
Improving the Decoding Efficiency of Private

Search

George Danezis and Claudia Diaz

K.U. Leuven, ESAT/COSIC,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium.
(george.danezis, claudia.diaz)@esat.kuleuven.be

Abstract. We show two ways of recovering all matching documents,
in the Ostrovsky et al. Private Search [3], while requiring considerably
shorter buffers. Both schemes rely on the fact that documents colliding in
a buffer position provide the sum of their plaintexts. Efficient decoding
algorithms can make use of this property to recover documents never
present alone in a buffer position.

1 Introduction

Rafail Ostrovsky et al. [3] have presented a scheme that allows a server to filter
a stream of data, based on keywords, and only return the resulting documents
without learning the query string. In this way searching can be outsourced, and
only relevant results have to be returned, economizing on communications costs.
The authors show that the communication cost is linear on the number of results
expected. We extend their scheme to improve its efficinecy considerably by using
more efficient coding and decoding techniques.

In this paper we show how to modify the basic scheme to support such en-
codings and present two techniques that require shorter buffers for the same
probability of recovering all returned matches. The first, simplest and very prac-
tical technique allows us to use buffers that are twice the size of the expected
number of matching documents. The second technique allows for documents
to be recovered from even shorter buffers, but it is sensitive to the number of
non-matching documents searched. This makes it less practical. It is of histori-
cal relevance that similar schemes have been used before by Michael Wainer and
Birgit Pfitzmann to addapt DC-nets [1] and make them resistant to collisions [5].

2 Private Search

We shall start by briefly describing the private search [3] scheme. The scheme is
based on the properties of the homomorphic Pallier public key cryptosystem [4],
in which the multiplication of two ciphertext leads to the encryption of the sum
of the correspondence plaintexts (E(x) · E(y) = E(x + y)). Constructions with
El-Gamal [2] are also possible but do not allow for full recovery of documents.

2 George Danezis and Claudia Diaz

The searching party provides a dictionary of terms and a corresponding Pal-
lier ciphertext, that is the encryption of one (ti = E(1)), if the term is to be
matched, or the encryption of zero (t′i = E(0)) if the term is of no interest. Be-
cause of the semantic security properties of the Pallier cryptosystem this leaks
no information about the matching criteria.

The dictionary ciphertexts corresponding to the terms in the document dj

are multiplied together to form gj =
∏

k tk = E(E [Number of matching terms]).

A tuple (gj , g
dj

j) is then computed. The second term will be an encryption of
zero (E(0)) if there has been no match, and the encryption E(gkdj) otherwise.

Each document tuple is then multiplied into a set of l random positions in
a buffer (of smaller size b than the number of documents) that has all positions
initialized with tuples (E(0), E(0)). The documents that are not matched do not
contribute to changing the contents of these positions in the buffer (since zero
is being added to the plaintexts), but the matches do.

Collisions will occur when two matching documents are inserted at the same
position in the buffer. These collisions can be detected by adding some redun-
dancy to the documents. The color survival theorem [3] can be used to show that
the probability that all copies of a single document are overwritten becomes neg-
ligibly smaller as the number of l copies and the size of the buffer b increases (the
suggested buffer length is b = 2 · l · m). The searcher can decode all positions,
ignoring the collisions, and dividing the second term of the tuples by the first
term to retrieve the documents.

3 Reducing Uncertainty

A prerequisite for more efficient decoding schemes is to reduce the uncertainty
of the party that performs the decoding. At the same time the party performing
the search should gain no additional information than in the original scheme. To
make sure of this we note that all modifications to the original scheme involve
only information flows from the searching party back to the matching party, and
therefore cannot introduce any additional vulnerabilities in this respect.

The party performing the matching provides two additional pieces of infor-
mation to the party that has requested the searching. First it needs to provide
the total number of documents that were searched (not matched since this in-
formation is hidden), and a mapping of all searched documents to the buffer
positions they were inserted.

In practice a good hash function can be agreed by both parties or fixed by
the protocol, that given the size of the buffer b and the number of searched
documents is used to produce the mapping. For example, a hash function H :
[0, (s · l)−1] → [0, b−1], where b is the buffer size, s is the number of documents
and l the number of copies, can be used. To determine the position in the buffer
of the ith copy of document j, one can just calculate H(i · j − 1).

A more generic solution would be for the searching party to provide the
decoding party a fresh nonce, used to feed the pseudo-random number generator
used to make any ‘random’ choices. Care must be taken in this case that the

Improving the Decoding Efficiency of Private Search 3

decoding party can reconstruct all the random choices and map them reliably
to their corresponding encoding actions.

