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Abstract

Kurosawa-Desmedt encryption scheme is a variation of Cramer-
Shoup encryption schemes, which are the first practical schemes secure
against adaptive chosen ciphertext attack in standard model. We
introduce a variant of Kurosawa-Desmedt encryption scheme, which
is not only secure against adaptive chosen ciphertext attack but also
slightly more efficient than the original version.

1 Introduction

1.1 Background

The notion of chosen-ciphertext security was introduced by Naor and
Yung [NY90] and developed by Rackoff and Simon [RS91], and Dolev,
Dwork, and Naor [DDN91]. This notion is now largely considered as
the “right” notion for encryption schemes.

In the random oracle model, many practical schemes secure against
adaptive chosen-ciphertext attack (IND-CCA) have been proposed:
OAEP+ [Sh01], SAEP [Bo01], RSA-OAEP [FOPS01] to name just a
few. Although the security analysis in the random oracle model gives
us a strong evidence that the schemes are secure, it does not rule out
all possible attacks.

In standard model, the first practical public key cryptosystem
which is provably IND-CCA secure was discovered by Cramer and
Shoup [CS98]. The security of the scheme is based on the hardness
of the decisional Diffie-Hellman problem. After that, in [Sh00], Shoup
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presented a hybrid variant of the Cramer-Shoup cryptosystem. As
a hybrid scheme, the variant is very flexible since messages can be
arbitrary bit strings.

In [KD04], Kurosawa and Desmedt modified the hybrid scheme
presented in [Sh00], gaining a scheme which produces shorter cipher-
texts and needs less exponentiations than the original one. However,
their proof of security relied on the use of information theoretically
secure functions KDF(key derivation function) and MAC(message au-
thentication code), which makes the Kurosawa-Desmedt scheme as
efficient as the original Cramer-Shoup for typical security parameters,
as recently stated in [GS05]. In that paper, Gennaro and Shoup also
presented a different proof of security for Kurosawa-Desmedt scheme,
which showed that the scheme can be instantiated with any compu-
tationally secure KDF and MAC, thus extending its applicability and
efficiency.

Gennaro and Shoup also raise an open question about the op-
timizations of the Kurosawa-Desmedt scheme in [GS05]: Can the
scheme be optimized? This paper is an answer to that question.

1.2 Our Contribution

We present a variant of the Kurosawa-Desmedt scheme, which is also
IND-CCA secure as the original one. Furthermore, the variant owns
the following properties:

• It is optimized in the sense that all exponentiations in the de-
cryption algorithm are with respect to the same base, hence the
algorithm can be executed faster.

• It can be also instantiated with any computationally secure KDF
and MAC.

• The key generation algorithm is faster, and the private key is
also shorter.

2 Security against Adaptive Chosen Ci-

phertext Attack

For the readers’ convenience, we recall here the definition of security
against adaptive chosen ciphertext attack. The definition used here
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is essentially the same as the one in [Sh00]. The attack scenario has
fourth stages as follows.

First, the key generation algorithm is run, generating the public
key and private key for the cryptosystem. The adversary, of course,
obtains the public key, but not the private key.

Second, the adversary makes a series of arbitrary queries to a de-
cryption oracle. Each query is a ciphertext C that is decrypted by the
decryption oracle, making use of the private key of the cryptosystem.
The resulting decryption is given to the adversary. The adversary is
free to construct the ciphertexts in an arbitrary way, namely it is not
required to compute them using the encryption algorithm.

Third, the adversary prepares two messages m0 and m1 and gives
these to an encryption oracle. The encryption oracle chooses b ∈ {0, 1}
at random, encrypts mb, and gives the resulting “target” ciphertext
C∗ to the adversary. The adversary is free to choose m0 and m1 in
an arbitrary way, except that if message lengths are not fixed by the
cryptosystem, then these two messages must nevertheless be of the
same length.

Fourth, the adversary continues to submit ciphertexts C to the
decryption oracle, subject only to the restriction that C 6= C∗.

Just before the adversary terminates, it outputs b̂ ∈ {0, 1}, repre-
senting its “guess” of b.

The adversary’s advantage in this attack scenario is defined to be
the distance from 1/2 of the probability that b̂ = b.

A cryptosystem is defined to be secure against adaptive chosen
ciphertext attack if for any efficient adversary, its advantage is negli-
gible.

