Zhuang-Zi: A New Algorithm for Solving
Multivariate Polynomial Equations over a Finite
Field

Jintai Ding!, Jason E. Gower! and Dieter S. Schmidt?

Department of Mathematical Sciences’
Department of Electrical & Computer Engineering and Computer Science
University of Cincinnati
Cincinnati, OH 45220
USA

ding@math.uc.edu, gowerj@math.uc.edu, dieter.schmidt@uc.edu

2

Abstract. We present the Zhuang-Zi algorithm, a new method for solv-
ing multivariate polynomial equations over a finite field. We describe the
algorithm and present examples, some of which cannot be solved with
the fastest known algorithms.

Keywords: multivariate polynomials, Hidden Field Equation, Berlekamp
algorithm

1 Introduction

Solving a single variable polynomial equation or a set of multivariate polynomial
equations has always been at the center of the development of mathematics. It
is not only inspired by our curiosity, but also by the ubiquitous role these simple
but fundamental problems play in all branches of science.

Though the Babylonians did not invent the notion of an “equation,” they
found the first algebraic solution to problems, which gave rise to what we call a
single variable quadratic equation today. The first known solution of this problem
is given in the Berlin papyrus from the Middle Kingdom of Egypt (circa 2160
1700 BC) [Smib52].

Though the first great success is surely solving the single variable quadratic
equation, the next successes came much later with Ferro solving the single vari-
able cubic equation and Ferrari solving the single variable quartic in the 16th
century. However Galois’ theory put an end to the hope of finding an elegant
algebraic formula for higher order single variable equations.

The situation is very different in the multivariate case. The real great success
is the Grobner basis method [Buc65], which comes from the ideas of modern
algebraic geometry. Solving polynomial equations over the integers is also a very
interesting direction, for example Fermat’s last theorem, but it is a completely
different story which we will omit here.

A very different and modern direction is to solve multivariate equations over
a finite field. Recently much effort in this area has been inspired by the ap-
pearance of multivariate public key cryptography. For the single variable case,
there are very efficient algorithms, such as the Berlekamp algorithm, for factor-
ing polynomials of relatively low degree. For the multivariate case, one can also
use an extension of the Grobner basis.

The idea of a public key cryptosystem was first suggested by Diffie and Hell-
man, but the first practical construction was RSA. Public key cryptography
allows any two parties to communicate securely over an open communication
channel, like the Internet, and it now plays a fundamental role in our com-
munication systems. However recent developments in quantum computing, in
particular Peter Shor’s polynomial-time integer factorization algorithm, shows
that a quantum computer can be used to break RSA. Thus there has been great
interest in constructing other public key cryptosystems.

One alternative is to use multivariate polynomials, and in particular quadratic
polynomials. The security of such constructions is suggested by the proven theo-
rem that solving a set of multivariate polynomial equations over a finite field is,
in general, an NP-hard problem [GJ79]. Nevertheless, this result is not enough
to guarantee the security of such a cryptosystem.

Recent research in multivariate public key cryptography has stimulated a
search for new methods for solving multivariate polynomial equations over a
finite field, along the line of Grobner bases. Examples include XL [CKPS00]
and the enhanced Grébner bases methods Fy and Fj of Faugere [Fau99,Fau02].
Inspired by the work in this area, we propose a new algorithm to solve a set of
multivariate polynomial equations over a finite field.

2 Background

Let k be a finite field with ¢ elements and suppose we have m polynomials
fos fiyo ooy fm—1 € k[xo,x1, ..., 2p_1]. We wish to find all (ag, a1, ...,a,—1) € k™,
such that
fo(ao, Alyeeny an,l) =0
fl(ao, A1y..., an,l) =0

(1)

fmfl(ao,alv"wanfl) - O

We may as well work in the ring
q q q
klzo,z1,...,xn_1]/ (@ — 0, 2] — 21, .., 2L — Zp_1),

though for convenience we will abuse notation and write k[xg,z1,...,Zn_1]
The key idea of our new algorithm is to shift perspectives from the space of
polynomials k[xg,z1,...,Z,—1] with coefficients in the small field k, to a space
of polynomials K[X] with coefficients in some suitably chosen extension field K.