Finally we require the plaintext of each document to contain the serial num-
ber of the document, a number from 0 to s − 1, where s is the total number of
searched documents.

4 Making the Best out of Collisions

Given the minor modifications above we note that a much more efficient decoding
algorithm can be used, that would allow the use of smaller buffers for the same
recovery probability.

Our key intuition is that collisions are in fact not destroying all information,
but merely adding together the encrypted plaintexts. This property can be used
to recover some plaintext if the values of the other plaintexts that it collides
with are known.

Fig. 1. An example mapping of five documents into 3 buckets (with 2 copies each.)

Two decoding algorithms are possible. Both model the returned buffer as a
bipartite graph (as illustrated in figure 1): One set of edges represents documents
and the other set of edges represents positions in the buffer. We draw vertexes
connecting the document edges with the positions in the buffer in which they
are held. The first very simple algorithm is based on removing known edges from
a graph, and the second, sightly more complex, is based on solving systems of
simultaneous equations.

4.1 Decoding by Removing Known Edges

The decoder can discern three states of a particular buffer position: whether it
is empty, contains a single document, or contains a collision. In the case of it

4 George Danezis and Claudia Diaz

containing a single document its serial number can also be recovered, since we
require it to be included in the plaintext.

Our algorithm proceeds as follows: One removes from the graph the edges
corresponding to documents in buffer positions that are empty. Then one recovers
documents that are contained in buffer positions with only one document. The
remaining documents in these buffer positions can also be removed from the
graph since they contain empty documents. When removing an edge, all vertexes
associated with it are also removed. This means in practice, that the plaintext of
the recovered document is substracted from all other buffer positions containing a
copy of this document. This hopefully uncovers some buffer positions containing
only one document. This simple algorithm is repeated multiple times until all
documents are recovered or no more progress can be made.

Simulation results are presented in figures 2 and 3. Figure 2 illustrates how
the recovery rate changes with the size of the buffer. The recovery rate is defined
as the fraction of messages that can be recovered using our techniques out of the
100 matching documents. For the purposes of this experiment we have set the
number of copies to 5 (a good choice as we shall see). Note that the probability
of recovery is very high (nearly one) for a buffer size that is double from the
number of matches (200 in this example). This is a considerable improvement,
of a factor l, over the original proposal.

100 120 140 160 180

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recovery rate for different buffer sizes

Buffer size

R
ec

ov
er

y
ra

te

Fig. 2. Recovery rate for different buffer sizes. (1000 samples, 100 matches, 5 copies.)

Improving the Decoding Efficiency of Private Search 5

Figure 3 illustrates the effect of different number of copies on the retrieval
rate of the documents. We observe that too few or too many copies, reduce the
recovery rate of documents. In the first case not enough copies of the document
are present to guarantee retrieval by insuring [3] that at least one copy is alone in
the buffer. In the latter case too many documents are inserted, which lowers the
probability that any document is found on its own in the buffer. We note that
for our parameters 5 copies seems to provide optimal recovery (and hence the
parameter of our previous experiment). The original claim in [3], that recovery
becomes better as the number of copies increases may also mislead implementers.
This is only the case if one assumes a buffer of infinite size – and therefore an
optimal parameter for the number of copies has to be calculated for each set of
practical values of buffer size and expected matches.

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recovery rate for different number of copies

Number of copies

R
ec

ov
er

y
ra

te

Fig. 3. Recovery rate for different number of copies. (1000 samples, 100 matches, 200
buffer places.)

Further efficiency improvements are possible in this scheme. For instance we
can do without the need for any additional communication, of the allocation
graph or the inclusion of the serial number in the documents themselves. The
party performing the matching generates the positions of each document in the
buffer by hashing, using a good hash function, each document’s contents and
using the result as a seed for a random number generator. In case the document is
in a buffer position on its own, the searching party can recover its contents, hash

6 George Danezis and Claudia Diaz

it and determine the positions of the other copies. Our protocol then continues
as before, but with no need to know the full graph in advance – it is instead
generated as the decoding makes progress. There is no need to have access to a
serial number or the total number of documents in advance.

Yet additional information – allowing us to extract the number of documents
as well as the serial number of each retrieved document – allows for better
recovery, as we see in the next section.

4.2 Decoding by Solving Simultaneous Equations

The graph representing the assignments of document copies into buckets, as well
as the end resulting buffer, can also be modeled as a system of simultaneous
equations. Each equation represents a buffer position, and therefore there are
at most b equations. Each document that has a copy in this buffer position is a
variable in the equation, and their sum should equal the value of the bucket.

