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Abstract. This paper provides one more step towards bridging the gap
between the formal and computational approaches to the verification of
cryptographic protocols. We extend the well-known Abadi-Rogaway logic
with probabilistic hashes and we give a precise semantic interpretation
to it using Canetti’s oracle hashes. These are probabilistic polynomial-
time hashes that hide all partial information. Finally, we show that this
interpretation is computationally sound.

1 Introduction

The analysis of security protocols is being carried out mainly by means of two
different techniques. On the one hand, from a logical perspective, messages are
seen as algebraic objects, generated by some grammar from elementary objects
such as keys, nonces, and constants. Cryptographic operations are seen as al-
gebraic operations which are unbreakable. Attackers are typically modelled as
so-called Dolev-Yao attackers [DY83], having total control over the network,
having no computational limitations, and being only (but absolutely) incapable
of breaking cryptographic operations. These logical methods are appealing, be-
cause they are relatively easy to use and capture most mistakes commonly made
in security protocols.

On the other hand, from a complexity-theory perspective, messages are seen
as bit strings and cryptographic operations as functions on bit strings satisfy-
ing certain security properties [Gol01]. An attacker here is a resource bounded
probabilistic algorithm, limited by running time and/or memory, but capable
of breaking cryptographic operations, if that is computationally feasible. The
complexity based methods are more general and more realistic, but also more
complex.

In the last few years much research has been done to relate these two per-
spectives [AR02,AJ01,MW04,Her05]. Such a relation takes the form of a function
mapping algebraic messages m to (distributions over) bit strings [m]. This map
should relate messages that are observationally equivalent in the algebraic world
(meaning that a Dolev-Yao attacker can see no difference between them) to in-
distinguishable distributions over bit strings (meaning that a computationally
bounded adversary can only with negligible probability distinguish the distribu-
tions). Such a map allows one to use algebraic methods, possibly even automated,



to reason about security properties of protocols and have those reasonings be
valid also in the computational world.

The work carried out in the literature on relating these two perspectives
mainly deals with symmetric encryption [AR02,MW04] and public key encryp-
tion [Her05]. Micciancio and Warinschi [MWO04] briefly but explicitly question if
this logical approach can be extended to, among other things, collision resistant
hashes. Backes, Pfitzmann, and Waidner [BPWO06] show that in their simulata-
bility framework [PWO00] a sound interpretation of hashes cannot exist, but that
it is possible to give a sound interpretation of formal hashes in the simulatability
framework using random oracles.

The problem with hashes is that in the algebraic world h(m) and h(m’) are
indistinguishable for a Dolev-Yao attacker if the attacker does not know m and
m/. In the computational world, however, the normal security definition — it
must be computationally infeasible to compute any pre-image of a hash value
or a hash collision [RS04] — does not guarantee that the hash function hides all
partial information about the message; hence there is no guarantee that [h(m)]
and [h(m’)] are computationally indistinguishable. A possible solution to this
can be found in the work of Canetti and others [Can97a,CMR98] on perfectly
one-way functions (a.k.a. oracle hashing). These are computable probabilistic
hash functions that hide all partial information of their input (see Section 3.3
for a definition and an example).

Our contribution. We propose an extension to the commonly used Abadi-
Rogaway logic of algebraic messages introducing a probabilistic hash operator
h"(m) in the logic, next to the probabilistic symmetric encryption operator {m[}.
Just as the original logic introduces a [J-operator to put in place of undecryptable
ciphertext (for us O, since we also deal with repetitions of ciphertexts), we
introduce a X"-operator to put in place of the hash of an unknown message.
In the computational world, we interpret h as a perfectly one-way function and
prove that the resulting interpretation is sound.

It is relatively easy to see that the interpretation of messages like (m, h'(n,0))
and (m,h'(n,1)) are computationally indistinguishable whenever the adversary
can not learn n from m. If, however, the adversary can learn n from m, then the
messages are not observationally equivalent. The main technical difficulty that
has to be overcome is that the adversary can learn part of the argument of the
hash from the context, as for example in the message (k,h'(n, k)).

