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Abstract. This paper aims at introducing generalized Jacobians as a
new candidate for discrete logarithm (DL) based cryptography. The mo-
tivation for this work came from the observation that several practical
DL-based cryptosystems, such as ElGamal, the Elliptic and Hyperelliptic
Curve Cryptosystems, XTR, LUC as well as CEILIDH can all naturally
be reinterpreted in terms of generalized Jacobians. However, usual Ja-
cobians and algebraic tori are thus far the only generalized Jacobians
implicitly utilized in cryptography. In order to go one step further, we
here study the simplest nontrivial generalized Jacobians of an elliptic
curve. In this first of a series of articles, we obtain explicit formulæ al-
lowing to efficiently perform arithmetic operations in these groups. This
work is part of our doctoral dissertation, where security aspects are con-
sidered in depth. As a result, these groups thus provide the first concrete
example of semi-abelian varieties suitable for DL-based cryptography.

Keywords. Public-key cryptography, Discrete logarithm problem, gen-
eralized Jacobians, semi-abelian varieties, elliptic curves.

1 Introduction and Motivation

Groups where the discrete logarithm problem (DLP) is believed to be intractable
are inestimable building blocks for cryptographic applications. They are at the
heart of numerous protocols such as key agreements, public-key cryptosystems,
digital signatures, identification schemes, publicly verifiable secret sharings, hash
functions and bit commitments. The search for new groups with intractable DLP
is therefore of great importance.

In 1985, the landmark idea of Koblitz [Kob87] and Miller [Mil86] of using
elliptic curves in public-key cryptography would, to say the least, change the
perception of many on the tools of number theory that can be of practical use
to cryptographers. In 1988, Koblitz [Kob89] generalized this idea by considering
Jacobians of hyperelliptic curves, which then led to the broader study of abelian
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varieties in cryptography. Nearly fifteen years later, Rubin and Silverberg [RS03]
discovered that another family of algebraic groups, namely the algebraic tori, also
are of great cryptographic interest.

Now on one hand, Jacobians of curves (of small genus) gained the favor
of many over the years, mostly because of the smaller key size needed. This
attractive characteristic is in fact possible since we can easily generate curves
for which there are no known subexponential time algorithms for solving the
corresponding discrete logarithm problem. On the other hand, rational algebraic
tori over a finite field offer the convenient advantage of possessing a compact
representation of their elements, which then decreases the amount of information
needed to be exchanged.

In a nutshell, cryptographers like Jacobians of curves for their security and
care about algebraic tori for their efficiency. Thus as far as we can tell, it appears
that these two sub-families of algebraic groups somehow possess complementary
cryptographic advantages. From a mathematical point of view, however, the
overall picture looks quite different. Indeed, with a minimal background in al-
gebraic geometry, they can both be seen as two realizations of a single concept:
generalized Jacobians.

As a result, several existing DL-based cryptosystems, such as the ElGamal,
the Elliptic and Hyperelliptic Curve Cryptosystems, XTR, the Lucas-based cryp-
tosystem LUC as well as the torus-based cryptosystem CEILIDH all possess an
underlying structure that can be naturally reinterpreted in terms of generalized
Jacobians1. Figure 1 provides a simplified view of the interrelation between the
cryptosystems and their underlying structures.

Fig. 1. Relation between DL-based cryptosystems and generalized Jacobians

This observation then raised the following question at the heart of our re-
search:

1 Recall that the interpretation of XTR and LUC in terms of tori is due to Rubin and
Silverberg [RS03, Section 7].
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Is it possible to use a generalized Jacobian that is neither a usual Jacobian
nor an algebraic torus for DL-based cryptography?

An affirmative answer would then widen the class of algebraic groups that
are of interest in public-key cryptography.

This existence result was established in our doctoral thesis [Déc05] by con-
sidering the simplest nontrivial generalized Jacobians of elliptic curves. These
test groups are in fact semi-abelian varieties which are extensions (of algebraic
groups) of an elliptic curve by the multiplicative group Gm.

Now recall that there are four main requirements for a group G to be suitable
for DL-based cryptography. Namely,

– The elements of G can be easily represented in a compact form,
– The group operation can be performed efficiently,
– The DLP in G is believed to be intractable, and
– The group order can be efficiently computed.

We here address the first, second and fourth of these requirements. For se-
curity considerations, please refer to [Déc05, Section 5.5].

