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Abstract

This paper takes UMAC — a message authentication algoriti&Q) optimized for performance on
32-bit architectures — as its starting point, and adaptstittegies for optimum performance on 64-bit
architectures. The resulting MAC, called UMACS, achieves message forgery probabilities of about
2760 and 27129 for tags of length 64 and 128 bits. The UMAC strategies areusised at length and
adapted for 64-bit environments, but are also modified toestdseveral UMAC shortcomings, partic-
ularly key-agility and susceptibility to timing attacks. MAC achieved peak throughput rates, when
generating 64-bit tags, of 1.0 CPU cycle per byte of messatieaticated, while UMACS8 achieves 0.5
cycles per byte.

| personally believe there are two main architectures out there: Powen&6-64.
— Linus Torvalds, 2005.

1 Introduction

Over the years, as design and manufacturing techniques have impaoekdemand for memory address-
ability has increased, register lengths have become longer. The relogioa of 64-bit register architec-

tures for mainstream processors from IBM, Intel and Advanced Mi&waices is a natural evolution in this

process. It is reasonable to believe that, just as 32-bit processobefiice them, 64-bit processors will

become dominant not only in servers but also in desktops and laptops.

Many algorithms are designed with optimizations tailored for particular archietThis is especially
true in domains, such as cryptography, where high performance isbesiChanging architectures while
keeping the same designs can easily lead to suboptimal performance. Trascigsth with high-speed
message authentication and the move from 32-bit to 64-bit architectures.fastest reported message
authentication schemes (or MACs) are all designed to run well on 32dhiitectures [3, 4, 7]. While these
MACs generally work equally well on both 32- and 64-bit architectureseealise the newer architectures
support older instructions at full speed — they are not designed to thlemtage of new capabilities found
in the 64-bit processors.

This paper takes as a starting point the fastest reported MAC, called UIAGMAC is designed
specifically for optimal performance on 32-bit architectures where itazdghenticate long cache-resident
messages on the Pentium 4 at a rate of 2 CPU cycles per byte (cpb) ofmestdaout the use of special-
purpose hardwark. The strategies used by UMAC to gain high-performance on 32-bit artiitescare

1A faster version operates at about 1.0 cpb using Intel's SSE archigebiut for maximum applicability, this paper will only
give results of implementations that use instructions widely available on mudtipkgtectures.



analyzed for applicability on 64-bit architectures. A modified version ofA@\Vicalled UMACS, achieving
peak performance of well 0.5 cpb on the Athlon64 is then described.

Although the main goal of this design effort is high speed on 64-bit pemessome effort if afforded
other properties. UMAC has been criticized for attaining its high speed &xjense of too much (about
1KB) internal key material allocated per authentication session. This is prattdem for a single peer-to-
peer connection, but a busy server might see thrashing in its cache ifahiiihg many sessions at once.
UMACS reduces the reliance on key material stored in memory to 160 bytesepsion. It is also known
that UMAC may be susceptible to a timing attack focussed on some data-dapeohgputation in its use of
polynomial hashing if the polynomial hash is implemented without care. UMA@8gébs the polynomial
hashing strategy to avoid such a possibility. UMACS retains many desiratpeies of UMAC by being
provably secure, highly parallelizable, and both patent- and copynight-f

1.1 Message Authentication and Universal Hashing

Message authentication is used when two parties wish to communicate andha/assurance that each
received message comes from the purported sender and has nattbesthalong the way. All of the fastest
MACs follow principles introduced by Wegman and Carter [1, 3, 4, 5, T, The basic Wegman-Carter
message authentication paradigm is for the sender first to hash the megbkagbash function known only
to himself and the receiver. The sender then applies some cryptograpietioh (usually encryption) to
the resulting hash value, which produces a message tag that is sent #lotigewmessage to the receiver.
The receiver can then repeat the process, verifying that the egttdg is valid for the received message.
In a correctly designed MAC, only those knowing the secret hash funetial cryptographic keys have a
reasonable chance of creating a valid tag for any new message. Bybown adversary is able to produce
a valid tag for a new message without knowing the hash function and crgpioig keys, then a forgery
has occurred. Due to their ephemeral nature, communication sessiahsmgde secure against forgery
during the lifetime of the session. If an adversary cannot forge with lagiitity of more than 1250, then
the MAC is likely suitable for most communications where attackers are not allewexcessive number
of forgery attempts.