Overview. Section 2 introduces the message algebra, including the probabilistic
encryption and probabilistic hash operators. It also defines the observational
equivalence relation on messages. Section 3 then introduces the computational
world, giving the security definitions for encryption and hashes. In Section 4 the
semantic interpretation [—] is defined and Section 5 proves the soundness of this
interpretation. Finally, Section 6 discusses further research directions.



2 The algebraic setting

This section describes the message space and the observational equivalence ex-
tending the well-known Abadi-Rogaway logic [AR02] of algebraic messages with
hashes. These messages are used to describe cryptographic protocols and the ob-
servational equivalence tells whether or not two protocol runs are indistinguish-
able for a global eavesdropper. Here a protocol run is simply the concatenation
of all the messages exchanged in the run.

Definition 2.1. Key is an infinite set of key symbols, Nonce an infinite set of
nonce symbols, Const a finite set of constant symbols, and Random an infinite
set of randomness labels. Keys are denoted by k,k’,..., nonces by n,n’,...,
constants by ¢, ¢, ..., and randomness labels by r,7’,.... There is one special
key called kg and for every randomness label r there is a special nonce called ng.
Using these building blocks, messages are constructed using algebraic encryption,
hashing, and pairing operations:

Msg > m = c|k|n|{mlp [ b'(m) [ (m,m) |07 K"

Here k and n do not range over all keys/nonces, but only over the non-special
ones. Special symbols ( " and X") are used to indicate undecryptable cipher-
texts or hash values of unknown messages. When interpreting messages as (en-
sembles of distributions over) bit strings, we will treat 0" as if it were {JOMD
and X" as if it were h'(ng).

A message of the form {m}}, is called an encryption and the set of all such
messages is denoted by Enc. Similarly, messages of the form h"(m) are called hash
values and the set of all these messages is denoted by Hash. Finally Box denotes
the set of all messages of the form (0" or X". The set of all messages that involve
a “random choice” at their “top level”, i.e., Key U Nonce U Enc U Hash U Box, is
denoted by RanMsg.

The closure of a set U of messages is the set of all messages that can be
constructed from U using tupling, detupling, and decryption. It represents the
information an adversary could deduce knowing U.

Definition 2.2 (Closure). Let U be a set of messages. The closure of U, de-
noted by U, is the smallest set of messages satisfying:

1. Const C U;

2. UCU,

3. m,m' €U = (m,m') € U;
4. {m}i, ke U = me U,

5 (m,m/yeU = m,m’ € U.

For the singleton set {m}, we write ™ instead of {m}.

We define the function encpat: Msg — Msg as in Abadi-Rogaway [AR02]
which takes a message m and reduces it to a pattern. Intuitively, this is the



pattern that an attacker sees in a message given that he knows the messages in
U. This function does not replace hashes. Formally, it is defined as follows:

encpat(m) = encpat(m,m)
where
(encpat(mq,U), encpat(ma, U))

{encpat(m,U)}}., if k € U,

encpat({my, ma),U) =

encpat({mfy, U) = OrR{Ambo) otherwise.
) =
) =

h"(encpat(m,U))

m  in any other case.

encpat(h’(m), U
encpat(m, U

Here R : Enc U Hash < Random is an injective function that takes an encryption
or a hash value and outputs a tag that identifies its randomness. We need this
tagging function to make sure that the function encpat is injective. That is, we
need to make sure that distinct undecryptable messages get replaced by distinct
boxes and similarly for hashpat below.

Now we define the function hashpat: Msg — Msg which takes a message m
and reduces all hashes of unknown (not in U) sub-messages, to X. This function
does not replace encryptions. Formally:

hashpat(m) = hashpat(m,m)
where

hashpat({m1, ms), U) = (hashpat(my,U), hashpat(mz, U))
hashpat({ml}}., U) = {hashpat(m,U)}}

- h"(hashpat(m,U)), if m € U;
hashpat(h'(m),U) = {&”I(Z(hr(m)) (m, U1)

hashpat(m,U) =m  in any other case.

otherwise.

