
Message Authentication on 64-bit Architectures

Ted Krovetz
Department of Computer Science

California State University
Sacramento CA 95819 USA

tdk@acm.org

Abstract

This paper takes UMAC — a message authentication algorithm (MAC) optimized for performance on
32-bit architectures — as its starting point, and adapts itsstrategies for optimum performance on 64-bit
architectures. The resulting MAC, called UMAC8, achieves per message forgery probabilities of about
2−60 and 2−120 for tags of length 64 and 128 bits. The UMAC strategies are discussed at length and
adapted for 64-bit environments, but are also modified to address several UMAC shortcomings, partic-
ularly key-agility and susceptibility to timing attacks. UMAC achieved peak throughput rates, when
generating 64-bit tags, of 1.0 CPU cycle per byte of message authenticated, while UMAC8 achieves 0.5
cycles per byte.

I personally believe there are two main architectures out there: Power and x86-64.
— Linus Torvalds, 2005.

1 Introduction

Over the years, as design and manufacturing techniques have improved,and demand for memory address-
ability has increased, register lengths have become longer. The recent adoption of 64-bit register architec-
tures for mainstream processors from IBM, Intel and Advanced MicroDevices is a natural evolution in this
process. It is reasonable to believe that, just as 32-bit processors didbefore them, 64-bit processors will
become dominant not only in servers but also in desktops and laptops.

Many algorithms are designed with optimizations tailored for particular architectures. This is especially
true in domains, such as cryptography, where high performance is desirable. Changing architectures while
keeping the same designs can easily lead to suboptimal performance. This is the case with high-speed
message authentication and the move from 32-bit to 64-bit architectures. The fastest reported message
authentication schemes (or MACs) are all designed to run well on 32-bit architectures [3, 4, 7]. While these
MACs generally work equally well on both 32- and 64-bit architectures — because the newer architectures
support older instructions at full speed — they are not designed to take advantage of new capabilities found
in the 64-bit processors.

This paper takes as a starting point the fastest reported MAC, called UMAC[3]. UMAC is designed
specifically for optimal performance on 32-bit architectures where it canauthenticate long cache-resident
messages on the Pentium 4 at a rate of 2 CPU cycles per byte (cpb) of message without the use of special-
purpose hardware.1 The strategies used by UMAC to gain high-performance on 32-bit architectures are

1A faster version operates at about 1.0 cpb using Intel’s SSE architecture, but for maximum applicability, this paper will only
give results of implementations that use instructions widely available on multiplearchitectures.

1

analyzed for applicability on 64-bit architectures. A modified version of UMAC, called UMAC8, achieving
peak performance of well 0.5 cpb on the Athlon64 is then described.

Although the main goal of this design effort is high speed on 64-bit processors, some effort if afforded
other properties. UMAC has been criticized for attaining its high speed at theexpense of too much (about
1KB) internal key material allocated per authentication session. This is not aproblem for a single peer-to-
peer connection, but a busy server might see thrashing in its cache if it is handling many sessions at once.
UMAC8 reduces the reliance on key material stored in memory to 160 bytes persession. It is also known
that UMAC may be susceptible to a timing attack focussed on some data-dependent computation in its use of
polynomial hashing if the polynomial hash is implemented without care. UMAC8 changes the polynomial
hashing strategy to avoid such a possibility. UMAC8 retains many desirable properties of UMAC by being
provably secure, highly parallelizable, and both patent- and copyright-free.

1.1 Message Authentication and Universal Hashing

Message authentication is used when two parties wish to communicate and have some assurance that each
received message comes from the purported sender and has not beenaltered along the way. All of the fastest
MACs follow principles introduced by Wegman and Carter [1, 3, 4, 5, 7, 11]. The basic Wegman-Carter
message authentication paradigm is for the sender first to hash the messagewith a hash function known only
to himself and the receiver. The sender then applies some cryptographic function (usually encryption) to
the resulting hash value, which produces a message tag that is sent along with the message to the receiver.
The receiver can then repeat the process, verifying that the received tag is valid for the received message.
In a correctly designed MAC, only those knowing the secret hash function and cryptographic keys have a
reasonable chance of creating a valid tag for any new message. If, however, an adversary is able to produce
a valid tag for a new message without knowing the hash function and cryptographic keys, then a forgery
has occurred. Due to their ephemeral nature, communication sessions need only be secure against forgery
during the lifetime of the session. If an adversary cannot forge with a probability of more than 1/260, then
the MAC is likely suitable for most communications where attackers are not allowed an excessive number
of forgery attempts.

