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Abstra
t. Given a Boolean fun
tion f on n-variables, we �nd a redu
ed

set of homogeneous linear equations by solving whi
h one 
an de
ide

whether there exist annihilators at degree d or not. Using our method

the size of the asso
iated matrix be
omes �

f

� (

P

d

i=0

�

n

i

�

� �

f

), where,

�

f

= jfxjwt(x) > d; f(x) = 1gj and �

f

= jfxjwt(x) � d; f(x) = 1gj

and the time required to 
onstru
t the matrix is same as the size of the

matrix. This is a prepro
essing step before the exa
t solution strategy

(to de
ide on the existen
e of the annihilators) that requires to solve

the set of homogeneous linear equations (basi
ally to 
al
ulate the rank)

and this 
an be improved when the number of variables and the number

of equations are minimized. As the linear transformation on the input

variables of the Boolean fun
tion keeps the degree of the annihilators

invariant, our prepro
essing step 
an be more eÆ
iently applied if one


an �nd an aÆne transformation over f(x) to get h(x) = f(Bx + b)

su
h that �

h

= jfxjh(x) = 1; wt(x) � dgj is maximized (and in turn �

h

is minimized too). We present an eÆ
ient heuristi
 towards this. Our

study also shows for what kind of Boolean fun
tions the asymptoti


redu
tion in the size of the matrix is possible and when the redu
tion is

not asymptoti
 but 
onstant.
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1 Introdu
tion

Results on algebrai
 atta
ks have re
eived a lot of attention re
ently in studying

the se
urity of 
rypto systems [2, 4, 6, 9, 11{15,22, 1, 21, 16℄. Boolean fun
tions

are important primitives to be used in the 
rypto systems and in view of the

algebrai
 atta
ks, the annihilators of a Boolean fun
tion play 
onsiderably serious

role [5, 7, 10, 17{19,23, 24℄.

Denote the set of all n-variable Boolean fun
tions by B

n

. One may refer

to [17℄ for the detailed de�nitions related to Boolean fun
tions, e.g., truth table,

algebrai
 normal form (ANF), algebrai
 degree (deg), weight (wt), nonlinear-

ity (nl) and Walsh spe
trum of a Boolean fun
tion. Any Boolean fun
tion 
an



be uniquely represented as a multivariate polynomial over GF (2), 
alled the

algebrai
 normal form (ANF), as

f(x

1

; : : : ; x

n

) = a

0

+

X

1�i�n

a

i

x

i

+

X

1�i<j�n

a

i;j

x

i

x

j

+ : : :+ a

1;2;:::;n

x

1

x

2

: : : x

n

;

where the 
oeÆ
ients a

0

; a

i

; a

i;j

; : : : ; a

1;2;:::;n

2 f0; 1g. The algebrai
 degree,

deg(f), is the number of variables in the highest order term with non zero 
o-

eÆ
ient. Given f 2 B

n

, a nonzero fun
tion g 2 B

n

is 
alled an annihilator of

f if f � g = 0. A fun
tion f should not be used if f or 1 + f has a low degree

annihilator. It is also known [14, 23℄ that for any fun
tion f or 1 + f must have

an annihilator at the degree d

n

2

e. Thus the target of a good design is to use

a fun
tion f su
h that neither f nor 1 + f has an annihilator at a degree less

than d

n

2

e. Thus there is a need to 
onstru
t su
h fun
tions and the �rst one in

this dire
tion appeared in [18℄. Later symmetri
 fun
tions with this property has

been presented in [19℄ followed by [7℄. However, all these 
onstru
tions are not

good in terms of other 
ryptographi
 properties.

Thus there is a need to study the Boolean fun
tions, whi
h are ri
h in terms

of other 
ryptographi
 properties, in terms of their annihilators. One has to

�nd out the annihilators of a given Boolean fun
tion for this. Initially a basi


algorithm in �nding the annihilators has been proposed in [23, Algorithm 2℄.

A minor modi�
ation of [23, Algorithm 2℄ has been presented very re
ently

in [8℄ to �nd out relationships for algebrai
 and fast algebrai
 atta
ks. In [7℄,

there is an eÆ
ient algorithm to �nd the annihilators of symmetri
 Boolean

fun
tions, but symmetri
 Boolean fun
tions are not 
ryptographi
ally promising.

Algorithms using Gr�obner bases are also interesting in this area [3℄, but still

they are not 
onsiderably eÆ
ient. Re
ently more eÆ
ient algorithms have been

designed in this dire
tion [1, 21℄. The algorithm presented in [1℄ 
an be used

eÆ
iently to �nd out relationships for algebrai
 and fast algebrai
 atta
ks. In [1℄,

matrix triangularization has been exploited ni
ely to solve the annihilator �nding

problem (of degree d for an n-variable fun
tion) in O(

�

n

d

�

2

) time 
omplexity.

In [21℄ a probabilisti
 algorithm having time 
omplexityO(n

d

) has been proposed

where the fun
tion is divided to its sub fun
tions re
ursively and the annihilators

of the sub fun
tions are 
he
ked to study the annihilators of the original fun
tion.

The main idea in our e�ort is to redu
e the size of the matrix (used to

solve the system of homogeneous linear equations) as far as possible, whi
h has

not yet been studied in a dis
iplined manner to the best of our knowledge.

We 
ould su

essfully improve the handling of equations asso
iated with small

weight inputs of the Boolean fun
tion. This uses 
ertain stru
ture of the matrix

that we dis
over here. We start with a matrix M

n;d

(g) (see Theorem 1) whi
h

is self inverse and its dis
overed stru
ture allows to 
ompute the new equations

eÆ
iently by 
onsidering the matrix UA

r

(see Theorem 3 in Se
tion 3). Moreover,

ea
h equation asso
iated with a low weight input point dire
tly provides the value

of an unknown 
oeÆ
ient of the annihilator, whi
h is the key point that allows

to lower the number of unknowns. Further redu
tion in the size of the matrix



is dependent on getting a proper linear transformation on the input variables of

the Boolean fun
tion, whi
h is dis
ussed in Se
tion 4.

One may wonder whether the very re
ently available strategies in [1, 21℄ 
an

be applied after the initial redu
tion proposed in this paper to get further im-

provements in �nding the lowest degree annihilators. The standard Gaussian

redu
tion te
hnique ([21, Algorithm 1℄) is used in the main algorithm [21, Algo-

rithm 2℄, and in that 
ase our idea of redu
tion of the matrix size will surely pro-

vide improvement. However, the ideas presented in [1, Algorithm 1, 2℄ and [21,

Algorithm 3℄ already exploit the stru
ture of the linear system in an eÆ
ient

way. In parti
ular, the algorithms in [1℄ by themselves deal with the equations of

small weight eÆ
iently. Thus it is not 
lear whether the redu
tion of matrix size

proposed by us 
an be applied to exploit further eÆ
ien
y from these algorithms.

2 Preliminaries

Consider all the n-variable Boolean fun
tions of degree at most d, i.e., R(n; d),

the Reed-Muller 
ode of order d and length 2

n

. Any Boolean fun
tion 
an be seen

as a multivariate polynomial over GF (2). Note that R(n; d) is a ve
tor subspa
e

of the ve
tor spa
e B

n

, the set of all n-variable Boolean fun
tions. Now if we


onsider the elements of R(n; d) as the multivariate polynomials over GF (2),

then the standard basis is the set of all nonzero monomials of degree � d. That

is, the standard basis is

S

n;d

= fx

i

1

: : : x

i

l

: 1 � l � d and 1 � i

1

< i

2

< � � � < i

l

� ng [ f1g;

where the input variables of the Boolean fun
tions are x

1

; : : : ; x

n

.