This paper is organized as follows. In the next section, we give a condensed
introduction to generalized Jacobians. In Section 3, we derive a natural represen-
tation of the group elements. Using this compact representation, the group law
algorithm is obtained in Section 4 and basic properties are presented in Section
5. An outlook is presented in Section 6.

2 Generalized Jacobians: The Essentials

We here present an extremely concise overview of generalized Jacobian varieties
[Ros52,Ros54,Ser88]. A more detailed exposition in the context of cryptography
can be found in [Déc05, Chapter 4]. The underlying idea behind the construc-
tion of generalized Jacobians is essentially the same as with the usual Jacobians.
That is, starting with your favorite smooth algebraic curve C defined over an
algebraically closed field K, one first considers the free abelian group whose
elements are (a subgroup of) its divisors of degree zero. A clever equivalence
relation on these divisors is then defined. The quotient group obtained is then
naturally isomorphic to an algebraic group, which we hope to use for crypto-
graphic applications.

Thus the key ingredient in these constructions is the equivalence relation one
considers. Loosely speaking, the whole idea behind these equivalence relations
is to somehow “measure” how much a divisor D =

∑
P∈C nP (P ) differs from a

divisor D′ =
∑

P∈C n′P (P ). Linear equivalence give rise to usual Jacobians. In
this case, recall that two divisors D and D′ are said to be linearly equivalent if
D − D′ is a principal divisor, say D − D′ = div(f) for some f in the function
field K(C) of C. In this case, we write D ∼ D′. For generalized Jacobians,
the equivalence relation will now depend on the choice of an effective divisor2

2 That is, each mP is a nonnegative integer and only finitely many of them are nonzero.



4 Isabelle Déchène

m =
∑

P∈C mP (P ), thereafter called a modulus. For a given f ∈ K (C), it is also
a standard notation to write f ≡ 1mod m as a shorthand for the requirement
ordP (1− f) ≥ mP for each P in the support of m.

Definition 1. Let m be an effective divisor and let D and D′ be two divisors
of disjoint support with m. We say that D and D′ are m-equivalent, and write
D ∼m D′, if there is a function f ∈ K(C)∗ such that div(f) = D − D′ and
f ≡ 1mod m.

It is a small exercise to verify that this indeed defines an equivalence relation
[Déc05, Section 4.2]. A motivation for this definition can also be found in [Déc05,
Section 4.2], where m-equivalence is seen as a natural generalization of linear
equivalence.

Now notice that if two divisors are m-equivalent, then they must be linearly
equivalent as well. Therefore, if we denote by [D] (respectively [D]m) the class of
D under linear equivalence (respectively m-equivalence), then [D]m ⊆ [D]. This
basic (but nevertheless fundamental) observation will play a key role in Sections
3 and 4, as our prior knowledge about the usual Jacobian will be our main tool
for obtaining explicit formulæ for generalized Jacobians.

Next we wish to define the equivalent of the divisor class group for this new
equivalence relation. Thus let Divm(C) be the subgroup of Div(C) formed by all
divisors of C of disjoint support with m. Let also Div0

m(C) be the subgroup of
Divm(C) composed of divisors of degree zero. Moreover, let Princm(C) be the
subset of principal divisors which are m-equivalent to the zero divisor3. It is a
routine exercise4 to show that Princm(C) is a subgroup of Div0

m(C). As a result,
the set of m-equivalence classes is indeed a group. We will therefore consider
the quotient group Div0

m(C)/ Princm(C), which will be denoted by Pic 0
m(C). At

last, we can state the existence theorem of Maxwell Rosenlicht whose complete
proof can be found in his original article [Ros54] as well as in [Ser88, Chapter
V, in particular Prop. 2 and Thm 1(b)].

Theorem 1 (Rosenlicht). Let K be an algebraically closed field and C be a
smooth algebraic curve of genus g defined over K. Then for every modulus m,
there exists a commutative algebraic group Jm isomorphic to the group Pic0

m(C).
The dimension π of Jm is given by

π =
{

g if m = 0,
g + deg(m)− 1 otherwise. (1)

Definition 2. The algebraic group Jm is called the generalized Jacobian of the
curve C with respect to the modulus m.