Naturally, we now define pattern as pattern = encpat o hashpat.

Example 2.3. Consider the message

m = ({1} b ()}, b (R). k).
Then  hashpat(m) = ({{1}}5,, R }r,h'(k),k),  because n is not in m,
) =

and pattern(m) = ({ 0O° , B [, h'(k), k),  because k is not in 7,

where t = R(h(n)) and s = R({1}%,).

Definition 2.4 (Observational equivalence). Two messages m and m’ are
said to be observationally equivalent, notation m = m/, if there is a type preserv-
ing permutation o of Key U Nonce U Box such that pattern(m) = pattern(m’)o.
Here pattern(m’)o denotes simultaneous substitution of z by o(x) in pattern(m’),
for all x € Key U Nonce U Box.

From the original setting in [AR02] we inherit the requirement that messages
must be acyclic for the soundness result to hold.



Definition 2.5 (Acyclicity). Let m be a message and k, k" two keys. The key
k is said to encrypt k' in m if m has a sub-message of the form {m’}}, with
k' being a sub-message of m/. A message is said to be acyclic if there is no
sequence ki, ko, ..., ky, k1 = ky of keys such that k; encrypts k; 1 in m for all
ie{l,...,n}

3 The computational setting

This section gives a brief overview of the concepts used in the complexity the-
oretic approach to security protocols. Much of this is standard; the reader is
referred to [GB01,BDJR97] for a thorough treatment of the basic concepts, to
[AR02] for the notion of type-0 security for cryptographic schemes (see Sec-
tion 3.2 below), and to [Can97a] for the notion of oracle hashing (see Section 3.3
below).

In the computational world, messages are elements of Str := {0, 1}*. Crypto-
graphic algorithms and adversaries are probabilistic polynomial-time algorithms.
When analyzing cryptographic primitives, it is customary to consider proba-
bilistic algorithms that take an element in Param := {1}* as input, whose
length scales with the security parameter. By making the security parameter
large enough, the system should become arbitrarily hard to break.

This idea is formalized in the security notions of the cryptographic opera-
tions. The basic one, which is what is used to define the notion of semantically
equivalent messages, is that of computational indistinguishability of probability
ensembles over Str. Here a probability ensemble over Str is a sequence {A,}en
of probability distributions over Str indexed by the security parameter.

Definition 3.1 (Computational indistinguishability). Two probability en-
sembles {4, }, and { B, }, are computationally indistinguishable if for every prob-
abilistic polynomial-time algorithm A, for all polynomials p, and for large enough
" 1
Pl & Ay A1 z) = 1] — Plx & B, A(1",2) =1] < —.
p(n)

After a brief interlude on probabilistic polynomial-time algorithms in Section 3.1,
we give the formal definition of an encryption scheme and its security notion in
Section 3.2 and of oracle hashing in Section 3.3.

3.1 Probabilistic algorithms

In Definition 3.1, the notion of probabilistic polynomial-time algorithm was al-
ready used. Because we explicitly use two different views of these algorithms and
in order to fix notation, we give a more precise definition.

Definition 3.2. Coins is the set {0,1}*, the set of all infinite sequences of 0’s
and 1’s. We equip Coins with the probability distribution obtained by flipping
a fair coin for each element in the sequence.



Definition 3.3. The result of running a probabilistic algorithm A on an input
x € Str is a probability distribution A(x) over Str. When we need to explicitly
write the randomness used while running A, we write A(z, p) with p € Coins.
Using this notation, A(z) and [p <& Coins; A(z, p)] are the same probability
distribution. When confusion is unlikely, we will also denote the support of this
probability distribution, {y € Str|P[p < Coins; A(z, p = y)] > 0}, by A(x).