The key to speed in a Wegman-Carter MAC is the hash function used. &eaathentication speeds are
determined by the sum of the (length-dependent) time it takes to hash the mbegagauthenticated plus
the (constant) time it takes to cryptographically produce the tag, this papese® on the hash functions
used in UMAC and UMACS, known respectively as UHASH and UHASHS8.sTik reasonable because
any speed improvements in the cryptographic part of a Wegman-Carter ddld be applied equally to
all such schemes, so improvements relative to other Wegman-Carter MAGowmid almost entirely from
improvements in hashing.

Notable recent examples of fast hash functions (and their peak $pmétible for Wegman-Carter
message authentication are hash127 (around 4.4 cpb), hash130B9B.Badger (2.2 cpb) and UMAC
(2.0 cpb). The speeds of each of these favorably compare with pogatiaslished non-Wegman-Carter
MACs such as HMAC-SHA1 and CBC-AES-MAC, both of which requir@siderably more than ten cpb.

UNIVERSAL HASHING. The hash function used in a Wegman-Carter MAC must be chosen fuminersal
hash function family. A hash-function family is a collection of hash functions, eabke H having some
common domai and some common, finite, codom&nA hash-function familyH is e-almost universal
(e-AU) if the probability is no more thaa that any two distinct inpute,,  hash to the same output when
hashed by a randomly selected membeHofA small value fore indicates that an adversary is unlikely
to be able to choose a pair of inputs that hash to the same output, as long askhheirrction is chosen
randomly. Although we are often interested in bounding collision probabilgias;onger notion is useful
in cryptography because it bounds an adversary’s ability to prodask butputs that differ by a known
constant. A hash-function familyl is e-almost delta universale-AAU) if the probability is no more than
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¢ that any two distinct inputsn,n? differ by any chosen constadtwhen hashed by a randomly selected
member ofH. There are stronger notions of universal hashing defined by Weg@emnter and Stinson
[5, 10, 11], bute-AAU is adequate for message authentication, and is achieved by UHASHS.

2 UHASHS Building Blocks

UHASH, the universal hash function on which UHASHS8 is modeled, is iemss a composition of three
separate hash functions, each with a particular purpose. A high-leeeliew of UHASH is given here,
and more details can be found in the original UMAC papers [3, 9].

NH. First, the message to be hashed by UHASH is broken into 1KB blocks ahdsslaashed by NH into
64-bit strings, which are then concatenated. This hash phase rddogesessages into strings up to
128 times smaller. In UHASH, NH is tailored for 32-bit architectures and ity fast on systems
supporting 32-bit multiplication well. Due to the output length’s dependendeemput length, this
stage’s output is not suitable for message authentication without furtheegsing.

Polynomial. The string produced by the NH phase is broken into 64-bit blocks, daghich is interpreted
as a coefficient in a polynomial modulo a 64- or 128-bit prime (dependindp@mriginal message
length). The output of this hash stage is the result of evaluating the polynfaméparticular value.
At this point, the original UHASH input has been hashed to a string of no tharre 128 bits. This
function is several times slower than NH, so NH acts as an acceleratodigimg the input length to
this stage.

Inner-Product. The 64- or 128-bit output of the polynomial hash is broken into 16-bitkdaghich are
then hashed by an inner-product hash, producing 32 bits. The sglegauof this step is to distill the
universality guarantee of the previous stage’s output into a smaller nuwhbis.

The end result of these three steps is a 32-bit output from a composkdumation that is roughly 2°-
AAU when each stage’s key material is chosen randomly. To form a hasis t&P-AAU, UHASH does
these steps twice on each message, each time under a different keyteoatiog the resulting hashes into
a 64-bit result.

We now look more closely at these three stages of hashing in UHASH amd theér strategies for
high-speed to 64-bit environments.