Remark 1. We wish to emphasize that there are many Jm associated to a fixed
curve C, one for each choice of modulus m in fact. This contrasts with the (usual)
Jacobian J which is uniquely determined from C.
3 The zero divisor 0 =

∑
P∈C 0(P ) is the identity element of Div (C). Thus,

Princm(C) = [0]m = {div(f) |f ∈ K(C)∗ and f ≡ 1mod m}.
4 See [Déc05, Section 4.3] for details.
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Let’s now take a closer look at the relationship between J and Jm. By con-
struction, there are isomorphisms of groups ϕ : Pic0(C) → J and ψ : Pic0

m(C) →
Jm. Furthermore, there is a natural surjective homomorphism σ : Pic0

m(C) →
Pic0(C) defined by σ ([D]m) = [D]. As a result, there is a surjective homomor-
phism τ := ϕ ◦ σ ◦ ψ−1 from Jm to J .

An interresting object of study certainly is the kernel Lm of the map τ since
it might give us information about the structure of Jm. First notice that since
τ is a homomorphism, then Lm is a subgroup of Jm. We can then consider the
following short exact sequence (of abelian groups5):

0 −→ Lm
inclusion−→ Jm

τ−→ J −→ 0

As a result, the generalized Jacobian Jm is an extension of the usual Jacobian
J by Lm. The following theorem of Rosenlicht [Ros54] gives more information
about Lm. The underlying ideas behind this proof are discussed in [Déc05, Sec-
tion 4.5], while complete details can also be found in [Ser88, Sections V.13-V.17].

Theorem 2 (Rosenlicht). Let C be a smooth algebraic curve defined over an
algebraically closed field, J be the Jacobian of C and Jm be the generalized Jaco-
bian of C with respect to a modulus m =

∑
P∈C mP (P ) of support Sm. Let also

Lm be the kernel of the natural homomorphism τ from Jm onto J . Then, Lm is
an algebraic group isomorphic to the product of a torus T = (Gm)#Sm−1 by a
unipotent group V of the form

V =
∏

P∈Sm

V(m
P

),

where each V(m
P

) is isomorphic to the group of matrices of the form:




1 a1 a2 a3 . . . am
P
−1

0 1 a1 a2 . . . am
P
−2

0 0 1 a1 . . . am
P
−3

0 0 0 1 . . . am
P
−4

...
...

...
...

. . .
...

0 0 0 0 . . . 1




This result allows us (among other things) to easily see why usual Jacobians
and algebraic tori are two sub-families of generalized Jacobians.

Usual Jacobians are the generalized Jacobians corresponding to the case
where the linear group Lm is trivial. That is, if the modulus m =

∑
P∈C mP (P )

with support Sm was chosen to have degree zero or one. Indeed, if m = 0,
then the condition f ≡ 1mod m, i.e. ordPi(1 − f) ≥ mi for each Pi ∈ Sm

5 One can also see generalized Jacobians as extensions of algebraic groups, which are
discussed in [Ser88, Chapter VII]. For the sequel, however, we shall only need to use
properties of group extensions.
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is vacuously true and therefore, m-equivalence coincides with linear equiva-
lence. As well, if m = (M), then the requirement f ≡ 1mod m reduces to
ordM (1− f) ≥ 1, which is equivalent to f(M) = 1. Hence, m-equivalence in this
case reads D ∼m D′ iff ∃f ∈ K(C)∗ such that div(f) = D −D′ and f(M) = 1.
But since div(c ·f) = div(f) for any nonzero constant c, the condition f(M) = 1
is superfluous. It then follows that when m = (M), linear and m-equivalence also
define the same divisor classes.

If we are in the situation where m = (P0) + (P1) + ... + (Pr) with the Pi’s
distinct, then Lm is isomorphic to a torus T of dimension r. Moreover, since
the usual Jacobian of P1 is trivial [Sil86, Example II.3.2], it then follows that
the generalized Jacobian of P1 with respect to m will be isomorphic to T . As a
result, algebraic tori of any dimension can be seen as generalized Jacobians.

With these results at hand, we are now ready to explore the cryptographic
potential of these algebraic groups.

3 Compact Representation of the Elements

The explicit family of generalized Jacobians that we consider can now be simply
described as follows. Let E be a smooth elliptic curve defined over the finite
field K = Fq with q elements6 and let B ∈ E(Fq) be a point of prime order
l. Let also m = (M) + (N), where M and N are distinct nonzero points of
E(Fqr ), where r ≥ 1 is a chosen integer. Hence, we can let M = (XM : YM : 1)
and N = (XN : YN : 1). These are so far the only conditions we impose on m.
Finally, let Jm be the generalized Jacobian of E with respect to m. In the light of
Theorem 2, this choice of parameters implies that this generalized Jacobian will
be an extension of the elliptic curve E by the multiplicative group Gm, which is a
nice simple case study since elliptic curves and finite fields already are cherished
by cryptographers.

