
Certificate-Based Encryption Without Random Oracles

Paz Morillo and Carla Ràfols
Universitat Politècnica de Catalunya
C/Jordi Girona, 1-3 08034 Barcelona

{paz,crafols}@ma4.upc.edu

Abstract

We present a certificate-based encryption scheme which is fully secure in the standard model. Our
scheme is based on the identity-based encryption scheme of Waters [16]. Although some generic construc-
tions from IBE to CBE has been previously proposed, they use the Random Oracle heuristic or provide
less practical schemes than ours. Finally, we point out that one of the existing generic constructions
going from IBE to CBE is flawed.

Keywords: identity-based encryption, certificate-based encryption, selective-ID security, full IBE se-
curity.

1 Introduction

In traditional public key cryptography (PKC) the authenticity of the public keys must be certified by a
trusted third party, named as the Certification Authority (CA). The infrastructure required to support
traditional PKC is the main difficulty in its deployment. Many of the problems of public key infrastructure
(PKI) come from the management of certificates, which include storage, revocation and distribution.
In 1984, Shamir proposed the concept of Identity-Based Encryption (IBE), which sought to reduce the
requirements on the infrastructure by using a well-known aspect of the client’s identity as its public key.
With this approach, certification becomes implicit, that is, the sender of a message does not need to check
whether the client is certified or not. Instead, prior to decryption, the receiver must identify himself to a
trusted authority, who will send him his private key. The first practical provably secure IBE scheme was
proposed by Boneh and Franklin in 2001. It made use of bilinear maps on elliptic curves and it was proven
secure in the random oracle model.

A different approach to the problem is the concept of Certificate-Based Encryption, proposed by Gentry
in 2003 ([13]). In this model, certificates are part of the secret key, so certification is also implicit. Further,
it has two important advantages over IBE: first, there is no key escrow, because certificates are only a part
of the secret key, while the other is owned by the user alone (thus eliminating also the the need for a secure
channel between the users and the trusted authority). Secondly, the approach to user revocation is neat and
simple: certificates have an expiry date at the end of which a new one must be obtained from the CA, which
only means that certification is implicit for every period.

The original scheme of Gentry relied heavily on the original IBE scheme of Boneh and Franklin and
then on the Fujisaki Okamoto transform to obtain full security in the random oracle model. Recently [16]
presented a new identity-based scheme which is secure against chosen-plaintext attacks in the standard
model, improving significantly on previous results [8]. It is natural to try building a CBE scheme without
random oracles.
Previous results ([11, 17]) for constructing a certificate-based encryption scheme in a generic way from an
identity-based scheme exist, but are not comparable in efficiency to our scheme.

1.1 Our results

We present a certificate-based encryption scheme which is fully secure in the standard model and which
is much more efficient than any of the previous schemes in the standard model (coming from the generic
constructions of [11],[17]). Further we point out a security flaw in the proof of [17].
The proof is divided in three steps. The first two show how to construct a new encryption scheme called
ExtendedCBE from the scheme of IBE scheme of Waters. This model satisfies the minimal properties which
are necessary to adapt the proof of [9] to obtain a fully secure CBE scheme. Further we point out that

1

whenever a scheme satisfying these minimal properties exist, a fully secure CBE also exists, that is, the last
step of our proof can be generalized.

1.2 Organization

In section 2, we focus on the concept of certificate-based encryption and we give an overview of the existing
generic constructions. In section 3, we sketch the security proof of our scheme and give a brief account of
the results that we are going to use. In section 3 we give the necessary formal definitions. In section 4, 5
and 6 we build our scheme and conclude that the last step of the proof can be generalized.

2 Certificate-based Encryption

In this section we give the formal definitions for CBE, as well as an overview of the generic constructions of
[17, 11].

As we noted in the introduction, the interest of certificate-based encryption compared to its predecessor,
identity-based encryption, is that it overcomes two of its principal drawbacks, the inherence of the key
escrow and the impossibility of revoking the users. Accordingly, the security model considers two types of
adversaries, an uncertified client and a dishonest certifier.

The attack of an uncertified client models a client who is not certified for a given period but tries to
obtain some information about the encrypted messages for that period. The client may have been certified
before that period or may be certified after that period, so in such an attack, the adversary is allowed to
make certification queries and choose the challenge period adaptively. Further, the client is also allowed to
choose his pair public key -secret key adaptively and to make decryption queries for any period, including
the challenge one.
The certifiers attack models a dishonest CA who wants to decrypt messages intended for a specific client
Bob. The CA is allowed to make decryption queries for Bob’s messages for any period of its choice.
The attack of the certifier was weakened by Al-Riyami and Paterson, since the original definition of Gen-
try was inconsistent with the concrete scheme he presented and it also made some assumptions about the
underlying IBE scheme which were unnecessarily restrictive. In the original definition, for instance, the
certifier could choose a part of its parameters adaptively, but not all IBE schemes allow that. As Al-Riyami
and Paterson argue, it is hard to think of a scenario where this security requirement is necessary and the
weakened version suffices to model any realistic attack.

2.1 Definitions

A certificate-based encryption scheme is a tuple of six algorithms (Setup, SetKeyPair, Certify, Consolidate,
Enc,Dec), where:

-SetupCBE is a probabilistic algorithm taking as input a security parameter k. It
returns SKCA (the certifier’s master-key) and public parameters params that include the
description of a string space Λ. Usually this algorithm is run by the CA.
-SetKeyPair is a probabilistic algorithm that takes params as input. It returns a pair
public key - private key (PK,SK).
-Certify is a (possibly randomized) algorithm that takes as input 〈SKCA, params, i,
userinfo PK〉. It returns Cert′i, which is sent to the client. Here i identifies i-th time
period, while userinfo ∈ Λ contains other information needed to certify the client such as
the client’s identifying information, and PK is a public key.
-Consolidate is a (possibly randomized) certificate consolidation algorithm taking as
input 〈params, i, userinfo, Cert′i〉 and optionally Certi−1. It returns Certi.

2

-Enc is a probabilistic algorithm taking as inputs 〈params,M, i, userinfo, PK〉 where
M ∈ M is a message. It returns a ciphertext C ∈ C for message M or ⊥ if PK is not
a valid public key.
-Dec is a deterministic algorithm taking as inputs 〈params,Certi, SK,C〉 as input in time
period i. It returns either a message M ∈ M or the special symbol ⊥ indicating a decryp-
tion failure.
Naturally, we require that if C is the result of applying algorithm Enc with input
〈params,M, i, userinfo, PK〉 and (PK,SK) is a valid key-pair, then M is the result of
applying algorithm Dec on input 〈params,Certi, SK,C〉, where Certi is the output of the
Certify and Consolidate algorithms on input 〈SKCA, params, i, userinfo, PK〉. We note
that a concrete CBE scheme need not involve certificate consolidation. In this situation,
algorithm Consolidate will simply output Certi = Cert′i.

The security model for CBE is defined with the help of two games:

CBE Game 1. Attack of an uncertified client

Setup The challenger runs Setup, gives params to the adversary AI and keeps SKCA to
itself.
Phase 1 The adversary issues queries q1, . . . , qm where each qj is one of:
a) Certification query 〈i, userinfo, PK, SK〉. To answer this query, the challenger checks
that userinfo ∈ Λ and that 〈PK,SK〉 is a valid key-pair. If so, it runs Certify on input
〈SKCA, params, i, userinfo, PK〉 and returns Cert′i; else it returns ⊥.
b) Decryption query 〈i, userinfo, PK, SK,C〉, the challenger checks that 〈PK,SK〉 is a
valid key-pair. If so, it generates Certi by using algorithms Certify and Consolidate with
inputs 〈SKCA, params, i, userinfo, PK〉 and outputs DecCerti,SK(C), else it returns ⊥.
These queries may be asked adaptively, that is, they may depend on the answers to previous
queries.
Challenge On challenge query 〈i∗, userinfo∗, PK∗, SK∗,M0,M1〉, where M0,M1 ∈ M are
of equal length, the challenger checks that userinfo∗ ∈ Λ and that 〈PK∗, SK∗〉 is a valid
key pair. If so, it chooses a random bit b and returns C∗ = Enci∗,userinfo∗,PK∗(Mb) ; else
it returns ⊥.
Phase 2 As in phase 1, except that decryption queries 〈i∗, userinfo∗, PK∗, SK∗, C∗〉 are
disallowed.
Guess The adversary AI outputs a guess b′ ∈ {0, 1}.
The adversary wins the game if b = b′. We define the advantage of AI as AdvAI

:= |Pr[b =
b′] − 1

2 |.