Now suppose that A runs in polynomial time p. Then running A on z cannot
use more than p(|z|) coin flips. Letting Coins,(|,|) denote the uniform probability
distribution on {0, 1}7(#D) we get that the probability distribution A(x) can also
be written as [p < Coinsy(jq)); Az, p)].

3.2 Encryption scheme

For each security parameter 7 € N we let Plaintext, € Str be a non-empty set of
plaintests, satisfying that for each n € N: Plaintext,, C Plaintext,; as in Gold-
wasser and Bellare [GBO1]. Let us define Plaintext = | J, Plaintext,. There is a
set Keys C Str of keys and also a set Ciphertext C Str of ciphertexts. Further-
more, there is a special bit string | not appearing in Plaintext or Ciphertext.
An encryption scheme II consists of three algorithms:

1. a (probabilistic) key generation algorithm I: Param — Keys that outputs,
given a unary sequence of length 7, a randomly chosen element of Keys;

2. a (probabilistic) encryption algorithm &£: Keysx Str — CiphertextU{ L} that
outputs, given a key and a bit string, a possibly randomly chosen element
from Ciphertext or L;

3. a (deterministic) decryption algorithm D: Keys x Str — Plaintext U {L}
that outputs, given a key and a ciphertext, an element from Plaintext or L.

These algorithms must satisfy that the decryption (with the correct key) of a
ciphertext returns the original plaintext. The element L is used to indicate failure
of en- or decryption, although there is no requirement that decrypting with the
wrong keys yields L.

Now we define type-0 security of an encryption scheme as in [AR02], which is
a variant of the standard semantic security definition, enhanced with some extra
properties. In particular a type-0 secure encryption scheme is which-key con-
cealing, repetition concealing and length hiding. We refer to the original paper
for motivation and explanations on how to achieve such an encryption scheme.
The notion of type-0 security makes slightly unrealistic assumptions on the en-
cryption scheme. However our result on hashes does not significantly depend on
the specific security notion for the encryption scheme. As in [MP05,Her05], it is
possible to replace type-0 security by the standard notion of ind-cpa or ind-cca
by adapting the definition of encpat. For simplicity of the exposition, throughout
this paper we adopt the former security notion.

Definition 3.4. An adversary (for type-0 security) is a probabilistic polyno-
mial-time algorithm A7 (=):9(=): Param — {0,1} having access to two prob-
abilistic oracles F,G: Str — Str. The advantage of such an adversary is the



function Adv4: N — R defined by

Adva(n) = Plr, &’ < K(17); ASDEED (1) = 1)
Pli < K(17); AZ(=0)E=0)(1m) = 1],

Here the probabilities are taken over the choice of k and «’ by the key generation
algorithm, over the choices of the oracles, and over the internal choices of A. An
encryption scheme (I, &, D) is called type-0 secure if for all polynomial-time
adversaries A as above, the advantage Adv 4 is a negligible function of 7. This
means that for all positive polynomials p and for large enough 1, Adv 4 (n) < ﬁ.

In the sequel we need an extra assumption on the encryption scheme, namely
that the ciphertexts are well-spread as a function of the coins tosses of £. It means
that for all plaintexts p and all keys k, no ciphertext is exceptionally likely to
occur as the encryption of 1 under k. Note that this does not follow from, nor
implies type-0 security. Also note that every encryption scheme running in cipher
block chaining mode automatically has this property: the initial vector provides
the required randomness.

Definition 3.5 (Well-spread). An encryption scheme (I, &, D) is said to be
well-spread if for every polynomial p,

