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Abstract Certified mail is the fair exchange of a message for a receipt,i.e., the recipient
gets the message if and only if the sender gets a receipt. It isan important primitive for
electronic commerce and other atomicity services. Certified-mail protocols are known in
the literature, but there was no rigorous definition yet, in particular for optimistic protocols
and for many interleaved executions. We provide such a definition via an ideal system and
show that a specific real certified-mail protocol is as secureas this ideal system in the
sense of reactive simulatability in the standard model of cryptography and under standard
assumptions.

As certified mail without any third party is not practical, weconsider optimistic proto-
cols, which involve a third party only if one party tries to cheat. The real protocol resembles
prior protocols, but we had to use a different cryptographicprimitive to achieve simulata-
bility. The communication model is synchronous.

This proof first demonstrated that a cryptographic multi-step protocol can fulfil a gen-
eral definition of reactive simulatability enabling concurrent composition. We also first
showed how formal-method style reasoning can be applied over the ideal system in a cryp-
tographically sound way. Moreover, the treatment of multiple protocol runs and their mod-
ular proof in spite of the use of common cryptographic primitives for all runs can be seen
as a first example of what is now known as joint-state composition.

Key Words: Certified Mail, Fair Exchange, Reactive Simulatability, Composability, For-
mal Methods

1 Introduction

A certified-mail protocol enables the fair exchange of a message, i.e., arbitrary data, for a
receipt [18,49]. It ensures that either the recipient gets the message and the sender gets a
receipt or neither party gets anything; no knowledge about the message must leak in that
case. Certified mail is an important non-repudiation primitive for electronic commerce. A
receipt unambiguously characterizes the message received. This is essential in the delivery
of high-value digital goods, which are usually post-paid toallow inspection before pay-
ment. It is also useful to make sure that an order has been received, in particular with goods
whose price changes quickly, or if the buyer must otherwise look for another supplier on
short notice. Another example is the provision of information under a non-disclosure agree-
ment. More theoretically, certified mail can be used to provide contract signing, e.g., the
fair exchange of two signatures under a contract text [52], and other atomicity services such
as fair multi-party exchange of arbitrary items [2].
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There are three classes of certified-mail protocols. Protocols with an in-line third party
involve a trusted third party in every protocol run [49,56,28,37]. The older cryptographic
literature treats two-party protocols that involve only the sender and the recipient, e.g., [18,
49,53,31,19]. These protocols are based on the gradual exchange of secrets. However,
their error probabilities only decrease linearly in the number of rounds, and one can show
that this is unavoidable.1 Hence they are not used in practice. In order to minimize the
involvement of a third party in realistic scenarios, optimistic protocols were introduced [3,
4,39,7,57]. Here a trusted third party is available to ensure fairness, but it is only involved
in a protocol run if something goes wrong in this run.

The main value of this paper is not that we propose a new optimistic certified-mail
protocol, although we do. More importantly, we provide the first rigorous definition of
certified mail, in particular for optimistic protocols and for many concurrent protocol runs.
However, the main value in hindsight—the paper was originally written in 2000—is that
it was the first example that cryptographic multi-step protocols can fulfil a definition of
reactive simulatability that enables concurrent composition. This approach is nowadays
better known as “universal composability” [47,48,23]. Ourideal certified-mail system is
abstract, i.e., the specification for one protocol run is a simple, deterministic state-transition
machine. Essentially it gets two inputs, a payload message from a sender and an OK to
receive a message from the recipient. If these inputs fit together, it outputs the payload
message to the recipient and a success indication to the sender. At any time after a success
indication, the sender can input the wish to convince a verifier of the sending, and the
verifier will get the output that the sender in fact sent the message to the recipient. While
we will add some details below to allow efficient protocols tofulfil the specification, the
ideal system remains without probabilism and cryptographic objects. Hence it is easy to
encode in state-of-the-art automated proof tools for distributed systems, in order to prove
larger electronic-commerce or agreement protocols based on certified mail.

Many later publications adapted other, often smaller, primitives or protocols to the reac-
tive simulatability / universal composability setting, following either similar lines of defin-
ing abstract ideal systems as here, or working on lower levels of abstraction where there
are still cryptographic objects. While it may thus seem normal nowadays that such ideal-
izations can be made and real protocols can fulfil them, this was not at all clear in 2000. It
was known from zero-knowledge proofs that some interestingsystems cannot be composed
concurrently in spite of fulfilling normal cryptographic definitions [30], and it was known
from multi-party function evaluation that committing primitives are problematic in simu-
lation proofs. As reactive simulatability implies concurrent composability, and all known
certified-mail protocols contain somewhat committing primitives, we were very suspicious
of our potential results. This was also a reason for us to makea very detailed proof. It is
typically not hard to define the simulator for a simulatability proof, i.e., a machine that
interacts with the ideal system and uses an arbitrary adversary against the real system as a
subroutine, and that produces behavior that the honest users cannot distinguish from what
would happen in the real system. One may be tempted to stop at this point and say that the
simulator obviously simulates correctly. However, comparing two such systems, the ideal
system plus simulator with the real interacting machines, is a distributed-system problem
of significant size, and humans often misjudge the correctness of distributed systems even
for much smaller examples. For instance, even for a very small system like signatures cer-
tain ideal systems and proofs had to be repaired several times [24,8]. Thus the hard part
of the proof is to rigorously show that the simulator simulates correctly. We still believe
that every simulation proof should contain this part, but certainly the first large proof with
respect to a new definition had to.

1 In [17] such a lower bound was proven for two-party contract signing. Contract signing can be
reduced to the type of certified mail defined here; the reduction needs only one additional round of
communication and does not increase the error probability significantly [52]. The reduction is given
for optimistic protocols only, but one can easily see that italso works for 2-party protocols.
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Our certified-mail system is also the first example of a technique that later became
known as joint-state composition [25], although the generalization was only sketched in the
outlook of the original report [46]. These aspects occur on two layers: First, the certified-
mail system is defined as a composition of many submachines, each handling one transac-
tion with a specific transaction identifier. Higher protocols can therefore essentially work
with independent certified-mail transactions even though joint state is present underneath.
Secondly, the proof is performed modularly for the transaction machines, although they
jointly use three cryptographic primitives, signatures with arbitrary memory, a one-way
function, and chameleon commitments. For these, we did not use the technique that one
would use for higher-level protocols using certified mail, i.e., we did not abstract them as
ideal systems with their own transaction identifiers. Instead, we use a similar separation
technique directly for the original definitions.

An interesting aspect is that one-way functions and commitments by themselves do
not have simple idealizations in the standard model of cryptography [23]. Nevertheless,
our overall result is in the standard model. This is due to restrictions in the usage of the
primitives: The one-way functions are only used for one-time signatures. The commitments
are used in a scenario with a trusted third party—this party already exists in optimistic
certified mail to guarantee fairness, but now we also use it tochoose the commitment key.
Thus in the simulation the simulator can choose the commitment key, and it can later use the
chameleon property to open commitments to reveal arbitrarymessages, here the payload
certified-mail message that the simulator did not know when simulating a commitment
on this message. A definition of primitives via ideal systemswith usage restrictions was
recently made for symmetric encryption in [11]; similar ideas might be applicable here.

Our certified-mail protocol is synchronous, i.e., there is anotion of rounds. In practice,
rounds can be realized if suitable bounds on clock deviationand message delay are given.
While recent cryptographic advances focus on asynchronousprotocols, in particular in the
simulatability area following [48,23], synchronous protocols remain important in practice
because one almost always needs timeouts anyway; e.g., recall the example of time-critical
buying. Simply combining an asynchronous protocol with a timeout will typically not retain
the security. It was later shown in [5] how the synchronous systems and simulatability
definitions from [47] can be represented as special cases of the asynchronous versions
from [48]. However, this embedding does not make concrete protocol definitions and proofs
easier. Further, a synchronous proof implies the absence oftiming vulnerabilities, e.g.,
covert channels, on the round level, while an asynchronous proof cannot do this.

Finally, our certified-mail protocol is labeled. This meansthat the recipient initially
agrees to receive a mail under a specific subject, called label, and this label becomes part
of the receipt. Labels are important for fixing a protocol context.

1.1 Further Related Literature

The underlying security definition of reactive simulatability and its composition properties
were introduced in [47] and extended to asynchronous systems in [48,23]. It extends the
security notions of multi-party (one-step) function evaluation [54,34,32,40,15,22] and the
observational equivalence of [38]. The idea of simulatability was already used earlier for
specific reactive problems, to our knowledge first in [29], and when constructing generic
solutions for large classes of reactive problems [34,35], usually yielding inefficient solu-
tions and assuming that all parties take part in all subprotocols. None of these prior reactive
papers proposed a general definition or a composition theorem.

Before certified mail, secure message transmission by a combination of signatures and
encryption was the only reactive (multi-step) system defined and proved with respect to
a simulatability definition with known concurrent compositionality, and also only in grey
literature [45]. Many difficulties that occur in certified mail do not occur there yet, e.g.,
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multi-round subprotocols, multiple sub-protocols per transaction identifier (here sending a
mail and showing the receipt), and committing primitives.

Separation of protocol runs by transaction or session identifiers is a well-known tech-
nique in practical distributed computing, although rarelytreated systematically. In security,
it is known from robust protocol design [1], where protocol designers are advised to add
transaction, message, and participant identifiers to authenticated messages unless there is a
good reason not to, although this advice is not as explicit asit could be. Not all protocols
need transaction identifiers, though. For instance, authentication protocols typically choose
nonces internally in the protocol; see, e.g., [16] (whose oracles correspond to transactions).

A comparison of labeled certified mail with protocols where the recipient simply agrees
to receive a message, or where he need not agree at all, is given in [52] via reductions and
round- and message-optimality results for all classes.

2 State-Machine Notation

We use state-transition machines as the primary system model, in other words probabilistic
I/O automata similar to [51]. A Turing-machine realizationis defined for the class of au-
tomata used in [47]. This allows us to define ideal systems suitable for treatment by formal
proof tools when designing higher-level protocols over them, while at the same time the
real systems have well-defined complexities. Further, it enables rigorous definitions of our
systems. While pure Turing machines also allow this in principle, in reality one typically
resorts to informal activity diagrams or state-transitionmachines there, too.

Each machine may have different connections, e.g., to a userand a network. These are
attached at so-called input and output ports. Following CSPnotation we denote input ports
with ? and output ports with!. Ports of different machines that only differ in this “direction”
are connected.

We often define state-transition functions graphically in the following standard nota-
tion: A circle is a state. An arrow labeledin[c]/out is a transition resulting from an input
in , dependent on conditionc (which can refer to the input and the internal state) and result-
ing in an actionout , typically an output. Inputs that are not explicitly shown in a state are
ignored. No condition meanstrue. The notationx.y means thaty is input or output at port
x. We then omit the direction of portx (the? or !) because it is clear from the context. A
dash means no in- or output. A state transition without inputmeans that the machine always
makes this transition in the next round. An input¬x.y means that the machine makes the
transition if the inputy is not received at portx in the next round.

We further define that every input parameter is assigned to a variable of the same name
in the machine if no assignment to such a variable occurred before in the given run of
the machine; otherwise the input is only accepted if the values of the parameter and the
variable are equal. Finally,T (time) globally denotes the current round number, although
not all machines need to know it. The starting state is designated by an incoming arrow
without source. The label of this arrow denotes initial variables in this machine.

3 Ideal System for One Labeled Certified-Mail Transaction

In this section, we present an ideal system for labeled certified mail. Defining ideal systems
is an engineering discipline, even more so than making requirements-based definitions of
cryptographic systems, because an ideal system contains many requirements all in one.
There are multiple reasonable ideal systems for a protocol class like labeled certified mail,
which allow different subsets of the implementations that one may intuitively all regard as
labeled certified mail. In particular, there is often a trade-off between ideality and efficient
realizability. By ideality we mean simple, strong definitions that will be most appreciated
by higher-level protocols.
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Actually, in this section we only define an ideal system for one transaction. Exten-
sions to multiple transactions are discussed in Section 8; they are relatively standard for
distributed systems.