CBE Game 2. Attack of the certifier

Setup The challenger runs Setup, gives params and SKCA to the adversary AII . The
challenger then runs SetKeyPair to obtain a key-pair 〈PK,SK〉 and gives PK to the ad-
versary AII

Phase 1 The adversary issues decryption queries q1, . . . , qm where each qj is a decryption
query 〈i, userinfo, PK,C〉. On this query, the challenger generates Certi by using algo-
rithms Certify and Consolidate with inputs 〈SKCA, params, i, userinfo, PK〉 and outputs
DecCerti,SK(C), else it returns ⊥.
These queries may be asked adaptively, that is, they may depend on the answers to previous
queries.
Challenge On challenge query 〈i∗, userinfo∗,M0,M1〉, where M0,M1 ∈ M are of equal
length, the challenger checks that userinfo∗ ∈ Λ. If so, it chooses a random bit b and
returns C∗ = Enci∗,userinfo∗,PK(Mb); else it returns ⊥.
Phase 2 As in phase 1.
Guess The adversary AII outputs a guess b′ ∈ {0, 1}.
The adversary wins the game if b = b′. We define the advantage of AII as AdvAII

:=
|Pr[b = b′] − 1

2 |.

3

Definition A CBE scheme is said to be secure against an adaptive chosen ciphertext attack (or IND-CBE-
CCA secure) if no probabilistic polynomially bounded adversary has non-negligible advantage in security
parameter k in either CBE Game 1 or CBE Game 2.

2.2 Generic constructions

It is clear that the notion of IBE and CBE are very closely related and in fact all the generic constructions
that have been proposed so far start from an IBE scheme IND-ID-CCA secure. The construction of [2] which
goes from certificateless public key cryptography to certificate-based public key cryptography, was not fully
correct according to [14].
The first remark that one ought to make is that these constructions suffer from the same drawback than ours,
namely, that the most efficient IBE scheme secure in the standard model is based on the scheme of Waters
[16], in a way that we will detail later. The resulting scheme IND-ID-CCA secure has several problems,
mainly that the reduction is far from tight and the parameters are too long (these problems come from the
scheme of Waters).
Our construction is much more efficient than these generic ones, since while the scheme we propose does
only add one pairing, two exponentiations, a MAC and an encapsulation to the original encryption process
of the resulting IBE scheme, in the existing generic constructions it is used in combination with a public key
encryption scheme [11] or it is even used twice for double encryption [17].

The proposal of Dodis and Katz: In [11], Dodis and Katz study the security of double encryption.
They point out that double encryption with two different public key scheme (cascade encryption, as they
sometimes call it), Epk1

(Epk2
(M)) does not necessarily yield full security, even if the two public key schemes

are IND-CCA secure. We are going to use some remarks of this paper to criticize the proof of Yum and Lee
below.
They also give a generic construction for CBE. The certifier generates the parameters for an identity-based
encryption scheme IND-ID-CCA and the user chooses a pair public key- secret key (SK,PK) for a public
key encryption scheme IND-ID-CCA secure. To encrypt a message, the sender generates a pair secret key
- verifier’s key (sk, vk) of a one-time signature scheme. The message for i, Bob is then divided into two
shares M1 ⊕M2. M1 is encrypted using the public key of the user Bob and label vk and M2 is encrypted in
the identity-based scheme with respect to identity (Bobinfo||periodi||PK) and label vk. The two resulting
ciphertexts are then signed using a one-time signature σ = Sigsk(C1, C2) to obtain full security, the so-called
IND-CBE-CCA security.

The proposal of Yum and Lee At EuroPKI 2004, Yum and Lee proved the equivalence between
identity-based and certificate-based encryption, that is, whenever a fully secure IBE exists (that is IND-ID-
CCA), a fully secure IND-CBE-CCA exists, and conversely, the existence of a CBE scheme IND-CBE-CCA
implies the existence of an IND-ID-CCA secure IBE scheme.
Briefly, their construction is as follows. They generate the parameters for two different instantiations of
the IBE scheme, which yield two pairs, (paramsCA, mskCA) and (paramsuser,mskuser). Then mskCA will
serve as a the certifier’s master secret key in the CBE scheme and the user secret and public key (PK,SK)
will be the public key and the secret key corresponding to identity userinfo in the second instantiation
of the IBE. Encryption is done by running twice the IBE encryption algorithm IDEnc, first with inputs
〈M,userinfo, paramsuser〉 and output C ′, then with input 〈C ′, (userinfo, i, PK), paramsCA〉.
We note that this construction does not achieve the required security for certificate-based schemes, at least
in the case of an attack of the certifier. We outline how would an attack form a certifier work. Remember
that the certifier is equipped with his own secret key and that it is allowed to make decryption queries, with
the natural limitation that he cannot ask for the challenge ciphertext. The attack begins once the certifier
obtains the challenge ciphertext C∗ for userinfo∗, i∗, PK∗.
1. The certifier generates the certificate for userinfo∗, periodi∗, PK∗.
2. This certificate is used to decrypt and obtain C ′ = IDEnc(Mb, userinfo∗, paramsuser).
3. Reencrypt and set C ′′ = IDEnc(C

′, (userinfo∗, i∗, PK), paramsCA)〉.
4. Ask the decryption oracle for the decryption of C ′′.

4

3 Our construction

3.1 A powerful tool for obtaining full security in the standard model

In 2004 [10], Canetti, Halevi and Katz introduced a generic construction in the standard model from any
IBE scheme IND-sID-CPA secure to a public key encryption scheme.
Briefly, their idea was to take the public key and private key of the user to be the parameters and the master
key of of an IBE scheme, respectively. To encrypt a message, the sender must generate a pair (sk, vk) of a
one-time signature scheme, encrypt with respect to identity vk and send 〈C = Evk(M), vk, σ = Sigsk(C)〉.
Informally, this works because decryption queries in the PKE scheme become extraction queries in the IBE
scheme. Namely, if there is an adversary B against the PKE scheme, then, it can be used to build an adver-
sary A against the IBE scheme. The decryption queries of B, 〈C, vk, σ〉, are answered by A by asking the
challenger for the secret key corresponding to identity vk. The only difference between the real game and
the simulated game occurs if B asks for the decryption of a ciphertext with vk∗, where vk∗ is the verifier’s
key of a one-time signature scheme that A has chosen as challenge identity in the initialization step. But this
would only occur with negligible probability before the challenge phase, and also after, because we assume
the one-time signature scheme to be secure in the sense of strong unforgeability.
Boneh and Katz improved this construction and made it much more efficient, specially improving on key
generation. Their idea was to use message authentication codes instead of signatures. The key for the MAC
cannot then be the identity, though, because the identity must go on the open. The solution is to use also
a commitment. In the resulting scheme, then a random value r is encapsulated to obtain (r, com, dec) and
then the message M ||dec is encrypted with respect to com. The proof is somewhat trickier because only the
receiver can make the verification, but the main idea behind it is the same as in [10]. In our construction we
will use this technique [9].
Further the technique of [10] can also be extended to go from a l-HIBE which is selective identity chosen
plaintext secure to an (l − 1)-HIBE which is selective-identity chosen ciphertext secure (IND-sID-CCA, see
for example [7]). In particular this means it is possible to construct a IBE scheme IND-ID-CCA secure from
a 2-HIBE scheme IND-sID-CPA secure.

3.2 The scheme of Waters

The first IBE fully secure in the standard model was proposed by [8] and has been recently improved by
Waters [16]. The scheme of Waters is only IND-ID-CPA secure, but if extended to a 2-HIBE scheme the
afore mentioned construction of Boneh and Katz would apply, obtaining then an IBE scheme fully secure in
the standard model.
However, since the construction of Boneh and Katz only requires selective-identity chosen plaintext security
and the scheme of Waters has a security reduction which is not tight, it is more convenient to extend the
level in the second level using the scheme of Boneh and Boyen [7] which is selective-identity chosen-plaintext
secure, an idea which Waters himself suggests in [16].
This yields a 2-HIBE scheme satisfying a very unusual definition of security, namely, where the suffix of the
challenge identity (the second level) must be chosen before the beginning of the attack but the prefix (the
first level) is chosen at the challenge step.

3.3 The construction of Gentry

As we said, the construction of a CBE scheme of Gentry relies very much on the IBE scheme of Boneh and
Franklin. As an intermediate step in their construction, they build a scheme called BasicIBE, and Gentry
introduces a scheme called BasicCBE. Without going into details, the only difference between both schemes
is that Boneh and Franklin use a BLS [3] signature as a decryption key and Gentry uses an aggregate BGLS

5

[5] signature.
The scheme of Gentry is then constructed applying the Fujisaki Okamoto transform to BasicCBE, and Boneh
and Franklin also obtain the full scheme in this way.
It is reasonable to do the same thing with respect to the scheme of Waters. Thus, it is possible to obtain a
CBE scheme which is IND-CBE-CPA secure in a straightforward way. The problem is now to obtain CCA
security in the standard model.