21 NH

NH is a parameterized hash function. Given positive integer parametersw and a keyK of lengthnw
bits, then NH can hash any striivgj that is a multiple of @ bits in length but not longer thamw bits. First
M andK are broken intav-bit blocksM1, Mz, ..., M, andKj, Kz, ... K, wherel = |[M|/w. Then, each block
is interpreted as a-bit unsigned binary integam,mp,....m andky, ks, ...ks. Finally, the hash result is
computed as

/2
NH[n,w](K,M) = ZL((mgi,lJrkZi,l mod 2%) x (mp; + koi mod 2%)) mod 22"

NH is a hash family, and choosing a random function from the hash familyrie g choosing a random
nw-bit key K. NH is known to be27")-AAU over messages of the same length KleandM’ are distinct,
but|M| = |M’]), and small modifications to the original proof show that NH2s")-AAU over messages
that are a multiple of & bits in length (but still no longer thamw bits) [3].



CHARACTERISTICS The chief advantage of NH is extreme speed. Because all key andgaddsaks are
defined asv-bit quantities and all arithmetic is done modult 2nd 2%, every operation is done naturally
and efficiently on contemporary processorsvifs chosen appropriately. On 32-bit processors with good
support for multiplying 32-bit quantities into a 64-bit result, definimg= 32 results in high speed. The
same is true fow = 64 on 64-bit processors if there is good support for multiplying 64-tgingjties into a
128-bit result.

On a 64-bit architecture, NH performance wives- 64 is about four times better than when= 32. If
one’s goal is §27%4)-AAU guarantee over messages of length j18i@s, then NHn,w] achieves this goal
using j multiplications whenw = 64, but requires gmultiplications wherw = 32. To see this, consider
how one would achieve -54)-AAU guarantee whew = 32. Each NH hashing of the message would
require 4 multiplications and produce a hash value witt2a3?)-AAU guarantee. This would have to be
done twice, under separate keys, to achieve(#é@4)-AAU goal, whereas only 64-bit multiplications
are needed to achieve the same guarantee on a 64-bit architecture. Bdnsdout experimentally. Two
parallel passes on a Pentium 4 with= 32 takes about 2 cpb, while a single pass on an AMD Athlon64 with
w = 64 requires only around 0.5 cpb. Admittedly this comparison is based ometiitfplatforms, but they
are similar enough to be suggestive of the magnitude of speedup one nygist.eRirect Athlon64-based
comparisons are given later in Section 3.6.

If UHASHS8 were identical to UHASH except for the usewt= 64 in NH, the result would be a hash
function that runs nearly four times faster for long cache-residentagesson 64-bit architectures. This
would be a notable result, but another goal of the UHASHS8 design is taeethe amount of required
key from 1KB in NH to something closer to 128 bytes in UHASHS8. Reducing #hel&ngth used by NH
(ie, loweringn), however, increases hashing overhead and the length of inpuedpas$o the polynomial
hashing phase, and so increases the time to hash the same length data.cA tlanbe struck between
NH hashing speed and key-length.

2.2 Polynomial Hashing

A simple and efficient method to hash a binary strivigs to fix prime numbeip and breakM into fixed-
length blocksM;,M»,Ms, ..., M, in such a way that when the blocks are interpreted as unsigned integers
my, mp, Mg, ..., My, each is less thap (for example, by making each blo¢log, p| bits). Then, choosing an
integer key 0< k < p defines the hash output as

he(M) = mgk' +mpk =2+ ... + mk! modp.

Two different messaged, M’ of the same block lengthdiffer by constant when hashed by this function
if

(M) — h(M) = (my — m)K + (mp—mL)K =2+ + (m —m )k! modp=d.
BecauséM # M’, at least one of the terms in this polynomial is non-zero. This being a polyhofrdagree
at most, there are at mostvalues fork which causéy (M) — hy(M’) —d (mod p) to evaluate to zero. If we
define this hash family ad = {h|0 < k < p}, thenH is ane-AAU hash family fore =1 /p.

CHARACTERISTICS. With care, polynomial hashing can be made to perform well. Horner’s 8udgests
rephrasind(M) as((--- ((mik+ m)k+ mg)k- - - )k+ my )k mod p, which allowshy(M) to be computed as
a sequence dfmultiplications and additions modul@[8]. Those multiplications and additions moduyso
can be made efficient by choosing a convenjgand restricting the choice &fto a convenient set.

