Reactively Simulatable Certified Mall

Birgit Pfitzmann, Matthias Schunter, Michael Waidner

IBM Zurich Research Laboratory, Saumerstrasse 4, CH-88Bhlikon, Switzerland,
e-mail: {bpf, nt's, wnm }@urich.ibm com

Revision of Sept. 2004 of a journal submission from Dec. 2000

Abstract Certified mail is the fair exchange of a message for a redegptthe recipient
gets the message if and only if the sender gets a receiptatt ismportant primitive for
electronic commerce and other atomicity services. Cetitifiail protocols are known in
the literature, but there was no rigorous definition yet,artigular for optimistic protocols
and for many interleaved executions. We provide such a defintia an ideal system and
show that a specific real certified-mail protocol is as seasr¢his ideal system in the
sense of reactive simulatability in the standard model gprgraphy and under standard
assumptions.

As certified mail without any third party is not practical, wensider optimistic proto-
cols, which involve a third party only if one party tries toagt. The real protocol resembles
prior protocols, but we had to use a different cryptograjphimitive to achieve simulata-
bility. The communication model is synchronous.

This proof first demonstrated that a cryptographic mukltpgprotocol can fulfil a gen-
eral definition of reactive simulatability enabling conemnt composition. We also first
showed how formal-method style reasoning can be appliedtbeedeal system in a cryp-
tographically sound way. Moreover, the treatment of midtjrotocol runs and their mod-
ular proof in spite of the use of common cryptographic prives for all runs can be seen
as a first example of what is now known as joint-state comjposit

Key Words: Certified Mail, Fair Exchange, Reactive Simulatability,fmosability, For-
mal Methods

1 Introduction

A certified-mail protocol enables the fair exchange of a ragssi.e., arbitrary data, for a
receipt [18,49]. It ensures that either the recipient getsmessage and the sender gets a
receipt or neither party gets anything; no knowledge ablmeiniessage must leak in that
case. Certified mail is an important non-repudiation piireifor electronic commerce. A
receipt unambiguously characterizes the message rec@inisds essential in the delivery
of high-value digital goods, which are usually post-paicaiow inspection before pay-
ment. It is also useful to make sure that an order has beeiveelcen particular with goods
whose price changes quickly, or if the buyer must otherwasd for another supplier on
short notice. Another example is the provision of informaatinder a non-disclosure agree-
ment. More theoretically, certified mail can be used to ptewiontract signing, e.g., the
fair exchange of two signatures under a contract text [5®],@her atomicity services such
as fair multi-party exchange of arbitrary items [2].

2 Birgit Pfitzmann et al.

There are three classes of certified-mail protocols. Patsogith an in-line third party
involve a trusted third party in every protocol run [49,58,27]. The older cryptographic
literature treats two-party protocols that involve onlg gender and the recipient, e.g., [18,
49,53,31,19]. These protocols are based on the graduahegehof secrets. However,
their error probabilities only decrease linearly in the tnemof rounds, and one can show
that this is unavoidabléHence they are not used in practice. In order to minimize the
involvement of a third party in realistic scenarios, op8tig protocols were introduced [3,
4,39,7,57]. Here a trusted third party is available to eagairness, but it is only involved
in a protocol run if something goes wrong in this run.

The main value of this paper is not that we propose a new ogticniertified-mail
protocol, although we do. More importantly, we provide thstfrigorous definition of
certified mail, in particular for optimistic protocols anaf fmany concurrent protocol runs.
However, the main value in hindsight—the paper was origynatitten in 2000—is that
it was the first example that cryptographic multi-step pcote can fulfil a definition of
reactive simulatability that enables concurrent compmsitThis approach is nowadays
better known as “universal composability” [47,48,23]. Queal certified-mail system is
abstract, i.e., the specification for one protocol run isrgpée, deterministic state-transition
machine. Essentially it gets two inputs, a payload message & sender and an OK to
receive a message from the recipient. If these inputs fitthegeit outputs the payload
message to the recipient and a success indication to therséiicny time after a success
indication, the sender can input the wish to convince a eerif the sending, and the
verifier will get the output that the sender in fact sent thessage to the recipient. While
we will add some details below to allow efficient protocoldutfil the specification, the
ideal system remains without probabilism and cryptograpijects. Hence it is easy to
encode in state-of-the-art automated proof tools for ithsted systems, in order to prove
larger electronic-commerce or agreement protocols baseémified mail.

Many later publications adapted other, often smaller, jiriws or protocols to the reac-
tive simulatability / universal composability settingléawing either similar lines of defin-
ing abstract ideal systems as here, or working on lower $evBhbstraction where there
are still cryptographic objects. While it may thus seem rarnmowadays that such ideal-
izations can be made and real protocols can fulfil them, this mot at all clear in 2000. It
was known from zero-knowledge proofs that some interestyisgems cannot be composed
concurrently in spite of fulfilling normal cryptographicfitétions [30], and it was known
from multi-party function evaluation that committing piitiaes are problematic in simu-
lation proofs. As reactive simulatability implies concemt composability, and all known
certified-mail protocols contain somewhat committing ptives, we were very suspicious
of our potential results. This was also a reason for us to naakery detailed proof. It is
typically not hard to define the simulator for a simulatapifproof, i.e., a machine that
interacts with the ideal system and uses an arbitrary admesgjainst the real system as a
subroutine, and that produces behavior that the honest naanot distinguish from what
would happen in the real system. One may be tempted to stbsatdint and say that the
simulator obviously simulates correctly. However, conipgitwo such systems, the ideal
system plus simulator with the real interacting machines, distributed-system problem
of significant size, and humans often misjudge the correstoédistributed systems even
for much smaller examples. For instance, even for a verylsysiem like signatures cer-
tain ideal systems and proofs had to be repaired severas {ip%8]. Thus the hard part
of the proof is to rigorously show that the simulator sime$atorrectly. We still believe
that every simulation proof should contain this part, butaialy the first large proof with
respect to a new definition had to.