To simplify matters, let us assume that m = n. Choose any irreducible poly-
nomial g(y) € kly] of degree n. Then K = kly]/(g(y)) is a degree n field extension

of k. Let ¢ be the standard k-linear map that identifies K with the n-dimensional
vector space k™, i.e., ¢ : k" — K, defined by

d(ag,a1,...,an-1) =ap+ a1y + - +an_1y""" (2)

Let f : k™ — k™ be the polynomial map defined by f = (fo, f1,.- fn-1)-
We can lift f up to the extension field K using ¢ to create a map F : K — K
defined by

F=¢ofop L
Using the Lagrangian interpolation formula, we can think of F' as a polynomial
in K[X], where X is an intermediate. In fact, F' has a unique representation in
the quotient space K[X]/(X?" — X). For any given f, the corresponding F can
be calculated by solving a set of linear equations. The following theorem tells us
the exact form of this representation.

Theorem 1. Using the notation as defined above, for a linear polynomial map

f = (f07f17"'afn71) we have

n—1
F(X)=)Y_ BX" +a mod (X" - X),

1=0

for some B;,a € K. If f is a quadratic polynomial map, then

n—1n—1 n—1
F(X)=> "> %X 43" 3,X +a mod (X' - X),
i=0 j=i i=0

for some 5, Bi,a € K. Representations for higher order polynomial maps are
similarly described. In the case of ¢ = 2, the formulas are slightly different.

In this paper, we will identify the map F' with its corresponding representation
given in Theorem 1.

It is now clear that we can move freely between multivariate functions and
single variable functions, and we will do so in order to solve the original system of
equations. This is the basic idea of Matsumoto-Imai, Patarin, Kipnis and Shamir
[MI88,Pat00,KS99], and is also the basis of our algorithm. Given a system of
equations such as (1), the basic strategy will be to lift the associated polynomial
map f to the map F' in the extension field K. The roots of the representation
of F' given in Theorem 1 correspond exactly with the solutions to the original
system of equations defined over k. Once we have the roots in K, we can descend
down to k™ with ¢—!. It remains to develop techniques for reducing the degree of
F, which if successful, will allow us to use efficient algorithms for solving single
variable polynomial equations.

We note a fundamental difference between our algorithm and others which
is that ours can be used only with finite fields and cannot be used with fields of
characteristic zero. The reason for this is that the lifting from the multivariate
system to a single variable equation works very well for a finite field, but not

for characteristic zero cases. However, in the case of finite fields, our algorithm
unifies the two problems of solving single variable and multivariate polynomial
equations into a single problem. We have named this algorithm after Zhuang-Zi,
an ancient Chinese philosopher who we believe was one of the first to propose
the idea of shifting from a local view of problems to a global view.

The remainder of this paper is organized as follows. We will explain the
basic algorithm, including a method to reduce the degree of F', and present a
toy example in order to show how the algorithm works. We then present more
meaningful examples and conclude with a discussion of future work.

3 The Zhuang-Zi Algorithm

We will start with the standard case of m = n, where we have the same num-
ber of variables and equations. The Zhuang-Zi algorithm takes the polynomi-
als fo, f1,--+, fn-1 € k[zo,21,...,2n—1] and a positive integer D as its input,
where D is the upper bound on the degree of a polynomial equation which
can be solved efficiently. When successful the algorithm returns all n-tuples
(ap,a1,...,an—1) € k™ such that f;(ag,a1,...,a,-1) =0,fori=0,1,...,n—1.

Step 1: Choose any degree n irreducible polynomial g(y) € k[z] and define K =
kly]/(g(y)). Let ¢ : k™ — K be as defined in (2). Define f = (fo, f1,..-, fa—1),
lift this to K by F = ¢ o f o ¢!, and compute the polynomial representation
of F(X) modulo X" — X. If the deg (F(X)) < D, then go to the last step;
otherwise continue to the next step.

Step 2: Let G = Gal(K/k) be the Galois group of K over k consisting of the
Frobenius maps G;(X) = X7, for i = 0,1,...,n — 1. Calculate

i

Fi(X)=G;oF(X)=F(X)! mod (X7 — X),

for i =0,1,...,n — 1. Note that Fy(X) = F(X). If there exists an F; such that
deg (F;(X)) < D, then go to the last step; otherwise continue to the next step.