By choosingp to be of the fornp = 22 — b for some smalb, reductions modul@ can be done efficiently
in a lazy manner. Each time a valudecomes at leasf2it can be rewritten as the (modufs) equivalent
c—22+Db. For examplep = 261 — 1 is prime. This means that, in a 64-bit register, a valugreater
than p but less than & can be reduced by computing= (c div 25%) + (c mod 2°1). This equality simply
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recognizes that = x251 4y for somex and 0< y < 25, and replaces® with the equivalent (modulo
p) value 1. Thediv and mod operations extract andy, and can be computed efficiently using bitwise
operations. This process is “lazy” for two reasons. First, numberbeailowed to get as large as desired
before performing a reduction as long as values do not exceed th&ersgisipacity. Second, a reduction
to the range Q..,p— 1 is not necessary until a final result is needed. So, when this methotbisdd to
perform an intermediate reduction, the result need not be in the range®— 1. This puts off expensive
range checks until the very end of the polynomial hash. Particularlyugemes on a 64-bit architecture
are 2" —1and 31— 1.

Another source of inefficiencies is register carries during addition.n&¥er a number is too large to be
represented in a single CPU register, the number is generally split into multijéters, and arithmetic on
the larger number is accomplished by some sequence of smaller operatioegafple, if we rewrite 128-
bit valuesj andk as j = w2544 x andk = y264 4 zwhere 0< x,z < 264, thenjk = wy2'28 4 (wz4 xy) 264 4-xz
This means that to compuik, we can put the top 64-bits gfandk into 64-bit registersv andy, and their
low 64-bits intox andz. The resultjk is then assembled by appropriately multiplying, shifting and adding
Wy, Wz, Xy andxz

Consider the case where a polynomial is being evaluated modulo pra?’ — 1 using Horner’s Rule
and lazy modulo reduction whenever an intermediate value exceeds 12Bditsstep in the Horner’s Rule
evaluation is a multiplication and addition of the fojk#-mmodp, with k, m< pandj < 21?8 Asjust seen,
say thatj andk are 128-values spread into registers, y andzso thatjk = wy2128+ (wz-+xy) 2644 xz(mod
p). Because 8= 2 (modp), this can be rewrittefk = ((wz+-xy) mod 264)284 + (2(((wz+ xy) div 2%%) +
wy) +x2) (mod p). If j andk are unrestricted, then every addition could result in a carry beyondit28
These carries must be accumulated and dealt with, which could be inéffitdeally this computation of
jk would involve no carries beyond 128-bits, allowing a more efficient computatio

Eliminating carries can be done by restrictingrhe polynomial hash described in this sectiofl j9)-
AAU when hashingd-block messages and choosikdgrom O,...,p— 1. This is due to the fact that there
are at most values in the range,0.., p— 1 that causé(M) — h(M’) — d (mod p) to evaluate to zero. If
k is chosen from some subs&tC {0,...,p— 1} instead, there would still be at mdstvalues that cause
hg(M) —hg(M’) —d (mod p) to evaluate to zero, but becauge < p, the probability of randomly choosing
one of them increases to at mdgtA|. This meansA can be chosen judiciously to exclude keys which
cause excessive carries. In the case of evaluating polynomials moeu®?’ — 1, restrictingk to elements
of A= {y264 1 z| 0 <y < 2%2/0 < z < 253} eliminates all but one possible carry beyond 128-bits when
computingjk on a 64-bit architecture for anyQ j < 2128,

Experimentally, we have found that long sequences of cache-residmsiage blocks, each already less
than 227 — 1, can be hashed at a rate of 1.7 Athlon64 cpb whisnchosen as described to avoid excessive
carries. When hashing sequences of values less tHan 2 over modulus & — 1, allowingk to be any
value less than® — 1, messages can be hashed at 1.3 cpb on the Athlon64. It should behaiteedshing
an arbitrary string would not be nearly as fast due to the need of bigeHiarstring into appropriate blocks.

The original UHASH use of polynomial hashing in its second hash stageasaading act. The goal
of UMAC's entire three-stage composed hash is to be as close as posgipigipAAU. This means that
no stage can have significantly worse (and should strive to do signifidaettigr) than this level. For the
polynomial stage of UHASH to avoid exceedi(® 32)-AAU, it dynamically alters the prime modulus to a
larger number as the input length increases. This allows short stringshtashed using a (more efficient)
small modulus, but still allows for longer strings to be hashed (using a lésgef large modulus). On
64-bit architectures, fixing on a larger modulus is adequately efficieas smt to need dynamic moduli.



