Cryptographic hash functions
from expander graphs

Denis X. Charles!, Eyal Z. Goren?, and Kristin E. Lauter!

! Microsoft Research, One Microsoft Way, Redmond, WA 98052
cdx@microsoft.com, klauter@microsoft.com
2 Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St.
W., Montreal H3A 2K6, QC, Canada. goren@math.mcgill.ca

Abstract. We propose constructing provable collision resistant hash
functions from expander graphs. As examples, we investigate two spe-
cific families of optimal expander graphs for provable hash function con-
structions: the families of Ramanujan graphs constructed by Lubotzky-
Phillips-Sarnak and Pizer respectively. When the hash function is con-
structed from one of Pizer’s Ramanujan graphs, (the set of supersingular
elliptic curves over 2 with {-isogenies, £ a prime different from p), then
collision resistance follows from hardness of computing isogenies between
supersingular elliptic curves. We estimate the cost per bit to compute
these hash functions, and we implement our hash function for several
members of the LPS graph family and give actual timings.

1 Introduction

With the untimely demise of SHA-1, NIST is soliciting proposals for new
cryptographic hash functions to standardize. The goal is to construct an
efficiently computable hash function which is collision resistant. We call
it a provable hash if to compute a collision is to solve some other well-
known hard problem such as factoring or discrete log, for example as
in the scheme proposed in [5]. We propose constructing provable cryp-
tographic hash functions from expander graphs. The input to the hash
is used as directions for walking around a graph, and the ending vertex
is the output of the hash function. Our construction can be applied to
any expander graph, but we give here two families of optimal expander
graphs, and investigate the efficiency and collision resistance properties
of these two families. The two families are the Ramanujan graphs con-
structed by Pizer and Lubotzky-Phillips-Sarnak (LPS) respectively. Ra-
manujan graphs are optimal expander graphs and thus have excellent
mixing properties.

When constructing a hash function from the Ramanujan graph of su-
persingular elliptic curves over F,2 with {-isogenies, £ a prime different
from p, as in Pizer ([14]), computing collisions is at least as hard as com-
puting isogenies between supersingular elliptic curves. This is believed
to be a very difficult problem (see Section 6 below), and the best known
algorithm currently known solves the problem in square-root time. Thus
we propose to set p to be a 256-bit prime, to get 128 bits of security

from the resulting hash function. To compute the hash function from
Pizer’s graph when ¢ = 2 requires roughly 2log(p) field multiplications
per bit of input to the hash function. This is relatively inefficient com-
pared to other provable hash functions such as [5], but our construction
has the advantage that the output of our hash function is log(p) bits,
and efficiency may be improved with optimizations.

Hash functions from LPS graphs are more efficient to compute than those
from Pizer’s graphs. Applying our construction gives a hash function sim-
ilar to the one proposed by Zémor and Tillich [19], [20]. Finding collisions
reduces to a another problem which is also believed to be difficult (see
Section 7). To compute the hash function requires only 7 field multipli-
cations per bit of input, but the field size may need to be bigger (1024
bit prime p instead of 256 bits, for example), and the output is 4 log(p)
bits. We have implemented this hash function for primes of varying size
and we give unoptimized timings in Section 7.

2 Background and Definitions

Hash functions. A hash function maps bit strings of some finite length
to bit strings of some fixed finite length, and must be easy to compute.
We are concerned in this paper with unkeyed hash functions which are
collision resistant. Unkeyed hash functions do not require a secret key to
compute the output.

Expander graphs. Let G = (V| E) be a graph with vertex set V' and
edge set . We will deal with undirected graphs, and say a graph is k-
regular if each vertex has k edges coming out of it. An expander graph
with N vertices has expansion constant ¢ > 0 if for any subset U C V of
size |U| < &, the boundary I"(U) of U (which is all neighbors of U minus
all elements of U) has size |I'(U)| > c|U|. An alternate definition of the
expansion constant requires that for any subset U C V, the boundary
union all elements of U has size satisfying:

\FW)UU | > min{(1 + o)|U], % 1)

It follows from the second definition that any expander graph is con-
nected.

