
Finding Low Degree Annihilators for a Boolean

Fun
tion Using Polynomial Algorithms

Vladimir Bayev

∗

Abstra
t. Low degree annihilators for Boolean fun
tions are of great interest in


ryptology be
ause of algebrai
 atta
ks on LFSR-based stream 
iphers. Several

polynomial algorithms for 
onstru
tion of low degree annihilators are introdu
ed in

this paper. The existen
e of su
h algorithms is studied for the following forms of

the fun
tion representation: algebrai
 normal form (ANF), disjun
tive normal form

(DNF), 
onjun
tive normal form (CNF), and arbitrary formula with the Boolean op-

erations of negation, 
onjun
tion, and disjun
tion. For ANF and DNF of a Boolean

fun
tion f there exist polynomial algorithms that �nd the ve
tor spa
e Ad(f) of all
annihilators of degree 6 d. For CNF this problem is NP-hard. Nevertheless author

introdu
es one polynomial algorithm that 
onstru
ts some subspa
e of Ad(f) having
formula that represents f .

Keywords. Boolean fun
tion, low degree annihilator, polynomial algorithm, re
ursive

algorithm.

Algebrai
 immunity is an important 
ryptographi
 
hara
teristi
 of a Boolean fun
tion. Low

algebrai
 immunity of a fun
tion means that this fun
tion has an annihilating multiplier of low

algebrai
 degree. The problem of annihilator seeking was initially dis
ussed in [3℄ and [5℄.

Let F2 be the �eld of two elements, Vn = F
n
2 be the ve
tor spa
e of n-tuples over F2, Fn

be the set of all fun
tions F
n
2 → F2. By deg f denote algebrai
 degree of a Boolean fun
tion

f ∈ Fn. A Boolean fun
tion g ∈ Fn is 
alled an annihilator of f ∈ Fn if f · g = 0. We shall use

the following notation:

Ad(f) := {g ∈ Fn|f · g = 0, deg g 6 d}.

In [5℄ two algorithms for 
omputation of Ad(f) are introdu
ed. First of them is deterministi


and has 
omplexity that bounded from above by some polynomial in 2n
. The other algorithm

is probabilisti
. Its time of 
omputation has the mathemati
al expe
tation that bounded from

above by some polynomial in n. But this algorithm has nonzero probability of wrong result.

Besides, the algorithm assumes qui
k random a

ess to input data.

In this paper we introdu
e several deterministi
 algorithms su
h that their 
omplexity

bounded from above by some polynomial in n and in length of a fun
tion representation.

∗
Mos
ow State University, the Fa
ulty of Computational Mathemati
s and Cyberneti
s, vbayev�yandex.ru

1



We parameterize fun
tions from Fn by words of �nite length in alphabet {0, 1}. This means

that for some set of words Yn ⊂ {0, 1}∗ we 
onsider a map ϕn : Yn → Fn. In these terms, a

Boolean fun
tion is determined by some pair (n, y), where n ∈ N, y ∈ Yn. We shall use only

"reasonable" maps ϕn. There should exist a polynomial algorithm with input (n, y, x) (here

n ∈ N, y ∈ Yn, x ∈ Vn) su
h that this algorithm 
omputes the value ϕn(y)(x).

Theorem 1. ([2℄) Let y be a list of all monomials in polynomial representation of a Boolean

fun
tion fy ∈ Fn, i. e., fy is equal to the sum of all monomials from the list y. Then there

exists an algorithm with the following features. This algorithm has input (n, d, y), it 
omputes

a basis of the ve
tor spa
e Ad(fy), and its time 
omplexity is O(My · (S
d
n)3), where My is the

number of monomials in the list y and Sd
n =

∑d

k=0
Ck

n.

Proposition 1. For arbitrary f1, f2 ∈ Fn the following relations of ve
tor subspa
es of Fn

hold:

Ad(f1) + Ad(f2) ⊂ Ad(f1 · f2),

Ad(f1 + 1) + Ad(f2 + 1) ⊂ Ad(f1 ∨ f2 + 1),

Ad(f1) ∩ Ad(f2) = Ad(f1 ∨ f2),

Ad(f1 + 1) ∩ Ad(f2 + 1) = Ad(f1 · f2 + 1).

The proof is straightforward.