2.3 Inner Product Hashing

Another well known provably universal hashing paradigm is the inmedyct over a prime modulus [6].
Again, letp be a prime and le¥M be broken into fixed-length blockd;, M2, M3, ..., M, in such a way that
when the blocks are interpreted as unsigned integersy, mg, ..., m, each is less thap. Then, choosing
avectork = (kg ko, ..., k) with 0 <k < pforall 1 <i < defines the hash output as

h (M) = myky + mpks + - --mky mod p.

For any two different messaghk M’ of the same block lengthand integer 6< d < p, whenk is chosen at
random, the probability that

h (M) — (M) = (my — kg + (Mg — mp)ka + -+ 4 (my —m)ky modp=d

is exactly ¥ p. It follows that inner product hashing over a prime modulus forms-&AU hash family for
e=1/p.

CHARACTERISTICS Inner-product hashing requires at least as much key as messagehbehed. This
makes it unsuitable for long messages. But, for short messages, implementaio be efficient using
strategies already discussed for polynomial hashing. In particularntaziplar reduction and choosing a
prime modulus of the fornp = 22 — b whereb is small, results in good performance. For example, when
p=261_1,j< 2% andk < p, the productjk (mod p) can be efficiently computed dgk div 264)23 +

(jk mod 25%) because & = 23 (mod p).

3 UHASHS Algorithm

With these hash functions as building blocks and UHASH as a model, a hadfiofusuitable for authen-
ticating arbitrary messages and optimized for 64-bit architectures caneberpped. The hash functions
presented so far have interfaces that are incompatible with one anotheutgtime adaptation. For exam-
ple, NH produces outputs with values up ©62- 1, whereas the polynomial hash only accepts sequences of
values less than'?” — 1. Similarly, the polynomial hash produces a value less tHah-21, but the inner-
product expects a sequence of values less thaa 2. To address these problems, a lemma is introduced
which allows out-of-range values to be brought into range with a mansgeeiease to the probabilities
involved. Length issues must also be resolved. As presented, edcfuhason seen so far has a universal-
ity guarantee when hashing messages of the equal length. These muttrimked to provide universality
guarantees over all lengths. Figure 1 specifies the finished hash fukliidSH8. Each of the interfaces
between component hash families and the extensions for arbitrary lengithewbe addressed separately.

3.1 First: ALemma

The primary tool used to fix the problem that one hash function produglees that are outside of the
domain of a second hash function is the following lemma which says that if waebyzero any fixed
bit-position of the outputs of aB-AAU hash function, the resulting hash function is stihld but with a
reduced universality guarantee.

DEFINITIONS. Whenx is a non-negative integer, |gtbe 1 if the binary representation whas a 1 in the
position of weight 2and 0 other\_/vise. Let Zer(x) be the function that returnsif x; = 0 and returng — 2!
if x; =1 (ie, it returnsx with the 2 position zeroed)Zj is the sef0,1,2,...,n—1}.

Lemmal LetH={h:A— Z,} be ane-AAU hash family (where the operation is addition modulo n) and
Hi = {Zerqoh|h e H}, then H is (3¢)-AAU for every i.
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Proof: Let a # b be elements of, andd andd’ be elements of.,. BecauseH is e-AAU, we know that
Prih(a) —h(b) = d] < € whenh s chosen randomly frord, but what is the probability fi'(a) — W (b) = d’|
whenh is chosen randomly frorH; ?

Let h be chosen randomly, and let= Zerq o h for some 0< i < Ign. Definex = h(a) andy = h(b).
There are four possible combinations for the values; @indy;: (x,y;) could equal0,0), (0,1), (1,0) or
(1,1). We look at each case.