3 Kurosawa-Desmedt Scheme

3.1 Description

Kurosawa-Desmedt scheme, called KD scheme as a notational conven-
tion, was first described in [KD04]. The description used here is from
[GS05]. The scheme makes use of:

• a group G of prime order q, with (random) generators g1 and g2.
Security assumption (DDH): Hard to distinguish (gr

1, g
r
2) from

(gr
1, g

r′

2 ), where r is a random element of Zq and r′ is a random
element of Zq \ {r}.
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• a message authentication code MAC, which is a function that
takes two inputs, a key k and message e ∈ {0, 1}∗, and produces
a “tag” t := MACk(e).
Security assumption: For random k, after obtaining t∗ := MACk(e

∗)
for (at most one) adversarially chosen e∗, it is infeasible for an
adversary Amac to compute a forgery pair, i.e., a pair (e, t) such
that e 6= e∗ and t = MACk(e).

Define AdvMAC(Amac) = Pr(Amac succeeds). The assumption
ensures that AdvMAC(Amac) is negligible for all polynomial-time
adversary Amac.

• a symmetric key encryption scheme, with encryption algorithm
E and decryption algorithm D, such that for key K and plain-
text m ∈ {0, 1}∗, e := EK(m) is the encryption of m under K,
and for key K and ciphertext e ∈ {0, 1}∗, m := DK(e) is the
decryption of e under K.
Security assumption (semantic security): hard to distinguish EK(m0)
and EK(m1) for randomly chosen K and adversarially chosen
m0 and m1, where m0 and m1 are of equal length.

• a key derivation function KDF , such that for v ∈ G, KDF (v) =
(k,K), where k is a message authentication key, and K is a
symmetric encryption key.
Security assumption: hard to distinguish KDF (v) and (k,K),
where v, k and K are random.

Let Akdf be an 0-or-1-output algorithm that takes as input a
pair of message authentication key and symmetric encryption
key. Define

AdvKDF (Akdf ) = Pr[Akdf (KDF (v))→ 1]

− Pr[Akdf (k,K)→ 1].

The assumption ensures that AdvKDF (Akdf ) is negligible for all
polynomial-time adversary Akdf .

• a hash function H : G×G→ Zq.
Security assumption (target collision resistance): given u∗

1 := gr
1

and u∗
2 := gr

2 for random r ∈ Zq, hard to find (u1, u2) ∈ G×G \
{(u∗

1, u
∗
2)} such that H(u1, u2) = H(u∗

1, u
∗
2).

Note that the key space for the message authentication code is
assumed to consist of all bit strings of a given length, so that by a
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random key k, we mean a random bit string of appropriate length.
Similarly for the symmetric encryption keys.

Note also that KDF and H may have associated keys, which are
publicly known.

Key Generation: The description of the group G is generated, along
with random generators g1 and g2 for G. Any keys for KDF and H
are also generated. Then,

x1, x2, y1, y2
$
← Zq, c← gx1

1 gx2
2 , d← gy1

1 gy2
2 .

The public key consists of the description of G, the generators g1 and
g2, keys for KDF and H (if any), along with the group elements c and
d. The private key consists of the public key, along with x1, x2, y1, y2.

Encryption of m ∈ {0, 1}∗:

r
$
← Zq, u1 ← gr

1 ∈ G, u2 ← gr
2 ∈ G,

α← H(u1, u2) ∈ Zq,
v ← crdrα ∈ G, (k,K)← KDF (v),
e← EK(m), t←MACk(e)
output C := (u1, u2, e, t)

Decryption of C = (u1, u2, e, t):
α← H(u1, u2), v ← ux1+y1α

1 ux2+y2α
2 ∈ G

(k,K)← KDF (v)
If t 6= MACk(e) then output reject
Else

m← DK(e)
output m

3.2 Security of Kurosawa-Desmedt Scheme

In [KD04], Kurosawa and Desmedt proved that their scheme is secure
against adaptive chosen ciphertext attack using some additional as-
sumptions on KDF and MAC besides the assumptions described in
the previous section. Recently, Gennaro and Shoup [GS05] showed
that the scheme are still secure against the attack without the addi-
tional assumptions on KDF and MAC. More precisely,

Theorem 1 ([GS05]). KD scheme is secure against adaptive chosen
ciphertext attack if the assumptions on its components described in the
previous section hold.
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4 Proposed Scheme

4.1 Description

The proposed scheme, called KD1 as a notational convention, makes
use of the same components and security assumptions on them as KD
scheme. Furthermore, the public key and the encryption algorithm of
both schemes are identical. However, the key generation algorithms
and decryption algorithms are different.

Key Generation: The description of the group G is generated, along
with random generators g1 for G. Any keys for KDF and H are also
generated. Then,

ω
$
← Z∗

q , g2 ← gω
1

x, y
$
← Zq, c← gx

1 , d← gy
1 .

The public key consists of the description of G, the generators g1

and g2, keys for KDF and H (if any), along with the group elements
c and d. The private key consists of the public key, along with ω, x, y.