1 In [17] such a lower bound was proven for two-party contraghisg. Contract signing can be
reduced to the type of certified mail defined here; the rednatieeds only one additional round of
communication and does not increase the error probabifityificantly [52]. The reduction is given
for optimistic protocols only, but one can easily see thatdb works for 2-party protocols.

Reactively Simulatable Certified Malil 3

Our certified-mail system is also the first example of a teghaithat later became
known as joint-state composition [25], although the geliation was only sketched in the
outlook of the original report [46]. These aspects occunvem layers: First, the certified-
mail system is defined as a composition of many submachiaeb,lendling one transac-
tion with a specific transaction identifier. Higher protacoln therefore essentially work
with independent certified-mail transactions even thowgft jstate is present underneath.
Secondly, the proof is performed modularly for the trarisaictnachines, although they
jointly use three cryptographic primitives, signatureshwarbitrary memory, a one-way
function, and chameleon commitments. For these, we did setthe technique that one
would use for higher-level protocols using certified ma#, jwe did not abstract them as
ideal systems with their own transaction identifiers. ladteve use a similar separation
technique directly for the original definitions.

An interesting aspect is that one-way functions and comenitis by themselves do
not have simple idealizations in the standard model of oggaphy [23]. Nevertheless,
our overall result is in the standard model. This is due ttrict®ns in the usage of the
primitives: The one-way functions are only used for oneetsignatures. The commitments
are used in a scenario with a trusted third party—this pdrgady exists in optimistic
certified mail to guarantee fairness, but now we also usedhtmse the commitment key.
Thus in the simulation the simulator can choose the comnmitiey, and it can later use the
chameleon property to open commitments to reveal arbitreegsages, here the payload
certified-mail message that the simulator did not know wherukating a commitment
on this message. A definition of primitives via ideal systemith usage restrictions was
recently made for symmetric encryption in [11]; similarédemight be applicable here.

Our certified-mail protocol is synchronous, i.e., there imo#on of rounds. In practice,
rounds can be realized if suitable bounds on clock devigimhmessage delay are given.
While recent cryptographic advances focus on asynchropiaiscols, in particular in the
simulatability area following [48, 23], synchronous prodts remain important in practice
because one almost always needs timeouts anyway; e.dl thecaxample of time-critical
buying. Simply combining an asynchronous protocol withnaetbut will typically not retain
the security. It was later shown in [5] how the synchronousteays and simulatability
definitions from [47] can be represented as special caselseofsynchronous versions
from [48]. However, this embedding does not make concrettopol definitions and proofs
easier. Further, a synchronous proof implies the absentinofg vulnerabilities, e.g.,
covert channels, on the round level, while an asynchronmaf gannot do this.

Finally, our certified-mail protocol is labeled. This meéhat the recipient initially
agrees to receive a mail under a specific subject, called, labé this label becomes part
of the receipt. Labels are important for fixing a protocolteom

1.1 Further Related Literature

The underlying security definition of reactive simulatébiand its composition properties
were introduced in [47] and extended to asynchronous systerf8,23]. It extends the
security notions of multi-party (one-step) function ealan [54,34,32,40,15,22] and the
observational equivalence of [38]. The idea of simulatghbilas already used earlier for
specific reactive problems, to our knowledge first in [29]] arhen constructing generic
solutions for large classes of reactive problems [34, 3&]ally yielding inefficient solu-
tions and assuming that all parties take part in all subpr$o None of these prior reactive
papers proposed a general definition or a composition theore

Before certified mail, secure message transmission by a ioatidn of signatures and
encryption was the only reactive (multi-step) system defiaed proved with respect to
a simulatability definition with known concurrent compagitality, and also only in grey
literature [45]. Many difficulties that occur in certified thdo not occur there yet, e.g.,

4 Birgit Pfitzmann et al.

multi-round subprotocols, multiple sub-protocols pensaction identifier (here sending a
mail and showing the receipt), and committing primitives.

Separation of protocol runs by transaction or session iiifenstis a well-known tech-
nigue in practical distributed computing, although ratedated systematically. In security,
it is known from robust protocol design [1], where protocebifjners are advised to add
transaction, message, and participant identifiers to atitated messages unless there is a
good reason not to, although this advice is not as explidit @suld be. Not all protocols
need transaction identifiers, though. For instance, atittation protocols typically choose
nonces internally in the protocol; see, e.g., [16] (whosel®s correspond to transactions).

A comparison of labeled certified mail with protocols whdre tecipient simply agrees
to receive a message, or where he need not agree at all, isigi{&2] via reductions and
round- and message-optimality results for all classes.

2 State-Machine Notation

We use state-transition machines as the primary systemipiodéher words probabilistic
I/O automata similar to [51]. A Turing-machine realizatisndefined for the class of au-
tomata used in [47]. This allows us to define ideal systentalsiai for treatment by formal
proof tools when designing higher-level protocols ovemnth&hile at the same time the
real systems have well-defined complexities. Further,abés rigorous definitions of our
systems. While pure Turing machines also allow this in ppiec in reality one typically
resorts to informal activity diagrams or state-transitioachines there, too.

Each machine may have different connections, e.g., to aamska network. These are
attached at so-called input and output ports. Following @&@&tion we denote input ports
with 7 and output ports with Ports of different machines that only differ in this “ditien”
are connected.