3.1 Motivation of the Definition

As discussed in the introduction, a highly ideal systemTHnaive for certified mail might look
as follows. This simple description already allows any number of transactions.

– WheneverTHnaive obtains two matching inputs(send, r, l, m) at port ins? and
(receive, s, l) at inr? in a round i, it outputs (received, (s, r, i), m) at outr! and
(sent, (s, r, i)) atouts! in the next round.

– For every non-matched such input, it outputs(failed, (s, r, i)) to the party concerned.
– On input(show, (s, r, i)) at ins?, it outputs(received, (s, r, i), l, m) at outv! if it previ-

ously got an input(send, r, l, m) at ins? and answered with(sent, (s, r, i)).

HereTHnaive stands for “naive trusted host”,s andr are identities of a sender and recipient,
ins? andinr? are input ports for these two parties, andouts! andoutr! are the output ports
where these parties get results. We modeled only one verifierwith output portoutv! for
simplicity because verifiers are stateless in our protocolsand would thus all act identically.
The inputssend andreceive start the sending protocol, whileshow starts the showing of
a receipt. The valuesl are the labels; note that the recipient inputs the label he agrees to
initially; further, both parties designate the desired partner in their inputs. For simplicity,
we treat the combination(s, r, i) of the partner identities and round number as transaction
identifier, allowing only one protocol per such combination. The following proofs would
work equally well with more such possible protocols; an additional transaction identifier is
then needed in many places where now the triple(s, r, i) is used.

Unfortunately, normal certified-mail protocols do not satisfy this simple, very ideal
specification.

First, THnaive hides all interactions between honest parties from the adversary. In real
life, it would be very expensive to hide who communicates with whom at what time. As
the secure-channel example in [44] shows how to allow just this minimal information, we
decided here to model the usual unencrypted protocols from the fair-exchange literature.
Thus for each transaction, our final trusted host initially forwards all non-secret parts of the
user inputs to the adversary at a portout a!, and later forwards(msg, m) when a payload
message is sent in clear.

Secondly,THnaive guarantees availability, i.e., it always delivers certified mails between
agreeing honest users. However, in usual real systems the adversary can prevent commu-
nication. Therefore our final trusted host accepts inputssuppress from the adversary that
describe which protocol runs are disrupted. However, we need reliable channels to trusted
third parties.

Thirdly, THnaive produces outputs in one round, while every real optimistic protocol
requires at least four rounds already in the optimistic case[52]. Hence we use a number
∆ of rounds as a free parameter in the specification. For brevity, we use only one such
parameter for all honest parties and all cases. Showing a receipt will work in one round.

Finally, the trusted host with the additions discussed so far would make outputs to the
adversary after the same time∆ as to honest parties. However, a real adversary can usually
learn results faster. For simplicity, our final ideal systemallows the adversary slightly more
than a real adversary can achieve in any specific protocol: Hecan disrupt at any time, or
decide that he will not disrupt and immediately learn the results.

3.2 Ideal Machines for One Transaction

As every transaction may go through several states now, we define the ideal system as a
composition of state-transition machines for individual transactions. We first define these
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Fig. 1 Ideal transaction machineths for correct sender only. Dashed arrows arise from adversary
inputs.
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Fig. 2 Ideal transaction machinethr for correct recipient only.
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Fig. 3 Ideal transaction machinethsr for correct sender and recipient.

transaction machines. We distinguish whether only the sender (ths), only the recipient (thr),
or both parties (thsr) in the transaction are honest. The trusted third party is not visible in
the ideal system; it only has an auxiliary role in real systems. Thus the ideal system is not
specific to optimistic protocols. The following is the rigorous definition using the state-
machine notation introduced in Section 2.

Definition 1 (Ideal Machines for One Certified-Mail Transaction) We define machine
typesths, thr, and thsr with ports for each party concerned with this transactions:in s?
andout s! for ths andthsr, in r? andout r! for thr andthsr, and alwaysout v!, in a? and
out a!. Their state-transition functions are defined in Figures 1 to 3.

These state-transition functions correspond to the naive ideal systems with the addi-
tions motivated above: Each transaction machine is startedby inputs(send, . . .) and/or
(receive, . . .) from the correct users. If both sender and recipient are honest, the statessr1,
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sr2, andsr3 occur if there are not two matching inputs. The adversary immediately obtains
the parameters of the run at the portout a!. Then for∆ rounds he can either disrupt the run
with (suppress) or decide that it should end successfully by inputting(send, m) if he is the
sender, or else(receive). In the latter case, he immediately obtains the payload message of
the honest sender. The outputs for the honest users only occur after∆ rounds. Only then
can receipts be shown. Showing by an adversary works within the same round, by an honest
user it has one round delay. In most user outputs we now omitted (s, r, i) because it only
served as a transaction identifier in the naive ideal system,and for a one-transaction system
this is clear by the machine identity.

Parameterizing the Ideal System.The ideal system from Definition 1 accepts inputs of ar-
bitrary length. (We tacitly assume that all inputs are codedas strings over a fixed alphabet.)
Further, it is willing to show receipts for one transaction arbitrarily often. One consequence
is that it is not polynomial-time in the usual sense for interactive Turing machines, i.e.,
polynomial-time measured in a security parameter alone. Wecall thisstrictly polynomial-
time. It is, however,weakly polynomial-time, i.e., polynomial-time in the overall length of
inputs it receives. The system model and the simulatabilitydefinition do not require ideal
systems to be polynomial-time at all; however, proofs (e.g., of higher protocols using this
trusted host and other cryptographic primitives) are oftensimpler if all machines are strictly
polynomial-time, because this is a composable notion, in contrast to weak polynomial-time.

For this purpose, we also define a parameterized version of the ideal system. It has a
message space, a label space, and a bound on the number of rounds, which may depend
on a security parameterk. Thus they are sequences(Msgk)k∈N, (Lk)k∈N, and(Bk)k∈N.
The message and label spaces must be polynomial-time decidable subsets of strings over
the given alphabet, and the boundsBk ∈ N polynomially bounded and polynomial-time
computable. Then we modify the machinesths, thr, andthsr as follows: They only run
for Bk rounds. Inputs namedm andl are typed, i.e., the machines verify thatm ∈ Msgk

andl ∈ Lk before accepting such an input. Finally, they have length bounds determining
how many symbols of any input they read. Polynomial bounds sufficient for all correct in-
puts can easily be derived from the message formats. While this was well-defined on the
Turing-machine level in the original report [46], the corresponding input-bounding func-
tions for our state-transition machine model were only generally defined in [12], called
length functions.

Independent of their use for polynomial time, restricted message and label sets may be
useful in specific applications of certified mail.

4 Real Certified-Mail Protocol for One Transaction

Like the ideal system, the real system for labeled certified mail, i.e., the actual protocol,
is built from machines for individual transactions, and we first define these transaction
machines.

4.1 Overview

We first sketch our protocol as activity diagrams, before defining it rigorously via state-
transition machines. The subprotocol for sending a mail hasthree potential participants,
the sender’s machinecm s, the recipient’s machinecm r, and the third party’s machine
cm t. The protocol for showing a receipt is similarly executed bya sender and a verifier.
The inputs starting these subprotocols and the possible outputs to the users are the same as
in the ideal system.

The subprotocol for sending is shown in Figure 4. Messagesm1 andm2 are promises
to send a payload message under labell and to give a receipt for it, respectively. The
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cm s cm t cm r

In: (send, r, l, m) In: (receive, s, l)

rS ←
genCR(pkc)

−−−−−−−
m1 ← signsks

((s, r, i), l, compkc(m, rS))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ rR

R← {0, 1}k

←−−−−−−−−−−−−
m2 ← signskr

(m1, f(rR))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−
m3 := (m, rS)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−
m4 := (rR)
−−−−−−−−−−−−−−−−−−−−−−−−−

−
m5 := (m1, m2, m3)
−−−−−−−−−−−→ m6 ←

signskt
(m5)

←−−−
m6

−−−− −− − −
m6

−−−−−−−−−→
Out: If m2:
(sent)

else:(failed)

Out: If m3 or m6:
(received, m)

else:(failed)

Fig. 4 Run of the sub-protocol “send”. Dashed flows are only needed in the non-optimistic recovery,
i.e., if m4 is missing.

cm s cm v

In: (show, (s, r, i))

−
m7 := (m1, m2, m3, m4) or m6

−−−−−−−−−−−−−−−−−−−−−−−−−→ If m7 or m6:
Out: (received, (s, r, i), l, m)

Fig. 5 Showing a receipt

valuei is the number of the starting round andk a security parameter. The message part
compkc(m, rS) is a commitment tom, using a suitable random value generated with an
algorithmgenCR(pkc). The message partf(rR) is a one-way function applied to a random
value; this is used as the public key for a one-time signature. If both parties are honest,
the sender reveals the payload messagem in m3, and the recipient sends the one-time sig-
naturerR as a receipt inm4. If a dishonest recipient does not sendm4, the sender uses
the recipient’s promisem2 in m5 to convince the third party that the recipient wanted to
receive a message under this label. Thus the third party can safely issue an affidavit,m6.
If a dishonest sender does not reveal the payload message inm3, the recipient waits until
Roundi+6. If m6 arrives, the recipient extractsm3 and thusm from it. Otherwise it knows
that the message will never arrive and can safely decide thatthe transaction failed. For the
latter, the third party must honorm5 only if it arrives in Roundi + 5.

If the sender wants to show the receipt to a verifier, it sends(m1, m2, m3, m4) or m6,
respectively, see Figure 5. The verifier can easily verify both potential receipts, provided it
knows the public keys.

4.2 Cryptographic Primitives Used and Probabilistic Notation

In the following,NEGL denotes the set of all negligible functions, i.e.,g : N → R≥0 ∈
NEGL iff for all positive polynomialsQ, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k). The notation
P (... :: ...) means the probability of the event before “::” in the probability space defined by
the probabilistic assignments after “::”. By [alg(·)] we denote the set of possible outcomes
of a probabilistic algorithmalg(·).
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For all algorithms of the following cryptographic primitives, we assume that efficiently
computable upper bounds on the output length, given the input lengths, are known, as well
as for the number of random bits needed in a probabilistic algorithm.

A signature scheme is a triple of algorithms(genS, sign, test). We assume w.l.o.g. that
the message space isΣ+ for an alphabetΣ with {0, 1} ⊆ Σ and false 6∈ Σ+ [27]. We
write (sk , pk)← genS(1

k, 1s∗

) for the generation of a signing key and a test key based on
a security parameterk and the desired maximum number of signatures,s∗ ∈ N. By sig ←
signsk (m), we denote the (probabilistic) signing of a messagem, wheresk may be updated
in the process. This is a simple way to represent schemes withmemory. We assume thatsig

is of the form(m, sig ′). The deterministic verificationtestpk (sig) returnsm or false; in the
first case we say that the signature is valid. The firsts∗ correctly generated signatures must
be valid. Security of a signature scheme means that existential forgery is infeasible even in
adaptive chosen-message attacks [33]:

Definition 2 (Signature Security)Given a signature scheme and a functions∗ overN, a
signer machineSigs∗ is defined as follows: It has one input and one output port, variables
sk , pk , and the following transition rules:

1. First generate a key pair,(sk , pk)← genS(1
k, 1s∗

), and outputpk .
2. On input(sign, mj), returnsigj ← signsk (mj).

The signature scheme is calledexistentially unforgeable under adaptive chosen-message
attackif for every efficiently computable, polynomially boundeds∗ and every probabilistic
polynomial-time machineAsig that interacts withSigs∗ and outputs a valuesig , the proba-
bility that m := testpk (sig) 6= false andm was not signed bySigs∗ during the interaction
is negligible (ink).

Definition 3 (Security of a One-way Function)A functionf : {0, 1}∗ → {0, 1}∗ is called
one-way if for all probabilistic polynomial-time algorithmsAowf ,

P (r∗ = r :: r R← {0, 1}k; r∗ ← Aowf(1
k, f(r))) ∈ NEGL

(as a function ofk).