Decryption of C = (u1, u2, e, t):
α← H(u1, u2), v ← ux+yα

1 ∈ G, (k,K)← KDF (v)
If u2 6= uω

1 or t 6= MACk(e) then output reject
Else

m← DK(e)
output m

4.2 Security

Theorem 2. KD1 is secure against adaptive chosen ciphertext attack
if the DDH assumption holds for G, and the components MAC(message
authentication code), E(symmetric encryption scheme), KDF (key deriva-
tion function), H(hash function) are secure.
In particular, for all probabilistic, polynomial-time adversary A, there
exist algorithms A1 and A2 whose resources are essentially the same
as those of A such that

|Advcca
KD1(A)−Advcca

KD(A)| ≤ QA(AdvKDF (A1) + AdvMAC(A2)),

where QA is the number of decryption queries made by A.

Proof. Consider a probabilistic, polynomial-time adversary A. We
will begin with a game normally used to define CCA security of KD
scheme.
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Game 0 (attack game on KD scheme)
This game is an interactive computation between A and a simu-

lator. Initially, the simulator runs the key generation algorithm of
KD scheme, obtaining the description of G, generators g1, g2, keys for
KDF and H (if any), along with the values x1, x2, y1, y2 ∈ Zq and
c, d ∈ G. The simulator gives the public key to A.

During the execution of the game, the adversary A makes a number
of “decryption requests.” Assume these requests are C(1), . . . , C(QA),
where

C(i) = (u
(i)
1 , u

(i)
2 , e(i), t(i)).

For each such request, the simulator decrypts the given ciphertext, and
gives A the result. We denote by α(i), v(i), k(i), K(i) the correspond-
ing intermediate quantities computed by the decryption algorithm on
input C(i).

The adversary may also make a single “challenge request.” For
such a request, the adversary submits two messages m0,m1 of equal
length bit strings to the simulator; the simulator chooses b ∈ {0, 1}
at random, and encrypts mb using the encryption algorithm of KD
scheme, obtaining the “target ciphertext” C∗ = (u∗

1, u
∗
2, e

∗, t∗).
The only restriction on the adversary’s requests is that after the

“challenge request”, subsequent decryption requests must not be the
same as the target ciphertext.

At the end of the game, the adversary outputs b̂ ∈ {0, 1}.
Let T0 be the event that b̂ = b. Advantage of the adversary with

respect to KD scheme is defined as

Advcca
KD(A) = |Pr[T0]−

1

2
|.

We will consider other games, which are slightly-modified versions
of Game 0. The games will be built in the order as follows:

G0
��✒

G1

❅❅❘ G1′ −→ G2′ −→ G3′ −→ G4′

All those games are viewed as operating on the same underlying
probability space, i.e., all the random variables Coins(of A), ω (in
Game 1), x1, x2, y1, y2, r∗ (for encrypting mb), b take the same value
in those games.
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Game 1 This game is the same as Game 0, except that

• instead of being randomly chosen from G, the generator g2 is
generated as follows

ω
$
← Zq, g2 ← gω

1 .

• the simulator not only chooses x1, x2, y1, y2 randomly from Zq

but also puts x := x1 +ωx2 and y := y1 +ωy2. The values c and
d are now computed as

c← gx
1 , d← gy

1 .

• in processing a decryption request C = (u1, u2, e, t), the simula-
tor proceeds as follows

– α← H(u1, u2), v ← ux+αy
1

– (k,K)← KDF (v)

– Test if u2 = uω
1 and t = MACk(e); if this is not the case,

then output reject and halt.

– Output m← DK(e)

It is obvious that Game 1 is really the attack game of A against
KD1. Let T1 be the event that b̂ = b in this game. Thus the advantage
of A with respect to KD1 scheme is

Advcca
KD1(A) = |Pr[T1]−

1

2
|.

Therefore, in order to bound |Advcca
KD1(A)−Advcca

KD(A)|, it is sufficient
to bound |Pr[T1]− Pr[T0]|.

Let F1 be the event that some ciphertext is rejected in Game 1,
but would have passed the test of the decryption algorithm in Game 0.
Game 0 and Game 1 are then the same until F1 occurs. Thus T1 ∧F1

and T0 ∧ F1 are identical. By the Difference Lemma1 (see [Sh05]),

|Pr[T1]− Pr[T0]| ≤ Pr[F1].

We will use the below games G1′ , G2′ , G3′ , G4′ to bound Pr[F1].

1This lemma is called “Fundamental Lemma of Game-Playing” in [BR05]
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Game 1
′

This game is the same as Game 0, except that

• instead of being randomly chosen from G, g2 is generated by

ω
$
← Zq, g2 ← gω

1 .

• in processing a decryption request C = (u1, u2, e, t), the simula-
tor proceeds as follows

– α← H(u1, u2), v ← ux1+αy1
1 ux2+αy2

2

– (k,K)← KDF (v)

– Test if u2 = uω
1 and t = MACk(e); if this is not the case,

then output reject and halt.