3.4 Proof’s strategy

A first approach would be to try to follow the suggestion of Waters and build an hybrid 2-HIBE using the
schemes of Waters and Boneh-Boyen. From this scheme apply the result of [9] to obtain a fully secure IBE
and then construct a CBE scheme by using an aggregate BGLS signature. If this proof worked, then we
would have proven the full security of our scheme without having to resort to any unusual cryptographic
primitives. However, when building the scheme in this way we only managed to prove a weaker notion of
security.
The strategy we follow instead is: we build the same hybrid HIBE as we specified in section 3.2 and then
build another scheme called ExtendedCBE by using a BGLS signature instead of a BLS one. Then we adapt
the proof of Boneh and Katz to obtain full security.

4 Review on Pairings

Bilinear Diffie-Hellman Parameter Generator A randomized algorithm IG is a BDH parameter gen-
erator if it takes as input security parameter k ≥ 0, runs in time polynomial in k and returns the description
of two groups G, G1 of the same prime order p together with the description of an admissible pairing
e : G1 × G1 → G. Formally, the output of IG(1k) is 〈G, G1, e〉.
Admissible pairings are maps e : G × G → G1 with the following properties:
1. Bilinear: e(ga

1 , gb
2) = e(g1, g2)

ab

2. Non-degenerate: e(g, g) 6= 1G1
for all g ∈ G

3. Computable: there exists an efficient algorithm to compute e(g1, g2) for any g1, g2 ∈ G.

The BDH problem in G is as follows: given a tuple g, ga, gb, gc ∈ G as input, output e(g, g)abc.
An algorithm A has advantage ε in solving the BDH problem in G if:
Pr[A(g, ga, gb, gc) = e(g, g)abc] ≥ ε,
where the probability is over the random choice of generator g in G

∗, the random choice of a, b, c in Z
∗
p, and

the random bits used by A.
Similarly we say that an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the decisional

BDH problem in G if: |Pr[B(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[B(g, ga, gb, gc, T) = 0]| ≥ ε,
where the probability is over the random choice of generator g ∈ G

∗, the random choice of T ∈ G1, and the
random bits consumed by B.
Definition The (Decisional) (t, ε)-Bilinear Diffie Hellman (BDH) assumption holds in G if no t-time algo-
rithm has advantage at least ε in solving the (Decisional) BDH problem in G.

5 Security definitions

The building blocks for our scheme will be the identity-based scheme of Waters [16] only IND-ID-CPA
secure, the identity-based scheme of Boneh and Boyen [7] (only IND-sID-CPA secure) and the technique of
[9] (which makes use of a message authentication code and a encapsulation scheme). For the proof we will
need to define some very unusual primitives and their security model, which we hope to motivate in the next
section. Here only the definitions are introduced.

6

The security definitions for a message authentication code and an encapsulation mechanism are basically
quoted from [9].

5.1 Message Authentication

Definition A message authentication code is a pair of PPT algorithms (Mac, V rfy), where:
1. Mac is an algorithm which takes as input a message M and a secret key sk and outputs a string tag.
2. V rfy takes as input a message M , a secret key sk, and a string tag. It outputs either 1 or 0, in case it
succeeds or not.
The security requirement we will need for our construction is the same as in [9], that is, one-time security.
More formally,

Definition A message authentication code (Mac, V rfy) is secure against a one-time chosen-message attack

if the success probability of any PPT adversary A in the following game is negligible in the security param-
eter k:
1. A random key sk ∈ {0, 1}k is chosen.
2. A outputs a message M and is given in return tag = Macsk(M).
3. A outputs a pair (M ′, tag′).
We say that A succeeds if (M, tag) 6= (M ′, tag′) and V rfysk(M ′, tag′) = 1
In the above, the adversary succeeds even if M = M ′ but tag 6= tag′.

5.2 Encapsulation

Definition An encapsulation scheme is a triple of PPT algorithms (SetupENC ,S,R) such that:
1. SetupENC takes as input the security parameter 1k and outputs a string pub.
2. S takes as input 1k and pub, and outputs (r, com, dec) with r ∈ {0, 1}k. We refer to com as the public
commitment string and dec as the de-commitment scheme string.
3. R takes as input (pub, com, dec) an outputs r ∈ {0, 1}k ∪ {⊥}.

Definition An encapsulation scheme (Setup,S,R) is secure if it satisfies both hiding and binding as follows:
Hiding The following is negligible in the security parameter k for all PPT A
|Pr[(pub ← SetupENC(1k); r0 ← {0, 1}k; (r1, com, dec) ← S(1k, pub); b ∈ {0, 1}) : A(1k, pub, com, rb) =
b] − 1

2 |
Binding The following is negligible in the security parameter k for all PPT A
|Pr[(pub ← SetupENC(1k); (r, com, dec) ← S(1k, pub)) : dec′ ← A(1k, pub, r, com, dec); R(pub, com, dec′) /∈
{⊥, r}]

5.3 HIBE

A m-HIBE consists of four algorithms: SetupHIBE ,KeyGen,Enc,Dec, where m is polynomial in the secu-
rity parameter k:

-SetupHIBE is a probabilistic algorithm taking as input a security parameter k. It returns
msk (the Public Key Generator’s master secret key) and the public parameters params.
-KeyGen is a possibly randomized algorithm that takes as input an identity
ID = (I1, . . . , Ij) (j ≤ m) and outputs the secret key corresponding to ID, dID.
-Enc is a probabilistic algorithm that takes as input 〈params, M, ID, 〉. It returns a
ciphertext C = Encparams,ID(M).
-Dec is a deterministic algorithm taking as input 〈params,C, ID, dID〉. It returns a
plaintext M .

7

Naturally, we require that if C is the result of running algorithm Enc with in-
put 〈params,M, ID〉, then M is the result of applying algorithm Dec with input
〈params,C, ID, dID〉.

A new definition of security for a 2-HIBE

A 2-HIBE is secure against 2nd-level selective identity chosen plaintext attacks if for all polynomially bounded
functions l() the advantage of any PPT adversary A in the following game is negligible in the security pa-
rameter k:

Init A outputs a sufix I2∗ ∈ {0, 1}l(k) of the identity it wants to attack. (That is, the
challenge identity will be of the form (I1, I2∗)).
Setup SetupHIBE(1k, l(k)) outputs (msk, params). The adversary is given params.
Phase 1 The adversary issues private key or extraction queries q1, . . . , qm for identities
〈IDi〉, i = 1 . . . m, which can be either in level one IDi = I1 or level two IDi = (I1, I2),
with I2 6= I2∗. The challenger responds by running algorithm KeyGen to generate the
private key dIDi

corresponding to the public key 〈IDi〉. Then dIDi
is sent to the adversary.

These queries may be asked adaptively, that is, depending on the answers to preceding
queries.
Challenge When the adversary decides that phase 1 is over it outputs two messages M0

and M1 and a first level identity I1∗ on which it wants to be challenged. This identity
should not have been the subject of a private key query in phase 1. The challenger flips a fair
coin to obtain a bit b and sets the challenge ciphertext to be C = Encparams,(I1∗,I2∗)(Mb).
Phase 2 As in phase 1, except with the additional restriction that A may not ask for the
secret key corresponding to identity I1∗ (but may ask for the secret key corresponding to
identities (I1∗, I2), where I2 6= I2∗).
Guess The adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′.
We define the advantage of the adversary A in this game as: AdvA = |Pr[b = b′] − 1

2 |.

5.4 Extended CBE

The concept that we are going to define next is very unusual in identity-based cryptography, but it is moti-
vated by the requirements of the security proof.
Our model is a depth two tree encryption scheme, where a given message M can be encrypted for a 1st level
entity or a 2nd level entity, and where 1st level entities can decrypt any of the messages intended for a 2nd
level entity.
In this model there is also a certification authority (CA) and a number of clients, each of whom chooses a pair
public key, secret key (PK,SK). Each client has also an identifying public information userinfo. The time
is divided into different periods (the number of which does not necessarily have to be specified beforehand).
For each time period the certification authority computes a certificate Cert′i, from its own master secret key
SKCA and 〈userinfo, i, PK〉 and sends it to the authorized clients, who may perform some operations on
the certificate to obtain Certi.
In our scheme, then, the entities in the 1st level are certified clients, that is, messages are encrypted for a
certain period, a certain public information identifying the client and a certain public key. To decrypt such
a message, both the secret key of the client and the updated certificate Certi are needed. The entities in
the first level are noted (userinfo, period i, PK).
The 2nd level entities will also be called sons of certified clients and will be noted ((userinfo, i, PK), I2).
When a message is intended for a second level entity, the key necessary to decrypt is derived from both Certi
and SK. However, this same key will not be useful to decrypt any message for any of its siblings, i.e entities
((userinfo, i, PK), I2′), where Certi is the certificate corresponding to (userinfo, i, PK) and I2 6= I2′.
The keys for the sons of the certified clients are computed by the clients and sent to their sons.
For the security model, two types of adversary are considered. Again, these types respond to the needs of the
last proof, and it is hard to motivate them otherwise. Type I adversary is a client who can adaptively choose

8

its private/ public key pair, its identifying public information and make certification queries for any period
and extraction queries for any second level entity (with a suffix different than the second level challenge
identity).
Type II adversary has access to the certifier’s master secret key and can also make extraction queries for any
entity in level 2.
In both types of attack, the entity attacked must be in the second level, since this is the case that will be
used in the last proof.