A non-interactive chameleon commitment scheme [21] is a tuple of algorithms
(genC, genCR, com, trans) wherecom is deterministic, and a message spaceMsgC. We
write (skc, pkc)← genC(1k) for the generation of a key pair based on a security parameter
k, andr ← genCR(pkc) for the generation of a suitable random valuer for commitments
given the public keypkc. We writec := compkc(m, r) for the commitment on a message
m ∈ MsgC using the public keypkc and the random valuer. By (c, r)← comrpkc(m), we
abbreviate the compositionr ← genCR(pkc); c := compkc(m, r).

A commitment c is opened by sending(m, r). The recipient verifies that
compkc(m, r) = c. By r∗ ← transskc(c, m, r, m∗) we denote the transformation that al-
lows the owner of the secret keyskc to take a commitmentc, valuesm, r that open it,
and another messagem∗ ∈ MsgC and to derive a valuer∗ such thatc can be opened
to m∗ usingr∗. For all correctly generated keys andc = compkc(m, r), this must give
c = compkc(m

∗, r∗).

Definition 4 (Security of a Chameleon Commitment Scheme)A non-interactive
chameleon commitment scheme is called secure if it has the following three properties.

a) Computationally binding:For every probabilistic polynomial-time algorithmA:

P (compkc(m, r) = compkc(m
∗, r∗) ∧m 6= m∗

:: (skc, pkc)← genC(1k); (m, r, m∗, r∗)← A(1k, pkc))

∈ NEGL.
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b) Perfectly hiding:For all (skc, pkc) ∈ [genC(1k)], all probability distributionsDist on
MsgC, all m ∈ MsgC and all possible commitmentsc,

PDist∗(m|c) = PDist(m)

whereDist∗ is the distribution defined bym← Dist; (c, r)← comrpkc(m).2

c) Chameleon:For all (skc, pkc) ∈ [genC(1k)] and m, m∗ ∈ MsgC: The probability
distribution of the pair(c, r∗) in (c, r) ← comrpkc(m); r∗ ← transskc(c, m, r, m∗)
equals that in(c, r∗)← comrpkc(m

∗).

For example, we can use the commitment scheme from [20,26,42] with a chameleon exten-
sion, combined with a family of collision-resistant hash functions [27]. In the basic scheme,
key generationgenC(1k) means to randomly choose ak-bit primeq and anl(k)-bit prime
p with q|(p − 1) for a functionl determining a suitable second security parameter, a gen-
eratorg of the unique subgroupGq of orderq in Z

∗
p, andx R← Z

∗
q , and to seth := gx. The

keys arepkc := (p, q, g, h) andskc := x. A suitable random value is chosen asr R← Zq

and a commitment on a messagem ∈ MsgC := Zq as c := compkc(m, r) := gmhr

mod p. The transformation isr∗ := transskc(c, m, r, m∗) := (m−m∗)/x + r. The bind-
ing property holds under the discrete-logarithm assumption for this family of groups. We
now use a family of collision-resistant hash functions to allow commitments to arbitrarily
long inputs. A particular hash functionhashpkh is also (at least in theory) selected by a
public keypkh that becomes part of the public key of the extended commitment scheme.
The hash outputs for a security parameterk must belong toMsgC. Given a messagem, we
now commit tohashpkh(m). One easily sees that this combination retains all the properties
of the commitment scheme.

For proving simulatability of the certified-mail scheme, weneed that an adversary can-
not open a commitment made by someone else even if he has chosen the content. This is
Part b) of the following lemma, and Part a) is a simple fact used.

Lemma 1 (Properties of the Commitments)

a) For all (skc, pkc) ∈ [genC(1k)], all m, m′ ∈ MsgC, and all possible commitmentsc,

P (c′ = c :: (c′, r)← comrpkc(m)) = P (c′ = c :: (c′, r)← comrpkc(m
′)).

b) For all probabilistic polynomial-time algorithmsA1, A2:

P (c = compkc(m
∗, r∗)

:: (skc, pkc)← genC(1k); (m, aux )← A1(1
k, pkc);

(c, r)← comrpkc(m); (m∗, r∗)← A2(1
k, pkc, m, aux , c))

∈ NEGL.

Hereaux denotes auxiliary information thatA1 may hand toA2.

Proof If Part a) were not true, then forPDist(m) := PDist(m
′) := 1/2, we would obtain a

contradiction to the hiding property:

PDist∗(m|c) = PDist(m)P (c′ = c :: (c′, r)← comrpkc(m))/PDist∗(c)

= 1/2P (c′ = c :: (c′, r)← comrpkc(m))/PDist∗(c)

6= 1/2P (c′ = c :: (c′, r)← comrpkc(m
′))/PDist∗(c)

= PDist∗(m
′|c).

For Part b), assume thatA1, A2 contradict the lemma. Then either the probability with
an additional conditionm∗ 6= m or with m∗ = m is still not negligible. The first case
immediately contradicts the binding property.

2 ThusPDist∗(m|c) abbreviatesP (m′ = m|c′ = c :: m′ ← Dist; (c′, r)← comrpkc(m
′)).
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In the second case, consider an adversaryA3 that carries out(m, aux )← A1(1
k, pkc),

then chooses a messagem′ 6= m in MsgC (e.g., the first possible one out of two fixed
ones), sets(c, r) ← comrpkc(m

′) and finally(m∗, r∗) ← A2(1
k, pkc, m, aux , c). By Part

a) this does not change the distribution ofc compared with the assumption aboutA1 and
A2. Hence the success probability ofA2 is unchanged, and as in the first case we get a
contradiction to the binding property.

4.3 Real Machines for One Transaction

We now define the real machines for one transaction of our certified-mail protocol in detail.
Note that the same sender transaction machine once sends andthen, possibly many times,
shows the resulting receipt. As we allow the machines for different transactions to use
a common signature key that may be updated in each signing, wedefine it as a global
variable, indicated by “Global:” on the start arrow. Further, we define subprograms for
message tests and computations that do not fit into the state-transition diagrams, called
“ax j” for party x ’s action in statej.

A comma in messages denotes tuple composition, not concatenation. It must be imple-
mented such that decomposition is unambiguous. We slightlyaugment the message format
of Figure 4; in particular we repeat the transaction identifier in places to simplify later dis-
patching. Further, we add message type identifiers likem1 in signed messages, although
in this protocol this is not needed because each type of machine signs only one type of
message.

Definition 5 (Real Machines for One Certified-Mail Transaction) We define machine
typescm x with x ∈ {s, r, t, v}. Each machine has at most one input and output port for
its user,in x? for x ∈ {s, r} andout x ! for x ∈ {s, r, v}. Further, it has so-called network
portsx2y! for outputs to a machine of typecm y andy2x? for inputs from that machine.
The detailed behavior of these machines is defined in Figures6 to 8. We now define the
subprograms used in the figures; they operate on the variables of the respective machine as
defined by our general conventions.

In the sendercm s.
Subprogramas0. Let(c, rS)← comrpkc(m) andm1 ← signsks

((s, r, i), m1, l, c).
Subprogramas2. Verify thattestpkr

(m2) = ((s, r, i), m2, m1, pR) for some valuepR.
If yes, setm3 := ((s, r, i), m, rS).

Subprogramas4. Test whetherm4 = ((s, r, i), rR) for some valuepR ∈ {0, 1}k with
f(rR) = pR. If not, setm5 := (m1, m2, m3).

Subprogramas7. Setm7 := ((s, r, i), m7, m1, m2, m3, m4).
In the recipientcm r.
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Subprogramar1. Verify thattestpks
(m1) = ((s, r, i), m1, l, c) for some valuec. If yes,

setrR
R← {0, 1}k andm2 ← signskr

((s, r, i), m2, m1, f(rR)).
Subprogramar3. Verify thatm3 = ((s, r, i), m, rS) for some valuesm and rS with

compkc(m, rS) = c. If yes, setm4 := ((s, r, i), rR).
Subprogramar′6. Retrieve the signed message((s, r, i), m6, m5) from m6, decompose

m5 into (m1, m2, m3), and decomposem3 into ((s, r, i), m, rS).
In the third-partycm t, subprogramat0. Test thatm5 is a triple (m1, m2, m3) with

testpks
(m1) = ((s, r, i), m1, l, c) for some valuesl and c, and testpkr

(m2) =
((s, r, i), m2, m1, pR) for some valuepR ∈ {0, 1}k. Finally, test that m3 =
((s, r, i), m, rS) for some valuesm andrS with compkc(m, rS) = c. Then setm6 ←
signskt

((s, r, i), m6, m5).
In the verifiercm v, subprogramav0. Verify that m′

7 is of the form m6 =
(((s, r, i), m6, m5), sig) or m7 = ((s, r, i), m7, m1, m2, m3, m4) for some val-
uesmi and sig . In the first case, test iftestpkt

(m6) = ((s, r, i), m6, m5) and verify
and decomposem5 as defined forcm t. In the second case, verify and decompose
m5 := (m1, m2, m3) in the same way and then verifym4 as defined forcm s.

Part of the trust model for this protocol is that the channelsto and from the third party
and the verifier are reliable and authentic, i.e., messages arrive as sent, although the ad-
versary may read them. The assumption that other parties canreliably communicate with
the third party is essential for optimistic (and in-line) certified mail. For the verifier, it is
less essential, but otherwise we would have to allow the adversary to suppress runs of the
“show” protocol in the ideal system. The authenticity of these channels could be realized
cryptographically, while the reliability has to be assumed.

We can parameterize these real machines with the same message and label spaces and
bounds on the number of rounds as the ideal system. Again we then define that the machines
stop afterBk rounds, that inputs calledm andl are typed, and we define length functions
that bound the number of symbols read in each input. We use thesame length functions for
inputs at the service ports as in the ideal system. The boundsneeded for network messages
can easily be derived from the message formats and the assumed upper bounds on the
outputs of the cryptographic primitives. For polynomial-size messages and labels and a
polynomial bound on the rounds, we then obtain strictly polynomial-time real machines,
while the machines in Definition 5 are only weakly polynomial-time.



Reactively Simulatable Certified Mail 13

5 Reactive Simulatability

In order to prove that the real system (for one or many transactions) is as secure as the ideal
system, we need a summary of the underlying security definitions from [47]. As said in
Section 2, the machine model is essentially normal probabilistic state-transition machines
and we do not repeat a formal definition here.3 The machines are connected according to the
port naming convention, i.e., messages output atp! arrive atp?. A collectionof machines
is a set of machines compatible with this connection convention, i.e., no port occurs twice.
A collection is calledclosedif all ports are connected.

Runs(executions) are defined for closed collections essentially in the usual way for
probabilistic state-transition machines (see [51]), in particular in the synchronous case
needed here. Only, to capture security notions like rushingadversaries, we allow differ-
ent clocking schemes. A clocking scheme withn subrounds for a machine collection̂M is
a functionκ : {1, . . . , n} → P(M̂ ); it assigns each subround the set of machines switching
in this subround.

For security purposes, we distinguish certain free ports ofa collection of machines as
service ports. This is where the honest users of the protocol (human users or a higher-
level protocol) are supposed to make in- and outputs. For instance, in both the real and the
ideal certified-mail system for one transaction with honestsender and recipient, the service
ports are the setS := {in s?, out s!, in r?, out r!, out v!}. When comparing systems (e.g.,
a real one and an ideal one), we restrict ourselves to systemswith the same service ports.
We call a pair(M̂ ,S ) of a machine collection and distinguished service ports astructure.
For instance,(thsr,S ) and({cm s, cm r, cm t, cm v},S ) are corresponding real and ideal
structures for one transaction of certified mail.

A structure becomes aconfiguration(M̂ ,S , H, A) by adding an adversaryA and honest
usersH. Both are normal probabilistic state-transition machines, but typically universally
quantified, while the machines of the structure are predefined. The honest usersH must
only link to the machines of the structure by the service ports, while the adversary links
to the other free ports, e.g., insecure network connections. Together, a configuration must
be a closed collection. We use the clocking scheme(M̂ , A, H, A). The notation exploits
that functions over{1, . . . , n} are equivalent to tuples, and we omitted brackets around
one-element sets. Thus not only the adversary, but also the honest users are rushing. The
motivation for this clocking scheme and equivalence results can be found in [45]. For con-
figurations, we typically consider the case where the initial state of each machine is just the
security parameterk. Then the runs are a family of probability distributions (inother words
random variables), one for each value ofk.4

Viewsof machines andtracesof the events at certain ports are defined in a natural way
as restrictions (projections) of runs. Details of the run representation and these projections
are not needed in the following; they can be found in [47].