Now, the goal of this section is to obtain a compact representation of the
elements of Jm. By a classical result on group extensions [Déc05, Theorem 4.7],
we already know that there is a bijection of sets between Jm and Gm × E.
Hence, each element of Jm can be conveniently represented as a pair (k, P ),
where k ∈ Gm and P ∈ E. Although the mere existence this bijection suffices to
compactly represent the elements of Jm, understanding this correspondence in
depth will prove to be useful in the next section when comes the time to work
out explicit formulæ for the group operation on Gm × E. Indeed, we have by
construction that Jm is isomorphic to Pic0

m(E), and so an explicit bijection of
sets ψ : Pic0

m(E) → Gm × E could be used to “transport” the known group law
on Pic0

m(E) to Gm×E. Hence, exploring ψ can be seen as the first step towards
the obtention of the group law algorithm on Gm × E.

The official starting point of this exploration will of course be to take ad-
vantage of the fact that elliptic curves coincide with their Jacobians. Indeed,

6 For the purpose of constructing the generalized Jacobian, we will view E as being
defined over Fq, so that the results of the previous section directly apply here.
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we have at our disposal the following well-known isomorphism between E and
Pic0 (E), whose proof can be found for instance in [Sil86, Proposition III.3.4].

Theorem 3. Let E be a smooth elliptic curve over a perfect field K. Then the
map

E → Pic0(E)
P 7→ [(P )− (O)]

is a group isomorphism with well-defined inverse

Pic0(E) → E[ ∑

P∈E

nP (P )

]
7→

∑

P∈E

nP P .

Now let D =
∑

P∈E nP (P ) ∈ Div0
m (E) be given. Under the above iso-

morphism, the class [D] is mapped to S =
∑

P∈E nP P ∈ E. As a result,
[D] = [(S)− (O)], which implies that D−(S)+(O) is a principal divisor, say D =
(S) − (O) + div (f) for some f ∈ K(E)∗. This suggests that ψ ([D]m) = (k, S),
for some k ∈ Gm. As we will shortly see, the determination of k will involve the
computation of f (M) and f (N). If S 6= M,N , then ordM (f) = ordN (f) = 0
since D has disjoint support with m. So in this case, f (M) and f (N) are both
defined and nonzero. However, if S ∈ {M,N}, then ordS(f) = −1, which means
that f has a pole at S. In this case, the strategy is to use, in place of (S)− (O),
another simple divisor linearly equivalent to D which will now have disjoint
support with m. Such a divisor is easily found by appealing to the Abel-Jacobi
theorem for elliptic curves, whose proof can be found in [Déc05, Section 3.3.5].

Theorem 4 (Abel-Jacobi). Let E be a smooth elliptic curve defined over a
perfect field K and D =

∑
P∈EnP (P ) ∈ Div(E) be given. Then,

D is principal if and only if deg (D) = 0 and
∑

P∈E

nP P = O.

We therefore have an easy criterion to decide if two divisors are linearly
equivalent:

Corollary 1. Let E be a smooth elliptic curve defined over a perfect field K
and let D1 =

∑
P∈E nP (P ), D2 =

∑
P∈E mP (P ) ∈ Div(E) be given. Then,

D1 ∼ D2 if and only if deg (D1) = deg (D2) and
∑

P∈E

nP P =
∑

P∈E

mP P .

Now observe that if we translate S by a point T ∈ E, we obtain by the above
corollary that

D ∼ (S)− (O) ∼ (S + T )− (T ),
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and thus if T /∈ {O,M,N,M −N, N −M}, then both (M + T ) − (T ) and
(N + T ) − (T ) have disjoint support with m. So from now on, we will assume
that such a ‘translation point’ T is fixed and publicly known. We can now let

R =
{O if S /∈ {M, N},

T otherwise,

and so there is an f ∈ K(E)∗ satisfying

D = (S + R)− (R) + div(f), (2)

where the property ordM (f) = ordN (f) = 0 is fulfilled since D has disjoint
support with m. Since this way of writing out a divisor already highlights the
point S of E corresponding to D, it thus remains to determine how to ‘read’ the
corresponding element of Gm from (2).