Definition An extended CBE scheme consists of seven algorithms: (SetupEXTCBE , SetKeyPair, Certify,
Consolidate,KeyGen2, Enc,Dec), where:

-SetupEXTCBE is a probabilistic algorithm taking as input a security parameter k. It
returns SKCA (the certifier’s master-key) and public parameters params that include the
description of a string space Λ. Usually this algorithm is run by the CA.
-SetKeyPair is a probabilistic algorithm that takes as input params. It returns a public
key PK and a private key SK.
-Certify is a (possibly randomized) algorithm that takes as input 〈SKCA, params, i,
userinfo, PK〉. It returns Cert′i, which is sent to the client. Here i is a string identi-
fying a time period, while userinfo ∈ Λ contains other information needed to certify the
client such as the client’s identifying information, and PK is a public key.
-Consolidate is a (possibly randomized) certificate consolidation algorithm taking as input
〈params, i, userinfo, Cert′i〉 and optionally Certi−1.
-KeyGen2 is a (possibly randomized) algorithm that takes as input params, a pair
(PK,SK), a period i, a string userinfo ∈ Λ, the updated certificate Cert′i correspond-
ing to this input and a second level identity I2. It then generates the secret key SKID

necessary corresponding to second level entity to decrypt all ciphertexts intended for iden-
tity ((i, userinfo, PK), I2).
-Enc is a probabilistic algorithm taking as input 〈ID,M〉, where ID is the string identifying
either a certified client or a son of a certified client and M ∈ M is a message. It returns a
ciphertext C ∈ C for message M .
-Dec is a deterministic algorithm taking as inputs 〈params, ID, SKID, C〉 as input in time
period i, where ID is a string corresponding either to a first or a second level entity. If ID
identifies a first level entity then SKID is the pair (Cert′periodi, SK), else it is the output of
algorithm KeyGen2 with these inputs. Algorithm Dec returns either a message M ∈ M or
the special symbol ⊥ indicating a decryption failure.
Naturally, we require that if C is the result of applying algorithm Enc with input
〈i, userinfo, params, PK,M〉 and (PK,SK) is a valid key-pair, then M is the result of
applying algorithm Dec on input 〈params,Certi, SK,C〉, where Certi is the output of the
Certify and Consolidate algorithms on input 〈SKCA, params, i, userinfo ∈ Λ, PK〉.
We note that a concrete ExtendedCBE scheme need not involve certificate consolidation.
In this situation, algorithm Consolidate will simply output Certi = Cert′i.

Security for Extended CBE is defined with the help of two different games.

Extended CBE Game 1

Init The adversary BI outputs a second level identity I2∗ ∈ {0, 1}l(k) it wants to attack.
Setup: The challenger runs SetupEXTCBE(1k, l(k)), gives params to the adversary and
keeps SKCA to itself.
Phase 1 The adversary issues queries q1, . . . , qm where each qj is:
a) a certification query 〈i, userinfo, PK, SK〉. To answer this query, the challenger checks
that userinfo ∈ Λ and that 〈PK,SK〉 is a valid key-pair and runs algorithm Certify on
these inputs. The output Cert′i is the answer to the query.

9

b) an extraction query 〈ID, SK〉, where ID = ((i, userinfo, PK)), I2) is a second level
identity. To answer this query, the challenger checks that 〈PK,SK〉 is a valid key-pair.
Then it runs algorithms Certify, Consolidate and KeyGen2 with the adequate inputs.
These queries may be asked adaptively, that is, they may depend on the answers to previous
queries.
Challenge On challenge query 〈i∗, userinfo∗, PK∗, SK∗,M0,M1〉, where M0,M1 ∈ M
are of equal length, the challenger checks that userinfo∗ ∈ Λ and that 〈PK∗, SK∗〉 is a
valid key pair. If so, it chooses a random bit b and returns C∗ = EncID∗(Mb), where
ID∗ = ((i∗, userinfo∗, PK∗), I2∗), else it returns ⊥.
Phase 2 As in phase 1, except that certification queries 〈i∗, userinfo∗, PK∗, SK∗〉 are no
longer allowed, but decryption queries for any identity ID = ((i∗, userinfo∗, PK∗), I2),
with I2 6= I2∗ are.
Guess The adversary outputs a guess b′ ∈ {0, 1}.

The adversary wins the game if b = b′. We define the advantage of BI as AdvBI
:= |Pr[b = b′] − 1

2 |.

Extended CBE Game 2

Init The adversary outputs a second level identity I2∗ ∈ {0, 1}l(k) it wants to attack.
Setup: The challenger runs SetupEXTCBE(1k, l(k)) and gives params and SKCA to the
adversary. Then it runs algorithm SetKeyPair to obtain a challenge pair (PK,SK) and
gives PK to the adversary.
Phase 1 The adversary issues queries q1, . . . , qm where each qj is an extraction query
〈((i, userinfo, PK)), I2) for a second level identity. To answer this query, the challenger
checks that userinfo ∈ Λ. If so, it generates Certi by using algorithms Certify and
Consolidate with these inputs. Then it runs algorithm KeyGen2 with these inputs.
These queries may be asked adaptively, that is, they may depend on the answers to previous
queries.
Challenge On challenge query 〈i∗, userinfo∗,M0,M1〉, where M0,M1 ∈ M are of equal
length, the challenger checks that userinfo∗ ∈ Λ. If so, it chooses a random bit b and
returns C∗ = EncID∗(Mb), where ID∗ = ((i∗, userinfo∗, PK), I2∗), else it returns ⊥.
Phase 2 As in phase 1.
Guess The adversary outputs a guess b′ ∈ {0, 1}.

The adversary wins the game if b = b′. We define the advantage of BII as AdvBII
:= |Pr[b = b′] − 1

2 |.
Definition An Extended CBE scheme is said to be secure against adaptive chosen plaintext attack

(or IND-extCBE-CPA secure) if for all polynomially bounded functions l(), no probabilistic polynomially
bounded adversary has non-negligible advantage in security parameter k in either CBE Game 1 or CBE
Game 2.

6 First construction: an hybrid 2-HIBE scheme

In the rest of the article, given a string λ = λ1 . . . λn ∈ {0, 1}n, let νλ ⊂ {1 . . . n} be the set of indices j for
which λj = 1.
Let identities in the first level be n-bit strings and identities in the second level be elements of Zp. We will
refer to identities in general as ID, and if we need to distinguish if the identity is in the first or second level
we will write either I1 or (I1, I2), respectively. The proposed scheme is the IBE scheme of Waters [16] when
restricted to the first level and the scheme of Boneh and Boyen [7] in the second. Therefore, an adversary
against our scheme has to specify at first which identity in the second level it is going to attack, that is,the
suffix of the challenge identity. No identity with that suffix can be subject to an extraction query.

10

New2-HIBE

SetupHIBE Input: 1k.
Run IG on input 1k and obtain 〈G, G1, e〉, G, G1 of order p.
Choose g, g2, f2 ← G

∗, α ← Zp. Set g1 = gα ∈ G

Choose u′, u1, . . . , un ← G. Set U = (u′, u1, ..., un).
The space of messages is G1 and the system parameters are params = (U, p, n, G, G1, e, g, g1, g2, f2).
The PKG’s master secret key is msk = α. Define the following function F2 : Zp −→ G as F2(x) =
gx
1f2.

KeyGen Input: 〈params,msk, ID〉.
To generate the private key corresponding to ID, dID do:
(a) if ID is in level 1, the PKG sets r1 ← Zp and sets: dI1 = (d0, d1) = (gα

2 (u
′ ∏

j∈νI1
uj)

r1 , gr1).
(b) Else, the PKG chooses r1, r2 ← Zp and sets: d(I1,I2) = (d0, d1, d2) =

(gα
2 (u

′ ∏

j∈νI1
uj)

r1F2(I2)
r2 , gr1 , gr2).

Obviously, any identity in level 1 I1 with secret key dID = (d0, d1), can compute the secret key for
all of its children by choosing r2 ← Zp and computing d(I1,I2) = (d0F2(I2)r2 , d1, g

r2).

Enc Input: 〈M, ID〉.
Choose t ← Zp.

Set C = (C1, C2, C3) = (Me(g1, g2)
t, gt, (u

′ ∏

j∈νI1
uj)

t) if user is in level 1, else set

C = (C1, C2, C3, C4) = (Me(g1, g2)
t, gt, (u

′ ∏

j∈νI1
uj)

t, F2(I2)t) .