For x, α ∈ Vn, x = (x1, . . . , xn), α = (α1, . . . , αn) we denote

xα :=
n

∏

i=1

xαi

i ,

where

xαi

i :=

{

xi,

1,
αi = 1
αi = 0.

Also, by Bn,d denote the set {f ∈ Fn| deg f 6 d}.

Theorem 2. There exists an algorithm with the following features. The input of this

algorithm is DNF (disjun
tive normal form) that 
orresponds to a fun
tion f ∈ Fn. The

output of this algorithm is a basis of the ve
tor spa
e Ad(f). Finally, the time 
omplexity of

this algorithm is bounded from above by some polynomial in n and in length of DNF.

Proof. For any α ∈ Vn we 
an 
ompute a basis B of the ve
tor spa
e Ad(x
α) using the

algorithm from theorem 1. It takes O
(

(Sd
n)3

)

bit operations. Ea
h basis ve
tor b ∈ B is

represented in the form of b's 
oordinates in monomial basis of Bn,d. Let σ ∈ Vn be an arbitrary

ve
tor. Consider the map ϕσ : Bn,d → Bn,d that is given by the formula ϕσ(g)(x) = g(x + σ).
It is 
lear that for any g ∈ Ad(x

α) its image ϕσ(g) belongs to Ad((x + σ)α). Moreover, ϕσ gives

isomorphism Ad(x
α) ∼= Ad((x + σ)α). The linear map ϕσ has the matrix Φσ of size Sd

n × Sd
n. It

is easy to 
onstru
t a polynomial algorithm that 
omputes this matrix. Thus {Φσ · b|b ∈ B} is

the basis of Ad((x + σ)α). So, we 
an obtain polynomial algorithm that 
omputes the basis of

Ad((x + σ)α).

2



Let f ∈ Fn be represented in the form of DNF:

f(x) =
T
∨

k=1

(x + σk)αk

,

where σk, αk ∈ Vn (k = 1, ..., T ). Then by proposition 1,

Ad(f) =
T
⋂

k=1

Ad

(

(x + σk)αk

)

.

Therefore, having bases of Ad

(

(x + σk)αk

)

, we 
an 
ompute a basis of Ad(f) via methods of

linear algebra. The time 
omplexity of su
h algorithm is bounded from above by polynomial

in n and in T . ¥

Theorem 3. Let f ∈ Fn be represented in the form of CNF (
onjun
tive normal form).

Consider the problem of 
omputing of a basis of Ad(f), having CNF of f . We 
laim that for

every d > 0 this problem is NP-hard.

Proof. It is 
lear that

f = 0 ⇔ Ad(f) = Bn,d ⇔ dim Ad(f) = Sd
n.

Thus the problem of 
omputing of a basis of Ad(f), having CNF of f , is polynomial-time

redu
ible to CNF-satis�ability problem, whi
h is NP-
omplete. ¥

Now, let a Boolean fun
tion f ∈ Fn be given by a formula F su
h that this formula 
onsists

of symbols of variables, bra
kets, and the Boolean operations ¬, &,∨. We want to sear
h for low

degree annihilators re
ursively. Sometimes we shall repla
e the operation ¬ by "+1". Let F ′

be some subformula of F , f ′
be the Boolean fun
tion that 
orresponds to F ′

. In this notation,

for every subformula F ′
we shall obtain a pair of ve
tor spa
es

Gd(f
′) ⊂ Ad(f

′ + 1), Hd(f
′) ⊂ Ad(f

′), (1)

These ve
tor spa
es are given by their basis fun
tions. As above, ea
h basis fun
tion is repre-

sented in the form of its 
oordinates in monomial basis of Bn,d.

In the leaves of re
ursion tree we have the fun
tions of the form fi(x1, . . . , xn) = xi. In

this 
ase, there exists an algorithm su
h that its time 
omplexity is polynomial in n and this

algorithm 
omputes bases of the following ve
tor spa
es:

Ad(xi + 1) = {g · xi|g ∈ Fn, g does not depend on xi, deg g 6 d − 1},

Ad(xi) = {g · (xi + 1)|g ∈ Fn, g does not depend on xi, deg g 6 d − 1}.