Step 3: Let N be the number of monomials that appear in any F;(X). For
each F;(X) create a row vector in K%, where the entries are the coefficients of
F;(X) listed in decreasing order, and construct an n x N matrix using these
row vectors. Then use Gaussian elimination to produce a new set of ¢ basis
polynomials S = {So(X),S1(X),...,St—1(X)}. In other words eliminate the
monomials in the order of the highest degree first. Label the elements of S so
that S;—1(X) is the element of lowest degree. If deg (S;—1(X)) < D, then go to
the last step; otherwise continue to the next step.

Step 4: It must be that the polynomial of minimal degree in S has degree greater
than D. For each ¢ =0,1,...,t —1 and j =0,1,...,n — 1 compute

X7 8;(X) mod (X7 — X).

As before, apply Gaussian elimination to the matrix associated with this set of
polynomials to produce a set S’ of new basis polynomials. Let S}, _;(X) be the
polynomial in S’ of minimal degree. If deg (S;,_;(X)) < D, then go to the last
step; otherwise replace S with S’ and repeat this step.

Step 5: At this point we have a polynomial G(X) with deg(G(X)) < D.
Solve G(X) = 0 with an appropriately chosen fast polynomial equation solver
or factorization algorithm, such as the Berlekamp algorithm, to obtain a set
W = {a € K|G(a) = 0}. The solutions of F(X) = 0 will be the subset
{a € W | F(a) = 0}.

Remark 1. Since the complexity of any factorization algorithm or polynomial
equation solver depends on the degree of the given polynomial and the size of
the field, so too does the complexity of the Zhuang-Zi algorithm. Improvements in
the area of factorization algorithms or equation solvers will translate directly into
an improvement for the Zhuang-Zi algorithm, and may require modifications to
the degree-reduction step if a special form other than minimal degree is desired.
In fact, several such algorithms can be run in parallel to speed up the overall
performance of the Zhuang-Zi algorithm.

Remark 2. If f consists of quadratic polynomials then the only powers of X that
may arise in Steps 1-3 are either of the form X? or X+ Each application of
Step 4 then produces monomials of the form X4 | Xa:a' +a;a’ xaia'+a;¢’+ard"
etc. Clearly then all possible monomials will have been generated after ng steps,
since there are only ng possible monomials in K[X]/(X?" — X).

Remark 3. If no k-linear combination of the polynomials fy, f1,..., fn—1 is zero
in k[zo,x1,...,Tn-1] (modulo z§ — zg,2{ — 1,...,21_| — x,,_1), then no K-
linear combination of the polynomials Fy, Fi, ..., F,,_1 is zero in K[X] (modulo

X9" — X), since such a linear combination of the F; will have degree at most
q" — 1.

Remark 4. The Zhuang-Zi algorithm can be modified for use in the case when
there are fewer equations than variables (m < n). Let 7w : k™ — k™ be the
injection defined by

m(ag,a1,...,am-1) = (ag,a1,...,am-1,0,...,0).

We replace f = (fo, f1,. .-, fm—1) with wo f, and proceed as before. It should be
noted that if m is too small then we know that there will be a large number of
solutions (roughly ¢"~™~1), and therefore the polynomials in the ideal generated
by the F;(X) will have high degree. If the Zhuang-Zi algorithm is unable to
generate a polynomial of sufficiently small degree, then we may never reach the
factorization step.

Remark 5. If there are more equations than variables (m > n) then again the
Zhuang-Zi algorithm can be modified for use. Suppose m = nr + [, for some
0 <1 < n, and divide fy, f1,-.., fm—1 into r sets of n polynomials and one set of

[polynomials. If m is a multiple of n, then lift each of the r set of polynomials to
a polynomial in K [X] as before. If [# 0, then we lift the last set of [polynomials
as in the previous remark. In either case we can apply the algorithm starting
with this set of 7 (or r + 1) polynomials.

4 Examples

We present an illustrative example to see how the Zhuang-Zi algorithm works
in practice. We then present two non-trivial examples where Zhuang-Zi succeeds
and Grobner bases fail.