If x; =i, thenk(a) —h(b) = d’ if and only if h(a) — h(b) = d’. Using conditional probability we can
bound the likelihood of this scenario as[tife) — h(b) = d’ andx = y;] = Prfh(a) — h(b) = d'] - Pr{x; =
yi|h(a) —h(b) = d'| <e-1. Similarly, if (x;,y;) is (0,1) or (1,0) thenh'(a) — h'(b) = d’ if and only if
h(a) —h(b) is d’ + 2 ord’ — 2', respectively, each of which is similarly boundedéyl. These three cases
being the only ones in whichi(a) — i (b) = d’, H’ must be 3-AAU. O

Note that a similar result is not possible AU hash families. Zeroing a bit of astAU hash family can
eliminate all guarantees. The identity functifiiix) = x is 0-AU, but if you zero the last bit of the output
(ie, defineh = Zergyo f), thenh(s||0) andh(s||1) always collide for everg.

3.2 First Hash Phase — NH

The goal of the NH hashing phase (Lines 1-6 of Figure 1) is to hashamsbittessages into much shorter
representations (albeit proportional in length to their originals) in suchyathat two distinct arbitrary-
length messages have a low probability of hashing to the same result (sopthist o the next hash phase
are unlikely to be the same). As described in Section 2, NH is parameteriaedrdrsizew and number

of wordsn, and can hash strings that are a multiple wfldts in length but no longer tham= nw bits.
Lettingw = 64 (for optimization on 64-bit architectures) andny positive even integer (ie, NH with these
parameters accepts any string of length a multiple 128 bits but not longeb thamw bits), then lines 1-6

of Figure 1 define a hash family utilizing NH. The domain of the hash family is pistings of any length.
The codomain is vectors of integers frdfi3i.. Randomly choosing a function from the hash family is
achieved by choosing a randdwbit stringK. To this end, Lines 1-6 work as follows. Given strikigand
parameteb (which must be a positive multiple of 128), brelgkinto n = [|M|/b] blocksM1, Mz, ..., M, so
that each of the firah — 1 blocks is of lengthb and M, is whatever is left over (Lines 1-2). M was the
empty string, then for convenienods set to 1. Each of the blochds, ..., M,_1 is guaranteed to be in the
domain of NH. BlockM,, may not be a multiple of 128, so appending the fewest number of zeroedheed
to make it so will bringM;, also into the domain of NH (Lines 4-5). The blocks can then each be hashed
independently by NH. Each NH result then has the (pre-zero-padidingdh of each block added, and the
two most significant bits of the result zeroed (Line 6). Thesesulting values form a vector which is the
hash function’s output.

Lemma 2 Let b be any positive multiple of 128. Lines 1-6 of Figure 1 defiri@/a%*)-AU hash family
over binary strings of arbitrary length.

Proof: Let b be a positive multiple of 12& be a uniformly distributed-bit string, andM # M’ arbitrary
binary strings. LeM = Mj,...,MnandM’ = M, ..., M/, be broken into blocks and lgtandl{ represent the
length ofM; andM/ as described in Lines 1-3 of Figure 1. M, andM/, be zero extended to the nearest
multiple of 128 bits, if needed, as described in Lines 4-5. what is the piliippalat identical vectors are
produced by evaluating Line 6 dvy,...,My andMg,...,M;? If n £ m, the probability of collision is zero
because the vectors produced will be different lengths. There arethgo cases to examine.

If n=mandM; # M/ for some 1< i <n, then, because NH is$4-AAU over strings that are a multiple
of 2w bits in length (which bothvl; andM/ are guaranteed to be), the probability tieH (K, M) mod 2126) —
(NH(K,M}) mod 2126) = |/ 264 —],,264 is no more than g254. The factor of nine comes from tmeod 2126,



UHASHB8[b](M, K, Kk, ki,k2)
Inputs:
M, a string of any length
K, a string of lengttb bits, whereb = 128 for some integer > 1
k, an element ofw2% 4 x264 4-y232 - 7| WX, Y, Z € Zyso}
ki, ko, integers in the range.0.2%1 — 2, inclusive
Output:
h, an integer in the range.0.25* — 2, inclusive
Algorithm:
1. n=max[|M|/b],1)
2.  LetMjp,My,... M, be strings so tha®l;||Ma||---||My = M and
IMi| =bfor1<i<n.
3 li = |M;j]| for each 1<i <n
4 Letj > O be the smallest integer so thit,| + ] mod 128=0
5. Mp= M0
6. a = (NH[b/64,64(K,M;) mod 2125) 41254 for each 1< i <n
7. p=K"l4fak'+ak 14 ... +ak! mod (2127 1)
8.  p1=(pdiv 2%%) mod 250
9. p2=pmod 250
10. h= p1k1 + p2k2 mod (261— 1)

Figure 1: The hash family UHASHS8 is-AAU, whenK k ki,ko are chosen randomly from their domains,
wheree ~ 27504 (1 /b)2107,

which has the affect of zeroing the top two bits of the NH output. Lemma 1 sayshis causes up to a
factor of nine degradation.