Therefore, we 
an assign Gd(fi) := Ad(fi + 1), Hd(fi) := Ad(fi).
Let a subformula be of the form f ′ = f1 + 1 = ¬f1. Suppose re
ursive 
ondition (1) holds

for the fun
tion f1. Then, if we make the following assignments

Hd(f
′) := Gd(f1),

3



Gd(f
′) := Hd(f1),

re
ursive 
ondition (1) holds for the fun
tion f ′
.

Let a subformula be of the form f ′ = f1 · f2. Suppose (1) holds for the fun
tions f1 and f2.

By de�nition, put Gd(f
′) := Gd(f1) ∩ Gd(f2), Hd(f

′) := Hd(f1) + Hd(f2). Using proposition 1

and re
ursive 
ondition (1) for f1 and f2, we obtain

Gd(f
′) ⊂ Ad(f1 + 1) ∩ Ad(f2 + 1) = Ad(f1 · f2 + 1) = Ad(f

′ + 1),

Hd(f
′) ⊂ Ad(f1) + Ad(f2) ⊂ Ad(f1 · f2) = Ad(f

′).

Finally, let a subformula be of the form f ′ = f1 ∨ f2. Suppose (1) holds for the fun
tions f1

and f2. By de�nition, put Gd(f
′) := Gd(f1) + Gd(f2), Hd(f

′) := Hd(f1)∩Hd(f2). Again, using
proposition 1 and re
ursive 
ondition (1) for f1 and f2, we obtain

Gd(f
′) ⊂ Ad(f1 + 1) + Ad(f2 + 1) ⊂ Ad(f1 ∨ f2 + 1) = Ad(f

′ + 1),

Hd(f
′) ⊂ Ad(f1) ∩ Ad(f2) = Ad(f1 ∨ f2) = Ad(f

′).

We 
an use this re
ursive algorithm to 
ompute bases of the ve
tor subspa
es Gd(f) ⊂
Ad(f + 1), Hd(f) ⊂ Ad(f). It is easy to 
he
k that the time 
omplexity of this algorithm is

polynomial in n and in length of the formula F .

But this algorithm has a drawba
k. The ve
tor subspa
es Gd(f), Hd(f) might be equal to

{0}, while Ad(f + 1) and Ad(f) are nontrivial. In some 
ases the in
lusion Ad(f1) + Ad(f2) ⊂
Ad(f1 · f2) is the equality. The remaining part of this paper 
ontains two theorems about this

property.

Theorem 4. Let f1, f2 ∈ Fn be nonzero a�ne fun
tions su
h that f1 6= f2 and f1 6= f2 + 1.
Then the ve
tor spa
e A1(f1 · f2) is the following dire
t sum

A1(f1 · f2) = A1(f1) ⊕ A1(f2).

Proof. If ℓ ∈ Fn is an arbitrary nonzero a�ne fun
tion then A1(ℓ) = {0, ℓ + 1}. Hen
e the
sum of subspa
es A1(f1), A1(f2) is dire
t. We have to prove that dim A1(f1 · f2) = 2.

It is easy to prove that for the fun
tions f1, f2 there exists an invertible a�ne map τ : Vn →
Vn su
h that

ℓ1(x1, . . . , xn) := f1 ◦ τ(x1, . . . , xn) = x1,

ℓ2(x1, . . . , xn) := f2 ◦ τ(x1, . . . , xn) = x1 + x2.

Sin
e τ is invertible, we have the following isomorphisms:

A1(f1) ∼= A1(f1 ◦ τ) = A1(ℓ1),

A1(f2) ∼= A1(f2 ◦ τ) = A1(ℓ2),

A1(f1 · f2) ∼= A1((f1 · f2) ◦ τ) = A1((f1 ◦ τ) · (f2 ◦ τ)) = A1(ℓ1 · ℓ2).

Represent g ∈ A1(ℓ1 · ℓ2) in the following form

g(x1, . . . , xn) = a0 +
∑n

i=1
aixi.

4



It is obvious that ai = 0 for any i > 3. Then

g ∈ A1(ℓ1 · ℓ2) ⇔

g · ℓ1 · ℓ2 = 0 ⇔

(a0 + a1x1 + a2x2) · x1 · (x1 + x2) = 0 ⇔

a0x1 + a1x1 + a2x1x2 + a0x1x2 + a1x1x2 + a2x1x2 = 0 ⇔
{

a0 + a1 = 0

a2 + a0 + a1 + a2 = 0
⇔

a0 + a1 = 0.