The key to speed in a Wegman-Carter MAC is the hash function used. Because authentication speeds are
determined by the sum of the (length-dependent) time it takes to hash the message being authenticated plus
the (constant) time it takes to cryptographically produce the tag, this paper focuses on the hash functions
used in UMAC and UMAC8, known respectively as UHASH and UHASH8. This is reasonable because
any speed improvements in the cryptographic part of a Wegman-Carter MACcould be applied equally to
all such schemes, so improvements relative to other Wegman-Carter MACs willcome almost entirely from
improvements in hashing.

Notable recent examples of fast hash functions (and their peak speeds) suitable for Wegman-Carter
message authentication are hash127 (around 4.4 cpb), hash1305 (3.4 cpb), Badger (2.2 cpb) and UMAC
(2.0 cpb). The speeds of each of these favorably compare with popularestablished non-Wegman-Carter
MACs such as HMAC-SHA1 and CBC-AES-MAC, both of which require considerably more than ten cpb.

UNIVERSAL HASHING. The hash function used in a Wegman-Carter MAC must be chosen from auniversal
hash function family. A hash-function familyH is a collection of hash functions, eachh∈ H having some
common domainA and some common, finite, codomainB. A hash-function familyH is ε-almost universal
(ε-AU) if the probability is no more thanε that any two distinct inputsm,m′ hash to the same output when
hashed by a randomly selected member ofH. A small value forε indicates that an adversary is unlikely
to be able to choose a pair of inputs that hash to the same output, as long as the hash function is chosen
randomly. Although we are often interested in bounding collision probabilities,a stronger notion is useful
in cryptography because it bounds an adversary’s ability to produce hash outputs that differ by a known
constant. A hash-function familyH is ε-almost delta universal(ε-A∆U) if the probability is no more than

2

ε that any two distinct inputsm,m′ differ by any chosen constantd when hashed by a randomly selected
member ofH. There are stronger notions of universal hashing defined by Wegman, Carter and Stinson
[5, 10, 11], butε-A∆U is adequate for message authentication, and is achieved by UHASH8.

2 UHASH8 Building Blocks

UHASH, the universal hash function on which UHASH8 is modeled, is in essence a composition of three
separate hash functions, each with a particular purpose. A high-level overview of UHASH is given here,
and more details can be found in the original UMAC papers [3, 9].

NH. First, the message to be hashed by UHASH is broken into 1KB blocks and each is hashed by NH into
64-bit strings, which are then concatenated. This hash phase reduceslong messages into strings up to
128 times smaller. In UHASH, NH is tailored for 32-bit architectures and is extremely fast on systems
supporting 32-bit multiplication well. Due to the output length’s dependence onthe input length, this
stage’s output is not suitable for message authentication without further processing.

Polynomial. The string produced by the NH phase is broken into 64-bit blocks, each of which is interpreted
as a coefficient in a polynomial modulo a 64- or 128-bit prime (depending onthe original message
length). The output of this hash stage is the result of evaluating the polynomialfor a particular value.
At this point, the original UHASH input has been hashed to a string of no morethan 128 bits. This
function is several times slower than NH, so NH acts as an accelerator by reducing the input length to
this stage.

Inner-Product. The 64- or 128-bit output of the polynomial hash is broken into 16-bit blocks which are
then hashed by an inner-product hash, producing 32 bits. The sole purpose of this step is to distill the
universality guarantee of the previous stage’s output into a smaller numberof bits.

The end result of these three steps is a 32-bit output from a composed hash function that is roughly 2−30-
A∆U when each stage’s key material is chosen randomly. To form a hash thatis 2−60-A∆U, UHASH does
these steps twice on each message, each time under a different key, concatenating the resulting hashes into
a 64-bit result.

We now look more closely at these three stages of hashing in UHASH and adapt their strategies for
high-speed to 64-bit environments.

2.1 NH

NH is a parameterized hash function. Given positive integer parametersn andw and a keyK of lengthnw
bits, then NH can hash any stringM that is a multiple of 2w bits in length but not longer thannw bits. First
M andK are broken intow-bit blocksM1,M2, . . . ,Ml andK1,K2, . . .Kn wherel = |M|/w. Then, each block
is interpreted as aw-bit unsigned binary integerm1,m2, . . . ,ml andk1,k2, . . .kn. Finally, the hash result is
computed as

NH[n,w](K,M) =
l/2

∑
i=1

((m2i−1 +k2i−1 mod 2w)× (m2i +k2i mod 2w)) mod 22w .

NH is a hash family, and choosing a random function from the hash family is done by choosing a random
nw-bit key K. NH is known to be(2−w)-A∆U over messages of the same length (ie,M andM′ are distinct,
but |M| = |M′|), and small modifications to the original proof show that NH is(2−w)-A∆U over messages
that are a multiple of 2w bits in length (but still no longer thannw bits) [3].