Often one defines anintended structurefor a real system, in other words a protocol and
intended connections for a number of parties, plus atrust modelthat defines how many of
these parties might be corrupted and how, and how secure the connections are. We may thus
obtain a set of possible real structures. To allow many typesof trust models, the general
security definitions in [47] are for arbitrary sets of possible structures, calledsystems. The
certified-mail system for one transaction has three possible structures corresponding to a
trust model where the sender, the recipient, or none may be corrupted. As said above,
channels to and fromcm t andcm v are authentic, the others insecure. The latter means
that both machines actually interact with the adversary; this is formally realized by a port

3 The only special aspect is the length functions that may bound the length of the inputs read at
each port in each state, as explained above and first defined precisely in [12].

4 Our transaction machines have initial variables; nevertheless we measure the complexity in
terms ofk. Leaving open where the initial variables come from allows different versions of multi-
transaction systems later, see Section 8.
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Fig. 9 Example of blackbox simulatability; the two views of the user H are indistinguishable.

renaming convention defined in the derivation of a system from an intended structure and
a trust model.

The notion of reactive simulatability essentially means that it makes no difference for
the honest users whether they interact with the real system or the ideal system. This is
illustrated in Figure 9 (already for the usual stronger caseof blackbox simulatability). More
precisely, their view is indistinguishable in corresponding structures. Indistinguishability is
an important cryptographic concept, first from [55].

Definition 6 (Computational Indistinguishability) Two families (vark)k∈N and
(var′k)k∈N of random variables (or probability distributions) are computationally
indistinguishable (“≈poly”) iff for every algorithm Dist (the distinguisher) that is
probabilistic polynomial-time in its first input,

|P (Dist(1k, vark) = 1)− P (Dist(1k, var′k) = 1)| ∈ NEGL.

Intuitively, Dist, given the security parameter and an element chosen according to either
vark or var′k, tries to guess which distribution the element came from.

We now denote the random variable of the view of a machineM in a configurationconf

by view conf (M). Then reactive simulatability is defined as follows.

Definition 7 (Computational Reactive Simulatability for Structures) We say that a
structure(M̂1,S ) is computationally at least as secure asa structure(M̂2,S ) and write
(M̂1,S ) ≥poly

sec (M̂2,S ) iff for every configurationconf 1 = (M̂1,S , H, A1), there exists a
configurationconf 2 = (M̂2,S , H, A2) such that

view conf
1
(H) ≈poly view conf

2
(H).

Blackboxsimulatability, written≥poly,bb
sec means that, given(M̂1,S ) and the setP of

adversary ports,A2 is a fixed simulatorSim with A1 as a blackbox submachine.

A typical simulator does not modify the communication betweenA1 andH (as already
shown in Figure 9) and thus only depends on the structure(M̂1,S ). Further, for blackbox
simulatability, one typically shows that the joint view ofH andA1 is indistinguishable.
Thus the distinction ofH andA1 disappears, while the service ports remain important to
decide howSim connects to the ideal system.

The reactive simulatability definition is lifted from structures to systems (sets of struc-
tures) by comparing “corresponding” structures defined by some mapping. Certified mail
belongs to the canonical case where a setS of service ports uniquely characterizes a corre-
sponding real and ideal structure, corresponding to a set ofcorrect participants according
to the trust model. We also write “≥poly

sec ” for systems.
Note that this is only a brief summary of some definitions from[47] and that the re-

port [45] contains even more variants as well as equivalenceproofs. Further note that al-
though we usually talk of real and ideal systems, the definitions do not need such a distinc-
tion.
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6 Simulator for One Transaction

We will prove that the real certified-mail system (for one or many transactions) is as se-
cure as the ideal system in the sense of blackbox simulatability. For this, we first define a
simulator for one transaction.

The main cryptographic aspect is the simulation of the messagem1 of the subprotocol
“send” if the sender is honest: In Roundi, wherem1 should be sent, the ideal system does
not reveal the payload messagem the honest user wants to send. Nevertheless, the simu-
lator has to input a correct-looking network message to the adversaryA, which includes a
commitment that is supposed to fixm. If the protocol run is successful, the simulator has to
open this commitment two rounds later. If it then reveals a messagem′ 6= m, the simulation
is not correct. This is why we need the chameleon property: Itallows the simulator (which
also simulates the machinecm t and thus knows its secret commitment keyskc) to make
the commitment on an arbitrary messagemsim and later open it to the correct messagem.

The main non-cryptographic aspects of the simulation are toverify that the real adver-
sary has no possibilities to disrupt the protocol runs in certain states, to show receipts too
early, etc., that are not specified in the ideal system.

We structure the simulator for one transaction similar to the real system, i.e., it explicitly
simulates machinescm s and/orcm r, cm t, andcm v. Additionally it translates signals
that the ideal system outputs at portout a! into user inputs to these machines and vice
versa. The machines, instead of making their normal final user outputs, recognize certain
intermediate situations and output the decision to suppress or to correctly finish the run as
needed for the ideal system. Figure 10 shows the resulting machines in the comparison of
the real and ideal system.

For such a behavior, the simulator switches twice per real round, before and after a
switching step of the ideal system. Formally, this would notneed to be visible in the sim-
ulator definition: The simulator is a synchronous machine and can make one transition in
each of its rounds. However, for ease of comparison with the real system, we draw the
state-transition diagrams essentially with the global rounds.5

Definition 8 (Simulator for One Transaction) The simulator for one transaction of la-
beled certified mail consists of submachinescm s′ and/orcm r′ (intuitively depending on
whether only the sender, only the recipient, or both are honest), cm t′, and cm v′, and
a dispatcherdis. The user ports of these machines are namedin x ′? for x ∈ {s, r} and
out x ′! for x ∈ {s, r, t, v}. The network ports are named as in the real system.

5 Formally we use the clocking scheme(TH, Sim, A, H, A, Sim) for an ideal system with separate
simulator. With the combination lemma of [47] (Lemma 2) the system whereA andSim are combined
into an adversaryA′ and clocked as(TH, A′, H, A′), i.e., the prescribed clocking for synchronous
systems, is well-defined, and does not change the views of any(sub-)machines. Similarly, a scheme
is defined whereTH andSim are combined into one machineM′ and clocked as(M′, A, H, A), and
this also does not change any views. Hence we can use the latter for comparison with the real system.
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Fig. 14 Dispatching of inputs from the ideal system in the simulator.

The state-transition diagrams of the main machines are defined in Figures 11 to 13. We
draw two states of the simulator that envelop one switching step of the ideal system (and
thus try to simulate one real switching step) as one circle unless a decision is made in the
middle. Inputs at network ports are always expected in the first of these two states; then
the machines make outputs at their user ports, anddis dispatches them toina!. Inputs at
outa? are expected in the second state, dispatched to the user inputs of the submachines as
defined in Figure 14, and then the machines make outputs at thenetwork ports. The global
timeT is now interpreted as an external global variable. Letmsim be an arbitrary fixed
message.

Onlycm s′ uses new subprograms:

In cm s′.
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Subprogramas′0. Let (c, rsim ) ← comrpkc(msim ) and m1 ← signsks
((s, r, i),

m1, l, c). Generate a random stringrtrans of sufficient length for a later call of
trans for c with another messagem.6

Subprogramas′2. Transform the commitment withrS ← transskc(c,msim , rsim , m),
usingrtrans if random bits are needed in this process. Setm3 := ((s, r, i), m, rS).

This was a simulator for the original, weakly polynomial-time systems. If we make the
real system strictly polynomial-time, we do the same for thesimulator with the same global
parameters, the same length functions for network inputs, and easily computable bounds
for the inputs from the ideal system.

7 Correctness of the Simulation for One Transaction (Over Joint State)

We now want to show that the simulator for one transaction, i.e., one run of the subprotocol
“send” with potentially many runs of “show” for the resulting receipt, simulates correctly.
However, we want to do this in a modular way that later lets multiple transactions use
common signature and commitment keys, as well as a common one-way function.

7.1 Methods to Prove Correct Simulation

To prove blackbox simulatability with the given simulator (recall Definition 7 and Fig-
ure 9), we show that arbitrary polynomial-time users and real adversaries cannot distin-
guish whether they are interacting with the real transaction or the ideal transaction plus
simulator. This is essentially what is called observational equivalence in formal methods
for distributed systems. The polynomial-time case was firstdefined in [38] for aπ-calculus
system model. Ignoring probabilistic and cryptographic aspects, there are essentially three
systematic methods for such proofs when the product state space of each system is too large
for ad-hoc treatment, as it is the case with a certified-mail transaction.

– Walkthroughs through both systems with all accepted inputsin each state, showing that
they produce identical outputs at the same times. This corresponds to an exploration of
the reachable space of corresponding states, typically depth-first. When automated, this
approach is called model checking.

– Bisimulation. This means to define a general relation between “corresponding” states
of the two systems, and to show that equal inputs in corresponding states lead to equal
outputs and to corresponding states again. When automated,this is the typical approach
with general-purpose theorem provers.

– Calculi. This means a successive transformation from one system definition into the
other by a fixed set of provably secure transformation steps.This is a typical method
with process algebras.

For this proof, we chose the walkthrough approach, because our systems for one transac-
tion are relatively straight-line and thus a step-by-step argument seemed easiest for human
provers and readers. In the outlook, Section 10.1, we discuss how one could partially auto-
mate such a proof, but why it would still be a significant challenge far beyond the scope of
this paper.

7.2 Assumptions on the Use of Joint Primitives

In the walkthroughs we will encounter situations that depend on the cryptographic prim-
itives, and sometimes on the correct overall use of those primitives with joint state. We

6 This is only a technicality that simplifies the proof. It requires thatMsg is polynomially bounded
or the sufficient length is independent ofm, as in the example commitment scheme in Section 4.2.
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will later prove that the overall probability of so-called error sets where the observational
equivalence is not guaranteed (e.g., due to a forged signature) is negligible even for many
transactions. Besides the definitions and lemmas from Section 4.2 we will need one as-
sumption about the joint use of signatures.

Definition 9 (Assumption on the Joint Use of Signatures)When considering a certified-
mail transaction with the transaction identifier(s, r, i) in the initial states of all machines
in the real and simulated variant and using a global variablesk , we make the following
assumptions.

a) No other application usessk to sign messages of the form((s, r, i), mx , ...) with x ∈
1, 2, 6.

b) The keysk has been correctly generated as(sk , pk) ← genS(1
k, 1s∗

) and no applica-
tion uses it for anything other than signing.

c) Whenever the real transaction and the simulated one actually sign, thensk has the same
value (even if the real transaction and the simulated one arenot executed in identical
environments) and less thans∗ signatures have been made withsk overall so far.

We immediately see from the state-transition functions that each certified mail transac-
tion fulfils Assumption a) of the others. Hence this assumption is automatically fulfilled if
the many transactions of a certified-mail system are the onlyapplication that uses this key.
This assumption generalizes to other types of transaction identifiers than(s, r, i) if each
signed message is again a tuple starting with this transaction identifier.

7.3 The Walkthrough Proof

We summarized the machines that handle one transaction in the two systems in Figure 10.
We call the real structurestruc and the simulated structurestruc′. Recall that network
channels involving the third party or the verifier are authentic and reliable, while those be-
tween senders and recipients are insecure. By the formal derivations of real structures from
intended structures sketched in Section 5, this means that inputs supposedly from sender
to recipient and vice versa are actually inputs from the adversary, and thus outer inputs for
us, while the authentic channels only give additional outeroutputs because the adversary
can listen there. We want to show that these two structures essentially have the same outer
input-output behavior by walkthroughs with all acceptableinputs in all reachable states.