The ordering among the monomials is 
onsidered in lexi
ographi
 ordering

(<

l

) as usual, i.e., x

i

1

x

i

2

: : : x

i

k

<

l

x

j

1

x

j

2

: : : x

j

l

if either k < l or k = l and there

is 1 � p � k su
h that i

k

= j

k

, i

k�1

= j

k�1

; : : : ; i

p+1

= j

p+1

and i

p

< j

p

. So,

the set S

n;d

is a totally ordered set with respe
t to this lexi
ographi
al ordering

(<

l

). Using this ordering we refer the monomials a

ording their order, i.e., the

k-th monomial as m

k

, 1 � k �

P

d

i=0

�

n

i

�

following the 
onvention m

l

<

l

m

k

if

l < k.

De�nition 1. Given n > 0, 0 � d � n, we de�ne a mapping

v

n;d

: f0; 1g

n

7! f0; 1g

P

d

i=0

(

n

i

)

;

su
h that v

n;d

(x) = (m

1

(x);m

2

(x); : : : ;m

P

d

i=0

(

n

i

)

(x)). Here m

i

(x) is the ith

monomial as in the lexi
ographi
al ordering (<

l

) evaluated at the point x =

(x

1

; x

2

; : : : ; x

n

).

To evaluate the value of the t-th 
oordinate of v

n;d

(x

1

; x

2

; : : : ; x

n

) for 1 �

t �

P

d

i=0

�

n

i

�

, i.e., [v

n;d

(x

1

; : : : ; x

n

)℄

t

, one requires to 
al
ulate the value of the

monomial m

t

(either 0 or 1) at (x

1

; x

2

; : : : ; x

n

). Now we de�ne a matrix M

n;d

with respe
t to a n-variable fun
tion f . To de�ne this we need another similar



ordering (<

l

) over the elements of ve
tor spa
e f0; 1g

n

. We say for u; v 2 f0; 1g

n

,

u <

l

v if either wt(u) < wt(v) or wt(u) = wt(v) and there is some 1 � p � n

su
h that u

n

= v

n

; u

n�1

= v

n�1

; : : : ; u

p+1

= v

p+1

and u

p

= 0; v

p

= 1.

De�nition 2. Given n > 0, 0 � d � n and an n-variable Boolean fun
tion f ,

we de�ne a wt(f)�

P

d

i=0

�

n

i

�

matrix

M

n;d

(f) =

2

6

6

6

4

v

n;d

(X

1

)

v

n;d

(X

2

)

.

.

.

v

n;d

(X

wt(f)

)

3

7

7

7

5

where any X

i

is an n-bit ve
tor and supp(f) = fX

1

; X

2

; : : : ; X

wt(f)

g and X

1

<

l

X

2

<

l

� � � <

l

X

wt(f)

; supp(f) is the set of inputs for whi
h f outputs 1.

Note that the matrix M

n;d

(f) is the transpose of the restri
ted generator

matrix for Reed-Muller 
ode of length 2

n

and order d, R(d; n), to the support

of f (see also [9, Page 7℄). Any row of the matrix M

n;d

(f) 
orresponding to an

input ve
tor (x

1

; : : : ; x

n

) is

0 deg 1 deg : : : d deg

z}|{

1

z }| {

x

1

; : : : ; x

i

; : : : ; x

n

: : :

z }| {

x

1

: : : x

d

; : : : ; x

i

1

: : : x

i

d

; : : : ; x

n�d+1

: : : x

n

:

Ea
h 
olumn of the matrix is represented by a spe
i�
 monomial and ea
h entry

of the 
olumn tells whether that monomial is satis�ed by the input ve
tor whi
h

identi�es the row, i.e., the rows of this matrix 
orrespond to the evaluations of

the monomials having degree at most d on support of f . As already dis
ussed,

here we have one-to-one 
orresponden
e from the input ve
tors x = (x

1

; : : : ; x

n

)

to the row ve
tors v

n;d

(x) of length

P

d

i=0

�

n

i

�

. So, ea
h row is �xed by an input

ve
tor.

2.1 Annihilator of f and rank of the matrix M

n;d

(f)

Let f be an n-variable Boolean fun
tion. We are interested to �nd out the lowest

degree annihilators of f . Let g 2 B

n

be an annihilator of f , i.e., f(x

1

; : : : ; x

n

) �

g(x

1

; : : : ; x

n

) = 0. In terms of truth table, this means that the fun
tion f AND g

will be a 
onstant zero fun
tion, i.e., for ea
h ve
tor (x

1

; : : : ; x

n

) 2 f0; 1g

n

, the

output of f AND g will be zero. That means,

g(x

1

; : : : ; x

n

) = 0 if f(x

1

; : : : ; x

n

) = 1: (1)

Suppose degree of the fun
tion g is � d, then the ANF of g is of the form

g(x

1

; : : : ; x

n

) = a

0

+

P

n

i=0

a

i

x

i

+ � � �+

P

1�i

1

<i

2

���<i

d

�n

a

i

1

;:::;i

d

x

i

1

� � �x

i

d

where

the subs
ripted a's are from f0; 1g and not all of them are zero. Following Equa-

tion 1, we get the following wt(f) many homogeneous linear equations

a

0

+

n

X

i=0

a

i

x

i

+ � � �+

X

1�i

1

<i

2

���<i

d

�n

a

i

1

;:::;i

d

x

i

1

� � �x

i

d

= 0; (2)




onsidering the input ve
tors (x

1

; : : : ; x

n

) 2 supp(f). This is a system of ho-

mogeneous linear equations on a's with

P

d

i=0

�

n

i

�

many a's as variables. The

matrix form of this system of equations is M

n;d

(f) A

tr

= O, where A =

(a

0

; a

1

; a

2

; : : : ; a

n�d+1;:::;n

), the row ve
tor of 
oeÆ
ients of the monomials whi
h

are ordered a

ording to the lexi
ographi
al order <

l

. Ea
h nonzero solution of

the system of equations formed by Equation 2 gives an annihilator g of degree

� d. This is basi
ally the Algorithm 1 presented in [23℄. Sin
e the number of solu-

tions of this system of equations are 
onne
ted to the rank of the matrixM

n;d

(f),

it is worth to study the rank and the set of linear independent rows/
olumns of

matrixM

n;d

(f). If the rank of matrixM

n;d

(f) is equal to

P

d

i=0

�

n

i

�

(i.e., number

of 
olumns) then the only solution is the zero solution. So, for this 
ase f has

no annihilator of degree � d. This implies that the number of rows � number

of 
olumns, i.e., wt(f) �

P

d

i=0

�

n

i

�

whi
h is the Theorem 1 in [17℄. If the rank

of matrix is equal to

P

d

i=0

�

n

i

�

� k for k > 0 then the number of linearly inde-

pendent solutions of the system of equations is k whi
h gives k many linearly

independent annihilators of degree � d and 2

k

� 1 many number of annihilators

of degree � d. However, to implement algebrai
 atta
k one needs only linearly

independent annihilators. Hen
e, �nding the degree of lowest degree annihilator

of either f or 1 + f , one 
an use the following algorithm.

Algorithm 1

for(i = 1 to d

n

2

e � 1) f

�nd the rank r

1

of the matrix M

n;i

(f);

�nd the rank r

2

of the matrix M

n;i

(1 + f);

if minfr

1

; r

2

g <

P

i

j=0

�

n

j

�

then output i;

g

output d

n

2

e;

Sin
e either f or 1 + f has an annihilator of degree � d

n

2

e, we are interested

only to 
he
k till i = d

n

2

e. This algorithm is equivalent to Algorithm 1 in [23℄.