There is also an algebraic way to define the expansion property of a
graph. The adjacency matrix of an undirected graph is symmetric, and
therefore all its eigenvalues are real. For a connected graph, GG, the largest
eigenvalue is k, and all others are strictly smaller ([7, Lecture 9, Fact 5.6,
5.7]). Order the eigenvalues as follows:

k>pi 2 p2 22 pn-1.

Then the expansion constant ¢ can be expressed in terms of the eigen-
values as follows: ([3])
c> 72("{: =) .
- 3k — 21

Therefore, the smaller the eigenvalue p1, the better the expansion con-
stant. A theorem of Alon-Boppana says that for an infinite family X, of
connected, k-regular graphs, with the number of vertices in the graphs
tending to infinity, that liminf p1(X,,) > 2v/k — 1. This motivates the
definition of a Ramanujan graph, a k-regular connected graph which sat-
isfies p1 < 24/k — 1. A family of k-regular Ramanujan graphs is optimal
with respect to the size of ;.

3 Construction of a hash function from an
expander graph

The use of expander graphs to produce pseudo-random behaviour is well-
known to complexity theorists. The idea here is to use expander graphs
to produce hash functions which are collision-resistant. We give two ex-
amples of such graphs in the following sections.

Roughly speaking, the input to the hash is used as directions for walking
around a graph (without backtracking), and the output of the hash func-
tion is the ending vertex of the walk. For a fixed hash function, the walk
starts at a fixed vertex in the given graph. A family of hash functions can
be defined by allowing the starting vertex to vary. We execute a walk on
a k-regular expander graph by breaking the input to the hash function
into chunks of size e, so that 2° = k — 1. Starting at the first vertex, each
step of the walk chooses an edge emanating from that vertex to follow
to get to the next vertex. At each step in the walk, the choice of the
edge to follow is determined by the next e bits of the input. We do not
allow backtracking in the walk, so only k& — 1 choices for the next edge
are allowed at each step. Variations could allow input to be written in
base b, so that other choices for £ would be allowable. Alternatively, e
could be chosen such that 2° < k — 1.

A random walk on an expander graph mixes very fast so the output of the
hash function will be uniform provided the input was uniformly random.
The output of a random walk on an expander graph with N vertices
tends to the uniform distribution after O(log(NN)) steps ([7, Lecture 10,
Cor 6]).

4 Pizer’s Ramanujan graphs

The graphs. We first define the family of graphs ([14]). Let p and £ be
two distinct prime numbers. Define the graph G(p, £) to have vertex set,
V, the set of supersingular elliptic curves over the finite field F,2. An
elliptic curve over a finite field of characteristic p is supersingular if it
has no p-torsion over any extension field. Elliptic curves which are not
supersingular are called ordinary. The property of being supersingular
can be recognized from the Weierstrass equation of the curve [17, Chapter
5, Thm 4.1]. Furthermore, supersingular elliptic curves are all defined
over Fpz.

We label vertices with their j-invariants, which can be computed directly
from the curve equation and are a priori elements of 2. The number of

vertices of G(p, £) is | {5] +¢, where € € {0, 1,2} depending on the congru-
ence class of p modulo 12 (loc cit). Later we will impose p = 1 (mod 12),
in which case € = 0. Since there are roughly p/12 distinct j-invariants, we
will choose a linear congruential function to map j-invariants from F 2
injectively into F,, for the output of the hash function. Thus the output
of the hash funtion will be just log(p) bits. We propose to use a graph of
cryptographic size p ~ 2256,

The edge set F is as follows: there is an edge between the vertices F1
and Es if there is an isogeny of degree ¢ between them. An isogeny is
a morphism of elliptic curves which takes the identity element to the
identity (for background on isogenies see [17, Chapter 3, Section 4]).
For separable isogenies, to have degree £ means to have kernel of size /.
Actually, we can identify isogenies with their kernels, and the isogeny
itself can be computed using Vélu’s formulas [18] from the knowledge of
the subgroup of size £. To take a step in a walk on the graph, we compute
isogenies as in [6, Algorithm 1] by explicitly writing down generators for
the (rank 2) ¢-torsion and listing the £+ 1 subgroups of order £. It follows
from this that the graph G(p,¥) is (£ 4+ 1)-regular. More details follow
below.