Lemma 2 (Walkthrough Security of One Certified-Mail Transaction) Let the two struc-
tures summarized in Figure 10 be given, where all machines are started in Roundi with
the same security parameterk and transaction identifier(s, r, i), the keys in the start states
have been chosen correctly and consistently, the signatureassumption (Definition 9) holds,
and the ideal protocol length parameter is∆ = 6. Then they have the same probabilistic
input-output behavior and make the same use of the global signature keys for all input se-
quences except for a set of runs callederror setsthat we define within the proof. This holds
both for the original weakly polynomial-time versions and the strictly polynomial-time pa-
rameterized versions.

Each run in an error set corresponds in an obvious way to a situation where a crypto-
graphic primitive has been broken. It will thus not be hard toshow later that the error sets
are negligible; however, because of the joint use of primitives, we have to postpone this
proof to the consideration of multiple transactions.

Proof In the walkthroughs, corresponding machinescm x andcm x ′ will essentially be in
the same state. The only exception is that the choice of the commitments is done differently
in cm s andcm s′. For this, we will define an exact mapping of corresponding random
values that lead to the same future input-output behavior. Hence in all other places in the



Reactively Simulatable Certified Mail 19

walkthroughs, we only have to remember the current state of the real machines and of the
trusted host in the system with simulator. We distinguish the three cases from our trust
model.

For the strictly polynomial-time case, note that the simulated and the real system have
the same bounds on the length of accepted messages fromA andH, and that the bounds
for messages between the trusted host and the simulator wereassumed to be chosen suf-
ficiently large for the simple message format used there, so that messages from either of
these machines will always be completely read by the other.

Case S: Correct Sender only.In this case, we have Figure 10 withoutcm r andcm r′,
and withths.

1. States reached without inputsend: The only round wherecm s andths accept an input
(send, r, l, m) at port in s? is Roundi. If they do not, both remain in their starting state
forever and do not make any outputs. Hencecm s′ does not get an input(send, . . .) via
dis and also remains in its starting state. Ascm t, cm t′, cm v, andcm v′ only get inputs
on authentic connections fromcm s andcm s′, respectively, they also never get inputs and
make outputs.

2. States reached on inputsend: If (send, r, l, m) is input at in s? of ths in Roundi, it
changes to States1 and outputs(send, r, l) at out a!, which dis dispatches tocm s′. Thus
cm s and cm s′ sendm1. These messages only differ in the computation of the com-
mitment c. (Here the signature assumption is used; we do not mention this again.) We
therefore define a mapping of random values ofcm s′ to corresponding ones ofcm s as
φ(rsim , rtrans) := rS ← transskc(c,msim , rsim , m), wherertrans is used if random bits
are needed in this process; recall thatcm s′ choosesrtrans already in this round. By the
chameleon property, the resulting commitmentsc are equal, and thus so are the messages
m1. Furthermore, the chameleon property implies that the resulting distribution of(c, rS)
equals that incm s.

No m2. If the adversary does not respond with a correctm2 (the test is equal forcm s and
cm s′ in the given states), thencm s outputs(failed) at out s! in Roundi + 6, while
cm s′ immediately sends(suppress) via dis to ths. Thusths changes from States1 to
s2, and in Roundi+6 it outputs(failed) atout s! as well. No network outputs are made
in this process, and all three machines finish in Statefailed.

Correctm2. If cm s and cm s′ receive a correctm2, then cm s sends m3 =
((s, r, i), m, rS), while cm s′ inputs (receive) to ths via dis. Thusths changes from
States1 to s3 and reveals the payload message as(msg, m). Thuscm s′ also sends
m3 still in Roundi + 2, using the valuerS ← transskc(c,msim , rsim , m), computed
deterministically withrtrans . This is the samerS as used bycm s.
After sendingm3, the behavior ofcm s andcm s′ with respect to the network is identi-
cal. If they send a messagem5, it arrives atcm t andcm t′ because these connections
are authentic, and it passes the test by definition, so thatcm s andcm s′ will obtain a
correctm6. Thus in Roundi + 6, cm s andcm s′ either both enter the statereceived or
bothreceived′, andths entersreceived and remains in this state and inshowing. In this
round, bothcm s andths also output(sent) atout s!.

This covers all states reachable and inputs accepted bycm s, cm s′, andths as long as the
only input atin s? is (send, . . .). As cm t, cm t′, cm v, andcm v′ only accept inputs on
authentic connections fromcm s andcm s′, respectively, the same holds for them.

3. Reactions on inputshow: Now we consider an input(show) in Roundj at in s?. Machine
cm s accepts this input if it is in Statereceived or received′, while ths considers it in State
received or showing. Above we showed that the machines enter these states under the same
conditions in Roundi + 6, and thatcm s′ is then in the same state ascm s. Now ths

goes into Stateshowing and outputs(show), which dis dispatches tocm s′. Hencecm s′
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sends the same messagem6 or m7 to cm v′ ascm s to cm v on authentic connections. By
construction, these messages are accepted. Thuscm v outputs(received, (s, r, i), l, m) in
Roundj + 1, just like ths does because it is in Stateshowing. In addition,cm v′ outputs
(show), which is dispatched toths, butths is in Stateshowing and ignores it.

Case R: Correct Recipient Only.As the walkthrough proofs are tedious and follow the
same pattern, we postpone the remaining two to the appendix.Here we only summarize
the situations where we put runs into error sets. (We do not omit the walkthroughs entirely
because they are the part of the proof that is unique to certified mail, and they show that
the following situations are really the only ones where the real and the simulated systems
deviate.)

– If no input (receive, s, l) is made tocm r and thr (always in the correct round), or
cm r andcm r′ do not obtain a correct messagem1, and thus they do not sendm2,
and the adversary nevertheless inputs a correct messagem5 to cm t andcm t′ later, or
m′

7 to cm v andcm v′, this must contain a correct messagem2, i.e., testpkr
(m2) =

((s, r, i), m2, . . .). Then we let the run be in the error setForgek with the forged sig-
naturesigf := m2 and attacked participant indexu := r. Recall that by Assumption 9
no other application signs a message starting((s, r, i), m2, . . .) with skr and that tuple
decomposition is unambiguous, i.e., this is indeed a forgery.

– Similarly, if cm t andcm t′ do not obtain a correct messagem5, but cm r andcm r′

or cm v andcm v′ obtain a correctm6, thensigf := m6 is signature forgery for a
message starting((s, r, i), m6, . . .), and we put the run in the error setForgek with
attacked participantu := t.

– If cm r andcm r′ sentm2 and the adversary later shows a receiptm′
7 containing a

differentm′′
2 , we put the run in the error setForgek with sigf := m′′

2 andu := r.
– If cm r andcm r′ sentm2 but notm4, and the adversary can nevertheless show a receipt

of the formm7, it must contain a one-way preimager′R with f(r′R) = pR for the one-
time public keypR from m2, while cm r andcm r′ never used the original preimage
rR except in the assignmentpR ← f(rR). This contradicts the one-way property off.
We put the run in the error setOwfBreakk .

– If cm r andcm r′ obtainedm3 with a payloadm and the adversary can later show
a receiptm′

7 for a different payloadm′, then the receipt must contain a messagem′
3

where the same commitmentc is opened in a different waycompkc(m
′, r′S) = c =

compkc(m, rS). This contradicts the binding property of the commitments.We put the
run in the error setBindBreakk and setbindbreak := (m, rS , m′, r′S).

Case SR: Correct Sender and Recipient.As in Case R, we only summarize the situations
where we put runs into error sets here.

– Similar to Case R, we encounter cases where the adversary forges a signaturesigf on a
message with identifierm1 with sks , or on a message with identifierm2 with skr . We
put those runs in the error setsForgek with u := s or r, respectively.

– If cm s and cm s′ sendm1, but do not obtain a correctm2 via the adversary, and
the adversary nevertheless inputs an acceptablem3 to cm r and cm r′, then this
contains values that open the commitmentc from m1, i.e., values(ma, ra

S) with
c = compkc(m

a, ra
S). However,cm s did not use the valuerS from the assignment

(c, rS) ← comrpkc(m) anywhere else. This situation therefore contradicts Lemma1.
We put the run in the error setComOwfBreakk .

– If the adversary forwards correct messagesm1 andm2, but no acceptablem3, and
nevertheless inputs an acceptablem4 to cm s andcm s′, then this contains a one-way
preimager′R with f(r′R) = pR for the one-time public keypR from m2. However,cm r

andcm r′ never used the originalrR except in the assignmentpR ← f(rR). Hence we
put the run in the error setOwfBreakk .
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– If the adversary forwards correct messagesm1 andm2, and an acceptable but incor-
rect third messagema

3 = ((s, r, i), ma, ra
S) with ma 6= m for the payloadm used

by cm s and cm s′, then compkc(m
a, ra

S) = compkc(m, rS) = c for the commit-
ment used bycm s. We put the run in the error setBindBreakk and setbindbreak :=
(m, rS , ma, ra

S).

8 Multi-Transaction Systems

In a real certified-mail system it must be possible to executemany certified-mail transac-
tions. We first present options for constructing the overallsystem. We then show how our
security proof for one transaction carries over to a multi-transaction system in spite of the
joint use of primitives by these transactions.

8.1 Multi-tasking Options

There are multiple options for executing multiple transactions of certified mail, reflecting
programming styles known from real distributed systems with multiple transactions (also
called sessions, tasks, or threads).

Network dispatching.In the real system, multiple transactions of multiple typesof proto-
cols are running in the same overall machine with a fixed number of physical connec-
tions. Hence network inputs must be dispatched to the correct protocol and transaction.
Three standard solutions are:
– Explicit dispatcher. The messages arrive on one connectionand a specific program,

called dispatcher, distributes them to the transactions that expect them by some
transaction identifier. The transaction identifier may comefrom a flat domain, e.g.,
be chosen randomly or assigned by the dispatcher, or be hierarchic, i.e., starting
with a protocol identifier like “certified mail”.

– Dispatcher in the network layer. A dispatcher may already beinherent in the under-
lying network stack in the ability to set up multiple networksessions, one for each
transaction.

– Token-based communication. The network outputs of a transaction may be given
to the caller of the transaction for transport. This can minimize the communication
overhead as only top-level transactions communicate.

Another distinction with dispatcher solutions is whether adispatcher starts a new trans-
action if a message with an unregistered transaction identifier arrives, or whether a local
caller must generate the transaction first.

User in- and outputs.The different transactions in one machine need inputs from their
users and make outputs to these users. Typically the user is another protocol, but some
transactions have an interface to people. This is essentially the same question as net-
work dispatching, only seen from the other side.
– Explicit dispatcher. The users make the inputs into a fixed “port” (e.g., they call a

fixed library) which internally handles multiple transactions.
– Visible multi-tasking. Each user once calls a fixed port to generate a new transaction

locally and then interacts directly with this transaction.In practice, the transaction
may come from a pool instead of being newly generated.

Multi-tasking or not. In real systems, multi-tasking or multi-threading is oftentoo ineffi-
cient, and a high-level design with transactions is realized by a low-level design with-
out, typically with global state and function tables. It mayseem uninteresting at this
point whether this happens with a real implementation of certified mail (although in
principle the correctness of the transformation must be proved), but it may even con-
cern ideal systems: While for a higher-level transaction that uses only one certified-mail
transaction it may be best to consider just this transaction, an application using many
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lower-layer transactions may best represent them all as onemachine also in some auto-
mated proof tools.

We believe that all these variants can be formalized withoutproblems for cryptographic
protocols. In the original report [46] we chose a scheme withan explicit dispatcher for net-
work in- and outputs as well as for user in- and outputs. Further, multi-tasking is partially
realized with global state, as there are global variables and the dispatchers are not explic-
itly clocked as separate machines. However, these decisions are not inherent in the design
of the individual transaction machines. (The only exception is the treatment of signature
keys as global variables, but these could be replaced by submachines, in particular the
signer machines from Definition 2 with an additional dispatcher.) Hence the same trans-
action machines could be used in any other multi-tasking scheme. Similarly, the multi-
tasking scheme from [46] could essentially be used for othertransactions than certified
mail, i.e., where the concrete in- and outputs of certified mail were dispatched according to
the concrete transaction identifier(s, r, i), arbitrary inputs and outputs could be dispatched
according to arbitrary transaction identifiers.