There is one more situation to consider: when one string is a proper pfefie @ther before zero-
padding, but the two strings are identical afterward. In this chke~= M/, because the strings are the
same after padding buf, # |/, because one string was a proper prefix of the other before paddiege &
thus zero probability thetNH(K, M) mod 2126) 1,264 = (NH(K, M},) mod 2126) 4|/ 2% because the NH
hashes are guaranteed to give the same result, but two different langtadded.

In every case, the probability that the vectors output are identical wasinilngM andM’ under keyK
and paramete is no more than 2264, &

3.3 Second Hash Phase — Polynomial

The goal of the second hashing phase (Lines 7-9 in Figure 1) is to takenbmeinded-length output of
the first NH hash phase and hash it to a short fixed-length string in su@y dhat if two inputs to this
stage differ then the probability that the outputs collide is low. Lines 7-9 defimeiversal hash family.
The domain of the hash family is vectors of integers frépr-_,. The codomain is ordered pairs from
Zyeo X Zoeo. Choosing a random function from the hash family is done by choosingi@ora element
ke {w2% 4 x2644.y232 1 7| w, X, y,Z€ Z}. Line 7 is a simple polynomial evaluation hash modul&’2- 1.
Lines 8-9 apply Lemma 1 by zeroing seven bits to produce an output in theérdofike third hash phase.
Since the first NH phase outputs sequences of values less tR&rtibse outputs are suitable without
modification for hashing by the polynomial hash.



UHASH8-128[b|(M, K1, K2, k)
Inputs:
M, a string of any length
K1, K>, strings of lengthb bits, whereb = 128 for some integer > 1
k, an element ofw2%6 4 x284 1 y232 + 7| w,X,y,Z € Zy0}
Output:
h, an integer in the range. 0.2*27 — 2, inclusive
Algorithm:
1.n=max([[M|/b],1)
Let M1, My, ..., M, be strings so thal;||[My||- - - ||My, = M and
IMi| =bfor1<i<n.
li = [Mj| foreach 1I<i <n
Let j > O be the smallest integer so thit,| + j mod 128=0
Mpn = My||0!
a = NH[b/64,64](K1,M;) mod 21?6 for each 1<i <n
bi = (NH[b/64,64](Kz,M;) mod 212%) ;254 for each 1<i < n
h= k2n+1 4 a:Lk2n 4 blan—l 4 a‘2k2n—2 4 b2k2n—3 4
+-ank? + bpk! mod (2127 — 1)

Figure 2: The hash family UHASHS8-128 is-AAU, whenKy,Kz, ki, ko are chosen randomly from their
domains, where ~ (1 /b)27118,

Lemma 3 Let n> 0 be an arbitrary integer. Lines 7-9 of Figure 1 defin¢ra2'°7)-AU hash family over
vectors of length up to n of values less t2aa’— 1.

Proof: It is known that the polynomial hash of Section 2 is universal over veabrthe same length.
So, to allow vectors of varying length, letbe an integer no less than the length of the longest vector
to be hashed. Then, to hash vector,m,...,m; with the polynomial hash of Section 2, first prepend
n— j zeros and a one to the vector, resulting in a vecto.0.,0,1,my,...,m; of lengthn+ 1 elements.
This preprocessing assures that all vectors hashed by the polynamiddeasame length, and it assures
that any pair of vectors that are different before preprocessim@lap different after preprocessing. This
preprocessing step extends the basic polynomial hash of Section 2 tesuggto lengtn, but maintains a
((n+1)/2%9-AAU guarantee when keyis chosen from{w2% + x264 +y232 1 7| w, X, y,z € Z,z0}. Notice
that Line 7 of Figure 1 produces the same result as would the prepeaceskynomial hash just described.
This is because the prepended zeros have no computational effeceluged only as a conceptual device
to make all vectors equal length. Thus the hash on Line 7 is(atse 1) /212%)-AAU. Lemma 1 tells us that
zeroing seven bits as in Lines 8-9, degrades the universality guatantgeto a factor of 8 To simplify
the guaranted3’(n+1))/2'2° can be bounded from above hy2%7, %