Dec Input: 〈C, ID〉.
(a) If ID is in level 1, compute:

C1e(d1, C3)

e(d0, C2)
=

Me(g1, g2)
te(gr1 , (u′

∏

j∈νI1
uj)

t)

e(gα
2 (u′

∏

j∈νI1
uj)r1 , gt)

= . . . = M

(b) Else, compute:

C1e(d1, C3)e(d2, C4)

e(d0, C2)
=

Me(g1, g2)
te(gr1 , (u′

∏

j∈νI1
uj)

t)e(gr2 , F2(I2)t)

e(gα
2 (u′

∏

j∈νI1
uj)r1F2(I2)r2 , gt)

= . . . = M

6.1 Security Proof

For the security reduction we distinguish between first and second level extraction queries. The number of
first level extraction queries is qE and the number of extraction queries for the second level qD.

Theorem The previously defined New 2-HIBE is (t, qE , qD, ǫ) 2nd-level selective identity secure if the (t +
O(ǫ−2ln(ǫ−1)λ−1ln(λ−1)+ qD), ǫ

32(n+1)qE
) Decisional Bilinear Diffie Hellman Assumption holds in G (where

λ = 1
8(n+1)qE

and it is assumed that each exponentiation in G takes unit time).

Proof

Let C be an adversary against the 2-HIBE hybrid scheme, then we are going to use C to build an adversary
D against DBDH in G.
D is given as input a 5-tuple (g, ga, gb, gc, T), which could be either a random tuple or a BDH-tuple. Set
g1 = ga, g2 = gb, g3 = gc.
Adversary D will output a guess γ′ as to whether the challenge tuple is a BDH tuple or not, that is, whether
γ is equal to 1 or 0, respectively. D interacts with C as follows:

11

Init Adversary C outputs the second level challenge identity I2∗ ∈ Zp. That means that in the challenge, C
may ask to be challenged on any identity of the form ID = (I1, I2∗).

Setup Adversary D first sets m = 4qE and chooses an integer, k, between 0 and n. It then chooses a
random n-length vector, −→x = (xi), and a value x′. The components of the vector and x′ are chosen u.a.r.
among the integers between 0 and m − 1. By X ′, we denote the pair (x′,−→x). Additionally, D also chooses
y′, y1, . . . yn ∈ Zp.
Finally, D also picks α2 ← Zp. These values are all kept internal to adversary D.
Given a set ν ⊂ {0, . . . n}, we define the following functions and values:

(a)F (ν) = (p − mk) + x′ + Σi∈νxi

(b)J(ν) = y′ + Σi∈νyi

(c)

K(ν) =

{

0 if x′ + Σi∈νxi ≡ 0 mod m
1 otherwise

(d)f2 = g−I2∗

1 gα2 ∈ G

(e) F2 : Zp → G, defined as F2(x) = gx−I2∗

1 gα2 = gx
1f2

(f) U = (u′, u1, . . . un), where u′ = gp−km+x′

2 gy′

and ui = gxi

2 gyi for i = 1 . . . n

Then C is given params = (U, p, n, G, G1, e, g, g1, g2, f2).

Phase 1 C issues private key queries ql for different identities IDl, to which D responds in the following
way:

a) If IDl = I1l is in level 1, D checks if K(νI1l) = 0. If this is the case, it aborts and outputs a random
guess γ′.

Else, it chooses rl ← Zp and sets dI1l = (d0l, d1l) = (g
−

J(νI1l)

F (νI1l)

1 (u′
∏

j∈νI1l
uj)

rl , grl).
Set sl := rl −

a
F (νI1l)

. Note that the following two equalities hold:

d0l = g
−

J(νI1l)

F (νI1l)

1 (u′
∏

j∈νI1l
uj)

rl

= g
−

J(νI1l)

F (νI1l)

1 (g
F (νI1l)
2 gJ(νI1l))rl

= ga
2 (g

F (νI1l)
2 gJ(νI1l))rl

= ga
2 (g

F (νI1l)
2 gJ(νI1l))

− a

F (νI1l) (g
F (νI1l)
2 gJ(νI1l))rl

= ga
2 (u′Πj∈νI1l

uj)
rl−

a

F (νI1l)

= ga
2 (u′Πj∈νI1l

uj)
sl

d1l = g
−1

F (νI1l)

1 gr
l

= g
rl−

a

F (νI1l)

= gsl

Therefore, dI1l = (d0l, d1l) = (gα
2 (u′

∏

i∈νI1l
uj)

sl , gsl) is a valid key for identity IDl and is given to adversary
C.

b) If it is in level 2, i.e IDl = (I1l, I2l), then D checks if I2l = I2∗, in which case it aborts and outputs a ran-

dom guess γ′, else it chooses r1l, r2l ← Zp and sets dIDl
= (d0l, d1l, d2l) = (g

−α2
I2l−I2∗

2 (u′
∏

j∈νI1l
uj)

r1lF2(I2l)r2l ,

(u′
∏

j∈νI1l
uj)

r1l , g
−1

I2l−I2∗

2 gr2l).

Let sl = r2l −
b

I2l−I2∗
. Then, dIDl

is a valid secret key for IDl, since the following two equalities hold:

12

d0l = (u′
∏

j∈νI1l
uj)

r1lg
−α2

I2l−I2∗

2 F2(I2l)r2l

= (u′
∏

j∈νI1l
uj)

r1lg
−α2

I2l−I2∗

2 (gI2l−I2∗

1 gα2)r2l

= (u′
∏

j∈νI1l
uj)

r1lga
2 (gI2l−I2∗

1 gα2)r2l−
b

I2l−I2∗

= ga
2 (u′

∏

j∈νI1l
uj)

r1lF2(I2l)sl

d2l = g
−1

I2l−I2∗

2 gr2l

= gr2l−
b

I2l−I2∗

= gsl

Challenge When C decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 of equal length and
a level one identity I1∗ on which it wants to be challenged. If x′ + Σi∈νI1∗

6= km, D aborts and outputs
a random bit γ′. Else, it flips a fair coin to obtain a random bit δ and responds with the ciphertext C =

(MδT, g3, g
J(νI1∗)
3 , gα2

3). Since F2(I2∗)c = (gα2)c = gα2
3 and g

J(νI1∗)
3 = (gJ(νI1∗))c = (gJ(νI1∗)g

F (νI1∗)
2)c =

(u′
∏

i∈νI1∗
uj)

c (because F (νI1∗) = 0 mod p), then C will only be a ciphertext for Mδ if T = e(g, g)abc.

Phase 2 As in phase 1, except that queries for identity I1∗ are no longer allowed, while queries for any of
its children (except with suffix I2∗) are.

Guess Finally C outputs a guess δ′. The simulator D outputs γ′ = 1 if δ = δ′, else it outputs γ′ = 0.

Artificial Abort The probability of aborting when making first level extraction queries is not necessarily
independent of the probability of C making a correct guess of the bit δ, since different sets of queries may
have a different probability of aborting. The additional step artificial abort is introduced in order to compute
the abort probability, as detailed below.
If −→v = v1 . . . vqE

is the vector of all first level extraction queries made and v∗ is the first level challenge
identity, the following function is defined:

τ(X ′,−→v , v∗) =

{

0 if (K(v1) = 1) ∧ . . . ∧ (K(vqE
) = 1) ∧ (x′ + Σi∈νv∗

xi = km)
1 otherwise

Note that the function evaluates to zero for a given set of extraction and challenge queries and simulation
values X ′ when those choices lead to an abort.
The probability of aborting for a given set of queries v∗,−→v , η = PrX′ [τ(X ′,−→v , v∗)] is sampled O(ǫ−2ln(ǫ−1)λ−1ln(λ−1))
times, by choosing random X ′ and evaluating τ(X ′,−→v , v∗) (sampling does not involve running the adversary
again). The estimated value is η′, while λ is the lower bound on the probability of not aborting for any set
of queries (see [16] on how to compute λ).

We force adversary D to abort with probability η′
−λ
η′

and take a random guess γ′ if η′ ≥ λ. Otherwise,
adversary D does not abort.
If D has not aborted at this point, it checks whether the guess of adversary C, δ′, is equal to δ. If so it
outputs the guess γ′ = 1, else it outputs γ′ = 0.

Analysis When the input tuple is a random tuple, then Pr[γ′ = 1] = 1
2 .

On the other hand, when the input tuple is a Diffie Hellman tuple:
Pr[γ′ = 1] = Pr[γ′ = 1|abort]Pr[abort] + Pr[γ′ = 1|abort]Pr[abort]
Clearly, when the adversary does not abort, then C makes the correct guess with advantage ǫ, so Pr[γ′ =
1|abort] = 1

2 + ǫ, while Pr[γ′ = 1|abort] = 1
2 , because then the simulator outputs a random guess.

The probability of aborting comes exclusively from the first level extraction queries and the challenge query.
In other words, the simulator aborts if and only if the simulator in the security proof of Waters [16] would
also abort (making the same choices for U,−→x , etc). Therefore, the probability of aborting can be calculated
exactly in the same way as in the IBE scheme of Waters and the theorem follows.