4.1 A Toy Example

In order to show how the algorithm works we first present a simple example of
two quadratic equations in two variables with coefficients in the field k = GF(2?).
We define the polynomial map f : k2 — k2 by its components

fo(l‘o, 1‘1) = .Z‘(QJ +x1 + 1
fi(zo,x1) = 2} + a1 + 1
in klzg, z1].
The nonzero elements in the field k& = GF(4) form a multiplicative group,

which is generated by an element that we denote by a. The addition and multi-
plication table for elements in GF(4) can be written in terms of a as follows.

One irreducible polynomial of degree two with coefficients in k is
9(y) =y +y +a’.
The mapping ¢ : k2 — K is defined by
(o, 71) = w0 + 11y = X,
while 71 : K — k? is defined by (using matrix notation)

o700 = x) (V1) = ()

With this notation, the polynomial map F = ¢ o f o ¢! is given by

FX)=yX®+yX° + X'+ X2+ X +y+ 1.

Since this is a trivial example, we could factor F'(X) directly and obtain
F(X)=y(X+y)(X*+ X+ 1)(X*+ (y+ 1)X* + aX? + (ay +)X +a?)

from which we can see that X = y is the only solution of the equation F'(X) =0
in K. If we write y = 041-y, we see that this solution corresponds to the solution
(v9,71) = (0,1) € k? of the system fo = f1 = 0. In general we would expect
the degree of F(X) to be much larger, and so we have designed our method
to reduced the degree to a reasonable level that can be handled by an efficient
polynomial factorization algorithm such as the Berlekamp algorithm.

In order to illustrate how the algorithm works, we compute the functions
Fi(X) = F(X)4 for i = 0,1, noting that here n = 2 and ¢ = 4. So we have

Fo(X)=F(X)=yX® +yX° + X* + X?+ X +y+1
FX)=F(X)=X*4+ @@+ D)X+ X' + (w+ DX+ X +y

We then create a 2 x 9 matrix with 75" entry equal to the coefficient of X887
in F;(X), where ¢ = 0,1 and j = 0,1,...,8. This matrix is brought into row
echelon form via the Gaussian algorithm, which produces the new polynomials

So(X) and S;(X).

So(X) = X8+ (a®y + DX* + ®yX? + (Py+ D)X +a® + 1
S1(X) =X+ (y+a®) X'+ (y+a)X* + (y+a®)X +y+a

In order to reduce the degree further, we now multiply Sp(X) and S;(X)
each by X and X*, and then add these additional four polynomials to the given
set of polynomials. Once again Gaussian elimination is applied and produces the
set of six polynomials Sy(X), S1(X),...,S5(X).

So =X+ (ay+ 1)X> + (ay +a)X* +a*yX +a

S =X+ (y+ 1)X? + (a®’y + a®) X? + (a’y + a®) X + ay + a®
So = X34+ aX?+ (a®y+aH)X? + (y+a)X +a’y

Sz =X +aX?+ (a®y+ 1)X? +d*yX +a’y +a

Sy X5 + (ay +a)X? + (ay + X2 + (ay + DX + a?

S5 = X'+ (ay +)X3 + (a®y + a) X2 + > X +y + d?

Since the degree reduction was not significant, we repeat the process. Mul-
tiplying each S;(X) by X and X*, adding these polynomials to the associated
matrix, and then applying Gaussian elimination reduces the set of eighteen poly-

nomials to eleven polynomials So(X),S1(X),...,S10(X).

So(X) =X+ (y+a)X +a

(X)

(X)
So(X) = X 4+ a’yX + a’y
S3(X) =X+ (y+)X +a’y
Sy(X) =X+ (a®’y+1)X +a?y
S5(X) = X"+ (ay +a)X + a’y +a?
Se(X) =X+ (Py+1)X +y+a
S7(X) =X"+yX +y
Ss(X) = X"+ (ay+ 1)X + ay

(X)

(X)

The factorization of S19(X) = (X + 1)(X + y) shows that spurious solutions
can appear, and must be screened for and discarded. If the process were to
be repeated, the set of fourteen polynomials Sy(X), S1(X),...,S13(X) will be
generated and the spurious solution will disappear.

So=X"+ay+a,
S =X +a’y+1,
ngXlz—l—ay—Fl,
Sy = X + ay,

Sy = X104 q,

Sy = XY + a%y +ad?,
Se = X%+ y+a,
S7=X"+d*y+a,
Sg = X% 4+ a?y,

So = X5 4+ a2,
Sio=X"+y+1,
S = X3+ ay + d?,
Si2=X>+y+ad?
S13=X+y.