3.4 Third Hash Phase — Inner-Product

Line 10 of Figure 1 is a straightforward application of the inner-prodashhfrom Section 2. It is a hash
family with domainZs1_4 x Ze1_, and codomaitZ:_;. Choosing a random function from the hash family
is done by choosing a randofky, kp) € Z.e1_1 X Ze1_1. Because the output from the second hashing phase
is a pair of values less thaf® no adjustment is needed. The following proposition needs no furthef.pro



Message Length
NH Key 40Bytes | 576Bytes [ 1500 Bytes | 4 KB
16 Bytes 4.1 23 2.2 2.2
32 Bytes 3.2 1.2 1.1 1.0
64 Bytes 25 0.7 0.7 0.7
128 Bytes 2.6 0.6 0.5 0.5
256 Bytes 3.1 0.7 0.5 0.4
512 Bytes 3.1 0.7 0.5 0.4
1024 Bytes 3.2 0.7 0.6 0.4
UHASH 4.8 15 1.2 1.0
Poly1305 8.9 3.3 3.2 3.1

Figure 3: UHASHS8 Performance. Eficiency of the UHASHS8 hash function over various NH key sizes
and message lengths, measured in Athlon64 CPU cycles per byte of mbasagd. All data is resident
in cache. Authentication with UHASHS8 requires 64-bits of block-cipher aitgpmi at least 125 additional
cycles per message authenticated is needed. The original UHASH arkBB6)\also run on the Athlon64,
are listed for comparison. Note that Poly1305 does not have a 64-bihpgtal 28-bit output timings are
given for it.

Message Length
NH Key 40Bytes | 576Bytes [ 1500 Bytes | 4 KB

[ 128Bytes | 40 | 13 [ 11 | 11 ]

Figure 4:UHASH8-128 Hash Performance. Efficiency of the UHASH8-128 hash function over 128 byte
NH key size and various message lengths, measured in Athlon64 CPU pgclbgte of message hashed.
All data is resident in cache. Authentication requires an additional bliggiec invocation (at least 250
cycles per message).

Proposition 1 Line 10 of Figure 1 defines @/ (251 — 1))-AAU hash family oveZs: 1 x Zos1_;.

3.5 Putting it Together — UHASHS

Lines 1-10 of Figure 1 define UHASH8 as the composition of three compatitdbergal hash functions.
The properties of composed hash functions is well known [2, 10]. ttiqouéar, if Hy is ang;-AU family of
hash functions, all with common domadn andH, is an&,-AU family of hash functions, all with common
codomairB C A, thenH = {hyohy|hs € Hi,hp € Ha} is (&1 + &)-AU. If Hy is €1-AAU, thenH is (&1 + &2)-
AAU. This leads immediately to the following result.

Theorem 1 Let b be any positive multiple of 128. Figure 1 defines a hash family thetAN&U over all
binary strings up to length | bits whege= (9/2%%) + ([1/b] /2197) + (1/(2%1 - 1)) ~ 2750+ (1 /b) 272107,

Figure 2 gives a version of UHASHS8 producing 128-bit outputs. Altlhong proof of correctness is
given here, the arguments mirror those of UHASHS.

3.6 UHASHS Performance

Network communications on the Internet is dominated by just a few messagb@derresponding to
common sizes seen in the TCP protocol. A few of the most common of these,&@6tGnd 1500 bytes.
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Figures 3 and 4 show UHASH8 and UHASHB8-128 hashing performantbase message lengths. Every
message length is hashed for several different NH key lengths to eeétéey length affects performance.
As expected, on long messages longer NH key lengths indicate highermarfce because overhead is
reduced and the number of hashes beyond NH is reduced.

For comparison, two high-speed hash functions not designed foit @tdhitectures are listed, the

original UHASH and Poly1305 [1, 3]. Source code for these otheh Hiasctions was taken from the
author’s websites.
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