We often define state-transition functions graphicallyhie following standard nota-
tion: A circle is a state. An arrow labeled[c]/out is a transition resulting from an input
in, dependent on conditian(which can refer to the input and the internal state) andtesu
ing in an actionout, typically an output. Inputs that are not explicitly showai state are
ignored. No condition meartsue. The notatiorx.y means thay is input or output at port
x. We then omit the direction of poxt(the ? or!) because it is clear from the context. A
dash means no in- or output. A state transition without impeians that the machine always
makes this transition in the next round. An inptk.y means that the machine makes the
transition if the inputy is not received at post in the next round.

We further define that every input parameter is assigned toiable of the same name
in the machine if no assignment to such a variable occurréardén the given run of
the machine; otherwise the input is only accepted if the eslof the parameter and the
variable are equal. Finall{; (time) globally denotes the current round number, although
not all machines need to know it. The starting state is deseghby an incoming arrow
without source. The label of this arrow denotes initial &bles in this machine.

3 Ideal System for One Labeled Certified-Mail Transaction

In this section, we present an ideal system for labeledfiggttinail. Defining ideal systems
is an engineering discipline, even more so than making reménts-based definitions of
cryptographic systems, because an ideal system containg reguirements all in one.
There are multiple reasonable ideal systems for a protdassé dike labeled certified mail,
which allow different subsets of the implementations theg may intuitively all regard as
labeled certified mail. In particular, there is often a tradiebetween ideality and efficient
realizability. By ideality we mean simple, strong definitgthat will be most appreciated
by higher-level protocols.

Reactively Simulatable Certified Malil 5

Actually, in this section we only define an ideal system foe dransaction. Exten-
sions to multiple transactions are discussed in Sectiohe3; &re relatively standard for
distributed systems.

3.1 Motivation of the Definition

As discussed in the introduction, a highly ideal systEih,.;.. for certified mail might look
as follows. This simple description already allows any nendf transactions.

— Whenever TH,,y. Obtains two matching inputgsend,r,i,m) at portin,? and
(receive, s,1) at in,? in a roundi, it outputs (received, (s,r, i), m) at out.! and
(sent, (s,r, 1)) atouts! in the next round.

— For every non-matched such input, it outp(ftsled, (s, r, 7)) to the party concerned.

— On input(show, (s,r,4)) atin,?, it outputs(received, (s,r,%),l, m) atout,! if it previ-
ously got an inpufsend, , I, m) atins? and answered witksent, (s, r,)).

HereTH,.;v. Stands for “naive trusted host’ andr are identities of a sender and recipient,
ing? andin,.? are input ports for these two parties, and,! andout,.! are the output ports
where these parties get results. We modeled only one veifteroutput portout,,! for
simplicity because verifiers are stateless in our protamatswould thus all act identically.
The inputssend andreceive start the sending protocol, whithow starts the showing of
a receipt. The valuekare the labels; note that the recipient inputs the label heesgo
initially; further, both parties designate the desiredtipar in their inputs. For simplicity,
we treat the combinatiofs, r, 7) of the partner identities and round number as transaction
identifier, allowing only one protocol per such combinatidhe following proofs would
work equally well with more such possible protocols; an siddal transaction identifier is
then needed in many places where now the triple, :) is used.

Unfortunately, normal certified-mail protocols do not shtithis simple, very ideal
specification.

First, TH.ive hides all interactions between honest parties from theradwe In real
life, it would be very expensive to hide who communicateswithom at what time. As
the secure-channel example in [44] shows how to allow justrtfinimal information, we
decided here to model the usual unencrypted protocols fhanfair-exchange literature.
Thus for each transaction, our final trusted host initiatignfards all non-secret parts of the
user inputs to the adversary at a peut_a!, and later forwardémsg, m) when a payload
message is sent in clear.

Secondly,TH,..ive guarantees availability, i.e., it always delivers certifieails between
agreeing honest users. However, in usual real systems teesaaly can prevent commu-
nication. Therefore our final trusted host accepts inpupgress from the adversary that
describe which protocol runs are disrupted. However, wel mekable channels to trusted
third parties.

Thirdly, TH,..ive produces outputs in one round, while every real optimistatqgzol
requires at least four rounds already in the optimistic §&2 Hence we use a number
A of rounds as a free parameter in the specification. For lytewié use only one such
parameter for all honest parties and all cases. Showingegptegill work in one round.

Finally, the trusted host with the additions discussed sevtauld make outputs to the
adversary after the same timeas to honest parties. However, a real adversary can usually
learn results faster. For simplicity, our final ideal systiows the adversary slightly more
than a real adversary can achieve in any specific protocotatedisrupt at any time, or
decide that he will not disrupt and immediately learn theiltss

3.2 Ideal Machines for One Transaction

As every transaction may go through several states now, fueedihe ideal system as a
composition of state-transition machines for individuahtsactions. We first define these

6 Birgit Pfitzmann et al.

[T=i+A]/
out_s.(failed)

in_a.(suppress) / -

in_s.(send, r, I, m)[i=T] / ,/ in_s.(show) / out_a.(show),
’ [T=i+A]/ out_v.(received, (s, r, i), I, m)

i out_a.(send, r, /)
out_s.(failed)

N
in_a.(receive) /
out_a.(msg, m)

in_s.(show) /
out_a.(show)

[T=i+A] /

—in_s.(show)/
out_s.(sent)

out_v.(received, (s, r, i), I, m)
Fig. 1 Ideal transaction machinihs for correct sender only. Dashed arrows arise from adversary
inputs.