As the dispatching is tedious and has been defined and proved in full detail in [46], we
omit it here. Essentially, we defined an overall trusted hostTH as well as overall real ma-
chine typesMs, Mr, Mt, andMv. Each real machine has at most one input and one output
port for its user, while the trusted host has all these ports together. Per round, a machine
accepts a list of inputs at each input port and dispatches them to the appropriate transac-
tion machines. The list elements carry the full transactionidentifiers (here(s, r, i)), while
we usually omitted them in in- and outputs of the transactionmachines, e.g.,(failed) and
(show).7 Similarly, each pair of overall machines has one network connection (insecure for
senders and recipients, reliable and authentic for third parties and verifiers) and dispatches
the network messages of its submachines over those. An additional broadcast machine is
present in the first two rounds to distribute public keys consistently. The trust model is that
any number of senders and recipients may be statically corrupted, while the third party, ver-
ifier, and broadcast machine are correct. LetSysCM,id andSysCM,real denote the resulting
multi-transaction real and ideal system for a certain parameter set, i.e., participant num-
bers, label and message set, and specific cryptographic primitives used in the real system.
Then our multi-transaction security theorem is (where corresponding structures of the two
systems are defined in the canonical way via equal service port sets):

Theorem 1The real multi-transaction certified-mail systemSysCM,real is as secure as the
ideal certified-mail systemSysCM,id with blackbox simulatability,

SysCM,real ≥
poly,bb
sec SysCM,id.

One reason why we chose this particular multi-tasking scheme was that it avoids the ex-
plicit generation of new machines. This was not defined for Turing machines in 2000 (and
thus neither for our state-transition machines with Turingmachine realizations), and to our
knowledge it is still not defined in 2004 even though many theorems and constructions
implicitly assume it. We do not doubt that it can be done, in particular as similar con-
structions exist forπ-calculus with polynomial-time restrictions [41]. Nevertheless, there
may be subtleties in the overall polynomiality of such systems, as well as tedious details
for defining how newly generated machines are connected (e.g., we cannot simply allow
someone to generate a machine that connects to someone else’s signature machine, while
it must connect to the local signature machine). Hence we didnot want to assume this.

7 Where we explicitly kept them, as inout v!.(received, (s, r, i), m) they are needed for their real
content, i.e., another transaction identifiertid would augment(s, r, i) here, not replace it.
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8.2 Proof of Multi-Transaction Composition

Independent of how we connect them, we have multiple transactions running and have to
show that the overall real system is as secure as the overall ideal system. Recall that even
now in 2004 we cannot avoid proving this composition specifically for certified mail as we
use joint state over primitives that do not have similar transaction-wise abstractions yet.
The proof is nevertheless relatively generic, in particular in its treatment of signatures. As
we have omitted the precise definition of a dispatching scheme here, we prove this for a
scheme where all the transaction machines are simply run in parallel, i.e., they interact
directly with the honest users and the adversary. Formally,for this we rename the ports of
each machine by indexing them with the transaction identifier, and we assume that each
machine is started with the correct initial inputs. Port renaming is well-defined in [47]
and does not change the behavior. Assuming a definition of machines whose number of
ports (or Turing tapes) depends on the security parameter (here for the machinesA andH

representing the overall adversary and honest users), the proof also holds for polynomially
many transactions. More precisely, the numbers of participants and of overall rounds could
be polynomial in the security parameterk, and so could, with more general transaction
identifiers, the number of transactions per participant pair started per round.

8.2.1 Overview. Our walkthrough lemma (Lemma 2) together with our definitions of the
error sets would immediately lead to a security proof for onetransaction. To use the lemma
in this multi-transaction setting, we have to show that indeed every transaction gets the
same external inputs in the real and the simulated setting (even though now other trans-
actions are running in parallel) and that the signature assumption (Definition 9) is always
fulfilled. For this, we show that the walkthrough proofs of all transactions can be joined
into one proof. Let an adversaryA and honest usersH for the multi-transaction systems be
given.

– We define corresponding reachable states of the multi-transaction real and simulated
structures as states where the global keys are equal, and alltransaction substructures
are in corresponding states. (We did not need a name for this correspondence above, but
its restriction to the random values that are different in the real and simulated sender
machines was calledφ.)

– We define each overall error set as the set of overall runs where at least one run of a
transaction (easily defined as a restriction of the overall run) belongs to the correspond-
ing transaction error set.

– Simple induction over the round number shows that in all overall runs that do not belong
to an error set, the multi-transaction systems are always incorresponding states, and all
transactions produce identical external inputs and outputs and make equal use of the
global signature keys.

Hence the views ofA andH are identical in all runs of the two multi-transaction structures
except for the error sets. It is therefore sufficient for the desired computational indistin-
guishability of the views ofH to show that the overall error sets are negligible.

8.2.2 Proof that the Overall Error Sets are NegligibleThe proof of Lemma 2 defined
four types of error sets:Forgek for runs where a signature of an honest participantu is
forged,OwfBreakk for runs where an unknown one-way preimage is found,BindBreak k

for runs where a commitment is opened in two ways, andComOwfBreak k for runs where
the adversary can open a commitment of an honest user. In slight abuse of notation we use
the same error set names for runs of the multi-transaction system. The indexk denotes the
security parameter, i.e., we actually have four sequences of error sets. As the finite sum of
negligible functions is again negligible, we only need to show that each of these sequences
has negligible probability. The following reduction proofs essentially yield the concrete
complexity of the reductions. We therefore assume that an adversary and honest usersA
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andH are given that start at mostω transactions of certified mail in at mostρ rounds, for a
system with at mostn honest participants, use overall runtimeτ together with the correct
machines, and achieve that an error set has probabilityǫ for a specifick.

Signature Forgery. Assume that the probability ofForgek is ǫ. We construct an adversary
Asig against the signer machineSigs∗ from Definition 2 withs∗ := ω. It randomly chooses
a participantv to attack among the at mostn participants. It simulates the real configura-
tion using the public keypk obtained fromSigs∗ aspkv . I.e., it executes all machines of
this configuration with security parameterk for at mostρ rounds and with random values
chosen in the execution as usual, except that it sends every messagemj to be signed with
skv to Sigs∗ instead and uses the result as the signature. In addition, itkeeps track of the
conditions for putting the resulting run in the error setForgek with the attacked participant
u = v. Such au was defined for each run inForgek in the proof of Lemma 2, and the
conditions can be verified efficiently. (Formally, we have put joint runs of both systems in
the error sets, but it is easy to see that all error set conditions can be verified on the real
system alone.)

If such a condition is fulfilled,Asig outputs the designated valuesigf (again from the
proof of Lemma 2) as its forged signature. In each case, it wasalready shown in the walk-
through thatsigf is a valid signature forpku and that the contained messagemf was not
signed by the given transaction machine or any other simulated machine, i.e.,Asig did not
askSigs∗ to signmf .

As v was chosen randomly, the success probability ofAsig is at leastǫ/n. The runtime
of Asig is essentiallyτ and it uses at mostω calls to the signature machine, as each machine
signs at most once per transaction.

Finding One-way Preimages.Assume that the probability ofOwfBreakk is ǫ. We con-
struct an adversaryAowf as in Definition 3. It randomly chooses one of the at mostω possi-
ble transactions, e.g., assuming they are sorted accordingto starting round and, within the
round, lexicographically by transaction identifier. It simulates the real configuration using
the given one-way imagep aspR in the machinecm r for this transaction instead of setting
pR := f(rR) for randomrR. It checks whether the resulting run belongs toOwfBreakk for
the chosen transaction. If yes, a valuer′R with f(r′R) = pR = p is obtained, andAowf out-
puts it. It was already shown in the walkthroughs that the (now unknown) valuerR was not
used outside the replaced assignmentpR := f(rR) up to this point; hence the simulation is
possible.

Hence the success probability ofAowf is at leastǫ/ω, and its runtime is essentiallyτ .

Binding Property of the Commitments.Assume that the probability ofBindBreakk is ǫ.
We construct an adversaryAbind as in Definition 4a. Given a public commitment keypkc,
it simulates the real configuration using this commitment key. Note that the corresponding
secret key is never used in the real system (only in the simulator); hence this simulation
is possible. If yes, it outputs the designated tuplebindbreak , for which we have already
shown that it fulfils the condition from Definition 4a.

Hence the success probability ofAbind is at leastǫ, and its runtime is essentiallyτ .

One-way Property of the Commitments.Assume that the probability ofComOwfBreakk
is ǫ. We construct adversary algorithmsA1, A2 as in Lemma 1b. The first algorithmA1

randomly chooses one of the at mostω possible transactions as in the second case. It then
starts simulating the real configuration using the given public commitment keypkc. This is
possible as in the previous case. When the simulatedH starts the selected transaction with
a payload messagem, thenA1 outputs thism as its ownm and its entire state asaux . Thus
A2 can continue the simulation, using its additional inputc as the commitmentc in message
m1 for this transaction, instead of choosing it as(c, rS) ← comrpkc(m). If the condition
for putting the run inComOwfBreakk for this transaction is fulfilled, thenA2 outputs the
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designated values(ma, ra
S) that open the commitmentc. We have already shown that they

fulfill the condition from Lemma 1b and thatrS (now unknown) is not used elsewhere, so
that the simulation is possible.

Hence the overall success probability ofA1 andA2 is at leastǫ/ω, and their runtime is
essentiallyτ .

Summary of the Reductions.The four concrete-complexity reductions that we made for
individual values ofk immediately imply that if there were an overall polynomial-time ad-
versary and users successful against an overall polynomial-time variant of the real certified-
mail system, then one could break one of the underlying cryptographic primitives. With a
bit more effort, one sees the same for the system with weakly polynomial-time machines: It
is sufficient to show that the combination of all real machines is weakly polynomial-time.
This holds because every external input only results in a polynomial amount of internal
activity, as can be seen by inspection of Definition 5. This finishes the security proof of the
generic multi-transaction versions of our certified-mail system.

A security proof for a system with a specific dispatching scheme can be derived by
additionally comparing the real and simulated dispatchingschemes. A detailed proof for
the specific dispatching scheme sketched at the end of Section 8.1 can be found in [46].
Altogether this finishes the proof of Theorem 1.

9 Symbolically Proving Properties of Certified Mail

One reason to define the security of real systems by abstract ideal systems without proba-
bilism and cryptographic objects is as a link to formal methods, in particular to automated
proof tools. Such tools can be used for at least three purposes in this context:

– To prove individual properties of the system in question, e.g., the unforgeability of
receipts in certified mail.

– To prove that a higher protocol using the system in question is as secure as some ideal
system for the higher protocol. For instance, one might prove that a multi-party contract
signing protocol based on certified mail is as secure as an ideal multi-party contract
signing system.

– To directly prove individual properties of a higher protocol using the system in question.
For instance, one might directly prove that a multi-party contract signing protocol based
on certified mail provides unforgeability and fairness.

For the first and third possibility one needs preservation theorems for the desired properties
with respect to reactive simulatability, for the second andthird possibility a composition
theorem. Both are available in the underlying framework from [47]. The last possibility can
usually be replaced by the first two, but may be quicker if one is only interested in certain
properties.

This section sketches the earliest example of the first possibility by proving integrity
properties of certified mail. This corresponds to abstracted versions of properties that the
classic cryptographic literature used to define certified mail.

An integrity requirementfor a setS of service ports is a setReq of finite traces of
events at these ports. Intuitively it describes the set of allowed event sequences. Recall that
traces of events at any set of ports are well-defined for runs in the underlying system model.
Hence we can say that a run fulfils an integrity requirement ornot (the resulting trace at
S lies in Req or not). Now [47] defines that a structure fulfils an integrityrequirement
Req perfectly if all its runs with all users and adversaries fulfil Req, and computationally
if for all polynomial-time users and adversaries, the probability that Req is not fulfilled is
negligible in the security parameterk. The definition is lifted from structures to systems
(sets of structures) in the canonical way. The preservationtheorem states that fulfilling an
integrity requirement is preserved under reactive simulatability. Hence if one proves an



26 Birgit Pfitzmann et al.

integrity requirement for the ideal certified-mail system,it also holds computationally for
the real system.