The simplest and immediate way to solve the system of these equations or

�nd out the rank of M

n;d

(f);M

n;d

(1 + f) is the Gaussian elimination pro
ess.

To 
he
k the existen
e or to enumerate the annihilators of degree � d

n

2

e for

a balan
ed fun
tion, the 
omplexity is approximately (2

n�2

)

3

. Considering this

time 
omplexity, it is not en
ouraging to 
he
k annihilators of a fun
tion of 20

variables or more using the presently available 
omputing power. However, given

n and d, the matrix M

n;d

(f) has pretty good stru
ture, whi
h we explore in this

paper towards a better algorithm (that is solving the set of homogeneous linear

equations in an eÆ
ient way by de
reasing the size of the matrix involved).

3 Faster strategy to 
onstru
t the set of homogeneous

linear equations

In this se
tion we present an eÆ
ient strategy to redu
e the set of homogeneous

linear equations. First we present a te
hni
al result.



Theorem 1. Let g be an n-variable Boolean fun
tion de�ned as g(x) = 1 i�

wt(x) � d for 0 � d � n. Then M

n;d

(g)

�1

= M

n;d

(g), i.e., M

n;d

(g) is a self

inverse matrix.

Proof. Suppose F =M

n;d

(g)M

n;d

(g). Then the i-th row and j-th 
olumn entry

of F (denoted by F

i;j

) is the s
alar produ
t of i-th row and j-th 
olumn of

M

n;d

(g). Suppose the i-th row is v

n;d

(x) for x 2 f0; 1g

n

having x

q

1

; : : : ; x

q

l

as

1 and others are 0. Further 
onsider that the j-th 
olumn is the evaluation of

the monomial x

r

1

: : : x

r

k

at the input ve
tors belonging to the support of g. If

fr

1

; : : : ; r

k

g 6� fq

1

; : : : ; q

l

g then F

ij

= 0. Otherwise, F

i;j

=

�

l�k

0

�

+

�

l�k

1

�

+ � � �+

�

l�k

l�k

�

mod 2 = 2

l�k

mod 2. So, F

i;j

= 1 i� fx

r

1

; : : : ; x

r

k

g = fx

q

1

; : : : ; x

q

l

g. That

implies, F

i;j

= 1 i� i = j i.e., F is identity matrix. Hen
e, M

n;d

(g) is its own

inverse. ut

See the following example for the stru
ture ofM

n;d

(g) when n = 4 and d = 2.

Example 1. Let us present an example of M

n;d

(g) for n = 4 and d = 2. We

have f1; x

1

, x

2

; x

3

, x

4

; x

1

x

2

, x

1

x

3

; x

2

x

3

, x

1

x

4

; x

2

x

4

; x

3

x

4

g, the list of 4-variable

monomials of degree � 2 in as
ending order (<

l

).

Similarly, f(0; 0; 0; 0), (1; 0; 0; 0), (0; 1; 0; 0), (0; 0; 1; 0), (0; 0; 0; 1), (1; 1; 0; 0),

(1; 0; 1; 0), (0; 1; 1; 0), (1; 0; 0; 1), (0; 1; 0; 1), (0; 0; 1; 1)g present the 4 dimensional

ve
tors of weight � 2 in as
ending order (<

l

). So the matrix

M

4;2

(g) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0

1 1 0 0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

One may 
he
k that M

4;2

(g) is self inverse.

Lemma 1. Let A be a nonsingular m�m binary matrix where the row ve
tors

are denoted as v

1

; v

2

; : : : ; v

m

. Let U be a k � m binary matrix, k � m, where

the rows are denoted as u

1

; u

2

; : : : ; u

k

. Let W = UA

�1

, a k �m binary matrix.

Consider that a matrix A

0

is formed from A by repla
ing the rows v

i

1

; v

i

2

; : : : ; v

i

k

of A by the ve
tors u

1

; u

2

; : : : ; u

k

. Further 
onsider that a k � k matrix W

0

is

formed by taking the i

1

-th, i

2

-th, : : : ; i

k

-th 
olumns of W (out of m 
olumns).

Then A

0

is nonsingular i� W

0

is nonsingular.

Proof. Without loss of generality, we 
an take i

1

= 1; i

2

= 2; : : : ; i

k

= k. So, the

row ve
tors of A

0

are u

1

; : : : ; u

k

; v

k+1

; : : : ; v

m

.

We �rst prove that if the row ve
tors of A

0

are not linearly independent then

the row ve
tors of W

0

are also not linearly independent. As the row ve
tors

of A

0

are not linearly independent, we have �

1

; �

2

; : : : ; �

m

2 f0; 1g (not all

zero) su
h that

P

k

i=1

�

i

u

i

+

P

m

i=k+1

�

i

v

i

= 0. If �

i

= 0 for all i, 1 � i �

k then

P

m

i=k+1

�

i

v

i

= 0 whi
h implies �

i

= 0 for all i, k + 1 � i � m as

v

k+1

; v

k+2

; : : : ; v

m

are linearly independent. So, all �

i

's for 1 � i � k 
an not be

zero.



Further, we have UA

�1

=W , i.e., U =WA, i.e.,

0

B

B

B

�

u

1

u

2

.

.

.

u

k

1

C

C

C

A

=

0

B

B

B

�

w

1

w

2

.

.

.

w

k

1

C

C

C

A

0

B

B

B

�

v

1

v

2

.

.

.

v

m

1

C

C

C

A

; i.e., u

i

= w

i

0

B

B

B

�

v

1

v

2

.

.

.

v

m

1

C

C

C

A

:

Hen
e,

P

k

i=1

�

i

u

i

=

P

k

i=1

�

i

w

i

0

B

B

B

�

v

1

v

2

.

.

.

v

m

1

C

C

C

A

= r

0

B

B

B

�

v

1

v

2

.

.

.

v

m

1

C

C

C

A

where r = (r

1

; r

2

; : : : ; r

m

) =

P

k

i=1

�

i

w

i

.

If the restri
ted matrix W

0

were nonsingular, the ve
tor r

0

= (r

1

; r

2

; : : : ; r

k

)

is non zero as (�

1

; �

2

; : : : ; �

k

) is not all zero. Hen
e,

P

k

i=1

�

i

u

i

+

P

m

i=k+1

�

i

v

i

=

0; i:e:;

P

k

i=1

r

i

v

i

+

P

m

i=k+1

(r

i

+ �

i

)v

i

= 0. This 
ontradi
ts that v

1

; v

2

; : : : ; v

m

are linearly independent as r

0

= (r

1

; r

2

; : : : ; r

k

) is nonzero. Hen
e W

0

must be

singular. This proves one dire
tion.

On the other dire
tion if the restri
ted matrix W

0

is singular then there are

�

1

; �

2

; : : : ; �

k

not all zero su
h that

P

k

i=0

�

i

w

i

= (0; : : : ; 0; s

k+1

; : : : ; s

m

). Hen
e,

P

k

i=0

�

i

u

i

=

P

k

i=1

�

i

w

i

0

B

B

B

�

v

1

v

2

.

.

.

v

m

1

C

C

C

A

= s

k+1

v

k+1

+ � � � + s

m

v

m

, i.e.,

P

k

i=0

�

i

u

i

+

P

m

i=k+1

s

i

v

i

= 0 whi
h says matrix A

0

is singular. ut

Following Lemma 1, one 
an 
he
k the nonsingularity of the larger matrix A

0

by 
he
king the nonsingularity of the redu
ed matrix W

0

. Thus 
he
king the

nonsingularity of the larger matrix A

0

will be more eÆ
ient if the 
omputation

of matrix produ
t W = UA

�1


an be done eÆ
iently. The self inverse nature

of the matrix M

n;d

(g) presented in Theorem 1 helps to a
hieve this eÆ
ien
y.