[T=i+A]/
out_r.(failed)

in_a.(suppress) / —

in_r.(receive, s, N[i=T] / ,’/

out_a.(receive, s, /) Q ’

[T=i+A]/
out_r.(failed)

N
N
\
N

in_a.(show) /

in_a.(send, m) /- @ e Y out_v.(received, (s, r, i), I, m)
[T=i+A] / ceived ~<
out_r.(received, m) ~__ S
Fig. 2 Ideal transaction machirtér for correct recipient only.
in_s.(send, r, I, m)[i=T] / [T=i+A]/
out_a.(send, r,) Q out_s.(failed)
————————»{sr,
in_r.(receive, s, I')[i=T] / [T=i+A]/
out_a.(receive, s, | out_r.(failed
AN _a.(’) @ L r.()
in_s.(send, r, I, m), .
in_r.(receive, s, I[i=T] out[Ts:I(-;glléd)
/out_a.((send, r, /), _s.{lalled), : h /
(receive, s, I') [- out_r.(failed) (I)TJYSa(S(Sf?th),
ImTTT oo > out_v.(received, (s, r, i), I, m)
= ! ;n__a.(suppress) [T=i+A] / -
| out_s.(sent), in_s.(show) /
! out_r.(received, m) out_a.(show)

3 GO Sum— P — Heiveg)=
in_a.(receive) / [T=i+A]/ —in_s.(show) /
out_a.(msg, m) out_s.(sent), out_v.(received, (s, r, i), I, m)

out_r.(received, m)

Fig. 3 Ideal transaction machirthsr for correct sender and recipient.

transaction machines. We distinguish whether only theesefigk), only the recipientthr),

or both partiesthsr) in the transaction are honest. The trusted third party is/isible in
the ideal system; it only has an auxiliary role in real sysgteihus the ideal system is not
specific to optimistic protocols. The following is the rigos definition using the state-
machine notation introduced in Section 2.

Definition 1 (Ideal Machines for One Certified-Mail Transaction) We define machine
typesths, thr, andthsr with ports for each party concerned with this transactioimss?
andout_s! for ths andthsr, in_r? andout_r! for thr andthsr, and alwaysut_v!, in_a? and
out_al. Their state-transition functions are defined in Figure® Bt

These state-transition functions correspond to the nalgalisystems with the addi-
tions motivated above: Each transaction machine is stdyeihputs (send, ...) and/or
(receive, . . .) from the correct users. If both sender and recipient are siptiee statesr,

Reactively Simulatable Certified Malil 7

srp, andsr; occur if there are not two matching inputs. The adversaryédiately obtains
the parameters of the run at the paut_a!. Then forA rounds he can either disrupt the run
with (suppress) or decide that it should end successfully by inputtisend, m) if he is the
sender, or elséreceive). In the latter case, he immediately obtains the payload agessf
the honest sender. The outputs for the honest users only aften A rounds. Only then
can receipts be shown. Showing by an adversary works witleisame round, by an honest
user it has one round delay. In most user outputs we now alriitte:, i) because it only
served as a transaction identifier in the naive ideal syst@chfor a one-transaction system
this is clear by the machine identity.

Parameterizing the Ideal SystemThe ideal system from Definition 1 accepts inputs of ar-
bitrary length. (We tacitly assume that all inputs are coakedtrings over a fixed alphabet.)
Further, it is willing to show receipts for one transactiohittarily often. One consequence
is that it is not polynomial-time in the usual sense for iatgive Turing machines, i.e.,
polynomial-time measured in a security parameter alonec&llghis strictly polynomial-
time It is, howeverweakly polynomial-timg.e., polynomial-time in the overall length of
inputs it receives. The system model and the simulatalzitynition do not require ideal
systems to be polynomial-time at all; however, proofs (efjhigher protocols using this
trusted host and other cryptographic primitives) are odierpler if all machines are strictly
polynomial-time, because this is a composable notion, imrast to weak polynomial-time.

For this purpose, we also define a parameterized versioredfial system. It has a
message space, a label space, and a bound on the number @$,radnich may depend
on a security parametér. Thus they are sequencé®sg;,)ren, (Lk)ken, and(Bx)ken.
The message and label spaces must be polynomial-time téeisiabsets of strings over
the given alphabet, and the bounis € N polynomially bounded and polynomial-time
computable. Then we modify the machirgs, thr, andthsr as follows: They only run
for By, rounds. Inputs namegk and! are typed, i.e., the machines verify thate Msg,
and! € L, before accepting such an input. Finally, they have lengtimds determining
how many symbols of any input they read. Polynomial boundf&cgnt for all correct in-
puts can easily be derived from the message formats. Whdens well-defined on the
Turing-machine level in the original report [46], the capending input-bounding func-
tions for our state-transition machine model were only galhedefined in [12], called
length functions.

Independent of their use for polynomial time, restrictedssage and label sets may be
useful in specific applications of certified mail.

4 Real Certified-Mail Protocol for One Transaction

Like the ideal system, the real system for labeled certified,me., the actual protocol,
is built from machines for individual transactions, and wistfdefine these transaction
machines.

4.1 Overview

We first sketch our protocol as activity diagrams, beforemiiedj it rigorously via state-
transition machines. The subprotocol for sending a mailtheee potential participants,
the sender’s machinan_s, the recipient’s machinem_r, and the third party’s machine
cm_t. The protocol for showing a receipt is similarly executedabgender and a verifier.
The inputs starting these subprotocols and the possibeitaito the users are the same as
in the ideal system.