As expected each polynomial has the factor X +y. The set of polynomials as
given is now invariant when our process is again applied, which must eventually
occur since we are working in a finite field.

Of course this simple example could have been solved more easily by finding
the Grébner basis {xg, z1 + 1} for the equations

fo(zo,z1) =0
fi(zo,z1) =0
4

Tog—x0=0

xf—x1=0

4.2 Generating Non-Trivial Examples

The Zhuang-Zi algorithm works of course for linear systems of equations and
can give insight into how subspaces of k™ are represented in the bigger field
K. Nevertheless, the main application is to the nonlinear multivariate problem
where Grébner bases methods do not succeed. As mentioned earlier, the Zhuang-
Zi algorithm requires that we work in a finite field, whereas Gébner bases do not.
When a Grébner basis is computed in a finite field, it is accomplished usually
by augmenting the original set of equations with those defining the finite field.

Examples that can be solved easily by the Zhuang-Zi algorithm, but only
with great difficulties via Grobner bases, can be constructed easily. The idea
is to select a function F(X) : K — K of low enough degree, so that it can
be factored easily, while the corresponding mapping f : k™ —— k™ must be
complicated. The degree of the components fg, f1,...,fn_1 of f depends on
which powers of X have been selected in F. Terms in F of the form X9 give
rise to linear terms in the components of f, X 7'+’ Jeads to quadratic terms,
X4'+7+4" Jeads to cubic terms, and so on. By keeping the exponents i, j,[, ... in
X4, xa'+a xa'+7+d' . small, we can choose a polynomial F of low enough
degree so as to be easily factored, while the corresponding components of f will
be quadratic, cubic, or higher degree polynomials in k[zg, 21, ..., Z,—1]. This idea
is reminiscent of what has been suggested for the HFE public key encryption
scheme [Pat96]. We now generate such an example.

Let k = GF(23) and let K = k[y]/(g(y)) be a degree n extension of k, for
some irreducible g(y) € k[y]. We use a polynomial of low degree in K[X]:

F(X)=X"4+a1X% 4+ 0, X% +a3X" + a4 X 4+ a5 X8 + a6 X% +ar X +ag, (3)

where the coefficients a;, for j = 1,...,8, are chosen at random from %, treated
as a subfield of K via the standard embedding. With ¢ = 8, all powers of X
in (3) can be written in the form X®*% or X% and so it is clear that (3)
f=¢"'oFo¢isa quadratic polynomial map from k™ to k™. As in the previous
example, it is helpful to write ¢! : K — k™ using matrix notation

AX =x,

where X = (XSO,XSI,...,Xgnil)T, x = (zg,21,...,7,_1)7, and A is an n x n
matrix with entries from K that can easily be found by writing each X®" as a
polynomial in y with coefficients in k[xg, 1, ..., Tn_1]-

The polynomial (3) can be factored easily by the Berlekamp algorithm im-
plemented in a computer algebra system like Magma [CAGO5]. Depending on
the coefficients aq,...,ag of F, and on the value of n, F' may have zero, one,
or more linear factors in X. Each linear factor X + « with a € K gives rise to
a solution of the corresponding polynomial equations f;(xg,x1,...,2n—1) = 0,
1=0,1,...,n— 1. Finding the corresponding solutions directly with the help of
a good Grobner bases program such as Faugere’s Fy version in Magma [Fau99|
requires exponential time with increasing n as seen in Figure 1.

12

10 B

log(time)
>
.

Fig. 1. Computing time for finding a Grobner basis for n quadratic polynomials in n
variables

The quadratic polynomials components of f have too many terms to be
displayed here. It could be said that this is an unfair comparison, since we are
solving F(X) = 0 directly and forcing Faugere’s algorithm F, to work on a
system with a huge number of terms. However, the Grobner bases algorithm in
Magma is very efficient, and removing even a few of the terms in (3) made it
much more difficult to find examples where F} fails even for large n. It is easy to
see why this is to be expected. In principle our algorithm should be better if the
degree d of F is fixed due to the complexity estimate O(nd?) for the Berlekamp
algorithm. On the other hand the complexity of the Grobner bases algorithm is
expected to be exponential in n, the number of variables.