In the rest of this se
tion we will study this in detail. In the following result we

present the Lemma 1 in more general form.

Theorem 2. Let A be a nonsingular m�m binary matrix with m-dimensional

row ve
tors v

1

; v

2

; : : : ; v

m

and U be a k �m binary matrix with m-dimensional

row ve
tors u

1

; u

2

; : : : ; u

k

. Consider W = UA

�1

, a k �m matrix. The matrix

A

0

, formed from A by removing the rows v

i

1

; v

i

2

; : : : ; v

i

l

(l � m) from A and

adding the rows u

1

; u

2

; : : : ; u

k

(k � l), is of rank m i� the rank of restri
ted k� l

matrix W

0

in
luding only the i

1

-th, i

2

-th, : : : ; i

l

-th 
olumns of W is l.

Proof. Here, the rank of matrix W

0

is l. So, there are l many rows of W

0

, say

w

0

p

1

; : : : ; w

0

p

l

whi
h are linearly independent. So, following the Lemma 1 we have

the matrix A

00

formed by repla
ing the rows v

i

1

; : : : ; v

i

l

of A by u

p

1

; : : : ; u

p

l

is

nonsingular, i.e., rank is m. Hen
e the matrix A

0

where some more rows are

added to A

00

has rank m. The other dire
tion 
an also be shown similar to the

proof of the other dire
tion in Lemma 1. ut



Now using Theorem 1 and Theorem 2, we des
ribe a faster algorithm to


he
k the existen
e of annihilators of 
ertain degree d of a Boolean fun
tion

f . Suppose g be the Boolean fun
tion des
ribed in Theorem 1, i.e., supp(g) =

fxj0 � wt(x) � dg. In Theorem 1, we have already shown that M

n;d

(g) is

nonsingular matrix (in fa
t it is self inverse). Let fxjwt(x) � d and f(x) =

0g = fx

1

; x

2

; : : : ; x

l

g and fxjwt(x) > d and f(x) = 1g = fy

1

; y

2

; : : : ; y

k

g. Then

we 
onsider M

n;d

(f) as A, v

n;d

(x

1

); : : : ; v

n;d

(x

l

) as v

i

1

; : : : ; v

i

l

and v

n;d

(y

1

), : : : ,

v

n;d

(y

k

) as u

1

; : : : ; u

k

. Then following Theorem 2 we 
an ensure whetherM

n;d

(f)

is nonsingular. If it is nonsingular, then there is no annihilator of degree � d,

else there are annihilator(s). We may write this in a more 
on
rete form as the

following 
orollary to Theorem 2.

Corollary 1. Let f be an n-variable Boolean fun
tion. Let A

r

be the restri
ted

matrix of A = M

n;d

(g), by taking the 
olumns 
orresponding to the monomials

x

i

1

x

i

2

: : : x

i

l

su
h that l � d and f(x) = 0 when x

i

1

= 1; x

i

2

= 1; : : : ; x

i

l

= 1 and

rest of the input variables are 0. Further U =

0

B

B

B

�

v

n;d

(y

1

)

v

n;d

(y

2

)

.

.

.

v

n;d

(y

k

)

1

C

C

C

A

, where fy

1

; : : : ; y

k

g =

fxjwt(x) > d and f(x) = 1g. If rank of UA

r

is l then there is no annihilator of

degree � d, else there are annihilator(s) of degree � d.

Proof. As per Theorem 2, here W = UA

�1

= UA, sin
e A is self inverse,

following Theorem 1 and hen
e W

0

is basi
ally UA

r

. Thus the proof follows. ut

Now we 
an use the following te
hnique for fast 
omputation of the matrix

multipli
ation UA

r

. For this we �rst present a te
hni
al result and its proof is

similar in the line of the proof of Theorem 1.

Proposition 1. Consider g as in Theorem 1. Let y 2 f0; 1g

n

su
h that i

1

, i

2

,

: : : , i

p

-th pla
es are 1 and other pla
es are 0. Consider the j-th monomial m

j

=

x

j

1

x

j

2

: : : x

j

q

a

ording the ordering <

l

. Then the j-th entry of v

n;d

(y)M

n;d

(g)

is 0 if fj

1

; : : : ; j

q

g 6� fi

1

; : : : ; i

p

g else the value is

P

d�q

i=0

�

p�q

i

�

mod 2.

Following Proposition 1, we 
an get ea
h row of U as some v

n;d

(y) and ea
h


olumn of A

r

as m

j

and 
onstru
t the matrix UA

r

. One 
an pre
ompute the

sums

P

d�q

i=0

�

p�q

i

�

mod 2 for d+1 � p � n and 0 � q � d, and store them and the

total 
omplexity for 
al
ulating them is O(d

2

(n � d)). These sums will be used

to �ll up the matrix UA

r

whi
h is an l� k matrix a

ording to Corollary 1. Let

us denote �

f

= jfxjwt(x) � d; f(x) = 1gj and �

f

= jfxjwt(x) > d; f(x) = 1gj.

Then wt(f) = �

f

+�

f

and the matrix UA

r

is of dimension �

f

� (

P

d

i=0

�

n

i

�

��

f

).

Clearly O(d

2

(n � d)) 
an be negle
ted with respe
t to �

f

� (

P

d

i=0

�

n

i

�

� �

f

).

Thus we have the following result.

Theorem 3. Consider U and A

r

as in Corollary 1. The time (and also spa
e)


omplexity to 
onstru
t the matrix UA

r

is of the order of �

f

� (

P

d

i=0

�

n

i

�

�

�

f

). Further 
he
king the rank of UA

r

(as given in Corollary 1) one 
an de
ide

whether f has an annihilator at degree d or not.



In fa
t, to 
he
k the rank of the matrix UA

r

using Gaussian elimination pro-


ess, we need not store the �

f

many rows at the same time. One 
an add one row

(following the 
al
ulation to 
ompute a row of the matrix given in Proposition 1)

at a time in
rementally to the previously stored linearly independent rows by


he
king whether the present row is linearly independent with respe
t to the

already stored rows. If the 
urrent row is linearly independent with the existing

ones, then we do row operations and add the new row to the previously stored

matrix. Otherwise we reje
t the new row. Hen
e, our matrix size never 
rosses

the size (

P

d

i=0

�

n

i

�

� �

f

)� (

P

d

i=0

�

n

i

�

� �

f

).

If �

f

(the number of rows) is less than (

P

d

i=0

�

n

i

�

� �

f

) (the number of

variables), then there will be nontrivial solutions and we 
an dire
tly say that

the annihilators exist. Thus we always need to 
on
entrate on the 
ase �

f

�

(

P

d

i=0

�

n

i

�

��

f

), where the matrix size (

P

d

i=0

�

n

i

�

��

f

)�(

P

d

i=0

�

n

i

�

��

f

) provides

a further redu
tion than the matrix size �

f

� (

P

d

i=0

�

n

i

�

� �

f

) and one 
an save

more spa
e. This will be very helpful when one tries to 
he
k the annihilators of

small degree d.

Refer to Subse
tion 3.1 below for detailed des
ription that this algorithm

provides asymptoti
 improvement than [23℄ in terms of 
onstru
ting this redu
ed

set of homogeneous linear equations. In terms of the overall algorithm to �nd the

annihilators, our algorithm works around eight times further than [23℄ in general.