Since any two divisors in an m-equivalence class are mapped to the same
element ofGm×E, our approach will be to unravel the definition of m-equivalence
until we can clearly see how to associate an element of Gm×E to each class. So
let D1 = (S1 +R1)− (R1)+div(f1), D2 = (S2 +R2)− (R2)+div(f2) ∈ Div0

m(E)
be given such that

Ri =
{O if Si /∈ {M, N},

T otherwise,

for i = 1, 2. We then have

D1 ∼m D2 iff ∃f ∈ K(E)∗ such that div(f) = D1 −D2 and f ≡ 1 mod m,

iff ∃f ∈ K(E)∗ such that div(f) = (S1 + R1)− (S2 + R2) + (R2)

−(R1) + div
(

f1

f2

)
and ordM (1− f) ≥ 1, ordN (1− f) ≥ 1,

iff S1 + R1 − (S2 + R2) + R2 −R1 = O and ∃f ∈ K(E)∗ such that

div(f) = div
(

f1

f2

)
and f(M) = f(N) = 1,

iff S1 = S2, R1 = R2 and ∃c ∈ K
∗

such that
f1(M)
f2(M)

=
f1(N)
f2(N)

=
1
c
,

iff S1 = S2 and
f1(M)
f2(M)

=
f1(N)
f2(N)

,

iff S1 = S2 and
f1(M)
f1(N)

=
f2(M)
f2(N)

.

That means that in order to check whether two given divisors are m-equivalent,
we simply have to test two equalities, one in E and one in Gm. The obvious
candidate for ψ is thus the map

ψ : Pic 0
m(E) −→ Gm × E

[D]m 7−→ (k, S),
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such that the m-equivalence class of D =
∑

P∈E nP (P ) ∈ Div0
m(E) corresponds

to S =
∑

P∈E nP P and k = f(M)/f(N), where f ∈ K(E)∗ is any function
satisfying

div(f) =

{
D − (S) + (O) if S /∈ {M, N},
D − (S + T ) + (T ) otherwise.

Notice that the existence of f is guaranteed by the Abel-Jacobi theorem and that
ψ is well-defined since we have just shown that for D1 = (S1+R1)−(R1)+div(f1),
D2 = (S2 + R2) − (R2) + div(f2), k1 = f1(M)/f1(N) and k2 = f2(M)/f2(N),
we have:

[D1]m = [D2]m implies that k1 = k2 and S1 = S2.

Morever, ψ is injective since we also already know that

(k1, S1) = (k2, S2) implies that [D1]m = [D2]m.

It therefore remains to show that ψ is surjective as well. So given (k, S) ∈ Gm×E,
we must find an f ∈ K(E)∗ such that f(M)/f(N) = k. Using the idea behind
the interpolation polynomial of Lagrange, or simply by inspection, we easily see
that

f(X,Y, Z) =





k (X −XNZ) + (XMZ −X)
(XM −XN )Z

if XM 6= XN ,

k (Y − YNZ) + (YMZ − Y )
(YM − YN )Z

otherwise,

fulfills the required conditions (notice that XM = XN implies that YM 6= YN

since we assumed that M 6= N and ZM = ZN = 1). Hence, the divisor

D =

{
(S)− (O) + div(f) if S /∈ {M, N},
(S + T )− (T ) + div(f) otherwise,

is mapped to (k, S), as wanted. We have therefore shown that ψ is the bijection
we were looking for.

Proposition 1. Let E be a smooth elliptic curve defined over Fq, T ∈ E\{O,
M , N , M −N , N −M} and m = (M) + (N) with M , N ∈ E \{O} , M 6= N be
given. Let also

ψ : Pic0
m(E) −→ Gm × E

[D]m 7−→ (k, S) ,

be such that the m-equivalence class of D =
∑

P∈E nP (P ) corresponds to S =∑
P∈E nP P ∈ E and k = f(M)/f(N), where f ∈ K(E)∗ is any function satis-

fying

div(f) =

{
D − (S) + (O) if S /∈ {M,N},
D − (S + T ) + (T ) otherwise.

Then, ψ is a well-defined bijection of sets.
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Remark 2. Notice that since the zero divisor can be written as

0 = (O)− (O) + div(c),

where c is any nonzero constant, then 0 corresponds to the pair (1,O). That is,
(1,O) is the identity element of Jm.