This first non-trivial example shows that the Zhuang-Zi algorithm, even in
its most simple form using only Step 1 and the Berlekamp algorithm, sometimes
has an advantage over the best Grobner bases algorithms.

4.3 A Non-Trivial Example

We now give a non-trivial example where F'(X) is of very high degree and there-
fore cannot be solved with the simplest form of the Zhuang-Zi algorithm as
discussed in the previous section.

Let ¢ = 4, k = GF(q), as in Section 4.1, take g(y) € k[y] to be the irreducible
polynomial

g) =y + oyt 4 ay'® +ay® + 98 + o7 + 0 + Pyt +ay® 4+ d®y? +ay +a,

and define K = k[y]/(g(y)), a degree n = 12 extension of k.
Let F(X) € K[X] be the polynomial

F(X) :a2X17664 + X5440 + aX5376 +X4416 + (IX4096 + aXlBGO
+ X1344 + X1280 + a2X1024 + a2X336 + CLX320 + a2X276
+ X 4 aX¥ L aX 4 ax? + X 44

It is easy to check that each exponent of X in F(X) is a sum of powers of four,
and that the exponent with the most powers of four is 5440 = 43 + 44 445 4 46,
Therefore the components of f = ¢~ o F o ¢ will be of degree four. As before,
there are too many terms in each f;(xg,x1,...,2,—1) to be displayed here.

The degree of F prevents us from directly solving F(X) = 0 using the
Berlekamp algorithm. Also, the F; implementation in Magma failed to find a
Grobner basis for fy, f1,..., fn_1 due to the fact that memory requirements
exceeded the available resources on our PC (1.73 GHz, 1 GB of RAM) after
approximately 620 seconds. However, the Zhuang-Zi algorithm found the poly-
nomial

S(X) = X204 aX® +a? X% + a? X%+’ X + X +a

after approximately 30 seconds. Approximately 170 seconds later the solutions
{1,a} of F(X) = 0 were returned after using Magma’s factorization algorithm.

Other similar examples whose solutions can not be obtained from the Grobner
bases algorithm, and which require several iterations of the full algorithm, can
be generated in this way. We omit them here due to space constraints.

5 Discussion

What we propose here is not just a new algorithm, but a new way to look at
the problem of solving a set of multivariate polynomial equations over a finite
field. We lift the problem to an extension field where it becomes a single vari-
able problem, and then use existing efficient techniques for solving a polynomial
equation in a single variable over a finite field. In this way we actually unify the
multivariate case and the single variable case. This also means that sometimes it
can be beneficial to view a single variable polynomial equation over a given finite
field as a set of multivariate polynomial equations over a smaller finite field. We
believe that this is an approach that merits further investigation.

Our experiments above have shown that there are cases where the Zhuang-Zi
algorithm will succeed in finding a solution to a set of polynomial equations,
whereas Grobner bases algorithms will fail due to space and/or time limitations.

There are many interesting directions for further research. One question is
the complexity of the Zhuang-Zi algorithm for a set of n nonlinear equations in n
variables. In general the complexity will be exponential in n, though for certain
types of equations the Zhuang-Zi algorithm will work much better. A very good
testing ground is the class of equations that arise in connection with the HFE
multivariate public key cryptosystem, which we are currently investigating.

Another important task is to make a systematic comparison of the Zhuang-
Zi algorithm with other algorithms, for example with the new Grébner basis
algorithms like Fy and Fj, will give a better understanding of its complexity. We
do not expect that the Zhuang-Zi algorithm will be better in a general way, but
rather, we believe that the algorithms can be complimentary to each other.

One interesting point of the Zhuang-Zi algorithm is that it is actually closely
related to the XL algorithm. If in Step 3 we do not look for a polynomial of
lowest degree but instead we look for a polynomial of the form

n—1
S AXT + B,

=0

then the Zhuang-Zi algorithm is equivalent to the XL algorithm. It would be
interesting to consider how to combine the two algorithms together.

If F(X) is known to have a large number of solutions (larger than the thresh-
old for factorization degree D), then the Zhuang-Zi algorithm cannot succeed.
One strategy that can be employed is to add randomly chosen polynomials
fn, -+, far—1 to the original set of polynomial fy, f1,..., fn—1. It is very likely
that the resulting new system of equations will have fewer solutions, and that
Zhuang-Zi may be successful. If not, we can start over with a new set of randomly
chosen polynomials.

