) − Suc 0 )])
apply (insert bv-to-nat-emsapss-smaller-pq [of p q m])
apply (simp add : cryptinverts)
apply (insert length-emsapss-encode

[of m (length (nat-to-bv (p ∗ q)) − Suc 0 )])
apply (insert nat-to-bv-length-bv-to-nat

[of emsapss-encode m (length (nat-to-bv (p ∗ q)) − Suc 0 )
roundup (length (nat-to-bv (p ∗ q)) − Suc 0 ) 8 ∗ 8 ])

by (simp add : verify)

end

58