3

CHARACTERISTICS. The chief advantage of NH is extreme speed. Because all key and message blocks are
defined asw-bit quantities and all arithmetic is done modulo 2w and 22w, every operation is done naturally
and efficiently on contemporary processors ifw is chosen appropriately. On 32-bit processors with good
support for multiplying 32-bit quantities into a 64-bit result, definingw = 32 results in high speed. The
same is true forw = 64 on 64-bit processors if there is good support for multiplying 64-bit quantities into a
128-bit result.

On a 64-bit architecture, NH performance whenw = 64 is about four times better than whenw = 32. If
one’s goal is a(2−64)-A∆U guarantee over messages of length 128j bits, then NH[n,w] achieves this goal
using j multiplications whenw = 64, but requires 4j multiplications whenw = 32. To see this, consider
how one would achieve a(2−64)-A∆U guarantee whenw = 32. Each NH hashing of the message would
require 2j multiplications and produce a hash value with a(2−32)-A∆U guarantee. This would have to be
done twice, under separate keys, to achieve the(2−64)-A∆U goal, whereas onlyj 64-bit multiplications
are needed to achieve the same guarantee on a 64-bit architecture. This isborne out experimentally. Two
parallel passes on a Pentium 4 withw= 32 takes about 2 cpb, while a single pass on an AMD Athlon64 with
w = 64 requires only around 0.5 cpb. Admittedly this comparison is based on different platforms, but they
are similar enough to be suggestive of the magnitude of speedup one might expect. Direct Athlon64-based
comparisons are given later in Section 3.6.

If UHASH8 were identical to UHASH except for the use ofw = 64 in NH, the result would be a hash
function that runs nearly four times faster for long cache-resident messages on 64-bit architectures. This
would be a notable result, but another goal of the UHASH8 design is to reduce the amount of required
key from 1KB in NH to something closer to 128 bytes in UHASH8. Reducing the key-length used by NH
(ie, loweringn), however, increases hashing overhead and the length of inputs passed on to the polynomial
hashing phase, and so increases the time to hash the same length data. A balance must be struck between
NH hashing speed and key-length.

2.2 Polynomial Hashing

A simple and efficient method to hash a binary stringM is to fix prime numberp and breakM into fixed-
length blocksM1,M2,M3, . . . ,Ml in such a way that when the blocks are interpreted as unsigned integers
m1,m2,m3, . . . ,ml , each is less thanp (for example, by making each block⌊log2 p⌋ bits). Then, choosing an
integer key 0≤ k < p defines the hash output as

hk(M) = m1kl +m2kl−1 + · · ·+ml k
1 modp.

Two different messagesM,M′ of the same block lengthl differ by constantd when hashed by this function
if

hk(M)−hk(M
′) = (m1−m′

1)k
l +(m2−m′

2)k
l−1 + · · ·+(ml −m′

l)k
1 modp = d .

BecauseM 6= M′, at least one of the terms in this polynomial is non-zero. This being a polynomial of degree
at mostl , there are at mostl values fork which causehk(M)−hk(M′)−d (mod p) to evaluate to zero. If we
define this hash family asH = {hk |0≤ k < p}, thenH is anε-A∆U hash family forε = l/p.

CHARACTERISTICS. With care, polynomial hashing can be made to perform well. Horner’s Rulesuggests
rephrasinghk(M) as((· · ·((m1k+m2)k+m3)k· · ·)k+ml)k mod p, which allowshk(M) to be computed as
a sequence ofl multiplications and additions modulop [8]. Those multiplications and additions modulop
can be made efficient by choosing a convenientp and restricting the choice ofk to a convenient set.

By choosingp to be of the formp= 2a−b for some smallb, reductions modulop can be done efficiently
in a lazy manner. Each time a valuec becomes at least 2a, it can be rewritten as the (modulop) equivalent
c− 2a + b. For examplep = 261− 1 is prime. This means that, in a 64-bit register, a valuec greater
thanp but less than 264 can be reduced by computingc = (c div 261)+ (c mod 261). This equality simply

4

recognizes thatc = x261 + y for somex and 0≤ y < 261, and replaces 261 with the equivalent (modulo
p) value 1. Thediv andmod operations extractx andy, and can be computed efficiently using bitwise
operations. This process is “lazy” for two reasons. First, numbers canbe allowed to get as large as desired
before performing a reduction as long as values do not exceed the register’s capacity. Second, a reduction
to the range 0, . . . , p−1 is not necessary until a final result is needed. So, when this method is followed to
perform an intermediate reduction, the result need not be in the range 0, . . . , p−1. This puts off expensive
range checks until the very end of the polynomial hash. Particularly useful primes on a 64-bit architecture
are 2127−1 and 261−1.