13

7 Second construction: an Extended CBE scheme

We do not include algorithm Consolidate because it is trivial in this scheme, that is, if the outputs of the
algorithm are 〈params, periodi, userinfo, Cert′i〉, it simply outputs Certperiodi = Cert′i (as it is also the case
in [13]). This will also be the case for our final scheme New CBE.

ExtendedCBE

SetupEXTCBE : Input: 1k.
Run IG on input 1k and obtain 〈G, G1, e〉, G, G1 of order p.
Choose g, g2, f2 ← G

∗, α ← Zp. Set g1 = gα ∈ G

Choose u′, u1, . . . , un ← G. Set U = (u′, u1, ..., un) and choose a collision resistant hash function
H1 : {0, 1}∗ → {0, 1}n.
The space of messages is G1 and the system parameters are params =
(U, p, n, G, G1, e, g, g1, g2, f2,H1). The CA’s master secret key is SKCA = α.

SetKeyPair Input: params.
Choose β ← Zp, h2 ← G and sets h1 = gβ ∈ G. The user’s secret key is SK = (β, hβ

2) and his public
key is PK = (h1, h2).
Define the following function F2,h1

: Zp −→ G as F2,h1
(x) = gx

1hx
1f2.

Certify Input: 〈 params, SKCA, periodi, userinfo, (h1, h2)〉.
Let I1 = H1(periodi||userinfo||(h1, h2)). Pick r1 ← Zp and output: (Certi0, Certi1) =

(gα
2 (u

′ ∏

j∈νI1
uj)

r1 , gr1).

KeyGen2 Input: 〈params, β, (Cert0, Cert1) periodi, userinfo, (h1, h2), I2〉.
Compute I1 = H1(periodi||userinfo||(h1, h2)). Choose r2 ← Zp. Set: SKID = (d0, d1, d2) =

(gα
2 (u

′ ∏

j∈νI1
uj)

r1F2,h1
(I2)

r2hβ
2 , gr1 , gr2).

Enc Input: 〈params, M, i, userinfo, (h1, h2)〉 and, optionally I2.
Choose t ← Zp.

Set C = (C1, C2, C3) = (Me(g1, g2)
te(h1, h2)

t, gt, (u
′ ∏

j∈νI1
uj)

t) if user i is in level 1, else C =

(C1, C2, C3, C4) = (Me(g1, g2)
te(h1, h2)

t, gt, (u
′ ∏

j∈νI1
uj)

t, F2,h1
(I2)t).

Dec Input: 〈params,C, i, userinfo, (h1, h2), SKID, ID〉, where SKID is (d0, d1) =

(Certi0h
β
2 , Certi1) if ID is a first level identity and (d0, d1, d2) is the output of algorithm

KeyGen2 defined above otherwise.
Set I1 = H1(periodi||userinfo||(h1, h2)).
(a) If ID is in level 1, compute:

C1e(d1, C3)

e(d0, C2)
=

Me(g1, g2)
te(h1, h2)

te(gr1 , (u′
∏

j∈νI1
uj)

t)

e(gα
2 (u′

∏

j∈νI1
uj)r1hβ

2 , gt)
= . . . = M

(b) Else, compute:

C1e(d1, C3)e(d2, C4)

e(d0, C2)
=

Me(g1, g2)
te(h1, h2)

te(gr1 , (u′
∏

j∈νI1
uj)

t)e(gr2 , F2(I2)t)

e(gα
2 (u′

∏

j∈νI1
uj)r1F2(I2)r2hβ

2 , gt)
= . . . = M

14

7.1 Security proof: Adversary in game 1 against Extended CBE

Theorem Assuming H1 to be a collision resistant hash function, if an adversary BI succeeds in Extended
CBE-Game 1 against the previously defined ExtendedCBE scheme, in time t, with advantage at most ǫ and
making at most qC certification queries and qE extraction queries for second level identities, then there is an
adversary C which succeeds in time t′ ≤ t − Θ(qC + qE) and with advantage ǫ in the game against the New
2-HIBE scheme. (where it is assumed that each evaluation of the hash function H1 and each exponentiation
in G take unit time).

Proof

Algorithm C interacts with algorithm BI as follows:

Init When BI outputs a second level identity I2∗ it wants to attack, C outputs the same identity.

Setup: The challenger runs SetupHIBE , gives paramsHIBE to the adversary C and keeps msk to itself. Then
paramsEXTCBE = (paramsHIBE ,H1), where H1 is a collision resistant hash function H1 : {0, 1}∗ → {0, 1}n,
are given to the adversary BI .

Phase 1 Adversary BI issues queries q1, . . . , qm where each qj is:

a) a certification query 〈periodi, userinfo, (h1, h2), (β, hβ
2)〉. To answer this query, C checks that userinfo ∈

Λ and that 〈(h1, h2), (β, hβ
2)〉 is a valid key-pair. If so, it asks the challenger for the secret key corresponding

to identity I1 = H1((periodi||userinfo||(h1, h2))). This same answer is given to BI .

b) an extraction query 〈ID, (β, hβ
2)〉, where ID = ((userinfo, i, (h1, h2)), I2) is a second level identity and

I2 6= I2∗. To answer this query, C checks that 〈(h1, h2), (β, hβ
2)〉 is a valid key-pair. If so, it asks the chal-

lenger for the secret key corresponding to identity (H1(periodi||userinfo||PK), I2) = (I1, I2) = ID, and
obtains dID = (d0, d1, d2) = (gα

2 (u
′ ∏

j∈νI1
uj)

r1F2(I2)
r2 , gr1 , gr2).

Then C gives BI the tuple SKID = (d0h
β
2dβI2

2 , d1, d2). This is a valid secret since the following holds:

F2,h1
(I2)r2 = (f2g

I2
1 hI2

1)r2

= F2(I2)r2(hI2
1)r2

= F2(I2)r2(gr2)βI2

= F2(I2)r2dβI2
2

Therefore, SKID = (d0h
β
2dβI2

2 , d1, d2) = (gα
2 hβ

2 (u
′ ∏

j∈νI1
uj)

r1F2,h1
(I2)

r2 , gr1 , gr2) is of the correct form.
These queries may be asked adaptively, that is, they may depend on the answers to previous queries.

Challenge On challenge query 〈ID∗, (β∗, (h∗
2)

β∗), M0,M1〉, where ID∗ = (periodi∗, userinfo∗, (h∗
1, h

∗
2))

and M0,M1 ∈ M of equal length, C checks that userinfo∗ ∈ Λ and that 〈(h∗
1, h

∗
2), (β

∗, (h∗
2)

β∗)〉 is a valid
key pair. If not, it outputs ⊥, else it makes a challenge query 〈M0,M1, I1∗〉, where I1∗ = H1(ID∗).
The challenger responds by flipping a fair coin to choose a random bit b and returning the ciphertext
C = (C1, C2, C3, C4) = (Me(g1, g2)

t, gt, (u
′ ∏

j∈νI1∗
uj)

t, F2(I2∗)t). Then, C gives BI the challenge ciphertext

C∗ = (C1e(C2, h
β∗
2), C2, C3, C4(C2)

I2∗β∗) = (Me(g1, g2)
te(h1, h2)

t, gt, (u
′ ∏

j∈νI1∗
uj)

t, F2,h1
(I2∗)t).

Phase 2 As in phase 1, except that certification queries 〈ID∗, (β∗, (h∗
2)

β∗)〉 are no longer allowed, but
decryption queries for any identity ID = ((periodi∗, userinfo∗, (h∗

1, h
∗
2)), I2), with I2 6= I2∗ are.

Guess Adversary BI outputs a guess b′ ∈ {0, 1}, and C outputs the same guess.
The view of BI is exactly the same as in the real attack, therefore the theorem follows.

15

7.2 Adversary in game 2 against ExtendedCBE

Theorem Assuming H1 to be a collision resistant hash function, if an adversary BII succeeds in Game 2
against the previously defined ExtendedCBE scheme, in time t, with advantage at most ǫ and making at
most qE extraction queries for second level identities, then there is an adversary C which succeeds in time
t′ ≤ t−Θ(qE) and with advantage ǫ in the game against the New 2-HIBE scheme. (where it is assumed that
each evaluation of the hash function H1 and each exponentiation in G take unit time).

Proof

Algorithm C interacts with algorithm BII as follows:

Init Adversary BII outputs a second level identity I2∗ it wants to attack. Then C outputs the same identity.

Setup The challenger runs SetupHIBE , gives paramsHIBE = (U, p, n, G, G1, e, g, g′1, g
′
2, f2) to the adversary

C and keeps msk = (g′2)
α′

to itself.
Adversary C runs algorithm SetKeyPair to obtain a pair public key - secret key ((h′

1, h
′
2), (h

′
2)

β′

). Then
SKCA and paramsEXTCBE are given to BII , where SKCA = gα

2 = (h′
2)

β′

and paramsEXTCBE = (U, p, n, G,
G1, e, g, g1 = h′

1, g2 = h′
2, f2,H1), where H1 : {0, 1}∗ → {0, 1}n is a collision resistant hash function. Finally,

C gives to BII , the challenge public key (h1 = g′1, h2 = g′2).