Using our strategy to �nd the redu
ed matrix �rst and then using the standard

Gaussian elimination te
hnique, we 
ould �nd the annihilators of any random

balan
ed Boolean fun
tions on 16 variables in around 2 hours in a Pentium 4

personal 
omputer with 1 GB RAM. Note that, the very re
ently known eÆ
ient

algorithms [1, 21℄ 
an work till 20 variables.

3.1 Comparision with Meier et al [23℄ algorithm

Here we 
ompare the time and spa
e 
omplexity of our strategy with [23, Al-

gorithm 2℄. In paper [23℄, Algorithm 2 is probablisti
. In this draft we study

the time and spa
e 
omplexity of the algorithm along with it's determinsti
 ver-

sion. Using these algorithms we 
he
k whether there exist annihilators of degree

� d of an n-variable fun
tion f . As we have already des
ribed, ANF of any

n-variable fun
tion g of degree d is of the form g(x

1

; : : : ; x

n

) = a

0

+

P

n

i=0

a

i

x

i

+

� � �+

P

1�i

1

<i

2

���<i

d

�n

a

i

1

;:::;i

d

x

i

1

� � �x

i

d

. First we present the exa
t probabilisti


algorithm [23, Algorithm 2℄.

Algorithm 2

1. Initialize weight w = 0.

2. For all x's of weight w with f(x) = 1, substitute ea
h x in g(x) = 0 to derive

a linear equation on the 
oeÆ
ients of g, with a single 
oeÆ
ient of weight

w. Use this equation to express this 
oeÆ
ient iteratively by 
oeÆ
ients of

lower weight.

3. If w < d, in
rement w by 1 and go to step 2.



4. Choose random arguments x of arbitrary weight su
h that f(x) = 1 and sub-

stitute in g(x) = 0, until there are same number of equations as unknowns.

5. Solve the linear system. If there is no solution, output no annihilator of

degree d, but if there is a solution then it is not 
lear whether there is an

annihilator of degree d or not.

Next we present the deterministi
 version of the original probabilisti
 algo-

rithm [23, Algorithm 2℄.

Algorithm 3

1. Initialize weight w = 0.

2. For all x's of weight w with f(x) = 1, substitute ea
h x in g(x) = 0 to derive

a linear equation in the 
oeÆ
ients of g, with a single 
oeÆ
ient of weight

w. Use this equation to express this 
oeÆ
ient iteratively by 
oeÆ
ients of

lower weight.

3. If w < d, in
rement w by 1 and go to step 2.

4. Substitute x su
h that wt(x) > d and f(x) = 1 in g(x) = 0 to get linear

equation in the 
oeÆ
ient of g.

5. Solve the linear system. Output no annihilator of degree d i� there is no non

zero solution.

Sin
e �rst three steps of both algorithms are same, we initially study the time

and spa
e 
omplexity of both the algorithms for �rst three steps for a randomly


hoosen balan
ed fun
tion f . In step 2, we apply x, su
h that weight of x � d

and f(x) = 1, in g(x) and hen
e we get a linear equation in the 
oeÆ
ient of g

su
h that a single 
oeÆ
ient of that weight is expressed as linear 
ombination of

its lower weight 
oeÆ
ients. Here we 
onsider a parti
ular w for ea
h iteration.

As f is random and balan
ed, one 
an expe
t that there are

1

2

�

n

w

�

many input

ve
tors of weight w in set supp(f). For ea
h x = (x

1

; : : : ; x

n

) 2 supp(f) where

x

i

1

; : : : ; x

i

w

are 1 and others are 0 of weight w, we will get linear equation of the

form

a

i

1

;:::;i

w

= a

0

+

w

X

j=1

a

i

j

+ � � �+

X

fk

1

;:::;k

w�1

g�fi

1

;:::i

w

g

a

k

1

;:::;k

w�1

: (3)

To store one equation we need

P

w

i=0

�

n

i

�

many memory bits (some pla
es will

be 0, some will be 1). There are

P

w�1

i=0

�

w

i

�

many 
oeÆ
ients in the right hand

side of the Equation 3. As f is random, one 
an expe
t that half of them 
an

be eliminated using the equations obtained by lower weight input support ve
-

tors. So,

P

w

i=0

�

n

i

�

+

1

2

P

w�1

i=0

(

�

w

i

�

P

i�1

j=0

�

n

j

�

) order of 
omputation is required to

establish an equation. Here w varies from 0 to d and there are approximately

1

2

P

d

w=0

�

n

w

�

many support ve
tors of weight � d. Hen
e at the starting of step

4 the spa
e 
omplexity is S1 =

1

2

P

d

w=0

(

�

n

w

�

P

w

i=0

�

n

i

�

) and time 
omplexity is

T1 =

1

2

P

d

w=0

(

�

n

w

�

(

P

w

i=0

�

n

i

�

+

1

2

P

w�1

i=0

�

w

i

�

P

i�1

j=0

�

n

j

�

)).

Now we study the time and spa
e 
omplexity for steps 4 and 5 in both

probabilisti
 and deterministi
 version. To represent ea
h equation for the system

of equation one needs

P

d

w=0

�

n

w

�

memory bits.



First we 
onsider the probabilisti
 one. For probabilisti
 
ase one has to


hoose appoximately

1

2

P

d

w=0

�

n

w

�

many support input ve
tors of weight > d.

Hen
e ea
h linear equation obtained from these ve
tors has atleast

P

d

i=0

�

d+1

i

�

many 
oeÆ
ients of g and half of them 
an be eliminated using the equa-

tions obtained in previous steps. So, to get ea
h equation one needs atleast

P

d

w=0

�

n

w

�

+

1

2

P

d

i=0

(

�

d+1

i

�

P

i�1

j=0

�

n

j

�

) 
omputations. Hen
e the spa
e 
omplex-

ity during 4th step is SP2 �

1

2

(

P

d

w=0

�

n

w

�

)

2

and time 
omplexity is TP2 �

1

2

P

d

w=0

�

n

w

�

(

P

d

w=0

�

n

w

�

+

1

2

P

d

i=0

(

�

d+1

i

�

P

i�1

j=0

�

n

j

�

)). Finally, to generate system

of homogenuous linear equations one requires

SP = S1+SP2 �

1

2

P

d

w=0

(

�

n

w

�

P

w

i=0

�

n

i

�

)+

1

2

(

P

d

w=0

�

n

w

�

)

2

memory bits and

TP = T1 + TP2 �

1

2

P

d

w=0

(

�

n

w

�

(

P

w

i=0

�

n

i

�

+

1

2

P

w�1

i=0

�

w

i

�

P

i�1

j=0

�

n

j

�

))

+

1

2

P

d

w=0

�

n

w

�

(

P

d

w=0

�

n

w

�

+

1

2

P

d

i=0

(

�

d+1

i

�

P

i�1

j=0

�

n

j

�

)) 
omputations. Then in

step 5, we have to solve

1

2

P

d

w=0

�

n

w

�

many linear equations with same number of

variables. To solve this system one needs TP3 = (

1

2

P

d

w=0

�

n

w

�

)

3


omputations

using the Guassian elimination te
hnique.