The Ramanujan property of this graph follows from the fact that the
adjacency matrix (called the Brandt matrix) gives the action of the £*"
Hecke operator on the space of weight 2 cusp forms of level p. So the
bound on the eigenvalues follows from the corresponding result for mod-
ular forms (the Ramanujan-Petersson conjecture).

Walking around the graph. Let C be a subgroup of F, Vélu in
[18] gives explicit formulas for determining the equation of the isogeny
E — E/C and the Weierstrass equation of the curve E/C. We give the
formulas when ¢ is an odd prime. Let E be given by the equation

y2 +ai1xy +azy = z? + a2x2 + a4 + as.

We define the following two functions in Fy(E). For Q = (z,y) a point
on E — {O}, define

“(Q) = 322 + 2001 + ag — a1y

g
¢’ (Q) = =2y — a1z — a3,

and set

Qe(c—{o})

Then the curve E/C is given by the equation
Y2+ A1XY + AsY = X° + A2 X7 + AuX + Ae

where

Al = a1,A2 = a2,A3 = as,

Ay = aq — 5t,A6 = ag — (a% =+ 4a2)t — Tw.

From the Weierstrass equation of E/C we can easily determine the j-
invariant of E/C. We apply Vélu’s formulas for subgroups of order /¢,
and it is clear that this procedure can be done using O(¢) elliptic curve
operations for each of the ¢ + 1 groups of order /.

5 Efficiency

Here are the steps to compute the output of the hash function when
using supersingular elliptic curves and 2-isogenies. Since there are 3 edges
emanating from each vertex, and no backtracking is allowed in a walk,
from each vertex, there are two choices of which edge to follow next,
and this can be determined by 1 bit as follows. Start at a vertex Fj.
Subgroups of E; of order 2 are each given by a single two-torsion point
on the elliptic curve E; : y? = f(x). The 3 non-trivial 2-torsion points
are P; = (x;,0), where the cubic f(z) factors as

(x —z1)(x — z2)(x — x3)

over an extension field of degree at most 2. As an example, when com-
puting the isogeny ¢ which corresponds to taking the quotient by (P;),
both of the other 2-torsion points are mapped to the same 2-torsion point
¢(P2) = ¢(P3) on the isogenous elliptic curve, Ea. In turn, the isogeny
which corresponds to taking the quotient of E2 by the subgroup gener-
ated by ¢(P») is the dual isogeny QE and leads back to E1. So to choose the
next step from Fo, it suffices to choose between the two other 2-torsion
subgroups different from (¢(P2)). An efficient way to determine the 2
new 2-torsion points on Ej is to keep #1, the z-coordinate of ¢(P1), and
to factor (x — #1) out of the new cubic f2(z), leaving a quadratic to be
factored. The roots of the quadratic can be ordered according to some
convention, and one bit suffices to choose between them for the next step
in the walk. So if the input bit length is n, then the hash function takes
a walk of length n steps.

So summarizing, each vertex corresponds to an elliptic curve E; given by
an equation y> = f;(x), where f;(z) is a cubic. To compute the 2-torsion
subgroups at each step, factor the cubic f;(z). At each step, calculate
the 2-torsion by keeping the image of the other 2-torsion point (not used
to quotient by), and then factoring the quadratic. After ordering, choose
which one to quotient by and apply Vélu’s formulas (field operations in
F, or Fp2).