The subprotocol for sending is shown in Figure 4. Messageandms, are promises
to send a payload message under labahd to give a receipt for it, respectively. The

8 Birgit Pfitzmann et al.

cm_s cm_t cm_r
In: (send, 7,1, m) In: (receive, s,1)
rg —
gencg(pke) e ()L ()
ma « sign,, ((s,7,1),1,comppe(m, rs
, ! rr & {0,1}F
ma « sign, (m1,f(rr))
ms := (m,rs)
my = (TR)
ms := (m1, ma, m3)
—_—— —_— me <—
Signskt (m5)
me me
—_—— e —— — _———— —
Out: If mo: Out: If ms or ms:
(sent) (received, m)
else:(failed) else:(failed)

Fig. 4 Run of the sub-protocol “send”. Dashed flows are only heedéide non-optimistic recovery,
i.e., if m4 is missing.

cm_s cmov
In: (show, (s,7,1))

my = (ml,mg,mg,m4) or meg
If m7 or me:

Out: (received, (s,r,1),1,m)

Fig. 5 Showing a receipt

valuei is the number of the starting round ahdx security parameter. The message part
compire(m,rs) is @ commitment ton, using a suitable random value generated with an
algorithmgencg (pkc). The message pafitrr) is a one-way function applied to a random
value; this is used as the public key for a one-time signatfiteoth parties are honest,
the sender reveals the payload messaga mgs, and the recipient sends the one-time sig-
naturerg as a receipt inny. If a dishonest recipient does not semd, the sender uses
the recipient’s promisens in m5 to convince the third party that the recipient wanted to
receive a message under this label. Thus the third partyafalydssue an affidavitys.
If a dishonest sender does not reveal the payload messagg ithe recipient waits until
Round: + 6. If mg arrives, the recipient extractss and thusn from it. Otherwise it knows
that the message will never arrive and can safely deciddtikatansaction failed. For the
latter, the third party must honeis only if it arrives in Round + 5.

If the sender wants to show the receipt to a verifier, it sénds mo, ms, m4) Or mg,
respectively, see Figure 5. The verifier can easily verifynlpmtential receipts, provided it
knows the public keys.

4.2 Cryptographic Primitives Used and Probabilistic N abat

In the following, NEGL denotes the set of all negligible functions, ig:, N — R>¢ €
NEGL iff for all positive polynomials@, JkoVk > ko: g(k) < 1/Q(k). The notation
P(... :: ...) means the probability of the event before fn the probability space defined by
the probabilistic assignments after™ By [alg(-)] we denote the set of possible outcomes
of a probabilistic algorithmalg(-).

Reactively Simulatable Certified Malil 9

For all algorithms of the following cryptographic primitéig, we assume that efficiently
computable upper bounds on the output length, given the iepgths, are known, as well
as for the number of random bits needed in a probabilistiorétgm.

A signature scheme is a triple of algorithifgens, sign, test). We assume w.l.0.g. that
the message space st for an alphabet’ with {0,1} C X andfalse ¢ X+ [27]. We
write (sk, pk) < gens(1¥,1°") for the generation of a signing key and a test key based on
a security parametérand the desired maximum number of signatusés; N. By sig «—
sign. (m), we denote the (probabilistic) signing of a messagevheresk may be updated
in the process. This is a simple way to represent schemesneithory. We assume thaiy
is of the form(m, sig’). The deterministic verificatiotest,,, (sig) returnsm or false; in the
first case we say that the signature is valid. The fifstorrectly generated signatures must
be valid. Security of a sighature scheme means that existéorigery is infeasible even in
adaptive chosen-message attacks [33]:

Definition 2 (Signature Security) Given a signature scheme and a functighoverN, a
signer machin&ig... is defined as follows: It has one input and one output portialdes
sk, pk, and the following transition rules:

1. First generate a key paifsk, pk) < gens(1%,1°"), and outputpk.
2. On input(sign, m;), return sig; < signg; (m;).

The signature scheme is calledistentially unforgeable under adaptive chosen-message
attackif for every efficiently computable, polynomially boundédnd every probabilistic
polynomial-time machinAg;, that interacts witf5ig . and outputs a valueig, the proba-
bility that m := test, (sig) # false andm was not signed b$ig,. during the interaction

is negligible (ink).

Definition 3 (Security of a One-way Function)A functionf : {0,1}* — {0,1}* is called
one-way if for all probabilistic polynomial-time algorithsA,,

P(r* =rur& {0, 1}k;T* — Aowf(lkvf(r))) € NEGL
(as a function of:).

A non-interactive chameleon commitment scheme [21] is aletupf algorithms
(genc, gencr, com, trans) wherecom is deterministic, and a message spddey.. We
write (skc, pkc) « genc(1%) for the generation of a key pair based on a security parameter
k, andr «— gencgr(pkc) for the generation of a suitable random vatu®r commitments
given the public keykc. We writec := com,.(m,) for the commitment on a message
m € Msgc using the public kepkc and the random value By (c, r) < comrpi.(m), we
abbreviate the composition— gencg (pke); ¢ := comppc(m,).

A commitment ¢ is opened by sendingm,r). The recipient verifies that
compke(m,r) = c. By r* «— transg.(c, m,r,m*) we denote the transformation that al-
lows the owner of the secret keyic to take a commitment, valuesm, r that open it,
and another message* € Msg. and to derive a value* such thatc can be opened
to m* usingr*. For all correctly generated keys and= com,.(m,r), this must give
¢ = comppe(m™, r*).

Definition 4 (Security of a Chameleon Commitment Scheme)A non-interactive
chameleon commitment scheme is called secure if it has ltbeviiag three properties.

a) Computationally bindingFor every probabilistic polynomial-time algorithAx
P(comypye(m, r) = compge(m™, r*) Am #m*
=t (ske, pke) «— genc(1F); (m, r,m*,) «— A(1%, pke))
€ NEGL.

10 Birgit Pfitzmann et al.

b) Perfectly hidingFor all (skc, pkc) € [genc(1*)], all probability distributionsDist on
Msgc, all m € Msgc and all possible commitments

Ppise= (m|c) = Ppist(m)

whereDist* is the distribution defined by, < Dist; (c,) « comrg.(m).2

c) Chameleonfor all (ske, pkc) € [genc(1%)] and m,m* € Msgc: The probability
distribution of the pair(c,7*) in (¢,r) « comrpic(m); ™ «— transg(c, m,r,m*)
equals that in(c, 7*) <« comrpi.(m*).