b

Vn > 1.Vx € Ciphertext.Vk € K(17).Vu € Plaintext, : P[E(k, u) = ] < o
pn

3.3 Oracle hashing

The underlying secrecy assumptions behind formal or Dolev-Yao hashes [DY83]
are very strong. It is assumed that given a hash value f(z), it is not possible for
an adversary to learn any information about the pre-image x. In the literature
this idealization is often modelled with the random oracle [BR93]. Such a prim-
itive is not computable and therefore it is also an idealization. Practical hash
functions like SHA or MD5 are very useful cryptographic primitives even though
this functions might leak partial information about their input. Moreover, un-
der the traditional security notions (one-wayness), a function that reveals half
of its input is considered secure. In addition, any deterministic hash function
f leaks partial information about x, namely f(x). Through this paper we con-
sider a new primitive introduced by Canetti [Can97a] called oracle hashing, that
mimics what semantic security is for encryption schemes. This hash function is
probabilistic and therefore it needs a verification function, just as in a signature
scheme. A hash scheme consists of two algorithms H and V. The probabilistic
algorithm H: Param x Str — Str takes a unary sequence and a message and
outputs a hash value; the verification algorithm V: Str x Str — {0, 1} that given
two messages x and ¢ correctly decides whether c¢ is a hash of x or not. As an
example we reproduce here a hash scheme proposed in the original paper. Let

p be a large (i.e., scaling with 7) safe prime. Take H(z) = (r2,72"®) mod p),



where 7 is a randomly chosen element in Z; and h is any collision resistant hash
function. The verification algorithm V(z, (a,b)) just checks whether b = a/(*)
mod p.

Canetti gives essentially two security notions for such a hash scheme. The
first one, oracle indistinguishability, guarantees that an adversary can gain no
information at all about a bit string, given its hash value (or rather, with suf-
ficiently small probability). The second one is an appropriate form of collision
resistance. It guarantees that an adversary cannot (or rather, again, with suffi-
ciently small probability) compute two distinct messages that successfully pass
the verification test with the same hash value.

Definition 3.6. A hash scheme (H, V) is said to be oracle indistinguishable if for
every family of probabilistic polynomial-time predicates {D,,: Str — {0,1}},en
and every positive polynomial p there is a polynomial size family {L,},en of
subsets of Str such that for all large enough 7 and all z,y € Str\ Ly:

b

PID,(H(1",z)) = 1] = P[D,(H(1",y)) = 1] < o)

Here the probabilities are taken over the choices made by H and the choices
made by D,. This definition is the non-uniform [Gol01] version of oracle indis-
tinguishability proposed by Canetti [Can97a] as it is finally used throughout the
proof (See the full version [Can97b], Appendix B).

Definition 3.7 (Collision resistance). A hash scheme (H,V) is said to be
collision resistant if for every probabilistic polynomial time adversary A, the
probability

Plic, z,y) < A(1");z # y AV(2,¢) = V(y, c) = 1]

is a negligible function of 7.

4 Interpretation

Section 2 describes a setting where messages are algebraic terms generated by
some grammar. In Section 3 messages are bit strings and operations are given by
probabilistic algorithms operating on bit strings. This section shows how to map
algebraic messages to (distributions over) bit strings. This interpretation is very
much standard. We refer to [AR02,AJ01,MW04] for a thorough explanation. In
particular this section introduces notation that allows us to assign, beforehand,
some of the random coin flips used for the computation of the interpretation of
a message. This notation becomes useful throughout the soundness proof.

Definition 4.1. For every message m and set of messages V' we define the set
R(m, V) C RanMsg of random messages in m relative to V as follows: if m € V|



then R(m, V) = ), otherwise

R(e, V) =10 R({mfy, V) =R(m, V) U {k, {m[}

R(n,V) = {n} R(h'(m), V) = R(m, V) U{h'(m)}

R(k, V) ={k} R((m1, m2),V) =R(m1,V)UR(mg, V)
R(O", V) = {kg,0"} R(X", V) = {ng, X"}

The set of random messages in m is defined as R(m) := R(m, ) and the set of
random messages in m relative to m’' as R(m, m’) := R(m, {m’}).

Note that R(m) is nearly equal to the set of all sub-messages of m that are in
RanMsg; the only difference is that R(m) also may contain the special key kg or
special nonces ng. When interpreting a message m as (ensembles of distributions
over) bit strings (Definition 4.4 below), we will first choose a sequence of coin
flips for all elements of R(m) and use these sequences as source of randomness
for the appropriate interpretation algorithms.