4 Group Law Algorithm

Using the explicit bijection between Pic0
m(E) and Gm×E that we just obtained,

our next goal is to derive explicit formulæ for the group operation on Gm × E
induced from Pic0

m(E). First notice that by the theory of group extensions, we
already know the basic structure of the addition on Jm [Déc05, Theorem 4.7].
Indeed, we have for any k1, k2 ∈ Gm and P1, P2 ∈ E,

(k1, P1) + (k2, P2) = (k1k2 · cm(P1, P2), P1 + P2) , (3)

where cm : E × E → Gm is a 2-cocycle depending on the modulus m. It thus
suffices to make cm explicit.

So given (k1, P1) and (k2, P2) in Jm, our task is then to compute their sum
(k3, P3). Notice that there are two distinct cases to study, depending if the
use of a ‘translation point’ T is at all needed. Fortunately, there is an easy
criterion to decide when it occurs. Indeed, suppose that the group we consider
for cryptographic applications is the subgroup of Jm generated by the element
(k, P ). By the addition rule (3), it immediately follows that

If (j, Q) ∈ 〈(k, P )〉 , then Q ∈ 〈P 〉 .

As a result, if neither M nor N is a multiple of P , then the group operation
on 〈(k, P )〉 will never involve points of the form (∗, M) or (∗, N). Thus, there
is no need to employ a translation point in this case. Of course, when either M
or N lies in 〈P 〉, then the corresponding addition formulæ will use translation
points when appropriate in order to cover all possible cases. This motivates the
following definition.

Definition 3. Let E be an elliptic curve defined over Fq and B ∈ E(Fq) be
a given basepoint. Let also M , N ∈ E(Fq) be given. Then the modulus m =
(M) + (N) is said to be B-unrelated if M , N /∈ 〈B〉. Otherwise, it will be called
B-related.

The aim of this section is to transport the addition on Pic0
m(E) to Gm × E

in order to get explicit equations involving the group laws on Gm and E in the
case of a B-unrelated modulus m. So given (k1, P1), (k2, P2) and (k3, P3) in Jm

such that

(k1, P1) + (k2, P2) = (k3, P3) and P1, P2, ± P3 /∈ {M, N} ,



Arithmetic of Generalized Jacobians 11

our task is to express (k3, P3) in terms of (k1, P1) and (k2, P2). By the explicit
bijection between Pic0

m(E) and Gm × E, the elements (k1, P1) and (k2, P2) are
respectively the image of the m-equivalence class of D1 = (P1) − (O) + div(f1)
and D2 = (P2)− (O) + div(f2), for some f1, f2 ∈ K(E)∗ such that ordM (f1) =
ordN (f1) = ordM (f2) = ordN (f2) = 0, f1(M)/f1(N) = k1 and f2(M)/f2(N) =
k2 (see proof of Proposition 1).

That being said, we can now endow Gm × E with the group operation in-
herited from Pic0

m(E). So basically, all we need to know is to which element of
Gm × E does D3 = D1 + D2 correspond. First, we have by definition that

D3 = (P1) + (P2)− 2(O) + div(f1 · f2), (4)

so in order to get the element of Gm×E we are looking for, the obvious stategy is
to express the right hand side of (4) as (P3)− (O)+div(f3). By the Abel-Jacobi
theorem, we know that

(P1) + (P2)− 2(O) ∼ (P1 + P2)− (O),

and so there is a function LP1,P2 ∈ K(E)∗ satisfying

(P1) + (P2)− 2(O) = (P1 + P2)− (O) + div(LP1,P2). (5)

Combining (4) and (5) yields

D3 = (P1 + P2)− (O) + div(f1 · f2 · LP1,P2).

We can thus set P3 = P1 + P2 and f3 = f1 · f2 · LP1,P2 . Hence, D3 corresponds
to (k3, P3), where

k3 =
f3(M)
f3(N)

=
f1(M) · f2(M) · LP1,P2(M)
f1(N) · f2(N) · LP1,P2(N)

= k1 · k2 · LP1,P2(M)
LP1,P2(N)

.

That is,

(k1, P1) + (k2, P2) =
(

k1 · k2 · LP1,P2(M)
LP1,P2(N)

, P1 + P2

)
.