For example, we can use the commitment scheme from [20, P&j#2a chameleon exten-
sion, combined with a family of collision-resistant hashdtions [27]. In the basic scheme,
key generatiorgenc(1%) means to randomly chooseékabit prime ¢ and an/(k)-bit prime

p with ¢|(p — 1) for a function! determining a suitable second security parameter, a gen-
eratorg of the unique subgrou@, of orderq in Z?, andz <= Zy, and to seh := g”. The

keys arepkc := (p, ¢, g,h) andskc := z. A suitable random value is chosenas™ Z,
and a commitment on a message € Msgc = Zq aSc := compp.(m,r) = g™h"
mod p. The transformation is* := transg.(c, m,r, m*) := (m — m*)/x + r. The bind-
ing property holds under the discrete-logarithm assumgto this family of groups. We
now use a family of collision-resistant hash functions towlcommitments to arbitrarily
long inputs. A particular hash functidrash, ., is also (at least in theory) selected by a
public key pkh that becomes part of the public key of the extended commitseheme.
The hash outputs for a security parametenust belong taV/sg.. Given a message,, we
now commit tohash,,;;, (m). One easily sees that this combination retains all the ptiege
of the commitment scheme.

For proving simulatability of the certified-mail scheme, mezd that an adversary can-
not open a commitment made by someone else even if he hasctheseontent. This is
Part b) of the following lemma, and Part a) is a simple factuse

Lemma 1 (Properties of the Commitments)

a) For all (ske, pkc) € [genc(1%)], all m,m’ € Msgc, and all possible commitments
P(d =c:: (c,r) «— comrpie(m)) = P(c' = ¢ (¢,r) « comrpi.(m)).
b) For all probabilistic polynomial-time algorithm&;, As:

P(c = comppc(m™,r")
2 (ske, pke) — genc(1%); (m, auz) — AL (1%, pke);

(¢,1) « comrppc(m); (m*,r*) «— Ax (1%, pke, m, auz, c))
€ NEGL.

Here auz denotes auxiliary information tha; may hand toAs.

Proof If Part a) were not true, then fdfoisc(m) := Ppist(m') := 1/2, we would obtain a
contradiction to the hiding property:

Ppist (mlc) = Poist(m)P (" = ¢ :: (¢, 1) « comrpic(m))/ Poist+(c)
=1/2P(c = ¢z (¢/,r) < comrpke(m))/ Poist (¢)
#1/2P(c = c:: (¢, r) « comrpe(m'))/ Ppist= (¢)
= Ppise- (m’|c).
For Part b), assume that;, A, contradict the lemma. Then either the probability with

an additional conditiomn* # m or with m* = m is still not negligible. The first case
immediately contradicts the binding property.

2 Thus Poise- (m/|c) abbreviates?(m’ = m|c’ = ¢ :: m’ « Dist; (¢, 1) «— comri.(m')).

Reactively Simulatable Certified Malil 11

in_s.(show)
/as s2v.m,
r2s m, iy celved
out s.(sent)

in_s.(send, r, I, m) r2s.m,/
[i=T]/ as,, as.
s2r.m, ’ sern In _s.(show)
/ S2v.mg
s, i,. @ r2 @ t25 mg ! celved y
pk., p.kc, /a54 out_s. (sent) .
Global: sk e s2tm,
OO O (o)
out_s.(failed)

Fig. 6 Sender transaction machinm_s.

In the second case, consider an adveraarthat carries outm, auz) « Ay (1%, pke),
then chooses a messagé # m in Msgc (e.g., the first possible one out of two fixed
ones), setéc,) « comrpi.(m’) and finally(m*, r*) « A(1*, pkc, m, auz, c). By Part
a) this does not change the distributioncafompared with the assumption abaut and
A,. Hence the success probability Af is unchanged, and as in the first case we get a
contradiction to the binding property.

4.3 Real Machines for One Transaction

We now define the real machines for one transaction of ouifieelHmail protocol in detail.
Note that the same sender transaction machine once sentiseamgossibly many times,
shows the resulting receipt. As we allow the machines fdierht transactions to use
a common signature key that may be updated in each signinglefiee it as a global
variable, indicated by “Global:” on the start arrow. Funthee define subprograms for
message tests and computations that do not fit into the tsgatsition diagrams, called
“az ;" for party z’s action in stateg.

A comma in messages denotes tuple composition, not corataienit must be imple-
mented such that decomposition is unambiguous. We sligltiynent the message format
of Figure 4; in particular we repeat the transaction ideantifi places to simplify later dis-
patching. Further, we add message type identifiersriken signed messages, although
in this protocol this is not needed because each type of madigns only one type of
message.

Definition 5 (Real Machines for One Certified-Mail Transaction) We define machine
typescm_z with = € {s,r, ¢,v}. Each machine has at most one input and output port for
its userin_z? for z € {s,r} andout_z! for 2 € {s, r,v}. Further, it has so-called network
ports z2y! for outputs to a machine of typen_y and y2x? for inputs from that machine.
The detailed behavior of these machines is defined in Fighi®s8. We now define the
subprograms used in the figures; they operate on the vaiatflthe respective machine as
defined by our general conventions.

In the sendetm_s.
Subprogramasg. Let(c,rs) « comryic(m) andm, « signg, ((s,7,4), m1,1,c).
Subprogranas,. Verify thattest,, (m2) = ((s,r,i), m2, m1,pr) for some valuep.
If yes, setns := ((s,r,i),m,rs).
Subprogramas,. Test whethern, = ((s,r,i),rr) for some valuer € {0, 1}* with
f(rr) = pr. If not, setms := (mq, ma, m3).
Subprogranasy. Setmy; := ((s,r, i), m7,my, ma, ms3, my).
In the recipientm_r.