As an example, Figure 1 represents a mapping of five documents d1, . . . , d5

into three buckets b1, . . . , b3. The corresponding set of equations would be:

d1 + d2 + d3 = b1 (1)

d2 + d4 + d5 = b2 (2)

d1 + d3 + d4 + d5 = b3 (3)

It is clear that this set of equations cannot be solved in the general case – there
are more variables than equations. It is only because some documents are actually
represented by zero (since they do not match) that the number of variables can
be reduced. This reduction is performed by applying the heuristics presented in
the previous section. If after applying these heuristics we are left with a number
of equations (i.e. buckets that contain more than one document) that is equal
or higher to the number of unknown variables (representing documents), we can
solve the system and retrieve the documents.

For a certain number of matching documents m and a certain number of non-
matching documents d we can calculate the most probable number of decoded
messages after we apply the heuristic decoding. This number is also dependent
on the replication factor l and the number of buckets b. The analysis is simple:

– A bucket that contains no document or one document can be recognized as
such, and all other documents that have copies in this buffer position can
be tagged as non-matches (and assigned a value of zero). We first calcu-
late the probability p(0 or 1) a buffer position contains one or zero matching
documents:

p(0 or 1) = b ·

[

(

b − 1

b

)lm

+
lm

b

(

b − 1

b

)lm−1
]

(4)

– For a non matching document to be excluded it should only have copies in
buckets that contain more than one matching document. The probability

Improving the Decoding Efficiency of Private Search 7

punknown of this happening to an individual non-matching document, given
l copies, is:

punknown = (1 − p(0 or 1))
l (5)

– We define an indicator random variable for each non matching document
Ii, with probability of taking a value of 1 equal to punknown. By linearity of
expectation we know that:

µ = E [
d

∑

Ii] =
d

∑

E [Ii] = d · punknown (6)

The expectation µ is the expected number of undetected non-matching doc-
uments after the first stage of the heuristic decoding.

The above calculation is a conservative estimate of the decoding efficiency
for two reasons. Firstly it does not take into account that the distribution into
buffer positions is done without replacement. This makes it more likely for a non-
matching document to be in a bucket that would allow it to be detected as such.
Second, only the very first stage of heuristic decoding is taken into account, when
actually the process is repeated until the set of equations cannot be simplified
further. This, as we have seen in the previous section, will often lead to complete
recovery, but would also reduce further the number of non-matching documents
that are left unknown.

It is important to note that if only matching documents were to be returned
all of them would be recoverable (since there are as many unknown documents
as buffer positions we could simply solve the equations.) It is only because of the
non-matching documents, that have to be identified as such, that the difficulty
occurs. Figure 4 illustrates the number of non-matching documents that can be
tolerated, given different buffer sizes, to still be able to retrieve all 100 matching
documents (the replication factor is 5). When there are exactly as many buffer
positions as matching documents, we expect this number to be zero (adding any
further documents would lead to s system of equations with more unknowns
than equations). As the number of buckets increases we can use the ‘spare’
equations to tolerate and detect more and more non-matching documents. After
a buffer size of about 160 we expect our heuristic technique, presented above, to
decode more messages, so that the number of tolerated non-matching documents
becomes infinite.

The experimental procedure used to produce figure 4 is as follows: for each
set of parameters of buffer size, we ran 1000 experiments. In each experiment
we performed first the heuristic decoding to establish the remaining number of
unknown documents, and the number of equations that were available. We then
used equation 6 to estimate the number of non-matches that this balance of non-
decoded documents versus number of equations could still decode. The average
number of such non-matches is plotted for each value of the buffer size.

8 George Danezis and Claudia Diaz

100 110 120 130 140 150

0
50

10
0

15
0

20
0

25
0

Non−matching documents tolerated for full recovery

Buffer size

N
on

−
m

at
ch

in
g

do
cu

m
en

ts

Fig. 4. Number of tolerated non-matching documents to achieve decoding (1000 sam-
ples, 100 matches, 5 copies.)

5 Open Issues and Conclusions

Following the original proposal we have assigned document copies pseudo-randomly
into the buffer. Yet we also see that the distribution of the document copies in
the buffer affects the decoding efficiency. It might be the case that a different
graph is more appropriate to maximize the number of positions that are empty
or populated by only one matching document, and minimizing the probability
that the set of resulting equations cannot be solved.