Moreover, notice that this addition rule so far agrees with the prediction (3)
obtained from group extensions. Hence the 2-cocycle cm : E×E → Gm we were
seeking is now unveiled:

cm(P1, P2) =
LP1,P2(M)
LP1,P2(N)

. (6)

The very last step is to make LP1,P2 explicit. We are thus looking for a
function LP1,P2 satisfying (5), or equivalently,

div(LP1,P2) = (P1) + (P2)− (P1 + P2)− (O). (7)

The natural approach is to consider the line `P1,P2 , passing through P1 and P2,
that will inevitably hit −P3 = −(P1 + P2) as well. Then,

div
(

`P1,P2

Z

)
= (P1) + (P2) + (−P3)− 3(O). (8)
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Fig. 2. Unveiling the 2-cocycle cm

Now in order to introduce the term −(P1 + P2) and cancel out (−P3) at once,
we may consider the line `P1+P2,O passing through P1 + P2, O, and a fortiori
through −P3. That is,

div
(

`P1+P2,O
Z

)
= (P1 + P2) + (−P3)− 2(O). (9)

Subtracting (9) from (8), we get

div
(

`P1,P2

`P1+P2,O

)
= (P1) + (P2)− (P1 + P2)− (O). (10)

Finally, (7) and (10) imply that LP1,P2 and `P1,P2 /`P1+P2,O differ by a nonzero
multiplicative constant:

∃c ∈ K
∗

satisfying LP1,P2 = c · `P1,P2

`P1+P2,O
. (11)

Let’s point out that our initial conditions M , N 6= O and P1, P2, P3 =
P1 + P2 /∈ {M, N} are sufficient to ensure that LP1,P2(M) and LP1,P2(N)
will both be defined and nonzero, since (7) tells us that the only zeros and
poles of LP1,P2 occur at P1, P2, P1 + P2 and O. Furthermore, we can compute
LP1,P2(M) and LP1,P2(N) by evaluating `P1,P2(M), `P1+P2,O(M), `P1,P2(N) and
`P1+P2,O(N) separately since we also assumed that −P3 6= M,N .

Therefore, by (6) and (11), it is now legitimate to write

cm(P1, P2) =
LP1,P2(M)
LP1,P2(N)

=
`P1,P2(M)

`P1+P2,O(M)
· `P1+P2,O(N)

`P1,P2(N)
, (12)

and our goal is achieved since the 2-cocycle cm is now completely determined.
Lastly, since we have some freedom on both the equations of the lines (they are
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determined up to a constant factor) and on the representatives for the homoge-
neous coordinates of M and N , we should verify that (12) is well-defined. That
is, for M = (XM : YM : 1), N = (XN : YN : 1) and λ1, λ2, c1, c2 any nonzero
constants, we have M ∼ (λ1XM : λ1YM : λ1), N ∼ (λ2XN : λ2YN : λ2) and
c1 ·`P1,P2 , c2 ·`P1+P2,O respectively defining the same line as `P1,P2 and `P1+P2,O.
Since `P1,P2 and `P1+P2,O are both homogeneous polynomials of degree one, it
follows that

c1 · `P1,P2(λ1XM , λ1YM , λ1)
c2 · `P1+P2,O(λ1XM , λ1YM , λ1)

· c2 · `P1+P2,O(λ2XN , λ2YN , λ2)
c1 · `P1,P2(λ2XN , λ2YN , λ2)

=

λ1 · `P1,P2(XM , YM , 1)
λ1 · `P1+P2,O(XM , YM , 1)

· λ2 · `P1+P2,O(XN , YN , 1)
λ2 · `P1,P2(XN , YN , 1)

=

`P1,P2(M)
`P1+P2,O(M)

· `P1+P2,O(N)
`P1,P2(N)

,

which confirms that (12) was well-defined. Finally, we are ready to properly write
down the group law we just obtained.

Theorem 5. Let E be a smooth elliptic curve defined over Fq and let m =
(M) + (N) be given such that M and N are distinct nonzero points of E. If
(k1, P1) and (k2, P2) are elements of Jm fulfilling P1, P2, ± (P1 + P2) /∈ {M, N},
then

(k1, P1) + (k2, P2) = (k1k2 · cm(P1, P2), P1 + P2) , (13)

where cm : E × E → Gm is the 2-cocycle given by

cm(P1, P2) =
`P1,P2(M)

`P1+P2,O(M)
· `P1+P2,O(N)

`P1,P2(N)
,

and `P,Q denotes the equation of the straight line passing through P and Q
(tangent at the curve if P = Q).

The group law for B-related moduli can also be obtained using a similar pro-
cedure. This case is fully treated in Section 5.3.2 of [Déc05], where the following
result is presented.

Theorem 6. Let E be a smooth elliptic curve defined over Fq, m = (M) + (N)
be given such that M and N are distinct nonzero points of E and let T ∈ E
be any point such that T /∈ {O, M , N , M − N , N − M}. Given (k1, P1) and
(k2, P2) in Jm, set P3 = P1 + P2 and let, for i = 1, 2, 3,

Ri =
{

T if Pi ∈ {M,N},
O otherwise.