12 Birgit Pfitzmann et al.

—/ out_r.(received, m)

s2r.m, /
t2r.mg/ ar’s,

out_r.(received, m)
—t2rmg /

out_r.(failed)

in_r.(receive, s, /) ar,
r2s.m,

S, 1,
Pk, pke,
Global: sk, —s2r.m,

> — [out_r.(failed)

s2v.m’, [T>i+6] / av,,
out_v.(received, (s, r, i), m)

s2t.m, [T=i+5]/
S, I, at,, t2s.my, t2r.my
Pk, pk, pkc,

Global: sk,

Pk, pk, pkc

Fig. 8 Transactions machinesn_t andcm_v for third party and verifier.

Subprogramary. Verify thattest,x, (m1) = ((s,r,7), m1,1, ¢) for some value. If yes,
setrp <= {0,1}* andmg « sign,;, ((s,7,i), m2,my, f(rg)).

Subprogranars. Verify thatms = ((s,r,¢),m,rs) for some valuesn and rs with
compic(m,rs) = c. Ifyes, setny := ((s,r,4),rR).

Subprogramarg. Retrieve the signed messade, r, i), m6, ms) from mg, decompose
ms into (m1, mg, mg), and decomposes into ((s,r,4),m,rg).

In the third-partycm_t, subprogramatgy. Test thatms is a triple (my, m2, ms3) with
testyr, (m1) = ((s,7,1),ml,l,c) for some valued and ¢, and test,g, (m2) =
((s,7,4),m2,my,pr) for some valuepr € {0,1}*. Finally, test thatms =
((s,7,1),m,rg) for some valuesn andrg with com,;.(m,rs) = c. Then seing —
signg, ((s,7,1), m6, ms).

In the verifiercm_v, subprogranuvg. Verify that m’ is of the form mg =
(((sy7,4),m6,ms), sig) ofr my = ((s,r,i),m7,my, ma, mg,my) for some val-
uesm; and sig. In the first case, test ifest,i, (mgs) = ((s,r,i), m6, ms) and verify
and decompose:; as defined forcm_t. In the second case, verify and decompose
ms := (m1, m2, ms) in the same way and then verify, as defined form_s.

Part of the trust model for this protocol is that the chanteesnd from the third party
and the verifier are reliable and authentic, i.e., messagi® as sent, although the ad-
versary may read them. The assumption that other partieseiably communicate with
the third party is essential for optimistic (and in-line)tifieed mail. For the verifier, it is
less essential, but otherwise we would have to allow theradwe to suppress runs of the
“show” protocol in the ideal system. The authenticity ofgaehannels could be realized
cryptographically, while the reliability has to be assumed

We can parameterize these real machines with the same reemsadpbel spaces and
bounds on the number of rounds as the ideal system. Againemelifine that the machines
stop afterB;, rounds, that inputs calleak and! are typed, and we define length functions
that bound the number of symbols read in each input. We usgathe length functions for
inputs at the service ports as in the ideal system. The baueetded for network messages
can easily be derived from the message formats and the adsupper bounds on the
outputs of the cryptographic primitives. For polynomiedesmessages and labels and a
polynomial bound on the rounds, we then obtain strictly polyial-time real machines,
while the machines in Definition 5 are only weakly polynontiaie.

Reactively Simulatable Certified Malil 13

5 Reactive Simulatability

In order to prove that the real system (for one or many traisas) is as secure as the ideal
system, we need a summary of the underlying security defirdtfrom [47]. As said in
Section 2, the machine model is essentially normal proistibistate-transition machines
and we do not repeat a formal definition héfEhe machines are connected according to the
port naming convention, i.e., messages outpy atrrive atp?. A collectionof machines

is a set of machines compatible with this connection conwante., no port occurs twice.

A collection is callectlosedif all ports are connected.

Runs(executions) are defined for closed collections esseyntialthe usual way for
probabilistic state-transition machines (see [51]), imtipalar in the synchronous case
needed here. Only, to capture security notions like rushitersaries, we allow differ-
ent clocking schemes. A clocking scheme witlubrounds for a machine collectidt is
afunctions : {1,...,n} — P(M); it assigns each subround the set of machines switching
in this subround.

For security purposes, we distinguish certain free pori ofllection of machines as
service ports This is where the honest users of the protocol (human useashigher-
level protocol) are supposed to make in- and outputs. Ftariiee, in both the real and the
ideal certified-mail system for one transaction with hosestder and recipient, the service
ports are the sef := {in_s?, out_s!,in_r?, out_r!, out_v!}. When comparing systems (e.g.,
a real one and an ideal one), we restrict ourselves to systétimshe same service ports.
We call a pair(M, S) of a machine collection and distinguished service podicture
For instance(thsr, S) and({cm_s,cm_r,cm_t,cm_v}, §) are corresponding real and ideal
structures for one transaction of certified mail.

A structure becomesnfiguration(M, S, H, A) by adding an adversa®yand honest
usersH. Both are normal probabilistic state-transition machjres typically universally
guantified, while the machines of the structure are predefilbe honest usetd must
only link to the machines of the structure by the service gosthile the adversary links
to the other free ports, e.g., insecure network connectitogether, a configuration must
be a closed collection. We use the clocking scheéMe A H, A). The notation exploits
that functions ovef1,...,n} are equivalent to tuples, and we omitted brackets around
one-element sets. Thus not only the adversary, but alsoahesh users are rushing. The
motivation for this clocking scheme and equivalence restdn be found in [45]. For con-
figurations, we typically consider the case where the irstate of each machine is just the
security parametér. Then the runs are a family of probability distributions ¢timer words
random variables), one for each valuekdt

Viewsof machines anttacesof the events at certain ports are defined in a natural way
as restrictions (projections) of runs. Details of the rupresentation and these projections
are not needed in the following; they can be found in [47].