Phase 1 The adversary BII issues queries q1, . . . , qm where each qj is an extraction query for a second level
identity ID = ((periodi, userinfo, PK), I2) and I2 6= I2∗.
Then C asks for the secret key corresponding to (H1(periodi||userinfo||PK), I2) = (I1, I2), and obtains

d(I1,I2) = (d0, d1, d2) = ((g′2)
α′

(u
′ ∏

j∈νI1
uj)

r1F2(I2)r2 , gr1 , gr2) = (hβ
2 (u

′ ∏

j∈νI1
uj)

r1F2(I2)
r2 , gr1 , gr2).

Then C gives to BI the secret key SKID = (d0g
α
2 dαI2

2 , d1, d2). This is a valid secret key, since the fol-
lowing holds:

F2,h1
(I2)r2 = (f2g

I2
1 hI2

1)r2

= F2(I2)r2(gI2
1)r2

= F2(I2)r2(gr2)αI2

= F2(I2)r2dαI2
2

These queries may be asked adaptively, that is, they may depend on the answers to previous queries.

Challenge On challenge query 〈periodi∗, userinfo∗,M0,M1〉, where M0,M1 ∈ M are of equal length, C
checks that userinfo∗ ∈ Λ. If any of these steps fails, it outputs ⊥, else it makes the challenge query
〈M0,M1, I1∗〉, where I1∗ = H1(periodi∗, userinfo∗, (h∗

1, h
∗
2)). To respond to this query, the challenger

flips a fair coin to obtain a random bit b and returns C = Encparams,(I1∗, I2∗)(Mb) = (C1, C2, C3, C4) =

(Me(g′1, g
′
2)

t, gt, (u
′ ∏

j∈νI1∗
uj)

t, F2(I2∗)t) = (Me(h1, h2)
t, gt, (u

′ ∏

j∈νI1∗
uj)

t, F2(I2∗)t). Then adversary

C sets the challenge ciphertext to be C∗ = (C1e(C2, g
α
2), C2, C3, C4(C2)

αI2∗) = (Me(g1, g2)
te(h1, h2)

t, gt,
(u

′ ∏

j∈νI1∗
uj)

t, F2,h1
(I2∗)t).

Phase 2 As in phase 1.

Guess The adversary BII outputs a guess b′ ∈ {0, 1}, and C outputs the same guess.
The view of BII is exactly the same as in the real attack, therefore the theorem follows.

16

8 A new CBE scheme without random oracles

NewCBE

SetupCBE : Input: 1k.
Run IG on input 1k and obtain 〈G, G1, e〉, G, G1 of order p.
Choose g, g2, f2 ← G

∗, α ← Zp. Set g1 = gα ∈ G

Choose u′, u1, . . . , un ← G. Set U = (u′, u1, ..., un). Let H1 : {0, 1}∗ −→ {0, 1}n, H2 : {0, 1}∗ −→ Zp

be two collision resistant hash functions.
Run SetupENC(1k) to generate a string pub of an encapsulation scheme. The space of messages is
G1 and the system parameters are params = (U, p, n, G, G1, e, g, g1, g2, f2,H1,H2, pub). The CA’s
master secret key is SKCA = α.

SetKeyPair Input: params.
The user chooses β ← Zp, h2 ← G and sets h1 = gβ ∈ G. The user’s secret key is SK = (β, hβ

2) and
his public key is PK = (h1, h2).
We define the following function F2,h1

: Zp −→ G as F2,h1
(x) = gx

1hx
1f2.

Certify Input: 〈 params, SKCA, periodi, userinfo, (h1, h2)〉.
Let I1 = H1(periodi||userinfo||(h1, h2)). Pick r ← Zp and output: (Certi0, Certi1) =

(gα
2 (u

′ ∏

j∈νI1
uj)

r, gr).

Enc Input: 〈params, M, i, userinfo, (h1, h2)〉.
(a) Encapsulate a random value r by running S(1k, pub) to obtain (r, com, dec)
(b) Let I2 = H2(com) and I1 = H1(periodi||userinfo||(h1, h2)). Choose t ← Zp and encrypt in the
following way:
Set C = ((M ||dec) e(g1, g2)

te(h1, h2)
t, gt, (u

′ ∏

j∈νI1
uj)

t, F2,h1
(I2)t).

(c) Compute tag = Macr(C).
(d) Send 〈com,C, tag〉.

Dec Input: 〈params, (Certi0, Certi1), (β, hβ
2), C, i, userinfo, (h1, h2)〉, where C =

〈com, (C1, C2, C3, C4), tag〉.
Let I1 = H1(periodi||userinfo||(h1, h2)), I2 = H2(com)
(a) Derive the secret key corresponding to this period and com, by choosing r2 ← Zp

SKcom,i = (d0, d1, d2) = (Certi0h
β
2F2,h1

(I2)r2 , Certi1, g
r2)

(b) Decrypt in the following way:
C1e(d1, C3)e(d2, C4)

e(d0, C2)
=

=
(M ||dec) e(g1, g2)

te(h1, h2)
te(gr, (u′Πj∈νI1

uj)
t)e(gr2 , F2,h1

(I2)t)

e(gα
2 hβ

2 (u′Πj∈νI1
uj)rF2,h1

(I2)r2 , gt)
=

= . . . = M ||dec
(c) Obtain the string r = R(pub, com, dec) and verify if tag = Macr(C). If this is the case, M is the
correct decryption of C, else decryption fails.

8.1 Security Proof: Attack of an uncertified client

It is important to note that this and the following proof are generic, since they do not make use of any
special properties of the underlying schemes.

Theorem Assuming the message authentication code and the encapsulation scheme used in New CBE above
satisfy the security definitions given in sections 5.1 and 5.2, then, if an adversary AI succeeds in time t and

17

with advantage ǫ against the previously defined New CBE, then there is an adversary in game 1 against
ExtendedCBE which succeeds with advantage negligibly close to ǫ and in time t′ ≤ t − Θ(qD), where each
evaluation of the hash function H2, pairing computation in G, and execution of algorithms R and V rfy take
unit time.

Proof

Algorithm BI interacts with algorithm AI as follows:

Init BI runs SetupENC(1k, l(k)) to generate pub, and runs S(1k, pub) to obtain (r∗, com∗, dec∗). BI outputs
com∗ as the second level identity it wants to attack.

Setup The challenger runs SetupEXTCBE(1k) to generate SKCA and paramsEXTCBE . Then paramsEXTCBE

are given to BI . Then AI is given paramsCBE = (paramsEXTCBE ,H2, pub), where H2 : {0, 1} → Zp is a
collision resistant hash function.

Phase 1 AI outputs queries q1, ...qm where each of the qi is:
a) Certification query 〈periodi, userinfo, (h1, h2), (β, hβ

2)〉. To answer this query, BI checks that userinfo ∈

Λ and that 〈(h1, h2), (β, hβ
2)〉 is a valid key-pair. If so, it makes this same certification query to the chal-

lenger.
b) Decryption queries 〈i, userinfo, (h1, h2), (β, hβ

2), com,C, tag〉. BI checks that com 6= com∗ and that

〈(h1, h2), (β, hβ
2)〉 is a valid key-pair. If this is not the case it outputs ⊥, else it makes a second level extrac-

tion query for 〈ID, (β, hβ
2)〉 = 〈((periodi, userinfo, (h1, h2)), I2), (β, hβ

2)〉, where I2 = H2(com). Then BI

obtains the corresponding secret key SKID and uses it to decrypt C, obtain M ||dec and r = R(pub, com, dec)
and V rfyr(C, tag) = 1. If any of these steps fails, BI outputs ⊥.

Challenge On challenge query 〈I1∗, PK∗, SK∗,M0,M1〉 = 〈periodi∗, userinfo∗, (h∗
1, h

∗
2), (β∗, (h∗

2)
β∗),M0,M1〉,

where M0,M1 ∈ M are of equal length, BI checks that userinfo∗ ∈ Λ and that (PK∗, SK∗) is a valid key-
pair. If so, it submits to the challenger the challenge query: 〈I1∗, SK∗,M0 ||dec∗,M1||dec∗〉. The challenger
chooses a random bit b and returns C = Enc(I1∗, I2∗) (Mb ||dec∗); else it returns ⊥. Finally, BI computes
tag∗ = Macr∗(C) and sets the challenge ciphertext to be C∗ = 〈com∗, C, tag∗〉.

Phase 2 As in Phase 1, except that certification queries for 〈periodi∗, userinfo∗, (h∗
1, h

∗
2), (β

∗, (h∗
2)

β∗)〉, are
no longer allowed (but decryption queries for 〈i∗, userinfo∗, (h∗

1, h
∗
2), (β∗, (h∗

2)
β∗)〉 are).