Cost per bit of input to the hash function:
1. Find the 2-torsion:
a. Apply the isogeny from the previous step to one point: 7 field
multiplications.

b. Factor out the linear factor from the cubic f;(x): one field inver-
sion.
c. Factor the quadratic by completing the square and taking a square
root: roughly (3/2)log(p) field multiplications plus a field inversion
if p=3 (mod 4). If p Z3 mod 4, then one can do this with 2logp
multiplications in a residue ring of Fy[z] (Cippola’s method). The
construction of the residue ring requires log p random bits.
2. Order the 2-torsion.
3. Use Vélu to obtain the equation of the next elliptic curve: 9 field
multiplications.
In addition, at the first vertex, the cubic defining the curve must be
factored, and at the last step, computing the j-invariant requires several
field multiplications and 1 field inversion.
An estimate of total cost can be made by estimating a field inversion as
5 field multiplications (and as usual not counting field additions). Here
we did not distinguish which field multiplications occur in [F, and which
occur in 2, but that is at most a factor of 2 difference. Also, the above
is not optimized, so there may be better ways to do some of the steps.
Summary of efficiency of the hash function under these assumptions: cost
per bit in terms of field multiplications is roughly 2log(p).

6 Collision resistance

Explicitly finding a collision in this hash function is equivalent to finding
two isogenies of the same ¢-power degree between a pair of supersingular
elliptic curves. If the graph G(p,¢) does not have small cycles then this
problem is very hard, since constructing isogenies of large degree between
curves is a well-known computationally hard problem, as we explain be-
low. We will put restrictions on the congruence class of the prime p to
ensure that there are no short cycles in the graph as follows.

To find to distinct paths from E to E’, each of length n, is to give two
isogenies of degree (", f,g : E — E’. In this case £"g~'f will be an
endomorphism of degree £2" of E. The degree map is a rank 4 quadratic
form, which can also be described as the Norm map on a maximal order
in a quaternion algebra. The endomorphism ring (over F;) of a supersin-
gular elliptic curve is isomorphic to an order in the quaternion algebra
B = Bj,« over Q ramified only at p and oo ([17, Chapter 5, Theorem
3.1]). However, the best known algorithms for determining the endomor-
phism ring of a supersingular elliptic curve as a maximal order in B are
exponential in p ([4]).

By choosing p carefully relative to £ we can ensure that there are no cycles
of length n for n in a given interval [0, S]. A non-trivial cycle of length 2n
in the graph of ¢-isogenies implies that the norm form of some maximal
order in B represents £2" in a non-trivial way (i.e. not as the norm of £").
If the cycle corresponds to an element x of norm ¢*" then that implies
that the quadratic polynomial X2 —Tr(z)X 4Norm(z) is irreducible, and
so that p is ramified or inert in the field defined by the polynomial. To
illustrate this, take £ = 2 and n = 1. Then we consider X2 — Tr(z)X 4 4.
Since b? —4ac < 0, the trace must satisfy Tr(z) € {—3, -2, —1,0,1,2,3},

so the field determined by the polynomial is Q(v/—1), Q(+/=3), Q(+/=7),
or Q(v/—15). One then just needs to make sure p splits in all these
fields, which by quadratic reciprocity is a congruence condition. So in this
example it is enough that p =1 (mod 4),p =1 (mod 3),p =1 (mod 7),
and p = 1 (mod 5), so if p is congruent to 1 modulo 3-4-5-7 = 420
then there are no cycles of length 2. This idea can be applied in general
to make sure there are no short cycles in the graph.

Producing two isogenies of the same ¢-power degree between two elliptic
curves is a special case of finding an isogeny of a given ¢-power degree
between two given elliptic curves. Starting at any elliptic curve, one
can take a walk on the graph (corresponding to an isogeny) to arrive at
another elliptic curve. Then the task is to produce another isogeny of the
same degree between those two elliptic curves. Thus collision resistance
for the graph of supersingular elliptic curves can be viewed in several
ways.