Now we study spa
e and time 
omplexity for deterministi
 one. Sin
e f is

balan
ed, there are approximately 2

n�1

�

1

2

P

d

w=0

�

n

w

�

=

1

2

P

n

w=d+1

�

n

w

�

many

support ve
tors having weight > d and these many are 
onsidered to �nd out

equations. Hen
e ea
h linear equation obtained from these ve
tors of weight

w > d 
ontains

P

d

i=0

�

w

i

�

many 
oeÆ
ients of g and half of them 
an be elimi-

nated using the equations obtained in steps 1, 2 and 3. To get this equation one

needs

P

d

i=0

�

n

i

�

+

1

4

P

d

i=0

(

�

w

i

�

P

i�1

j=0

�

n

j

�

) 
omputations. Hen
e the total spa
e


omplexity during 4th step is SD2 =

1

4

P

n

w=d+1

�

n

w

�

P

d

w=0

�

n

d

�

) and time 
om-

plexity is TD2 =

1

2

P

n

w=d+1

�

n

w

�

(

P

d

i=0

�

n

i

�

+

1

4

P

d

i=0

(

�

w

i

�

P

i�1

j=0

�

n

j

�

). Finally, to

generate homogenuous linear equations one needs

SD = S1+SD2 =

1

2

P

d

w=0

(

�

n

w

�

P

w

i=0

�

n

i

�

)+

1

4

P

n

w=d+1

�

n

w

�

P

d

w=0

�

n

d

�

) mem-

ory bits and

TD = T1 + TD2 =

1

2

P

d

w=0

(

�

n

w

�

(

P

w

i=0

�

n

i

�

+

1

2

P

w�1

i=0

�

w

i

�

P

i�1

j=0

�

n

j

�

))

+

1

2

P

n

w=d+1

�

n

w

�

(

P

d

i=0

�

n

i

�

+

1

4

P

d

i=0

(

�

w

i

�

P

i�1

j=0

�

n

j

�

) 
omputations. Further, in

step 5, we have to solve

1

2

P

n

w=d+1

�

n

w

�

many linear equations with

1

2

P

d

w=0

�

n

w

�

number of variables. To solve this system one needs TD3 = (

1

2

P

n

w=d+1

�

n

w

�

)

3


omputations.

The system of equations generated by our strategy as well as Meier et al [23℄

algorithms are same. So, it takes same 
omplexities to solve them. Only di�eren
e

is during generation of the system of equations. In the following table we show

the 
omplexities for both algorithms for generating the system of equations.

4 Further redu
tion in matrix size applying linear

transformation over the input variables of the fun
tion

To 
he
k for the annihilators, we need to 
ompute the rank of the matrix UA

r

.

Following Theorem 3, it is 
lear that the size of the matrix UA

r

will de
rease



Spa
e Time

Meier's

1

2

P

d

w=0

(

�

n

w

�

P

w

i=0

�

n

i

�

)

1

2

P

d

w=0

(

�

n

w

�

(

P

w

i=0

�

n

i

�

+

1

2

P

w�1

i=0

�

w

i

�

P

i�1

j=0

�

n

j

�

))

algorithm +

1

2

(

P

d

w=0

�

n

w

�

)

2

+

1

2

P

d

w=0

�

n

w

�

(

P

d

w=0

�

n

w

�

+

1

2

P

d

i=0

(

�

d+1

i

�

P

i�1

j=0

�

n

j

�

))

Our algorithm

1

4

(

P

d

w=0

�

n

w

�

)

2
1

4

(

P

d

w=0

�

n

w

�

)

2

Table 1. Time and Spa
e 
omplexity 
omparision of Probabilisti
 algorithms to gen-

erate equations.

Spa
e Time

Meier's

1

2

P

d

w=0

(

�

n

w

�

P

w

i=0

�

n

i

�

)

1

2

P

d

w=0

(

�

n

w

�

(

P

w

i=0

�

n

i

�

+

1

2

P

w�1

i=0

�

w

i

�

P

i�1

j=0

�

n

j

�

))

algorithm +

1

4

P

n

w=d+1

�

n

w

�

P

d

w=0

�

n

d

�

) +

1

2

P

n

w=d+1

�

n

w

�

(

P

d

i=0

�

n

i

�

+

1

4

P

d

i=0

(

�

w

i

�

P

i�1

j=0

�

n

j

�

)

Our algorithm

1

4

P

n

w=d+1

�

n

w

�

P

d

w=0

�

n

w

�

1

4

P

n

w=d+1

�

n

w

�

P

d

w=0

�

n

w

�

Table 2. Time and Spa
e 
omplexity 
omparision of Deterministi
 algorithms to gen-

erate equations.

if �

f

in
reases and �

f

de
reases. Let B be an n � n nonsingular binary matrix

and b be an n-bit ve
tor. The fun
tion f(x) has an annihilator at degree d i�

f(Bx + b) has an annihilator at degree d. Thus one will try to get the aÆne

transformation on the input variables of f(x) to get h(x) = f(Bx+ b) su
h that

jfxjh(x) = 1; wt(x) � dgj is maximized. This is be
ause in this 
ase �

h

will be

maximized and �

h

will be minimized and hen
e the dimension of the matrix

UA

r

, i.e., �

f

� (

P

d

i=0

�

n

i

�

��

f

) will be minimized. This will indeed de
rease the


omplexity at the 
onstru
tion step (dis
ussed in the previous se
tion). More

importantly, it will de
rease the 
omplexity to solve the system of homogeneous

linear equations.

See the following example that explains the eÆ
ien
y for a 5-variable fun
-

tion.

Example 2. We present an example for this purpose. Consider the 5-variable

Boolean fun
tion f 
onstru
ted using the method presented in [18℄ su
h that

neither f nor 1+f has an annihilator at a degree < 3. The standard truth table

representation of the fun
tion is 01010110010101100101011001101001, i.e., the

outputs are 
orresponding to the inputs whi
h are of in
reasing value. One 
an


he
k that jfx 2 f0; 1g

5

j f(x) = 1 & wt(x) < 3gj = 6. Now if we 
onsider the

fun
tion h(x) = f(Bx+b) su
h that B =

2

6

6

6

6

4

1 1 1 0 1

1 1 1 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

3

7

7

7

7

5

, and b = f1; 1; 0; 0; 1g, then

jfx 2 f0; 1g

5

j h(x) = 1 & wt(x) < 3gj = 16 and one 
an immediately 
on
lude

(from the results in [19℄) that neither h nor 1+h has an annihilator of degree < 3.

This is an example where after �nding the aÆne transformation there is even no

need for the solution step at all. For the fun
tion f , here h(x) = f(Bx+ b) su
h

that jfxjh(x) = 1; wt(x) � dgj is maximized.



We also present an example for a sub optimal 
ase. In this 
ase we 
on-

sider B =

2

6

6

6

6

4

1 0 1 0 0

1 1 0 0 0

1 1 1 0 1

0 0 0 1 1

0 1 1 1 0

3

7

7

7

7

5

, and b an all zero ve
tor, then jfx 2 f0; 1g

5

j h(x) =

1 & wt(x) < 3gj = 14. Thus the dimension of the matrix UA

r

be
omes 2 � 2

as �

f

= 2 and

P

d

i=0

�

n

i

�

� �

f

= 2. Thus one needs to 
he
k the rank of a 2� 2

matrix only.

Now the question is how to �nd su
h an aÆne transformation (for the optimal

or even for sub optimal 
ases) eÆ
iently.

For exhaustive sear
h to get the optimal aÆne transform one needs to 
he
k

f(Bx+ b) for all n�n nonsingular binary matri
es B and n bit ve
tors b. Sin
e

there are

Q

n�1

i=0

(2

n

� 2

i

) many nonsingular binary matri
es and 2

n

many n bit

ve
tors, one needs to 
he
k 2

n

Q

n�1

i=0

(2

n

�2

i

) many 
ases for an exhaustive sear
h.

As weight of the input ve
tors are invariant under permutation of the arguments,


he
king for only one nonsingular matrix from the set of all nonsingular matri
es

whose rows are equivalent under 
ertain permutation will suÆ
e. Hen
e the

exa
t number of sear
h options is

1

n!