We now present integrity requirements on one transaction ofcertified mail. For finite
traces, “after at most∆ rounds” is defined to be automatically fulfilled if less than∆ further
rounds exist.

Definition 10 (Integrity Requirements on Labeled Certified Mail) The integrity require-
ments on one transaction of certified mail, with transactionidentifier(s, r, i), for the three
cases of the trust model for one transaction, are the setsReqi defined by the following
formulas, wherei ∈ {1, . . . , 7} corresponds to the item labels.

For correct senders (with correct or incorrect recipient).

1. Verifiability of Valid Receipts.If an output(sent) occurs atout s! after an input(send,
r, l, m) at in s? in Roundi, then a later input(show) at in s? leads to the output
(received, l, m) at out v! within one round.

2. Termination for Sender.An input(send, r, l, m) at in s? in Roundi leads to an output
(sent) or (failed) at out s! after at most∆ rounds, and no second such output occurs
at out s!.

For correct recipients (with correct or incorrect sender).

3. Unforgeable Receipts.If an output(received, (s, r, i), l, m) occurs atout v! in a round
j, theni ≤ j, and an input(receive, s, l) occurred atin r? in Roundi.

4. No Surprises for the Recipient.If an output(failed) occurs atout r! after an input
(receive, s, l) at in r? in Roundi, then no output(received, (s, r, i), l, m) with anym ∈
Σ∗ occurs atout v! in any round.

5. Fixed Receipts.If an output(received, m) occurs atout r! after an input(receive, s, l)
at in r? in Roundi, then no output(received, (s, r, i), l, m′) for any differentm′ occurs
at out v! in any round.

6. Termination for Recipient.An input(receive, s, l) at in r? in Roundi leads to an output
(received, m) or (failed) atout r! after at most∆ rounds, and no second output of these
types occurs atout r!.

For correct sender and recipient.

7. Unforgeable Messages.If an output(received, m) occurs atout r! in a roundj after
an input(receive, s, l) at in r?, then the input(send, r, l, m) occurred atin s? before
roundj.

For the parameterized version of certified mail, we assume input typing in these formulas,
i.e., inputs calledm andl must be in the message and label space, respectively, and outputs
with these names will be in the same sets.

By Theorem 3.2 of [47], logical derivations from integrity requirements are valid also
for computational fulfillment. Hence one can draw conclusions on this abstract level, or,
e.g., join some of the requirements for correct recipients into one. The current formulation
is standard predicate logic using round numbers. If one is interested in a simpler fragment
of logic, most of the requirements can be expressed in temporal logic; only requirements
mentioning “after at most∆ rounds” are a bit awkward.

The following theorem validates the ideal system for one transaction with respect to
these requirements.

Theorem 2 (Integrity of the Ideal Certified-Mail System for One Transaction) The
ideal system from Definition 1 fulfills Definition 10. More precisely, the trusted hostthsr ful-
fils all requirements, whileths fulfils Requirements 1, 2, and 7, andthr fulfils Requirements
3 to 5.

Consequently, also the real system from Definition 5 fulfils these requirements.
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Proof All requirements can easily be verified by inspection of the state-transition diagrams.

The original report [46] formulates the requirements for the multi-transaction system
and includes the dispatching in the proof. Further, it contains a secrecy property, but that is
not proved via a preservation theorem, and an availability-style property stating that correct
senders and recipients can successfully exchange a mail if the channels are authentic during
this transaction. In the ideal system this corresponds to the absence of the inputsuppress

for this transaction.

10 Outlook

10.1 Automating the Walkthrough Proof

Without cryptographic and probabilistic aspects, a proof of equal input-output behavior for
one transaction of the given complexity would seem automatable with current techniques.
However, already with the probabilism, and even more with the cryptography, there was
no chance of automation in 2000 when we initially wrote this paper, and it would still be
a significant challenge now. (In contrast, we believe that automating proofs of distributed
protocolsusingthe certified-mail system is very feasible, because the ideal system is free
from probabilism and cryptographic objects, and proofs automatically carry over to the
real system via composition and property preservation theorems.) In 2000, there was no
automated proof over real cryptography at all. At present, the largest such proofs are the
security of Diffie-Hellman encryption against passive adversaries, given the Diffie-Hellman
decision assumption and special-purpose formalizations of the underlying algebra, and of
construction for stretching the output of a pseudorandom generator [50,36]. None of these
proofs contains real distributed aspects yet.

We already mentioned in the outlook of [46] that we expected follow-up work that
would abstract from individual primitives in order to allowautomation of parts of this
proof using standard tools, i.e., without probabilistic and cryptographic aspects. However,
there is still no suitable abstraction from one-way functions and commitments for our case
where special usage restrictions allow security in the standard model of cryptography.Early
ideal signature systems as in [23] are not abstract in the sense expected by standard proof
tools. Further, we use nested signatures (the message signed in m2 containsm1 and thus
already a signature). Hence neither the temporal-logic abstraction from [43] nor a simple
ideal signature system by a database of signed statements isapplicable, and thus the Dolev-
Yao style library from [13] would be needed. It would seem possible, however, to define a
similar certified-mail protocol without nested signatures. All this seems feasible now, but
far beyond the scope of the present paper.

10.2 Joint Use of Signatures

In the assumption on the joint use of a secret signature key, Definition 9, the use of dif-
ferent transaction identifiers in a fixed position of the signed messages corresponds to the
same general principle as what we used to separate the certified-mail protocols. Among the
known ways to assign such transaction identifiers, we used a hierarchical scheme in this
place (the transaction identifier of the certified-mail transaction plus a message identifier).
If one idealizes from the signature scheme first, in particular as a step towards automating
the walkthrough proof (a hand-made proof based on an idealization would not be signifi-
cantly simpler than the current proof) this assumption is still needed, while Assumption b)
becomes part of the idealization. This holds both for idealizations by temporal logic and by
ideal systems.
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10.3 General Joint State Composition

The type of dispatching sketched in Section 8.1 and fully defined in [46] was also later
used by Canetti and Rabin for their joint-state compositiontheorem [25]. Their protocolρ
corresponds to our real transaction machines, their protocol ρ̂ to our multi-transaction real
machines with dispatching, their functionalityF to our ideal transaction machines, and
their functionalityF̂ to our multi-transaction ideal system with dispatching. The precon-
dition of their theorem is that simulatability holds for themulti-transaction systems, i.e.,ρ̂
is as secure aŝF . I.e., they simply assume that a hand-proof of the joint-state aspects of
the real system is made somehow. The theorem then states thata protocolπ using the ideal
systemF̂ can be rewritten by pulling the user input-output dispatching up intoπ.

This would be a similarly simple consequence of our dispatching results but we did not
state it in [46]. Thus the addition made by [25] is to formallystate that higher protocols
that use a system defined by transaction machines and dispatching like here can assume
that they interact with individual transaction machines, as the overall approach suggests.

10.4 Symbolic Proofs over Ideal Systems

Section 9 on integrity properties of certified mail was only the first step into an overall
program for linking formal methods and cryptography. The first tool-supported proof over
an abstraction from cryptography that was justified by a simulatability result was made
in [10]. It proves integrity properties for a given ideal system with the theorem prover
PVS and thus corresponds to the first possibility from Section 9. The second possibility, a
simulatability proof for a protocol that uses an ideal subsystem, was first explored in [9].
Important examples of the third possibility, symbolic proofs of properties of a protocol
using an ideal subsystem, but by hand, are the proofs of the Needham-Schroeder-Lowe and
Otway-Rees protocols over an ideal Dolev-Yao-style cryptographic library in [13,6].

11 Conclusion

We have proven the security of an efficient certified-mail system with respect to an ideal
system in the sense of reactive simulatability. The ideal system is abstract enough to be
suitable for use in automated proof tools for larger systems; in particular it is deterministic
and does not contain cryptographic objects.

The certified-mail system is optimistic and labeled. This means that a trusted third
party is needed only in case of a dispute, and the recipient agrees to a mail subject in
advance. The communication model is synchronous; we have discussed pros and cons of
synchronous protocols. The concrete protocol needs four rounds in the optimistic case,
which is optimal. Security holds in the standard model of cryptography, under standard
assumptions, and with blackbox simulatability.

Reactive simulatability implies general composability. Apart from its value for certified
mail, this paper (when first written) provided the first convincing evidence that a general
reactive simulatability definition with a composition theorem is a useful basis for specifying
and proving the security of practical reactive systems withmulti-round transactions and
multiple related transactions, here the sending of mail andshowing of receipts. It further
showed how simulatability is possible in the standard modelof cryptography in spite of the
(restricted) use of committing primitives.

We also introduced the main techniques that later became known as joint-state composi-
tion, i.e., the composition of a system for multiple transactions from systems for individual
transactions that share keys of cryptographic primitives.

Finally, we have shown how properties of the ideal certified-mail system can be derived
symbolically and automatically hold for the real system. This was one step in a program to
link cryptographic systems and formal methods that was significantly extended since.
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12 Appendix

12.1 Remaining Walkthrough Proofs

In the proof of Lemma 2 in the main text, we only presented the walkthrough proof for the
case of an honest sender and summaries of the other two cases.We now present the full
proofs of these other two cases.

Case R: Correct Recipient; Incorrect Sender.In this case, we have Figure 10 without
cm s andcm s′, and withthr. In Parts 1 and 2 we consider all states reachable and inputs
accepted except bycm v andcm v′.

1. States reached without inputreceive: The only round wherecm r and thr accept an
input (receive, s, l) at port in r? is Roundi. If they do not, both remain in their starting
state forever and do not make any outputs; hencecm r′ does not get an input(receive, . . .)
via dis either and also remains in its starting state and does not make outputs.

If the adversary nevertheless inputs a correctm5 at s2t? of cm t andcm t′ in Round
i + 5 (the only round where these machines accept inputs), this must contain a correct
messagem2, i.e.,testpkr

(m2) = ((s, r, i), m2, . . .). Then we put the run in the setForgek
and set the forged signature tosigf := m2 and the attacked participant tou := r. Note
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that no other transaction machine signs a message starting((s, r, i), m2, . . .) with skr , and
recall that tuple decomposition is unambiguous. Otherwise(i.e., without acceptable inputs)
cm t andcm t′ also do not make any outputs.

2. States reached on inputreceive: If (receive, s, l) is input atin r?, thenthr changes to
Stater1 and outputs(receive, s, l), which dis dispatches tocm r′. Thuscm r andcm r′

wait for an inputm1 in Roundi + 1.

No m1. If the adversary does not send a correctm1, thencm r outputs(failed) at out r!
in Roundi + 6, while cm r′ immediately outputs(suppress) to thr via dis, and thr

changes from Stater1 to r2. Thus in Roundi + 6, thr outputs(failed) at out r! as well
and changes into Statefailed. No network outputs are made in this process, andcm r,
cm r′ andthr never accept any other inputs.
Again, if the adversary nevertheless inputs a correctm5 to cm t andcm t′ in Round
i+5, we let the run be inForgek with sigf := m2 for the messagem2 contained inm5

and withu := r.
m1 andm3. If cm r andcm r′ receive a correctm1, both sendm2. If they receive a correct

m3 = ((s, r, i), m, rS) in Roundi + 3, both sendm4 andcm r′ outputs(send, m) at
out r′!. This is dispatched tothr, which changes into Stater3. Thus bothcm r andthr

output(received, m) at out r! in Roundi + 6, and all three make no further network
outputs or accept other inputs.
If the adversary additionally inputs a correctm5 to cm t andcm t′ in Roundi+5, they
both outputm6 at t2s! andt2r!. Additionally, cm t′ outputs(send, . . .) at out t′!, but
thr ignores it, being already in Stater3.

m1, nom3, butm5. If cm r andcm r′ do not receive a correctm3 (after sendingm2), both
wait until Roundi + 6.
If cm t andcm t′ obtain a correctm5 in Roundi + 5, they both sendm6, andcm t′

outputs(send, m) at out t′! for the m contained inm5. Thusthr changes to Stater3
and outputs(received, m) at out r! in Roundi + 6. As the channel fromcm t to cm r

is authentic,cm r obtainsm6 as sent bycm t and also outputs(received, m) atout r!.
m1, nom3, nom5. In this case, ifcm r andcm r′ obtain a correctm6 in Roundi + 6, we

let the run be inForgek with sigf := m6 andu := t. Note that the message signed
in m6 starts((s, r, i), m6, . . .) and no other transaction machine signs such a message
with skt .
Otherwise,cm r outputs(failed) in Roundi + 6, and so doesthr (changing to State
failed) because we saw that it is still in Stater1.