Another source of inefficiencies is register carries during addition. Whenever a number is too large to be
represented in a single CPU register, the number is generally split into multiple registers, and arithmetic on
the larger number is accomplished by some sequence of smaller operations. For example, if we rewrite 128-
bit valuesj andk as j = w264+x andk= y264+zwhere 0≤ x,z< 264, then jk = wy2128+(wz+xy)264+xz.
This means that to computejk, we can put the top 64-bits ofj andk into 64-bit registersw andy, and their
low 64-bits intox andz. The resultjk is then assembled by appropriately multiplying, shifting and adding
wy, wz, xyandxz.

Consider the case where a polynomial is being evaluated modulo primep= 2127−1 using Horner’s Rule
and lazy modulo reduction whenever an intermediate value exceeds 128-bits. Each step in the Horner’s Rule
evaluation is a multiplication and addition of the formjk+mmodp, with k,m< p and j < 2128. As just seen,
say thatj andk are 128-values spread into registersw, x, y andzso thatjk = wy2128+(wz+xy)264+xz(mod
p). Because 2128= 2 (modp), this can be rewrittenjk = ((wz+xy) mod 264)264+(2(((wz+xy) div 264)+
wy)+ xz) (mod p). If j andk are unrestricted, then every addition could result in a carry beyond 128-bits.
These carries must be accumulated and dealt with, which could be inefficient. Ideally this computation of
jk would involve no carries beyond 128-bits, allowing a more efficient computation.

Eliminating carries can be done by restrictingk. The polynomial hash described in this section is(l/p)-
A∆U when hashingl -block messages and choosingk from 0, . . . , p−1. This is due to the fact that there
are at mostl values in the range 0, . . . , p−1 that causehk(M)−hk(M′)−d (mod p) to evaluate to zero. If
k is chosen from some subsetA ⊆ {0, . . . , p− 1} instead, there would still be at mostl values that cause
hk(M)−hk(M′)−d (mod p) to evaluate to zero, but because|A| ≤ p, the probability of randomly choosing
one of them increases to at mostl/|A|. This meansA can be chosen judiciously to exclude keys which
cause excessive carries. In the case of evaluating polynomials modulop= 2127−1, restrictingk to elements
of A = {y264 + z | 0 ≤ y < 262,0 ≤ z < 263} eliminates all but one possible carry beyond 128-bits when
computingjk on a 64-bit architecture for any 0≤ j < 2128.

Experimentally, we have found that long sequences of cache-residentmessage blocks, each already less
than 2127−1, can be hashed at a rate of 1.7 Athlon64 cpb whenk is chosen as described to avoid excessive
carries. When hashing sequences of values less than 261− 1 over modulus 261− 1, allowingk to be any
value less than 261−1, messages can be hashed at 1.3 cpb on the Athlon64. It should be notedthat hashing
an arbitrary string would not be nearly as fast due to the need of breaking the string into appropriate blocks.

The original UHASH use of polynomial hashing in its second hash stage is a balancing act. The goal
of UMAC’s entire three-stage composed hash is to be as close as possible to(2−32)-A∆U. This means that
no stage can have significantly worse (and should strive to do significantlybetter) than this level. For the
polynomial stage of UHASH to avoid exceeding(2−32)-A∆U, it dynamically alters the prime modulus to a
larger number as the input length increases. This allows short strings to behashed using a (more efficient)
small modulus, but still allows for longer strings to be hashed (using a less efficient large modulus). On
64-bit architectures, fixing on a larger modulus is adequately efficient soas not to need dynamic moduli.

5

2.3 Inner Product Hashing

Another well known provably universal hashing paradigm is the inner product over a prime modulus [6].
Again, let p be a prime and letM be broken into fixed-length blocksM1,M2,M3, . . . ,Ml in such a way that
when the blocks are interpreted as unsigned integersm1,m2,m3, . . . ,ml , each is less thanp. Then, choosing
a vectork = (k1,k2, . . . ,kl) with 0≤ ki < p for all 1≤ i ≤ l defines the hash output as

hk(M) = m1k1 +m2k3 + · · ·ml kl modp.

For any two different messagesM,M′ of the same block lengthl and integer 0≤ d < p, whenk is chosen at
random, the probability that

hk(M)−hk(M
′) = (m1−m′

1)k1 +(m2−m′
2)k2 + · · ·+(ml −m′

l)kl modp = d

is exactly 1/p. It follows that inner product hashing over a prime modulus forms anε-A∆U hash family for
ε = 1/p.