1. Heuristically in analogy with the ordinary case, which we know is
hard. In [10], Galbraith gives an algorithm to find an isogeny be-
tween two given ordinary, isogenous elliptic curves which runs in
time O(p3/2 log(p)) assuming the Riemann hypothesis for imaginary
quadratic fields. He notes that a similar algorithm to solve the same
problem for supersingular elliptic curves runs in time O(plog(p)).
The ordinary case can also be described in another language as solv-
ing a discrete log problem in class groups of imaginary quadratic
number fields, which has been well-studied. Although subexponen-
tial index calculus methods apply ([11]), taking quadratic orders with
large discriminants makes the problem as hard as factoring integers
of that size ([12]). Note the difference between the ECDLP situation
and here: problems on supersingular elliptic curves are not neces-
sarily easier than the corresponding problems on ordinary elliptic
curves. In fact, for our problem, there is no class group to work in
in the supersingular case, and the degree map is a rank 4 quadratic
form instead of rank 2 (see the next point).

2. Finding vectors of a given norm in a lattice. Problem: Given two
supersingular elliptic curves over F,2, to find two f-power isogenies
between them of the same degree £". As explained above, this can
also be described as finding a vector of a given norm in a lattice,
namely End(E) with the degree map defining a positive definite rank
4 quadratic form. This problem seems to be hard in general. For ex-
ample, the related problem of finding a vector of Le-norm bounded
by a given quantity in a lattice is NP-hard under randomized reduc-
tions (see [1]).

3. Random walks on optimal expander graphs. The Pollard Rho attack
will succeed in expected time O(,/p). Thus taking p ~ 2*°¢ would
give roughly 128 bits of security against this attack.

7 LPS Ramanujan graphs

An alternative to using the graph G(p, ¢) is to use the Lubotzky-Phillips-
Sarnak expander graph ([13]). We describe that graph below. Let £ and

p be two distinct primes, with £ a small prime and p relatively large. We
also assume that p and ¢ are such that £ = 1 (mod 4) and /¢ is a quadratic
residue (mod p) (this is the case if £P~Y/2 = 1 (mod p)). We denote
the LPS graph, with parameters £ and p, by X, ,. We define the vertices
and edges that make up the graph X, , next. The vertices of X, , are
the matrices in PSL(2,F,), i.e. the invertible 2 X 2 matrices with entries
in F, that have determinant 1 together with the equivalence relation
A = —A for any matrix A. Given a 2 X 2 matrix A with determinant 1,
our name for the vertex will be the 4-tuple of entries of A or those of —A
depending on which is lexicographically smaller in the usual ordering of
the set {0,...,p — 1}4. We describe the edges that make up the graph
next. A matrix A is connected to the matrices gA where the g’s are
the following explicitly defined matrices. Let ¢ be an integer satisfying
i* = —1 (mod p). There are exactly 8(¢ + 1) solutions (go, g1, 92, g3) to
the equation
9 +91 +95+ g5 =L

Among these there are exactly £+ 1 with go > 0 and odd and g; even
for j = 1,2, 3. To each such (go, g1, 92,93) we associate the matrix

g= go+191 g2 + 193
—g2 +1i93 go —ig1/)

This gives us a set S of £+ 1 matrices in PGL(2,F,), but their determi-
nants are squares modulo p and hence they lie in the index 2 subgroup
of PGL(2,F,) namely, PSL(2,F,). It is a fact that if ¢ is in .S then so is
¢~ 1. Furthermore, since £ is small, the set of matrices in S can be found
by exhaustive search very quickly.

This is an example of a Cayley graph. Given a group G and a subset
G1 C G (normally a generating set) one constructs a graph whose nodes
are the elements of G and for every g € G1 the nodes z,y have an edge
corresponding to g if x = gy or y = gx.

Collision resistance.