Also note that R(m,m’) is the set of all random messages in m except those
that only occur as a sub-message of m’ (see Definition 4.5 below).

Example 4.2. Let m be the message (k,{](][}};,hT/({IO[};,n),n’) and let m be
the message inside the hash: ({0}},n). Then the randomness in m is R(m) =
{k, {]Oﬂz,hrl({JO[]L’,;,n),n’,n}, the randomness inside the hash is R(m) = {{0}}.
k,n}, and the randomness that occurs only outside the hash is R(m, hrl(ﬁl)) =
R(m) \ {hr/(ﬁl),n}. The randomness that is shared between the inside of the
hash and the outside of the hash is R(m, h" (m)) N R(m) = {{0}7}.

Definition 4.3. For every finite set X we define Coins(X) as {r: X — Coins}.
We equip Coins(X) with the induced product probability distribution. Further-
more, for every message m we write Coins(m) instead of Coins(R(m)).

An element of 7 of Coins(m) gives, for every sub-message m’ of m that requires
random choices when interpreting this sub-message as a bit string, an infinite
sequence 7(m’) of coin flips that will be used to resolve the randomness.

Now we are ready to give semantic to our message algebra. We use £ to
interpret encryptions, K to interpret key symbols, and H to interpret for hashes.
We let C: Const — Str be a function that (deterministically) assigns a constant
bit string to each constant identifier. We let A': Param — Str be the nonce
generation function that, given a unary sequence of length 7, chooses uniformly
and randomly a bit string from {0, 1}".

Definition 4.4. For a message m, a value of the security parameter n € N, a
finite set U of messages containing R(m), and for a choice 7 € Coins(U) of (at
least) all the randomness in m, we can (deterministically) create a bit string



[m];, € Str as follows:

[e];, = C(e) H{mbil,

|
™

([£1;,, Iy, 7({mbe)

[£];, = K17, 7(k)) [L7(m)];, = HA, [m];, 7("(m)))
[n];, = N (17, 7(n)) 0715, = €Ikl €(0), (@)
[(m1, m2)];, = [mall; [mal;, ¥, = HA", [ngl,, 7(R7).-

Note that [m]; = [[mﬂTlR(m). For a fixed message m and n € N, choosing 7 from
the probability distribution Coins(R(m)) creates a probability distribution [m],
over Str:

[m], = [ & Coins(m); [m;)-

Note that although the codomain of 7 € Coins(m) is Coins, the set of infinite
bit strings, when interpreting a fixed message m at a fixed value of the security
parameter 7, only a predetermined finite initial segment of each sequence of coin
flips will be used by K, N, €, and H (cf. Definition 3.3). Denoting by Coins,, (m)
the probability distribution (on {7: R(m) — Str}) that is actually being used
when computing [m][,, we could also write

[m], = [+ < Coins, (m); [ml}].

Furthermore, letting n range over N creates an ensemble of probability distribu-
tions [m] over Str, namely [m] := {[m], },en.

Definition 4.5. We will also need a way of interpreting a message as a bit
string when the interpretation of certain sub-messages has already been chosen
in some other way. For this, let e be a function from some set Dom(e) C Pat
to Str and let 7 € Coins(U, Dom(e)) with U a finite set of messages containing
R(m). We interpret a message m using e whenever possible and 7 otherwise: if
m € Dom(e), then [m];"" = e(m), otherwise

[e,” =C(o) {mlil, ™ = EXEL, Il " 7({mb3)

[K]," = K17, 7(k)) [W(m)[," = HA", ], 7(b'(m)))
[n]}," = N7, 7(n)) [0, = E(kal, ™. €(0), 7(@")
[(m1, m2)];" = [l " [mal)” 0,7 =HA, [ng], ", 7(=7)).