Thus we have three 
oe�
ients a0, a1, a2 and one equation a0+a1 = 0. Therefore dim A1(f1 ·
f2) = dim A1(ℓ1 · ℓ2) = 2. ¥

Theorem 5. Let f1, f2 ∈ Fn be nonzero fun
tions su
h that f2 does not depend on the

�rst m variables and f1 does not depend on the last n − m variables. Then the ve
tor spa
e

A1(f1 · f2) is the following dire
t sum

A1(f1 · f2) = A1(f1) ⊕ A1(f2).

Proof. It is 
lear that A1(f1) ∩ A1(f2) = {0}. Let us show that any Boolean fun
tion

ℓ ∈ A1(f1 · f2) 
an be represented in the form ℓ = ℓ1 + ℓ2, where ℓ1 ∈ A1(f1), ℓ2 ∈ A1(f2).
Consider z = (z1, . . . , zn) ∈ Vn. By x denote (z1, . . . , zm), by y denote (zm+1, . . . , zn). In this

notation we have (x, y) = z. Let ℓ ∈ A1(f1 · f2) be given by

ℓ(z) =
n

∑

i=1

aizi + b.

Then ℓ 
an be represented in the form

ℓ(z) = ℓ′(x) + ℓ′′(y),

where

ℓ′(x) =
m

∑

i=1

aizi, ℓ′′(y) =
n

∑

i=m+1

aizi + b.

Hen
e

ℓ ∈ A1(f1 · f2) ⇔

∀x∀y ℓ(x, y) · f1(x) · f2(y) = 0 ⇔

∀x∀y ℓ′(x) · f1(x) · f2(y) + ℓ′′(y) · f1(x) · f2(y) = 0 (2)

There are only two possibilities:

(a) ∀x ℓ′(x) · f1(x) = 0 : The 
ondition f1 6= 0 means that ∃x0 : f1(x0) = 1. Substituting

x0 for x in (2), we get

∀y 0 · f2(y) + ℓ′′(y) · 1 · f2(y) = 0 ⇔

5



∀y ℓ′′(y) · f2(y) = 0.

Thus we have ℓ′ ∈ A1(f1) and ℓ′′ ∈ A1(f2).

(b) ∃x0 : ℓ′(x0) · f1(x0) = 1 : In this 
ase f1(x0) = 1. If we repla
e x by x0 in (2), we obtain

∀y 1 · f2(y) + ℓ′′(y) · 1 · f2(y) = 0 ⇔

∀y (ℓ′′(y) + 1) · f2(y) = 0 ⇔

∀y ℓ′′(y) · f2(y) = f2(y).

If we 
ombine the last equation with (2), we get

∀x∀y ℓ′(x) · f1(x) · f2(y) + f1(x) · f2(y) = 0 ⇔

∀x∀y (ℓ′(x) + 1) · f1(x) · f2(y) = 0.

The 
ondition f2 6= 0 means that ∃y0 : f2(y0) = 1. Therefore

∀x (ℓ′(x) + 1) · f1(x) = 0.

Finally, we obtain ℓ′ + 1 ∈ A1(f1), ℓ′′ + 1 ∈ A1(f2), and (ℓ′ + 1) + (ℓ′′ + 1) = ℓ. ¥

Referen
es

[1℄ F. Armkne
ht: On the Existen
e of low-degree Equations for Algebrai
 Atta
ks, Cryptology

ePrint Ar
hive: Report 2004/185, http://eprint.ia
r.org/2004/185

[2℄ V.V. Bayev: On Some Algorithms for Constru
ting Annihilators of Low Degree for Boolean

Fun
tions, to be published in J. "Dis
rete Mathemati
s" (in Russian).

[3℄ N. Courtois, W. Meier: Algebrai
 Atta
ks on Stream Ciphers with Linear Feedba
k, Euro-


rypt 2003, LNCS 2656, pp. 345-359, Springer, 2003.

[4℄ N. Courtois: Fast Algebrai
 Atta
ks on Stream Ciphers with Linear Feedba
k, Crypto 2003,

LNCS 2729, pp. 176-194, Springer, 2003.

[5℄ W. Meier, E. Pasali
, C. Carlet: Algebrai
 Atta
ks and De
omposition of Boolean Fun
-

tions, Euro
rypt 2004, LNCS 3027, pp. 474-491, Springer, 2004.

6