The problem of collision resistance is essentially the problem of explicitly
calculating the product of generators giving the shortest cycle on the
graph. In Sarnak, ([16, §3.4.1]), one finds that the calculation of the
girth amounts to finding the minimal ¢ such that ¢* is represented by the
quadratic form

g9 + 4p°g1 +4p°gs + 4p°g3
subject to the condition that at least one of g1, g2, g3 is not zero. The
argument there shows that ¢t > 2log, p. Since finding the minimal cy-
cle as a product solves the representability problem in O(t) operations
and provides an explicit solution, the problem of calculating the mini-
mal cycle cannot be easier than the representability problem, which is
considered hard (as discussed in Section 6). We remark (loc cit. §3.3)
that the girth of the LPS graph is essentially optimal; for example, it
is larger than the girth of a random graph, and in loc cit. is claimed to
be the (asymptotically) largest known. Thus, one does not expect the
problem of finding a shortest cycle in the LPS graphs to be easier than

the problem for a general homogeneous ¢-regular graph, which is widely
agreed to be hard. To support this, the arguments sketched in ([20] §2.3)
to argue that it is hard to find collisions for their hash function also apply
to our construction with the LPS graph.

Timings. A walk of length 1000, takes 0.188 seconds for p a 1024-
bit prime with £ = 5 on a 64-bit HP Workstation xw9300, Opteron
252/2.6GHz using Visual C++ and the NTL library without optimiza-
tions. The input is divided into chunks of size log(¢). One disadvantage
seems to be that 4 elements of F,, take 4log(p) bits to represent, and if
log(p) is about 1024, then this is too much. For a 128-bit prime p with
¢ =5, a walk of length 1 million requires only 14.312 seconds. One step of
walk on this graph costs 8 field multiplications (or 7 if we use Strassen’s
method), so estimating the time required to do a field multiplication as
« gives a direct estimate of the time required to compute the hash per
bit of input as 7a.

8 Related work

Another proposal for using the hardness of lattice reduction problems
can be found in the trapdoor one-way function defined by Goldreich,
Goldwasser, and Halevi. In [9], the authors propose a public-key cryp-
tosystem based on the hardness of finding the closest lattice vector to
a given vector in a vector space. The system had the disadvantage that
for security parameter k-bits, the key size needed was O(k2) bits while
the running time was O(k?). Ajtai and Dwork (in [2]) proposed a public-
key cryptosystem based on the hardness of finding the shortest vector
in a lattice. This system had an even worse relation between the secu-
rity parameter and the key-size. In particular, for security parameter of
k-bits, the key size and running time were both O(k*). However, this
was the first system that was based on a hard problem known to have
the Worst-case to Average-case connection. In other words, if there was
an efficient algorithm to solve the shortest vector problem on average,
then the worst case problem also admitted an efficient algorithm. Our
proposal (using the Pizer graphs) differs from these constructions in the
sense that the lattices are implicitly present, and the translation to the
lattice formulation itself seems to be hard.

The work of Zémor and Tillich is more closely related to our second
construction of the hash function. They propose using the standard gen-
erators for the group SL(2,F2n) and doing a walk on the resulting Cayley
graph to define a hash function. In spirit, this is very similar to our ap-
proach; however, there are a few key differences. The first is that we work
with the group PSL(2,F,) and the second and more crucial difference is
that we use a set of expanding generators for defining the Cayley graph.
Consequently, the distribution properties of the final vertex in the walk
can be analyzed using the rapid mixing properties of random walks on
expanders. A related proposal was also made by Goldreich [8], where
he suggested using expander graphs such as the LPS graph to construct
one-way functions.