CHARACTERISTICS. Inner-product hashing requires at least as much key as message being hashed. This
makes it unsuitable for long messages. But, for short messages, implementations can be efficient using
strategies already discussed for polynomial hashing. In particular, lazymodular reduction and choosing a
prime modulus of the formp = 2a−b whereb is small, results in good performance. For example, when
p = 261− 1, j < 264 andk < p, the productjk (mod p) can be efficiently computed as(jk div 264)23 +
(jk mod 264) because 264 = 23 (mod p).

3 UHASH8 Algorithm

With these hash functions as building blocks and UHASH as a model, a hash function suitable for authen-
ticating arbitrary messages and optimized for 64-bit architectures can be presented. The hash functions
presented so far have interfaces that are incompatible with one another without some adaptation. For exam-
ple, NH produces outputs with values up to 2128−1, whereas the polynomial hash only accepts sequences of
values less than 2127−1. Similarly, the polynomial hash produces a value less than 2127−1, but the inner-
product expects a sequence of values less than 261−1. To address these problems, a lemma is introduced
which allows out-of-range values to be brought into range with a manageable increase to the probabilities
involved. Length issues must also be resolved. As presented, each hash function seen so far has a universal-
ity guarantee when hashing messages of the equal length. These must be extended to provide universality
guarantees over all lengths. Figure 1 specifies the finished hash function UHASH8. Each of the interfaces
between component hash families and the extensions for arbitrary lengths will now be addressed separately.

3.1 First: A Lemma

The primary tool used to fix the problem that one hash function produces values that are outside of the
domain of a second hash function is the following lemma which says that if we routinely zero any fixed
bit-position of the outputs of anε-A∆U hash function, the resulting hash function is still A∆U but with a
reduced universality guarantee.

DEFINITIONS. Whenx is a non-negative integer, letxi be 1 if the binary representation ofx has a 1 in the
position of weight 2i and 0 otherwise. Let Zeroi(x) be the function that returnsx if xi = 0 and returnsx−2i

if xi = 1 (ie, it returnsx with the 2i position zeroed).Zn is the set{0,1,2, . . . ,n−1}.

Lemma 1 Let H = {h : A→ Zn} be anε-A∆U hash family (where the operation is addition modulo n) and
Hi = {Zeroi ◦h|h∈ H}, then Hi is (3ε)-A∆U for every i.

6

Proof: Let a 6= b be elements ofA, andd andd′ be elements ofZn. BecauseH is ε-A∆U , we know that
Pr[h(a)−h(b) = d]≤ ε whenh is chosen randomly fromH, but what is the probability Pr[h′(a)−h′(b) = d′]
whenh′ is chosen randomly fromHi?

Let h be chosen randomly, and leth′ = Zeroi ◦h for some 0≤ i < lgn. Definex = h(a) andy = h(b).
There are four possible combinations for the values ofxi andyi : (xi ,yi) could equal(0,0), (0,1), (1,0) or
(1,1). We look at each case.

If xi = yi , thenh′(a)−h′(b) = d′ if and only if h(a)−h(b) = d′. Using conditional probability we can
bound the likelihood of this scenario as Pr[h(a)− h(b) = d′ andxi = yi] = Pr[h(a)− h(b) = d′] ·Pr[xi =
yi |h(a)− h(b) = d′] ≤ ε · 1. Similarly, if (xi ,yi) is (0,1) or (1,0) thenh′(a)− h′(b) = d′ if and only if
h(a)−h(b) is d′ +2i or d′−2i , respectively, each of which is similarly bounded byε ·1. These three cases
being the only ones in whichh′(a)−h′(b) = d′, H ′ must be 3ε-A∆U . ♦

Note that a similar result is not possible forε-AU hash families. Zeroing a bit of anε-AU hash family can
eliminate all guarantees. The identity functionfI (x) = x is 0-AU, but if you zero the last bit of the output
(ie, defineh = Zero0◦ fI), thenh(s||0) andh(s||1) always collide for everys.