2

n

Q

n�1

i=0

(2

n

� 2

i

). One 
an 
he
k for n� n

nonsingular binary matri
es B where row

i

< row

j

for i < j (row

i

is the de
imal

value of binary pattern of ith row). It is 
lear that the sear
h is infeasible for

n � 8.

Now we present a heuristi
 towards this. Our aim is to �nd out an aÆne

transformation h(x) of f(x), i.e., h(x) = f(Bx+ b), whi
h maximizes the value

of �

h

. This means the weight of the most of the input ve
tors having weight

� d should be in supp(h). So we attempt to get an aÆne transformation for a

Boolean fun
tion f su
h that the transformation in
reases the probability that

an input ve
tor, having output 1, will be translated to a low weight input ve
tor.

Consider h(V x + v) = f(x), where V is an n � n binary matrix and v =

(v

1

; v

2

; : : : ; v

n

) 2 f0; 1g

n

. Suppose r

1

; r

2

; : : : ; r

n

2 f0; 1g

n

are the row ve
tors

of the transformation V . By V x + v = y we mean V x

tr

+ v = y

tr

, where

x = (x

1

; x

2

; : : : ; x

n

); y = (y

1

; y

2

; : : : ; y

n

) 2 f0; 1g

n

. Given an x, we �nd a y by

this transformation and then h(y) is assigned to the value of f(x). If f(x) = 1,

we like that the 
orresponding y = V x+ v should be of low weight. The 
han
e

of (y

1

; y

2

; : : : ; y

n

) getting low weight in
reases if the probability of y

i

= 0; 1 �

i � n is in
reased. That means the probability of r

i

� (x

1

; x

2

; : : : ; x

n

) + v

i

= 0

for 1 � i � n needs to be in
reased. Hen
e we will like to 
hoose a linearly

independent set r

i

2 f0; 1g

n

, 1 � i � n and v 2 f0; 1g

n

su
h that the probability

r

i

� (x

1

; x

2

; : : : ; x

n

) + b

i

= 0, 1 � i � n is high when (x

1

; x

2

; : : : ; x

n

) 2 supp(f).

Sin
e we use the relations h(V x+ v) = f(x), and h(x) = f(Bx+ b), that means

B = V

�1

and b = V

�1

v.

The heuristi
 is presented below. By bin[i℄ we denote the n-bit binary repre-

sentation of the integer i.

Heuristi
 1



1. loop = 0; max = jfxjf(x) = 1; wt(x) � dgj;

2. For (i = 1; i < 2

n

; i++) f

(a) t = jfx = (x

1

; x

2

; : : : ; x

n

) 2 supp(f)jbin[i℄ � x = 0gj

(b) if t �

wt(f)

2

; val[i℄ = t and a

i

= 0 else val[i℄ = wt(f) � t and a

i

= 1.

g

3. Arrange the triplets (bin[i℄; a

i

; val[i℄) in des
ending order of val[i℄.

4. Choose suitable n many triplets (r

j

; v

j

; k

j

) for 1 � j � n su
h that r

j

s are

linearly independent and k

j

's are high.

5. Constru
t the nonsingular matrix V taking r

j

; 1 � j � n as j-th row and

v = (v

1

; v

2

; : : : ; v

n

).

6. In
rement loop by 1; while (loop < maxval)

(a) B = V

�1

, b = V

�1

v.

(b) if max < jfxjf(Bx+ b) = 1; wt(x) � dgj repla
e f(x) by f(Bx+ b) and

update max by jfxjf(Bx+ b) = 1; wt(x) � dgj.

(
) Go to step 2.

The time 
omplexity of this heuristi
 is (maxval � n2

2n

). See the follow-

ing example, where we tra
e Heuristi
 1 for the 5-variable fun
tion f given in

Example 2.

Example 3. We have f = 01010110010101100101011001101001 and 
he
k that

jfx 2 f0; 1g

5

j f(x) = 1 & wt(x) � 2gj = 6. In step 2, we get (val[i℄; a

i

) for

1 � i � 31 as 1 : (11; 1), 2 : (8; 1), 3 : (11; 1), 4 : (8; 1), 5 : (11; 1), 6 : (8; 1),

7 : (9; 0), 8 : (8; 1), 9 : (9; 1), 10 : (8; 1), 11 : (9; 1), 12 : (8; 1), 13 : (9; 1),

14 : (8; 1), 15 : (11; 0), 16 : (8; 1), 17 : (9; 1), 18 : (8; 1), 19 : (9; 1), 20 : (8; 1),

21 : (9; 1), 22 : (8; 1), 23 : (11; 0), 24 : (8; 1), 25 : (9; 0), 26 : (8; 1), 27 : (9; 0),

28 : (8; 1), 29 : (9; 0), 30 : (8; 1), 31 : (11; 1). Then after ordering a

ording the

value of val[i℄, we 
hoose the row of matrix V as the 5-bit binary expansion

of 1; 3; 5; 15 and 7 with frequen
y values of 0's as 11; 11; 11; 11; 9 respe
tively

and v = (a

1

; a

3

; a

5

; a

15

; a

7

) = (1; 1; 1; 1; 0). Here the matrix V is a nonsingular

matrix. The new fun
tion is g = f(Bx+ b), where B = V

�1

, b = V

�1

v and one


an 
he
k that jfx 2 f0; 1g

5

j g(x) = 1 & wt(x) � 2gj = 16.

Experiments with this heuristi
 on di�erent Boolean fun
tions provide very

positive results. First of all we have 
onsidered the fun
tions whi
h are random

aÆne transformations g(x) of the fun
tion [19℄, f

s

(x) = 1 for wt(x) � b

n�1

2


 and

f

s

(x) = 0 for wt(x) � b

n+1

2


, whi
h has no annihilator having degree � b

n�1

2


.

This experimentation has been done for n = 5 to 16. For all the 
ases running

Heuristi
 1 on g(x) we 
ould go ba
k to f

s

(x). Then we have randomly 
hanged

2

�n

bits on the upper half of f

s

(x) (0:5 � � � 0:8 at steps of 0:1) to get f

0

s

(x) and

then put random transformations on f

0

s

(x) to get g(x). Running Heuristi
 1, we


ould also go ba
k to f

0

s

(x) easily. For experiments we have taken maxval = 20.

The important issue is exa
tly when this matrix size is asymptoti
ally re-

du
ed than the trivial matrix size wt(f) �

P

d

i=0

�

n

i

�

if one writes down the

equations by looking at the truth table of the fun
tion only. This happens only

when �

f

is very 
lose to

P

d

i=0

�

n

i

�

. Let

P

d

i=0

�

n

i

�

� �

f

� 2

�n

, where � is a 
on-

stant su
h that 0 < � < 1. In that 
ase the matrix size will be less than or equal



to (wt(f) + 2

�n

�

P

d

i=0

�

n

i

�

)� 2

�n

. When d = b

n

2


 and n odd,

P

d

i=0

�

n

i

�

= 2

n�1

.

Thus for a balan
ed fun
tion, the size of the matrix be
omes as low as 2

�n

�2

�n

.

We summarize the result as follows.

Theorem 4. Predetermine a 
onstant �, su
h that 0 < � < 1. Consider any

Boolean fun
tion f(x) 2 B

n

for whi
h there exist a nonsingular binary matrix B

and an n-bit ve
tor b su
h that

P

d

i=0

�

n

i

�

�jfxjf(Bx+b) = 1; wt(x) � dgj � 2

�n

.

If B and b are known, then the size of the matrix UA

r

will be less than or equal

to (wt(f) + 2

�n

�

P

d

i=0

�

n

i

�

) � 2

�n

whi
h is asymptoti
ally redu
ed in size than

wt(f)�

P

d

i=0

�

n

i

�

.