Guess Finally, AI outputs a guess b′ ∈ {0, 1}. This same guess is output by BI .
A ciphertext is valid if it does not lead the simulator to abort in either CBE-game 1 or CBE-game 2 against
NewCBE. Valid1 is the event that AI ever makes a decryption query 〈I1, (β, hβ

2), com∗, C, tag〉 which is valid
where I1 = (periodi, userinfo, (h1, h2)). We implicitly assume that 〈com∗, C, tag〉 6= 〈com∗, C∗, tag∗〉, since
it occurs with only negligible probability before the challenge and it is disallowed after it.
Note that the only difference between the real game and the simulated game is when event Valid1 occurs.

Claim Pr[Valid1] is negligible.

We omit the proof here since it is a paraphrase of the proof of Boneh and Katz, except that now, to answer
decryption queries the simulator is going to make second level extraction queries to the challenger instead of
extraction queries as in the original proof of [9]. We just point out that this follows because of the security
of the encapsulation and the commitment schemes.
Therefore, the theorem follows since:

18

Pr[b′ = b] = Pr[b′ = b|abort]Pr[abort]+Pr[b′ = b|abort]Pr[abort] = (1
2 + ǫ)(1−Pr[Valid1])+ 1

2Pr[Valid1] =
1
2 + ǫ(1 − Pr[Valid1])

8.2 Attack of the certifier

Theorem Assuming the message authentication code and the encapsulation scheme used in New CBE sat-
isfy the security definitions given in sections 5.1 and 5.2, if an adversary AII succeeds in time t and with
advantage ǫ against the previously defined New CBE, then there is an adversary in game 2 against Extend-
edCBE which succeeds with advantage negligibly close to ǫ in time t′ ≤ t−Θ(qD), where it is assumed that
every evaluation of H2, pairing computation in G, execution of algorithm R and V rfy take unit time.

Proof

Algorithm BII interacts with algorithm AII as follows:

Init BII runs SetupENC(1k, l(k)) to generate pub, and runs S(1k, pub) to obtain (r∗, com∗, dec∗). BII out-
puts com∗ as the second level identity it wants to attack.

Setup The challenger runs SetupEXTCBE(1k) to generate SKCA = gα
1 and paramsEXTCBE . It also

runs algorithm SetKeyPair to obtain a challenge public key - secret key pair ((h1, h2), (β, hβ
2)). Then

paramsCBE = (paramsEXTCBE , H2, pub) and SKCA are given to AII , where H2 : {0, 1} → Zp is a collision
resistant hash function. The user’s public key PK = (h1, h2) is also given to AII .

Phase 1 AII outputs queries q1, ...qm where each qi is a decryption query 〈i, userinfo, com, C, tag〉. BII

checks that com 6= com∗. If this is not the case it outputs ⊥, else it makes a second level extraction query
for ID = ((periodi, userinfo, (h1, h2)), I2), where I2 = H2(com). The challenger responds to this query
with the secret key SKID and BII uses it to decrypt C, obtain M ||dec and r = R(pub, com, dec). Then BII

checks that V rfyr(C, tag) = 1. If any of these steps fails, BII outputs ⊥, else it responds to this query with
M .

Challenge On challenge query 〈periodi∗, userinfo∗, M0,M1〉, where M0,M1 ∈ M are of equal length, BII

checks that userinfo∗ ∈ Λ. If so, it submits to the challenger the challenge query: 〈periodi∗, userinfo∗,
M0||dec∗,M1||dec∗〉. The challenger chooses a random bit b and returns C∗ = Enc(I1∗,I2∗) (Mb ||dec∗),
where (I1∗, I2∗) = ((userinfo∗, periodi∗, (h1, h2)), H2(com

∗)). If any of these steps fails, BII returns ⊥.
Finally, BII computes tag∗ = Macr∗(C) and sets the challenge ciphertext to be 〈com∗, C∗, tag∗〉.

Phase 2 As in Phase 1.

Guess Finally, AII outputs a guess b′ ∈ {0, 1}. This same guess is output by BII .

A ciphertext is valid if it does not lead the simulator to abort in either CBE-game 1 or CBE-game 2 against
NewCBE. Valid2 is the event that AII ever makes a decryption query 〈I1, (β, hβ

2), com∗, C, tag〉 which is
valid where I1 = (periodi∗, userinfo∗). We implicitly assume that 〈com∗, C, tag〉 6= 〈com∗, C∗, tag∗〉, since
it occurs with only negligible probability before the challenge and it is disallowed after it.
Note that the only difference between the real game and the simulated game is when event Valid2 occurs.

Claim Pr[Valid2] is negligible.

We omit the proof here since it is again a paraphrase of the proof of Boneh and Katz, except that now, to
answer decryption queries the simulator is going to make second level extraction queries to the challenger

19

instead of extraction queries as in the original proof of [9]. As before, the theorem follows from the preceding
claim.

9 Conclusion

In this paper we show how to use the techniques of Boneh and Katz in order to obtain full security for a
CBE scheme. We reduce the problem to building an ExtendedCBE scheme, which seems a reasonable goal.
If the result of Water is improved, the strategy of our proof could still be used in a straight forward way if
the improved scheme made use of BLS signatures and it could support a second level of any IND-ID-CPA
secure IBE scheme.

References

[1] Al- Riyami and K.G. Paterson. Certificateless public key cryptography. In Adv. In Cryptology - ASI-
ACRYPT 2003, LNCS vol. 2894, pp. 452 - 47, Springer-Verlag, 2003.

[2] Al-Riyami and K.G. Paterson. CBE from CL-PKE: A generic construction and efficient scheme. Public

Key Criptography - PKC 2005, LNCS vol. 3386, pp. 398- 415, 2005.

[3] D.Boneh, B.Lynn and H.Shacham. Short signatures from the Weil Pairing. In Proc. of Asiacrypt 2001,
LNCS vol. 2248, pp. 514-532, Springer-Verlag, 2001.

[4] M. Bellare and A. Palacio. Protecting against Key Exposure: Strongly Key- Insulated Encryption with
Optimal Threshold. Available ar http://eprint.iacr.org/2002/064, 2002.

[5] D.Boneh, C.Gentry, B.Lynn and H.Shacham. Aggregate and Verifiably Encrypted Signatures from the
Weil Pairing. In Adv. in Cryptology - Eurocrypt 2003, LNCS vol. 2248, pp. 514-532, Springer- Verlag,
2003.

[6] D.Boneh and M.Franklin. Identity-Based Encryption From The Weil Pairing, Adv.in Cryptology - Crypto

2001, LNCS vol. 2139, pp.213-229, Springer-Verlag, 2001.

[7] D.Boneh and X.Boyen. Efficient Selective-ID Secure Identity Based Encryption Without Random Ora-
cles, Adv.in Cryptology - Eurocrypt 2004, LNCS vol. 3027, pp. 223-238, Springer-Verlag, 2004.

[8] D.Boneh and X.Boyen. Secure Identity Based Encryption Without Random Oracles, Adv.in Cryptology

- Crypto2004, LNCS vol. 3152, pp. 443-459, Springer-Verlag, 2004.

[9] D.Boneh and J.Katz. Improved Efficiency for CCA-Secure Cryptosystems built using Identity-Based
Encryption. In Proceedings of CT-RSA 2005, LNCS vol. 3376, Springer-Verlag, 2005.

[10] R.Canetti, S.Halevi and J.Katz. Chosen Ciphertext Security from Identity-Based Encryption, Adv. in

Cryptology -Eurocrypt 2004, LNCS vol. 3027, Springer-Verlag, pp. 207-222, 2004.

[11] Y.Dodis and J.Katz. Chosen-Ciphertext Security of Multiple Encryption, Theory of Cryptography Con-

ference - TCC 2005, LNCS vol. 3378, Springer-Verlag, pp. 188-209, 2005.

[12] E. Fujisaki and T.Okamoto, Secure integration of asymmetric and symmetric encryption schemes, Adv.

in Cryptology - Crypto 1999, LNCS vol. 1666, pp. 537- 554, Springer- Verlag, 1999.

[13] C. Gentry. Certificate-Based Encryption and the Certificate-Revocation Problem, Adv.in Cryptology -

Eurocrypt 2003, LNCS vol. 2656, pp. 272-291, Springer-Verlag, 2003.

[14] B.G.Kang and J.H.Park Is it possible to have CBE form CL-PKE? Available at
http://eprint.iacr.org/2005/431, 2005.

20

[15] A.Shamir. Identity-based cryptosystems and signature schemes, Adv. In Cryptology- Crypto 1984, LNCS
vol. 196, pp. 47-53, Springer-Verlag, 1985.

[16] B.Waters. Efficient Identity-Based Encryption Without Random Oracles, Adv. in Cryptology- Eurocrypt

2005, LNCS vol. 3494 , pp. 114-127, Springer-Verlag, 2005.

[17] D.H.Yum and P.J.Lee. Identity-based cryptography in public key management. In EuroPKI 2004, LNCS
vol. 3093, pp. 71- 84, Springer-Verlag, 2004.

21