3.2 First Hash Phase – NH

The goal of the NH hashing phase (Lines 1–6 of Figure 1) is to hash arbitrary messages into much shorter
representations (albeit proportional in length to their originals) in such a way that two distinct arbitrary-
length messages have a low probability of hashing to the same result (so that inputs to the next hash phase
are unlikely to be the same). As described in Section 2, NH is parameterized onword sizew and number
of wordsn, and can hash strings that are a multiple of 2w bits in length but no longer thanb = nw bits.
Letting w = 64 (for optimization on 64-bit architectures) andn any positive even integer (ie, NH with these
parameters accepts any string of length a multiple 128 bits but not longer thanb = nw bits), then lines 1–6
of Figure 1 define a hash family utilizing NH. The domain of the hash family is binary strings of any length.
The codomain is vectors of integers fromZ2126. Randomly choosing a function from the hash family is
achieved by choosing a randomb-bit stringK. To this end, Lines 1–6 work as follows. Given stringM and
parameterb (which must be a positive multiple of 128), breakM into n= ⌈|M|/b⌉ blocksM1,M2, . . . ,Mn so
that each of the firstn−1 blocks is of lengthb andMn is whatever is left over (Lines 1–2). IfM was the
empty string, then for conveniencen is set to 1. Each of the blocksM1, . . . ,Mn−1 is guaranteed to be in the
domain of NH. BlockMn may not be a multiple of 128, so appending the fewest number of zeros needed
to make it so will bringMn also into the domain of NH (Lines 4–5). The blocks can then each be hashed
independently by NH. Each NH result then has the (pre-zero-padding)length of each block added, and the
two most significant bits of the result zeroed (Line 6). Thesen resulting values form a vector which is the
hash function’s output.

Lemma 2 Let b be any positive multiple of 128. Lines 1–6 of Figure 1 define a(9/264)-AU hash family
over binary strings of arbitrary length.

Proof: Let b be a positive multiple of 128,K be a uniformly distributedb-bit string, andM 6= M′ arbitrary
binary strings. LetM = M1, . . . ,Mm andM′ = M′

1, . . . ,M
′
n be broken into blocks and letl i andl ′i represent the

length ofMi andM′
i as described in Lines 1–3 of Figure 1. LetMm andM′

n be zero extended to the nearest
multiple of 128 bits, if needed, as described in Lines 4–5. what is the probability that identical vectors are
produced by evaluating Line 6 onM1, . . . ,Mm andM′

1, . . . ,M
′
n? If n 6= m, the probability of collision is zero

because the vectors produced will be different lengths. There are twoother cases to examine.
If n= mandMi 6= M′

i for some 1≤ i ≤ n, then, because NH is 2−64-A∆U over strings that are a multiple
of 2wbits in length (which bothMi andM′

i are guaranteed to be), the probability that(NH(K,Mm) mod 2126)−
(NH(K,M′

n) mod 2126) = l ′n264− lm264 is no more than 9/264. The factor of nine comes from themod 2126,

7

UHASH8[b](M,K,k,k1,k2)
Inputs:

M, a string of any length
K, a string of lengthb bits, whereb = 128i for some integeri > 1
k, an element of{w296+x264+y232+z | w,x,y,z∈ Z230}
k1,k2, integers in the range 0. . .261−2, inclusive

Output:
h, an integer in the range 0. . .261−2, inclusive

Algorithm:
1. n = max(⌈|M|/b⌉,1)
2. LetM1,M2, . . . ,Mn be strings so thatM1||M2|| · · · ||Mn = M and

|Mi | = b for 1≤ i < n.
3. l i = |Mi | for each 1≤ i ≤ n
4. Let j ≥ 0 be the smallest integer so that|Mn|+ j mod 128= 0
5. Mn = Mn||0 j

6. ai = (NH[b/64,64](K,Mi) mod 2126)+ l i264 for each 1≤ i ≤ n
7. p = kn+1 +a1kn +a2kn−1 + · · ·+ank1 mod (2127−1)
8. p1 = (p div 264) mod 260

9. p2 = p mod 260

10. h = p1k1 + p2k2 mod (261−1)

Figure 1: The hash family UHASH8 isε-A∆U , whenK,k,k1,k2 are chosen randomly from their domains,
whereε ≈ 2−60+(l/b)2−107.

which has the affect of zeroing the top two bits of the NH output. Lemma 1 says that this causes up to a
factor of nine degradation.

There is one more situation to consider: when one string is a proper prefix of the other before zero-
padding, but the two strings are identical afterward. In this case,Mm = M′

n because the strings are the
same after padding butlm 6= l ′n because one string was a proper prefix of the other before padding. There is
thus zero probability that(NH(K,Mm) mod 2126)+ lm264 = (NH(K,M′

n) mod 2126)+ l ′n264 because the NH
hashes are guaranteed to give the same result, but two different lengthsare added.