Our simulations suggest that our schemes achieve a significant efficiency im-
provement over the original proposal. The size of the buffer that needs to be
transferred has been reduced from 2lm to 2m to allow for full recovery using
our heuristic scheme (m is the number of matching documents, l is the number
of copies). As an example, to retrieve 100 documents we need a buffer of 200
positions instead of 1000! We have also uncovered some sensitivity to the number
of copies l used, and suggest that implementers need to pay special attention:
too few or too many copies will decrease the decoding efficiency of the scheme.

Our technique based on solving simultaneous equations is more expensive
(inverting a matrix is about O(n3)), but is very effective – it will decode docu-
ments even if no singleton copy is available. On the downside this technique is
too sensitive to the presence of non-matching documents, and is therefore less
practical.

Improving the Decoding Efficiency of Private Search 9

Deriving analytic results about the recovery probabilities and the non-matching
document tolerance of both schemes remains an open problem.

Acknowledgments. We are indebted to our colleagues Andrei Serjantov and
Paul Syverson for insightful discussions about the decoding schemes and Anna
Lysyanskaya for giving us early positive feedback on the feasibility of our schemes.
We are also grateful to the organizers of the Dagstuhl seminar on “Anonymous
Communication and its Applications”, Shlomi Dolev, Rafail Ostrovsky and An-
dreas Pfitzmann as well as all the staff of the school for providing such a pro-
ductive as well as pleasant environment.

References

1. David Chaum. The dining cryptographers problem: Unconditional sender and re-
cipient untraceability. J. Cryptology, 1(1):65–75, 1988.

2. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In CRYPTO, pages 10–18, 1984.

3. Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data. In
Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science,
pages 223–240. Springer, 2005.

4. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

5. Michael Waidner and Birgit Pfitzmann. The dining cryptographers in the disco -
underconditional sender and recipient untraceability with computationally secure
serviceability (abstract). In EUROCRYPT, page 690, 1989.

A Some simulation code

import random

import sets

from Numeric import *

from LinearAlgebra import *

def exp(numbin,matches,leng,eqsolve=False):

First fill the bins with numbers

bins = {}

bn = {}

for i in range(matches):

bn[i] = random.sample(xrange(numbin),leng)

for j in bn[i]:

try:

bins[j] += [i]

except:

bins[j] = [i]

Now start removing!

ret = [] # List to return

Recovered = sets.Set()

10 George Danezis and Claudia Diaz

while True:

lone = [bins[i][0] for i in bins.keys() if len(bins[i])==1]

s = sets.Set(lone)

Recovered = Recovered.union(s)

ret += [len(s)]

Stop if there is nothing to remove

if len(s) == 0:

break

Otherwise remove the lone ones

for r in s:

for rl in bn[r]:

bins[rl] = [x for x in bins[rl] if x is not r]

Calculate the number of equations...

u = matches - len(Recovered)

eq = len([bins[i] for i in bins.keys() if len(bins[i])>1])

if not eqsolve:

return ret, sum(ret), u, eq

Lets try to solve it by solving the equations...

if u > 0 and u <= eq: # A necessary condition to solve the problem

matrix = []

col = []

fullbins = [bins[i] for i in bins.keys() if len(bins[i])>1]

for b in fullbins:

row = []

for i in range(matches):

if not i in Recovered:

if i in b:

row += [1]

else:

row += [0]

assert len(row) == (matches - len(Recovered))

Now we are going to reduce the matrix in size

if len(col) < u:

col += [[sum(b)]]

So far we have fewer equations than unknowns so keep going.

matrix += [row]

else:

now we need to ’fold’ the new equation in an older one!

s = random.sample(xrange(u),1)[0] # choose an equation

matrix[s] = [r+n for (r,n) in zip(matrix[s],row)] # Add the new row to an older one

col[s] = [col[s][0] + sum(b)]

try:

m = array(matrix) # the equations

mInv = inverse(m)

c = array(col) # the vector of values

z = matrixmultiply(mInv,c)

return ret, sum(ret), u, eq

except LinAlgError, e:

print ’Singular matrix’

print e

Improving the Decoding Efficiency of Private Search 11

return ret, sum(ret), u, eq

def Medexp(numbin,matches,leng, t):

s = 0

sq = 0

sqnum = 0

for i in range(t):

(ret, sret, u, eq) = exp(numbin,matches,leng)

s += sret / matches

here we can also estimate the recovery rates if we solved the equations

In particular we can tolerate a certain number of additonal documents

tolerance = (float(eq) / numbin)**leng

if not (tolerance == 1 or eq < u or tolerance == 0):

d = float(eq - u) / tolerance

sq += d

sqnum += 1

if sqnum == 0:

sq = 0

else:

sq = float(sq)/ sqnum

return float(s) / t, sq