Then,

(k1, P1) + (k2, P2) =
(

k1k2 · L(M)
L(N)

, P3

)
,
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where
L =

`P1,P2

`P3,O
· `P1+R1,O

`P1,R1

· `P2+R2,O
`P2,R2

· `P3,R3

`P3+R3,O
.

As usual, `P,Q denotes the equation of the straight line passing through P and
Q (tangent at the curve if P = Q).

5 Basic Properties

We here present a small collection of the basic properties of the group law in
this generalized Jacobian. These properties are easily derived from Theorem 5.

Corollary 2. Let E be a smooth elliptic curve defined over Fq and let m =
(M)+(N) be given such that M and N are distinct nonzero points of E. Let also
(k, P ), (k1, P1), (k2, P2) ∈ Jm be given such that P1, P2, ± (P1 + P2) /∈ {M, N}.
Then,

1. (1,O) is the identity element of Jm.
2. cm(P1, P2) = cm(P2, P1) (This reflects the fact that Jm is abelian).
3. If M = (XM : YM : 1) and N = (XN : YN : 1), then cm(P,−P ) =

`P,O(M) /`P,O(N) , and so the inverse of (k, P ) is given by

−(k, P ) =
(

1
k
· `P,O(N)
`P,O(M)

,−P

)

4. cm(O, P ) = 1 for all P ∈ E\{M, N}. Hence,

(k1,O) + (k2, P ) = (k1k2, P ) .

5. Futhermore, Jm contains a subgroup isomorphic to Gm, as

(k1,O) + (k2,O) = (k1k2,O) for all k1, k2 ∈ Gm.

6. If B ∈ E (Fq) and M , N ∈ E (Fqr ) are such that m is B-unrelated, then
F∗qr × 〈B〉 is a subgroup of Jm.

The only statement that might require a futher justification is property 6.
Notice that it simply follows from properties 1 and 3, together with the obser-
vation that `P1,P2(M), `P1,P2(N) ∈ F∗qr whenever P1, P2 ∈ 〈B〉. We have thus
made completely explicit the finite group F∗qr × 〈B〉 of order (qr − 1) · l that we
wish to use for cryptographic applications.

6 Outlook

Given a smooth elliptic curve E defined over Fq, a point B ∈ E(Fq) of prime
order l and a B-unrelated modulus m = (M) + (N) such that M and N are
distinct points of E(Fqr ) and r ≥ 1 is a chosen integer, we now know that
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F∗qr × 〈B〉, together with the group law of Theorem 5, is a finite subgroup of
Jm for which the elements are compactly represented, the group law efficiently
computable and the group order readily determined.

Several other efficiency and security aspects were included in our doctoral
dissertation7 [Déc05]. On one hand, we considered various implementation issues,
such as choosing a suitable modulus, speeding up scalar multiplications and
selecting parameters such that F∗qr × 〈B〉 is a cyclic group.

As for security, as soon as F∗qr × 〈B〉 is a cyclic subgroup of Jm, we obtained
the following reductions among discrete logarithm problems:

The DLP in F∗qr × 〈B〉 is at least as hard as the DLP in 〈B〉 ⊆ E (Fq)
and at least as hard as the DLP in F∗qr .

Thus from a practical point of view, this result implies that even though
generalized Jacobians are newcomers in cryptography, we already know that
solving their DLP cannot be easier than solving discrete logarithms in two of
the most studied groups used in DL-based cryptography today.

Furthermore, we showed that extracting a discrete logarithm in F∗qr × 〈B〉
can always be performed by sequentially computing a discrete logarithm in E
followed by one in F∗qr . Moreover, it is possible to proceed in parallel when
l - (qr − 1) while this is still an open question in the case of curves suitable for
pairing-based cryptography.

Finally, we have also investigated several scenarios involving precomputations
in order to further study the DLP in F∗qr × 〈B〉. To this end, we empirically
compared generalized Jacobians with the Classical Occupancy Problem. This
preliminary study suggests that none of the proposed scenarios is faster than
the known methods described above.

As a result, the generalized Jacobians we considered fulfill the basic require-
ments for a group to be suitable for DL-based cryptography. It thus provides the
first concrete example of semi-abelian varieties that could be used in public-key
cryptography.
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mon and Claude Crépeau for their guidance and advices. I would also like to
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