In every case, the probability that the vectors output are identical when hashingM andM′ under keyK
and parameterb is no more than 9/264. ♦

3.3 Second Hash Phase – Polynomial

The goal of the second hashing phase (Lines 7–9 in Figure 1) is to take theunbounded-length output of
the first NH hash phase and hash it to a short fixed-length string in such away that if two inputs to this
stage differ then the probability that the outputs collide is low. Lines 7–9 definea universal hash family.
The domain of the hash family is vectors of integers fromZ2127−1. The codomain is ordered pairs from
Z260 ×Z260. Choosing a random function from the hash family is done by choosing a random element
k∈ {w296+x264+y232+z|w,x,y,z∈Z230}. Line 7 is a simple polynomial evaluation hash modulo 2127−1.
Lines 8–9 apply Lemma 1 by zeroing seven bits to produce an output in the domain of the third hash phase.
Since the first NH phase outputs sequences of values less than 2126, those outputs are suitable without
modification for hashing by the polynomial hash.

8

UHASH8-128[b](M,K1,K2,k)
Inputs:

M, a string of any length
K1,K2, strings of lengthb bits, whereb = 128i for some integeri > 1
k, an element of{w296+x264+y232+z | w,x,y,z∈ Z230}

Output:
h, an integer in the range 0. . .2127−2, inclusive

Algorithm:
1. n = max(⌈|M|/b⌉,1)

Let M1,M2, . . . ,Mn be strings so thatM1||M2|| · · · ||Mn = M and
|Mi | = b for 1≤ i < n.

l i = |Mi | for each 1≤ i ≤ n
Let j ≥ 0 be the smallest integer so that|Mn|+ j mod 128= 0
Mn = Mn||0 j

ai = NH[b/64,64](K1,Mi) mod 2126 for each 1≤ i ≤ n
bi = (NH[b/64,64](K2,Mi) mod 2126)+ l i264 for each 1≤ i ≤ n
h = k2n+1 +a1k2n +b1k2n−1 +a2k2n−2 +b2k2n−3 + · · ·

+ank2 +bnk1 mod (2127−1)

Figure 2: The hash family UHASH8-128 isε-A∆U , whenK1,K2,k1,k2 are chosen randomly from their
domains, whereε ≈ (l/b)2−119.

Lemma 3 Let n≥ 0 be an arbitrary integer. Lines 7–9 of Figure 1 define a(n/2107)-AU hash family over
vectors of length up to n of values less than2127−1.

Proof: It is known that the polynomial hash of Section 2 is universal over vectors of the same length.
So, to allow vectors of varying length, letn be an integer no less than the length of the longest vector
to be hashed. Then, to hash vectorm1,m2, . . . ,mj with the polynomial hash of Section 2, first prepend
n− j zeros and a one to the vector, resulting in a vector 0,0, . . . ,0,1,m1, . . . ,mj of lengthn+ 1 elements.
This preprocessing assures that all vectors hashed by the polynomial are the same length, and it assures
that any pair of vectors that are different before preprocessing are also different after preprocessing. This
preprocessing step extends the basic polynomial hash of Section 2 to vectors up to lengthn, but maintains a
((n+1)/2120)-A∆U guarantee when keyk is chosen from{w296+x264+y232+z | w,x,y,z∈ Z230}. Notice
that Line 7 of Figure 1 produces the same result as would the preprocessed polynomial hash just described.
This is because the prepended zeros have no computational effect butare used only as a conceptual device
to make all vectors equal length. Thus the hash on Line 7 is also((n+1)/2120)-A∆U. Lemma 1 tells us that
zeroing seven bits as in Lines 8–9, degrades the universality guaranteeby up to a factor of 37. To simplify
the guarantee,(37(n+1))/2120 can be bounded from above byn/2107. ♦

3.4 Third Hash Phase – Inner-Product

Line 10 of Figure 1 is a straightforward application of the inner-product hash from Section 2. It is a hash
family with domainZ261−1×Z261−1 and codomainZ261−1. Choosing a random function from the hash family
is done by choosing a random(k1,k2) ∈ Z261−1×Z261−1. Because the output from the second hashing phase
is a pair of values less than 260, no adjustment is needed. The following proposition needs no further proof.

9

Message Length
NH Key 40 Bytes 576 Bytes 1500 Bytes 4 KB

16 Bytes 4.1 2.3 2.2 2.2
32 Bytes 3.2 1.2 1.1 1.0
64 Bytes 2.5 0.7 0.7 0.7
128 Bytes 2.6 0.6 0.5 0.5
256 Bytes 3.1 0.7 0.5 0.4
512 Bytes 3.1 0.7 0.5 0.4
1024 Bytes 3.2 0.7 0.6 0.4

UHASH 4.8 1.5 1.2 1.0
Poly1305 8.9 3.3 3.2 3.1

Figure 3: UHASH8 Performance. Eficiency of the UHASH8 hash function over various NH key sizes
and message lengths, measured in Athlon64 CPU cycles per byte of messagehashed. All data is resident
in cache. Authentication with UHASH8 requires 64-bits of block-cipher output, so at least 125 additional
cycles per message authenticated is needed. The original UHASH and Poly1305, also run on the Athlon64,
are listed for comparison. Note that Poly1305 does not have a 64-bit option, so 128-bit output timings are
given for it.