A much more general consideration is of the so-called hard cases, those equa-
tions that are generically hard to solve using any kind of general algorithm. We
believe our approach may provide some insight into how to look at this problem.
Among other applications, any result in this direction will have a very strong
connection and impact on the provable security of multivariate public key cryp-
tosystems.

There is considerable room to improve and optimize the implementation of
the algorithm. For example, the algorithm relies very much on how the big field K
is implemented. Also, we expect that it is possible to speed up the Gaussian elim-
ination process by using sparse matrices. If the Zhuang-Zi algorithm is viewed as
a philosophy for solving equations, then it is clear that there is great flexibility
to create efficient variants in the degree reduction steps, variants tailored to fit
with specific efficient polynomial equation solvers and factorization algorithms.

References

[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenrings nach einem nulldimensionalen Polynomideal. Dissertation, Uni-
versitat Innsbruck, 1965

[CAGO5] University of Sydney Computational Algebra Group. The MAGMA Com-
putational Algebra System for Algebra, Number Theory and Geometry.
http://magma. maths.usyd.edu.au/magma/, 2005.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Ef-
ficient Algorithms for Solving Overdefined Systems of Multivariate Polyno-
mial Equations. In B. Preenel, editor, Advances in Cryptology—FEurocrypt
2000, LNCS, volume 1807, pages 392-407, Springer, 2000.

[Fau99] Jean-Charles Faugere. A New Efficient Algorithm for Computing Grobner
Bases (F1). Journal of Pure and Applied Algebra, 139:61-88, June 1999.

[Fau02] Jean-Charles Faugere. A New Efficient Algorithm for Computing Grobner
Bases Without Reduction to Zero (Fs). In International Symposium on
Symbolic and Algebraic Computation-ISSAC 2002, pages 75-83. ACM Press,
July 2002.

[GJT9] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryp-
tosystem by Relinearization. In M. Wiener, editor, Advances in Cryptology—
Crypto 1999, LNCS, volume 1666, pages 19-30, Springer, 1999.

[MI88] T. Matsumoto and H. Imai. Public Quadratic Polynomial-Tuples for Effi-
cient Signature Verification and Message Encryption. In C. G. Guenther,
editor, Advances in Cryptology—FEurocrypt 1988, LNCS, volume 330, pages
419-453, Springer, 1988.

[Pat96] J. Patarin. Hidden Field Equations (HFE) and Isomorphism of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In U. Maurer, editor,
Advances in Cryptology—FEurocrypt 1996, LNCS, volume 1070, pages 33—48,
Springer, 1996. Extended Version: http://www.minrank.org/hfe.pdf.

[Pat00] J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme
of Eurocrypt’88. Designs, Codes and Cryptography, 20:175-209, 2000.

[Smi52] David E. Smith. History of Mathematics, volumes 1 and 2. New York, Dover,
1951, 52.

Appendix: Zhuang Zi

Zhuang Zi, also known as Zhuang Zhou, Chuang Tzu, Chuang Tse, and Chuang
Chou (369 BC — 286 BC), was a Chinese philosopher, who lived during the
Warring States era. He also lived in a time, which is called a time of the Hundred
Schools of Thoughts, during which most major schools of Chinese Philosophy
were originated. Zhuang is actually his family name and Zhou the first name.
The name Zhuang Zi is used as a way to show respect for him. He categorically
belongs to the school of Taoism.

One the most famous stories about him and his philosophy is from his book
also known as Zhuang Zi.

Once upon a time, I, Zhuang Zhou, dreamt I was a butterfly, fluttering
here and there. I was conscious only of my being as a butterfly, unaware
that I was Zhou. Soon I awaked, and there I was, myself again. Now I
am confused and do not know whether I was then a man dreaming I was
a butterfly, or whether I am now a butterfly, dreaming I am a man.

For the first author, the idea of transition between the vector space on a
small finite field and the equivalent large field is very much inspired by such an
idea (and surely by previous works of other colleagues like Matsumoto, Imai,
Patarin, Kipnis, Shamir, and etc.), and is just like Zhuang Zhou and the butter
fly. This is the origin of the name for this algorithm.