An interesting application of our scheme is given in a paper of Quisquater
and Joye ([15]). The authors point out that the scheme of Zémor and
Tillich has a nice property which they term the concatenation property:
the signature scheme satisfies the following Sign(x|y) = Sign(z)*Sign(y),
where z|y refers to the concatenation of the messages x and y and the
product is computed on the group PSL(2, F}). To satisfy the concatena-
tion property in our scheme, we would always start at the identity matrix
and use the generators as determined by the input string. This property
is used for authenticating sequences, and there is some application to
signing video images.

References

1. Ajtai, M.; The Shortest Vector Problem in Lo is NP-hard for Ran-
domized Reductions (Extended Abstract), ACM Symposium on The-
ory of Computing (STOC), 1998, 10-19.

2. Ajtai, M.; Dwork, C.; A Public-Key Cryptosystem with Worst-
Case/Average case Equivalence, In 29th ACM Symposium on The-
ory of Computing, 284-293, 1997.

3. Alon, N.; Figevalues and Expanders, Combinatorica 6(1986), 83-96.

4. Cervino, J.M.; On the correspondence between supersin-
gular elliptic curves and mazimal quaternionic orders,
http://arxiv.org/abs/math/0404538.

5. Contini, S.;. Lenstra, A.K.; Steinfeld, R.; VSH, an Ef-
ficient and Provable Collision Resistant Hash Function.
http://www.eprint.iacr.org/2005/193.

6. Charles, D.; Lauter, K.; Computing Modular Polynomials, London
Math. Soc., Journal of Computational Mathematics, Vol. 8, pp.
195-204 (2005).

7. Goldreich, O.; Randomized methods in Computation, Lecture Notes.
http://www.wisdom.weizmann.ac.il/ oded/rnd-sum.html

8. Goldreich, O.; Candidate One-Way Functions Based on Ezrpander
Graphs, 2000.

9. Goldreich, O.; Goldwasser, S.; Halevi, S.; Public-Key Cryptosys-
tems from Lattice Reduction Problems, Advances in Cryptology -
CRYPTO ’97. Lecture Notes in Computer Science, vol. 1294, Pages
112-131, Springer-Verlag, 1997.

10. Galbraith, S.; Constructing isogenies between elliptic curves over
finite fields, London Math. Soc., Journal of Computational Mathe-
matics, Vol. 2, pp. 118-138 (1999)

11. Hafner, J. L.; McCurley, K. S.; A rigorous subexponential algorithm
for computation of class groups. Journal of the American Mathe-
matical Society 2 (1989), 837-850.

12. Hamdy, S.; Moller, B.; Security of Cryptosystems Based on Class
Groups of Imaginary Quadratic Orders T. Okamoto (Ed.): Ad-
vances in Cryptology ASTACRYPT 2000, Springer-Verlag LNCS
1976, pp. 234-247.

13. Lubotzky, A.; Phillips, R.; Sarnak, P.; Ramanujan graphs. Combi-
natorica 8 (1988), no. 3, 261-277.

14.

15.

16.

17.

18.

19.

20.

Pizer, A.K.; Ramanujan Graphs and Hecke Operators, Bulletin of
the AMS, Volume 23, Number 1, July 1990.

Quisquater, J.-J.; Joye, M.; Authentication of sequences with the
SL2 hash function: Application to video sequences, Journal of Com-
puter Security, 5(3), pp. 213-223, 1997.

Sarnak, P.; Some Applications of Modular Forms, Series: Cambridge
Tracts in Mathematics 99, Cambridge University Press, 1990.
Silverman, Joseph, H.; The Arithmetic of Elliptic Curves, Graduate
Texts in Mathematics, 106, Springer-Verlag, 1986.

Vélu, Jacques; Isogénies entre courbes elliptiques, C. R. Acad. Sc.
Paris, 273, 238-241, 1971.

Zémor, G.; Hash functions and Cayley Graphs, Designs, Codes and
Cryptography, 4, 381-394, 1994.

Zémor, G.; Tillich, J.-P.; Hashing with SL2, Advances in Cryptol-
ogy, Crypto’94, Lecture Notes in Computer Science, Vol. 839, 1994.