Message Length
NH Key 40 Bytes 576 Bytes 1500 Bytes 4 KB

128 Bytes 4.0 1.3 1.1 1.1

Figure 4:UHASH8-128 Hash Performance.Efficiency of the UHASH8-128 hash function over 128 byte
NH key size and various message lengths, measured in Athlon64 CPU cyclesper byte of message hashed.
All data is resident in cache. Authentication requires an additional block-cipher invocation (at least 250
cycles per message).

Proposition 1 Line 10 of Figure 1 defines a(1/(261−1))-A∆U hash family overZ261−1×Z261−1.

3.5 Putting it Together – UHASH8

Lines 1–10 of Figure 1 define UHASH8 as the composition of three compatible universal hash functions.
The properties of composed hash functions is well known [2, 10]. In particular, if H1 is anε1-AU family of
hash functions, all with common domainA, andH2 is anε2-AU family of hash functions, all with common
codomainB⊆ A, thenH = {h1◦h2 |h1 ∈ H1,h2 ∈ H2} is (ε1+ε2)-AU. If H1 is ε1-A∆U, thenH is (ε1+ε2)-
A∆U. This leads immediately to the following result.

Theorem 1 Let b be any positive multiple of 128. Figure 1 defines a hash family that isε-A∆U over all
binary strings up to length l bits whereε = (9/264)+(⌈l/b⌉/2107)+(1/(261−1)) ≈ 2−60+(l/b)2−107.

Figure 2 gives a version of UHASH8 producing 128-bit outputs. Although no proof of correctness is
given here, the arguments mirror those of UHASH8.

3.6 UHASH8 Performance

Network communications on the Internet is dominated by just a few message lengths corresponding to
common sizes seen in the TCP protocol. A few of the most common of these are 40, 576 and 1500 bytes.

10

Figures 3 and 4 show UHASH8 and UHASH8-128 hashing performance on these message lengths. Every
message length is hashed for several different NH key lengths to see how NH key length affects performance.
As expected, on long messages longer NH key lengths indicate higher performance because overhead is
reduced and the number of hashes beyond NH is reduced.

For comparison, two high-speed hash functions not designed for 64-bit architectures are listed, the
original UHASH and Poly1305 [1, 3]. Source code for these other hash functions was taken from the
author’s websites.

References

[1] Bernstein D. The Poly1305-AES message-authentication code. To appear inProceedings of the 12th
Workshop on Fast Software Encryption. Springer-Verlag, 2005.

[2] Bierbrauer J, Johansson T, Kabatianskii G, Smeets B. On families of hash functions via geometric
codes and concatenation. InAdvances in Cryptology – CRYPTO ’93. Springer-Verlag, 1993; 331–342.

[3] Black J, Halevi S, Krawczyk H, Krovetz T, Rogaway P. UMAC: Fast and secure message authentica-
tion. In Advances in Cryptology – CRYPTO ’99. Springer-Verlag, 1999; 216–233.

[4] Boesgaard M, Christensen T, Zenner E. Badger – A fast and provably secure MAC. InApplied Cryp-
tography and Network Security: Third International Conference, ACNS2005. Springer-Verlag, 2005;
176–191.

[5] Carter L, Wegman M. Universal classes of hash functions.J. of Computer and System Sciences1981;
22:265–279.

[6] Cormen T, Leiserson C, Rivest R, Stein C..Introduction to algorithms.MIT Press, 2001. Section
11.3.3.

[7] Halevi S, Krawczyk H. MMH: Software message authentication in the Gbit/second rates. InProceed-
ings of the 4th Workshop on Fast Software Encryption. Springer-Verlag, 1997; 172–189.

[8] Knuth D. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Addison-
Wesley, 1998; 486–489.

[9] Krovetz T, Rogaway P. Fast universal hashing with small keys andno preprocessing: The PolyR con-
struction. InInformation Security and Cryptology – ICICS 2000. Springer-Verlag, 2000; 73–89.

[10] Stinson D. Universal hashing and authentication codes.Designs, Codes and Cryptography1994;
4:369–380.

[11] Wegman M, Carter L. New hash functions and their use in authenticationand set equality.J. of Com-
puter and System Sciences1979;18:143–154.

11