3. Inputs tocm v andcm v′: The remaining accepted inputs are at the portss2v? of cm v

andcm v′; they must be made in a roundj ≥ i + 7 and must be correct receipts. (Thus
this part of the proof mainly proves that receipts are unforgeable and fixed.) We now de-
note receipts and their parts with primes (m′

i, l′ etc.), and messages handled by the other
machines as before.

If a correct messagem′
7 arrives,cm v outputs(received, (s, r, i), l′, m′) at out v!,

while cm v′ outputs(show) at out v′!, which is dispatched toin a?. Thenthr also out-
puts(received, (s, r, i), l′, m′) at out v! if it is in Statereceived with the parametersl = l′

andm = m′. We show that this is true except in certain cases that we put into error sets.

Proof ofl′ = l (unforgeability of labels in receipts). Both acceptable forms of m′
7 must

contain correct messagesm′
1 andm′

2. If cm r andcm r′ did not send a messagem2

with the same content((s, r, i), m2, m1, pR), let the run be inForgek and sigf :=
m′

2 and u := r. Note that no other transaction machine signs a message starting
((s, r, i), m2, . . .) with skr .
From now on, we consider that they sentm2 and thusm′

1 = m1 andp′R = pR. The ver-
ifications incm r andcm r′ (implied by our notational conventions for state-transition
diagrams) imply that the valuel′ in m1 equalsl as it was input tocm r andcm r′, and
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thus tothr. Furthermore,cm r′ makes no output(suppress) and thusthr never changes
to Stater2.

Proof thatthr is in Statereceived (unforgeability of a receipt).
i. If the correctm′

7 contains the identifierm7, it contains a correctm′
4, in particular

a valuer′R with f(r′R) = pR. If cm r andcm r′ did not sendm4, let the run be in
the setOwfBreakk . Note that the originalrR is internal tocm r andcm r′ and only
used in the assignmentpR ← f(rR).
If cm r′ sentm4, it must have received a correctm3, i.e., ((s, r, i), m, rS) with
compkc(m, rS) = c for the componentc of m1. Then it output(send, m) atout r′!,
which causedthr to change to Stater3, and thus in Roundi + 6 to Statereceived,
storing this variablem.

ii. If the correctm′
7 contains the identifierm6, but cm t andcm t′ did not sendm6,

let the run be inForgek andsigf := m′
6 andu := t. Note that no other transaction

machine signs a message starting((s, r, i), m6, . . .) with skt .
If cm t andcm t′ sentm6, they must have received a correct triple(m′′

1 , m′′
2 , m′′

3).
If the content ofm′′

2 is unequal to that ofm2 sent bycm r andcm r′, we let the
run be inForgek with sigf := m′′

2 andu := r. Otherwise,m′′
1 = m1 andm′′

3 =
((s, r, i), m, rS) with compkc(m, rS) = c for the componentc of m1. Thencm t′

output (send, m). This causedthr to change to Stater3, and thus in Roundi +
6 to received, with this parameterm, except if it was already in Stater3 with a
parameterm′′ 6= m. This would imply thatcm r′ output(send, m′′), which it does
only if the adversary sent a correctm3 containingm′′, r′′S with compkc(m

′′, r′′S) =
c = compkc(m, rS). We then let the run be inBindBreakk and bindbreak :=
(m, rS , m′′, r′′S).

Proof ofm′ = m (unforgeability of the message in the receipt). Both correct forms ofm′
7

contain a correctm′
3, i.e.,((s, r, i), m′, r′S) wherecompkc(m

′, r′S) = c for the compo-
nentc of m1. Thism′ is indeed the one thatcm v outputs.
If m′ 6= m, let the run be inBindBreakk andbindbreak := (m, rS , m′, r′S) with m, rS

from m3 or m′′
3 as derived in the proof thatthr is in Statereceived.

Case SR: Correct Sender and Recipient.In this case, we have Figure 10 with all ma-
chines, and withthsr. As in Case S, inputs tocm t, cm v andcm t′, cm v′ can only come
from cm s andcm s′, respectively, i.e., those will not do anything unlesscm s andcm s′

do.

1. States reached without inputssend andreceive: As in the first two cases,cm s, cm r and
thsr only accept inputs(send, r, l, m) and(receive, s, l′) at portsin s? andin r? in Roundi.
If neither of these inputs occurs, they remain in their starting state forever without making
any outputs, and so docm s′ andcm r′.

2a. Inputsend alone:If (send, r, l, m) is input, but(receive, s, l′) is not, thenthsr changes
to Statesr1 and outputs(send, r, l), which dis dispatches tocm s′, while cm r′ obtains
no input.cm s andcm s′ then sendm1. As in Case S, we defineφ such that that these
messages are equal.cm r andcm r′ never leave their starting state and send nothing. If
the adversary now inputs a correctm2 to cm s andcm s′, let the run be inForgek and
sigf := m2 andu := r. (No other transaction machine signs a message((s, r, i), m2, . . .)
with skr .) Otherwise,cm s outputs(failed) at out s! in Roundi + 6, and so doesthsr,
being in Statesr1 (ignoring an output(suppress) from cm s′). No further outputs are made,
or inputs accepted, in this process, andcm s, cm s′, andthsr are in Statefailed.

2b. Inputreceive alone:If (receive, s, l) is input, but(send, . . .) is not,thsr changes to State
sr2 and outputs(receive, s, l), whichdis dispatches tocm r′. Thencm r andcm r′ wait for
m1, while cm s andcm s′ remain in their starting states without making any outputs.If the
adversary inputs a correctm1 to cm r andcm r′, let the run be inForgek andsigf := m1

andu := s. Note that no other transaction machine signs a message((s, r, i), m1, . . .) with
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sks . Otherwise,cm r outputs(failed) at out r! in Roundi + 6 and so doesthsr, being in
Statesr2 (ignoring an output(suppress) from cm r′). No further outputs are made, or inputs
accepted, in this process.

2c. Different labels:If inputs (send, r, l, m) and(receive, s, l′) with l 6= l′ are made,thsr

changes to Statesr3 and makes outputs(send, r, l) and(receive, s, l′), which are dispatched
as(send, r, l,msim) and(receive, s, l′). Hencecm s andcm s′ sendm1. As in Case S, we
define a mappingφ on the random values used such that these messages are equal.If the
adversary now inputs anm′

1 to cm r and cm r′ that passes their test withl′ (while m1

containsl), let the run be inForgek andsigf := m′
1 andu := s. Otherwise,cm r andcm r′

do not send any messages. If the adversary can then input a correctm2 to cm s andcm s′,
let the run be inForgek andsigf := m2 andu := r. Otherwise,cm s andcm s′ do not
send further messages either, andcm s andcm r output(failed) in Roundi + 6. So does
thsr, being in Statesr3 (ignoring outputs(suppress) from cm s′ andcm r′). The machines
cm s, cm s′, andthsr are in Statefailed.

2d. Two matching inputs:Finally, let inputs(send, r, l, m) and(receive, s, l) be made. Then
thsr goes to Statesr4 and outputs(send, r, l) and(receive, s, l). When these are dispatched,
cm s′ sendsm1 like cm s. From now on we distinguish the messages that arrive on an
insecure channel from those that were sent by a superscript “a”.

No correctma
1 . If the adversary does not forward a correctma

1 to cm r andcm r′, then
cm r outputs(failed) in Roundi + 6, while cm r′ outputs(suppress), which causes
thsr to change to Statesr3 and thus to output(failed) at bothout s! andout r! in Round
i + 6. If the adversary inputs a correctm2 to cm s andcm s′ in Roundi + 2, let the
run be inForgek andsigf := m2 andu := r. Otherwise,cm s also outputs(failed) in
Roundi+6, and no machine makes any further output (except(suppress)) or considers
inputs. The machinescm s, cm s′, andthsr are in Statefailed.

Correctma
1 , no correctma

2 . If the adversary forwards a correctma
1 to cm r andcm r′, both

sendm2. If the valueca in ma
1 differs from c in m1, let the run be inForgek and

sigf := ma
1 andu := s. Thus from now on, we can assumeca = c.

If no correctma
2 is forwarded by the adversary,cm s outputs(failed) in Roundi + 6,

while cm s′ inputs(suppress) to thsr, which changes to Statesr3 and thus tofailed in
Roundi + 6, outputting(failed) atout s! andout r!. They do not make further outputs
or consider inputs.
If the adversary nevertheless inputs a correctma

3 to cm r and cm r′, let the run
be in ComOwfBreakk . Note that ma

3 must contain values(ma, ra
S) with c =

compkc(m
a, ra

S), and that the valuerS from the assignment(c, rS) ← comrpkc(m)
in cm s, and similarlyrsim in cm s′, has not yet been used anywhere else.
Otherwise,cm r andcm r′ wait for m6, but this does not come: It could only come
over an authentic connection fromcm t andcm t′, and those only react on a message
over an authentic connection fromcm s andcm s′, respectively. Hencecm r andcm r′

also do not send further messages, andcm r outputs(failed) atout r! as well.
Correctma

1 andma
2 . If the adversary forwards a correctma

2 , cm s sendsm3, while cm s′

first only outputsreceive atout s′!, which is dispatched tothsr. Thusthsr changes from
Statesr4 to sr5 and outputs(msg, m), whichdis dispatches tocm s′. Thencm s′ sends
m3 := ((s, r, i), m, rS) as well (as in Case S). Ifma

2 contains a valuepa
R 6= pR, let

the run be inForgek andsigf := ma
2 andu := r. Otherwise, we can now speak of one

fixedpR.
Now thsr will output (sent) at out s! and(received, m) at out r! in Roundi + 6 and
from then on always be in Statereceived or showing. Furthermore, the behavior of all
corresponding machines with respect to the network is clearly identical from now on,
andcm s andcm s′ enter the same final state. Hence only the final states and outputs
of the real structure remain to be derived.
i. If the adversary does not forward a correctma

3 , thencm r does not sendm4 and
waits form6. If the adversary nevertheless inputs a correctma

4 to cm s, then this
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must contain anra
R with f(ra

R) = pa
R = pR. Then let the run be inOwfBreakk

and note that the originalrR is internal tocm r and only used in the assignment
pR ← f(rR). Otherwise,cm s sendsm5. It arrives atcm t because the connection
is authentic and passes the test by construction. Hencecm t sendsm6 to cm s and
cm r, again over authentic connections. Hence they make outputs(sent) at out s!
and(received, m) atout r! in Roundi+6 as desired, andcm s is in Statereceived′.

ii. Now let the adversary input a correct messagema
3 = ((s, r, i), ma, ra

S) to cm r. If
ma 6= m, thencompkc(m

a, ra
S) = compkc(m, rS) = ca = c. Then let the run be

in BindBreakk andbindbreak := (m, rS , ma, ra
S). Otherwise,cm r now storesm

and outputs(received, m) in Roundi + 6. Thencm s either obtains a correctma
4 ,

or it sendsm5 and getsm6 as in Case i. In both cases, it outputs(sent) in Round
i + 6 and changes to Statereceived or received′.

3. Reactions on inputshow. The proof for an input(show) is identical to Case S, except
that Statesr5 plays the role of States3.

This finishes the walkthrough proofs of the two cases omittedin the main text of the
paper.