– Output m← DK(e)

Note that Game 1 and Game 1
′

are identical from the viewpoint
of the adversary A. In fact, if A submits a ciphertext C = (u1, u2, e, t)
with u2 6= uω

1 , then A will receive reject in the both games. On the
other hand, if u2 = uω

1 , then the value v in Game 1 and Game 1
′

is
the same, which ensures that the ciphertext is identically decrypted
in those games. Thus

Pr[F1] = Pr[F1′ ],

where F1′ be the event that some ciphertext is rejected in Game 1
′

,
but would have passed Game 0.

Let F
(j)

1′
be the event that the jth ciphertext C(j) is rejected in

Game 1
′

, but would have passed the test in Game 0. Then

Pr[F1′ ] ≤ QA max
1≤j≤QA

{Pr[F
(j)

1′
]}.

Note that F
(j)

1
′ occurs if and only if u

(j)
2 6= (u

(j)
1 )ω and t(j) = MACk(j)(e(j)),

where k(j) is the first part of KDF ((u
(j)
1 )

x1+y1α(j)

(u
(j)
2 )

x2+y2α(j)

). Our

task now is to bound Pr[F
(j)

1′
].

Game 2
′

This game is the same as Game 1
′

, except that the simu-
lator now proceeds a decryption request C = (u1, u2, e, t) as follows

D01
′

: α← H(u1, u2)
D02

′

: If u2 6= uω
1 then

D03
′

: v ← ux1+αy1
1 ux2+αy2

2

D04
′

: (k,K)← KDF (v)
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D05
′

: Test if t = MACk(e); if this is not the
case, then output reject and halt.

D06
′

: m← DK(e). Output reject
D07

′

: Else
D08

′

: v ← ux1+αy1
1 ux2+αy2

2

D09
′

: (k,K)← KDF (v)
D10

′

: Test if t = MACk(e); if this is not the
case, then output reject and halt.

D11
′

: m← DK(e). Output m.

The change, which is purely conceptual, is that the simulator now
considers two cases, u2 6= uω

1 and u2 = uω
1 in decryption. Note that

whenever line D03
′

is reached, then the output is always reject .

Moreover, Pr[F
(j)

1′
] = Pr[F

(j)

2′
], where F

(j)

2′
is the event that line D06

′

is executed in the jth decryption request.

Game 3
′

This game is the same as Game 2
′

, except that we change
line D03

′

as follows

D03
′

: v
$
←G

Let F
(j)

3′
be the event that line D06

′

is executed in the jth decryp-

tion request in Game 3
′

. We claim that F
(j)

3′
= F

(j)

2′
. This follows from

the fact that v = ux1+αy1
1 ux2+αy2

2 , c = gx1+ωx2
1 , and d = gy1+ωy2

1 are
mutually independent and uniformly distributed over G if u2 6= uω

1 .
In fact, if we put

r1 := logg1
u1,

r2 := logg2
u2,

then the condition u2 6= uω
1 implies r1 6= r2, so the following values

logg1
c = x1 + ωx2,

logg1
d = y1 + ωy2,

logg1
v = r1(x1 + αy1) + r2(x2 + αy2),

are linearly independent. This means that v can take any value over

G. Thus Game 3
′

and Game 2
′

are identical, and hence F
(j)

3
′ = F

(j)

2
′ .
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Game 4
′

This game is the same as Game 3
′

, except that we change
line D04

′

as follows
D04

′

: (k,K)
$
← “KeySpace”

Let F
(j)

4
′ be the event that line D06

′

is executed in the jth decryp-

tion request in Game 4
′

. It is clear that we can build an algorithm
A1, using similar resources to those of A, such that

|Pr[F
(j)

3′
]− Pr[F

(j)

4′
]| ≤ AdvKDF (A1).

Note that the key k of the message authentication code in this
game is completely random and is not used anywhere except as input
for MAC. Thus, the probability that line D06

′

is executed in the jth
decryption request must be less than the probability that an algorithm
A2 can break the MAC, i.e.,

Pr[F
(j)

4′
] ≤ AdvMAC(A2).

In fact, A2 just employs A and its simulator, and returns (e, t) at D05
′

in Game 4
′

whenever line D06
′

is executed. Summing up,

Pr[F1] = Pr[F1′ ]

≤ QA max
1≤j≤QA

{Pr[F
(j)

1′
]}

= QA max
1≤j≤QA

{Pr[F
(j)

2′
]}

= QA max
1≤j≤QA

{Pr[F
(j)

3′
]}

≤ QA(AdvKDF (A1) + max
1≤j≤QA

{Pr[F
(j)

4′
]})

≤ QA(AdvKDF (A1) + AdvMAC(A2)),

which completes the proof.
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