That B; b 
an be known is quite likely from the experimental results available

running Heuristi
 1.

Next we have run our heuristi
s on randomly 
hosen balan
ed fun
tions. The

number of inputs up to weight d for a Boolean fun
tion is

P

d

i=0

�

n

i

�

. Thus for a

randomly 
hosen balan
ed fun
tion, it is expe
ted that there will be

1

2

P

d

i=0

�

n

i

�

many inputs up to weight d for whi
h the outputs are 1. Below we present

the improvement (on an average of 100 experiments in ea
h 
ase) we got after

running Heuristi
 1 with maxval = 20 for n = 12 to 16.

n 12 13 14 15 16

d 3 4 5 4 5 6 4 5 6 5 6 7 5 6 7

P

d

i=0

�

n

i

�

299 794 1586 1093 2380 4096 1471 3473 6476 4944 9949 16384 6885 14893 26333

d

1

2

P

d

i=0

�

n

i

�

e 149 397 793 541 1190 2048 735 1736 3238 2472 4974 8192 3442 7446 13166

Heuristi
 Value 228 535 964 717 1438 2322 957 2051 3648 2917 5525 8811 3995 8194 14114

Table 3. EÆ
ien
y of Heuristi
 1 on random balan
ed fun
tions.

It should be noted that after running our heuristi
 on random balan
ed

fun
tions, the improvement is not extremely signi�
ant. There are improvements

as we �nd that the the values are signi�
antly more than

1

2

P

d

i=0

�

n

i

�

(making

our algorithm eÆ
ient), but the value is not very 
lose to

P

d

i=0

�

n

i

�

. This is not

a problem with the eÆ
ien
y of the heuristi
, but with the inherent property of

a random Boolean fun
tion that there may not be an aÆne transformation at

all on f(x) su
h that jfxjf(Bx+ b) = 1; wt(x) � dgj is very high. In fa
t we 
an

show that for highly nonlinear fun
tions f(x), the in
rement from jfxjf(x) =

1; wt(x) � dgj to jfxjf(Bx + b) = 1; wt(x) � dgj may not be signi�
ant for any

B; b. The reason for this is as follows.

Proposition 2. Let f 2 B

n

be a balan
ed fun
tion (n odd) having nonlinearity

nl(f) = 2

n�1

� 2

n�1

2

. Then for any nonsingular n� n matrix B and any n-bit

ve
tor b, 2

n�1

� jfxjf(Bx+ b) = 1; wt(x) �

n�1

2

gj �

1

2

�

n�1

n�1

2

�

� 2

n�1

2

�1

.

Proof. Let f 2 B

n

be a balan
ed fun
tion (n odd) having nonlinearity nl(f) =

2

n�1

� 2

n�1

2

. Let g 2 B

n

be the fun
tion su
h that g(x) = 1 for wt(x) �

n�1

2

.

By [19, Theorem 3℄, nl(g) = 2

n�1

�

�

n�1

n�1

2

�

. Now we like to �nd out a fun
tion



h(x) = f(Bx + b) su
h that jfxjh(x) = 1; wt(x) �

n�1

2

gj is high. Consider the

value T = jsupp(g) \ supp(h)j, i.e., T = jfx : h(x) = 1 & wt(x) �

n�1

2

gj.

Without loss of generality 
onsider T � 2

n�2

. Hen
e, d(h; g) = 2(2

n�1

� T ) =

2

n

�2T . Now, nl(f) = nl(h) � nl(g)+d(h; g) = (2

n�1

�

�

n�1

n�1

2

�

)+2

n

�2T . Thus,

2

n�1

� 2

n�1

2

� (2

n�1

�

�

n�1

n�1

2

�

) + 2

n

� 2T , i.e., 2

n�1

�T �

1

2

�

n�1

n�1

2

�

� 2

n�1

2

�1

. ut

Thus if one predetermines a �, then for a large n we may not satisfy the 
on-

dition that

P

n�1

2

i=0

�

n

i

�

� jfxjf(Bx + b) = 1; wt(x) � dgj � 2

�n

. In this dire
tion

we present the following general result where the 
onstraint of nonlinearity is

removed.

Theorem 5. Suppose f 2 B

n

be a randomly 
hosen balan
ed fun
tion. Then

the probability to get an aÆne transformation su
h that

jfxjf(Bx+ b) = 1; wt(x) � b

n� 1

2


gj >

b

n�1

2




X

i=0

�

n

i

�

� k is

1. less than

(n+1)2

n

P

k�1

i=0

(

2

n�1

i

)

2

(

2

n

2

n�1

)

for n odd.

2. less than

(n+1)2

n

P

k�1

i=0

(

P

n

2

�1

j=0

(

n

j

)

i

)(

2

n

�

P

n

2

�1

j=0

(

n

j

)

i+

1

2

(

n

n

2

)

)

(

2

n

2

n�1

)

for n even.

Proof. First we prove it for n odd. The number of balan
ed fun
tions h 2 B

n

su
h that jfxjh(x) = 1; wt(x) �

n�1

2

gj > 2

n�1

� k is

P

k�1

i=0

�

2

n�1

i

�

2

(
onsider

the upper and lower half in the truth table of the fun
tion). So, there will be at

most

P

k�1

i=0

�

2

n�1

i

�
2

many aÆnely invariant 
lasses of su
h fun
tions. Further the

total number of balan
ed fun
tion is

�

2

n

2

n�1

�

. Hen
e the total number of aÆnely

invariant 
lasses of balan
ed fun
tion is �

(

2

n

2

n�1

)

2

n

(2

n

�1)(2

n

�2

1

):::(2

n

�2

n�1

)

>

(

2

n

2

n�1

)

(n+1)2

n

.

Hen
e the probability of a randomly 
hosen balan
ed fun
tion will be fun
tion

type h is bounded by

(n+1)2

n

P

k�1

i=0

(

2

n�1

i

)

2

(

2

n

2

n�1

)

. Similarly, the 
ase for n even 
an be

proved. ut

If one takes k � 2

3

4

n

, then it 
an be 
he
ked easily that the probability de-


reases fast towards zero as n in
reases. Thus for a random balan
ed fun
tion f ,

the probability of getting an aÆne transformation (whi
h generates the fun
tion

h from f) su
h that jfxjf(Bx+ b) = 1; wt(x) � b

n�1

2


gj >

P

b

n�1

2




i=0

�

n

i

�

� 2

3

4

n

is

almost improbable.

Thus when one randomly 
hosen balan
ed fun
tion is 
onsidered, using the

strategy of 
onsidering the fun
tion after aÆne transformation, one 
an indeed

redu
e the matrix size by 
onstant fa
tor, but the redu
tion may not be sig-

ni�
ant in asymptoti
 terms when the annihilators at the degree of b

n�1

2


 are


onsidered for large n.



5 Con
lusion

In this paper we study how to redu
e the matrix size whi
h is involved in �nd-

ing the annihilators of a Boolean fun
tion. Our results show that 
onsiderable

redu
tion in the size of the matrix is a
hievable. We identify the 
lasses where

it provides asymptoti
 improvement. We also note that for randomly 
hosen

balan
ed fun
tions, the improvement is rather 
onstant than asymptoti
. The

redu
tion in matrix size helps in running the a
tual annihilator �nding steps

by Gaussian elimination method. Though our method is less eÆ
ient in general

than the re
ently known eÆ
ient algorithms [1, 21℄ to �nd the annihilators, this

work helps in theoreti
ally understanding the stru
ture of the matrix involved.
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