Definition 4.6. We also need a way of pre-specifying some of the random
choices to be made when interpreting a message. For this, let 7 € Coins(U)
for some finite set of messages U. Then for every n € N and every message m,
the distribution [[m}]; is obtained by randomly choosing coins for the remaining
randomness labels in m. Formally,

[m]], = [7' < Coins(R(m) \ U); [m]["" ],

where 7 U7’ € Coins(m) denotes the function which agrees with 7 on U N R(m)
and with 77 on R(m) \ U.

10



This can also be combined with the previous way of preselecting a part of the
interpretation. For a function e from a set Dom(e) C Pat to Str and 7 € Coins(U)

as above, we define [m[" := [+ < Coins(R(m) \ U); [m];;™""].

5 Soundness

This section shows that the interpretation proposed in the previous section is
computationally sound. Throughout this section we assume that the encryp-
tion scheme (K, &, D) is type-0 secure (or ind-cca with encpat modified as in
[Her05,MPO05]) and well-spread, and that the probabilistic hash scheme (H, V)
is oracle indistinguishable and collision resistant.

The following lemma uses all these assumptions. It claims that if you pre-
specify some, but not all, of the sequences of coins to be chosen when interpreting
a message m, then no single bit string x is exceptionally likely to occur as the
interpretation of m.

Lemma 5.1 Let m be a message, U & R(m). Let p be a positive polynomial.
Then
. 1
¥ > 1.¥7 € Coins(U).Vzx € Str : Plo < [m];; 0= 2] < o)
pn
Proof. The proof follows by induction on the structure of m. See the full version
of this paper [GROG].

Theorem 5.2 Let m be a message with a sub-message of the form h'(m). As-
sume that m ¢ m. Take m' = m[h'(m) = K®], where s = R(h'(m)). Then

[m] = [m].

Proof. Assume that [m] # [m'], say A: Param x Str — {0, 1} is a probabilistic
polynomial-time adversary and p a positive polynomial such that

1

ooy < Bl & Iml,; AQ7 ) = 1] = Plu < [m] s A", p) =1] (1)
for infinitely many n € N. We will use this to build a distinguisher as in Defini-
tion 3.6 that breaks oracle indistinguishability of (H, V).

Let n € N, abbreviate R(m,m) NR(m) to U and let 7 € Coins(U). Note that
7 chooses coin flips for the randomness that occurs both inside and outside
the hash. Then define a probabilistic polynomial-time algorithm D7 : {0,1}* —
{0,1} as follows.

algorithm D7 (a):
5 (h(m)—a},T
p— [m];,

B A, p)
return (3

11



.
U
or from [X°]} = [[hs(n%)]]:7 It does so by computing an interpretation for m

This algorithm tries to guess if a given bit string o was drawn from [h"(m)]

as follows. The sub-message h'(m) is interpreted as «; the randomness that is
shared between the inside of the hash (m) and the rest of the message is resolved
using hard-coded sequences of coin flips 7. It then uses the adversary A to guess
if the resulting interpretation was drawn from [m] (in which case it guesses
that o was drawn from [h'(m)],) or from [m/], (in which case it guesses that
o was drawn from [X°] ).

Even though 7 has values in Coins, i.e., infinite strings, this is still a well-
defined probabilistic polynomial-time algorithm, as it uses only a finite, prede-
termined amount of bits from 7 (cf. Definitions 3.3 and 4.4). However, (17, ) —
D,T](a) would not be a well-defined probabilistic polynomial-time algorithm.

Now consider one of the infinitely many values of 7 for which (1) holds. Using
D7 we can rephrase (1) as follows:

1 $ . $ AT DT () = 11—
m < Plr « Coins,(U),a < [h (m)]]n,Dn( ) =1]
P[r < Coins, (U), a <~ [R°]7: D] (@) = 1]
> (Plo < R Dy(e) = 1]-
T€Coins, (U)
Pla & [®°]7; D} (a) = 1]) P[T & Coins, (U); T = 7]
= Y (Pla< bl Dp(A7 @) = 1)-
T€Coins, (U)

Pl < [ngl}; Dy (H(1",0)) =1]) - PIT < Coins, (U); T = 7].

Note that 7 selects the randomness that is shared between the inside of the hash
and the outside of the hash; when « is drawn from [m]] the randomness that
appears only inside the hash is chosen (and the assumption on m means that
there is really something to choose); H chooses the randomness for taking the
hash; and D7 itself resolves the randomness that appears only outside the hash.
This means that there must be a particular value of 7, say 7,, such that

1 $ 1T, DT 7T Q) = 1] — ai nSlm- n 7 o)) =
o) < Pla— [m])"; Dy"(H(1", o)) = 1] = Pla < [ng];"; Dy (H(1", ) = 1] (2)

Gathering all D;" together for the various values of 7, let D be the non-
uniform adversary {D;"},en. Note that we have not actually defined D," for
all 7, but only for those (infinitely many) for which (1) actually holds. What D
does for the other values of 7 is irrelevant.

We will now show that D breaks the oracle indistinguishability of (H, V). For
this, let L = {L,},en be a polynomial size family of subsets of Str. We have to
show that for infinitely many values of 7, there are z,y € Str \ L, such that D
meaningfully distinguishes between H (17, x) and H(1",y).

12



Once again, take one of the infinitely many values of n for which (1) holds.
Continuing from (2), a short computation (see the full version of this paper
[GRO6]) gives

! 1 T o)) = 1] — T n _
o <m 2 (o) =0 -F0p o) = 1)

petmgliiiy P[]} = o] - Pllnal}" = 6] 3)

Now suppose that for all o € [[ﬁl]];" \ L, and all 8 € [[n%]];” \ L, we have

T 7 1
P[DI" (H(17,a)) = 1] = P[D]" (H(17, B)) = 1] < )
Then, continuing from (3), we get a contradiction:
! ! 1 5177 = al - PlinS ™ =
oo <mm T X apuy P = el Bkl = 4]

ag[m]y " \Ly
BEMRIT\Ly

1 1 i )
= —+ — PﬁlTn:a'PnS -r,,]:ﬁ
2p(n) — 2p(n) Z (], ] - P[[n&l,, ]
a€lm];"\Ly
56[[71%]];77\Ln
1 1
< —+—.
2p(n) — 2p(n)

Therefore, there must be an z € [[rh]]:’ \L,anday € [[nfg]];’ \ L, such that

1 _ _
—— <P[D"(H(1",z)) =1] —=P[D"(H(1",y)) = 1].
5000) (D (H(",z)) = 1] = P[D;"(H(1",y)) = 1]
Hence D breaks oracle indistinguishability, contradicting the assumption on
(H, V). O

Theorem 5.3 (Abadi-Rogaway) Let m be an acyclic message. Suppose that
for every sub-message h'(m) of m, m € m.Then [m] = [encpat(m)].

Proof. The proof follows just like in Abadi-Rogaway [AR02]. Interpreting hashes
here is straightforward because their argument is always known, by assumption.
We refer the reader to the original paper for a full proof. a
Theorem 5.4 (Soundness) Let m and m' be acyclic messages. Then m =
m' = [m] = [m'].

Proof. The assumption that m = m’ means that there is a permutation o of
Key U Nonce U Box such that pattern(m) = pattern(m’)o. Therefore we get
[pattern(m)] = [pattern(m’)]. By definition of pattern, [encpat o hashpat(m)] =
[encpat o hashpat(m')]. Now, by applying Theorem 5.3 two times, we obtain
[hashpat(m)] = [hashpat(m')]. Finally, by repeatedly applying Theorem 5.2 on
both sides we get [m] = [m/]. O
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6 Conclusions and future work

We have proposed an interpretation for formal hashes that is computationally
sound. For the proof we considered non-uniform adversaries and the assumption
that the encryption scheme is type-0 secure and well-spread and that the hash
scheme is oracle indistinguishable and collision resistant. This paper considers
passive adversaries. It would be interesting to study whether this result can be
extended to active adversaries. Another interesting research direction would be
proving completeness for this extended logic.
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