Often one defines antended structuréor a real system, in other words a protocol and
intended connections for a number of parties, pltrsist modelthat defines how many of
these parties might be corrupted and how, and how securetimections are. We may thus
obtain a set of possible real structures. To allow many tyfésust models, the general
security definitions in [47] are for arbitrary sets of possistructures, calledystemsThe
certified-mail system for one transaction has three passitsictures corresponding to a
trust model where the sender, the recipient, or none may beped. As said above,
channels to and froram_t andcm_v are authentic, the others insecure. The latter means
that both machines actually interact with the adversaig;ithformally realized by a port

3 The only special aspect is the length functions that may #dba length of the inputs read at
each port in each state, as explained above and first defieed@ly in [12].

4 Qur transaction machines have initial variables; nevésisewe measure the complexity in
terms ofk. Leaving open where the initial variables come from allovfferent versions of multi-
transaction systems later, see Section 8.

14 Birgit Pfitzmann et al.

Sim

N— —

Fig. 9 Example of blackbox simulatability; the two views of the ubkare indistinguishable.

renaming convention defined in the derivation of a systemmfam intended structure and
a trust model.

The notion of reactive simulatability essentially mearst fhmakes no difference for
the honest users whether they interact with the real systetheoideal system. This is
illustrated in Figure 9 (already for the usual stronger addsackbox simulatability). More
precisely, their view is indistinguishable in corresporgistructures. Indistinguishability is
an important cryptographic concept, first from [55].

Definition 6 (Computational Indistinguishability) Two families (varg)gen and
(var,)keny Of random variables (or probability distributions) are cpmotationally
indistinguishable (%,.,") iff for every algorithm Dist (the distinguisher) that is
probabilistic polynomial-time in its first input,

|P(Dist(1%,vary) = 1) — P(Dist(1*, var}) = 1)| € NEGL.

Intuitively, Dist, given the security parameter and an element chosen angaalieither
vary, Or vary,, tries to guess which distribution the element came from.

We now denote the random variable of the view of a machinie a configuratiorconf
by view cong (M). Then reactive simulatability is defined as follows.

Definition 7 (Computational Reactive Simulatability for Structures) We say that a
st[ucture(Ml, S)A is computationally at least as secureastructure (M-, S) and write
(M, S) >P3Y (My, S) iff for every configuratiorconf, = (M, S,H,A;), there exists a

configurationconf, = (M, S, H, A;) such that
View cong , (H) Rpoly View cons, (H).

Blackboxsimulatability, written>P2l-"> means that, givefiif;, S) and the setP of

—sec

adversary portsA is a fixed simulato6im with A; as a blackbox submachine.

A typical simulator does not modify the communication bedwA; andH (as already
shown in Figure 9) and thus only depends on the struc(w}fﬁ S). Further, for blackbox
simulatability, one typically shows that the joint view Hf and A; is indistinguishable.
Thus the distinction oH andA; disappears, while the service ports remain important to
decide howsim connects to the ideal system.

The reactive simulatability definition is lifted from strtuces to systems (sets of struc-
tures) by comparing “corresponding” structures defineddyyies mapping. Certified mail
belongs to the canonical case where a%ef service ports uniquely characterizes a corre-
sponding real and ideal structure, corresponding to a sebméct participants according
to the trust model. We also write*22” for systems.

Note that this is only a brief summary of some definitions fri@m] and that the re-
port [45] contains even more variants as well as equival@ngefs. Further note that al-
though we usually talk of real and ideal systems, the dedimitido not need such a distinc-
tion.

Reactively Simulatable Certified Malil

15

in_s? in_r?
out_s! out r! out_v!

ths/r ‘

S ds i
in_s? in_r? in_s‘?ﬁ in_r’?lf T T
ﬁout_s! LTout_r! Tout_v! out s’ ylout r'! Jout v! |out t'!
’cm_s‘ ’ cm_r cm_v‘ ’ cm_t ‘ ’cm_s ‘ cm_r" cm_V ’cm_t’

Network connections x2y

Network connections x2y

Fig. 10 Machines for one transaction in the real system (left) amdidleal system with simulator
(right). Machineths/r stands fotths, thr, or thsr depending on which parties are correct.

6 Simulator for One Transaction

We will prove that the real certified-mail system (for one aany transactions) is as se-
cure as the ideal system in the sense of blackbox simulayalior this, we first define a

simulator for one transaction.

The main cryptographic aspect is the simulation of the ngessa of the subprotocol
“send” if the sender is honest: In Rouadvherem; should be sent, the ideal system does
not reveal the payload messagethe honest user wants to send. Nevertheless, the simu-
lator has to input a correct-looking network message to thveigaryA, which includes a
commitment that is supposed to fix. If the protocol run is successful, the simulator has to
open this commitment two rounds later. If it then reveals asagen’ # m, the simulation
is not correct. This is why we need the chameleon propergltdivs the simulator (which
also simulates the machiren_t and thus knows its secret commitment kéy) to make
the commitment on an arbitrary messagg,,, and later open it to the correct message

The main non-cryptographic aspects of the simulation axetiy that the real adver-
sary has no possibilities to disrupt the protocol runs inaierstates, to show receipts too
early, etc., that are not specified in the ideal system.

We structure the simulator for one transaction similar eortral system, i.e., it explicitly
simulates machinean_s and/orcm_r, cm_t, andcm_v. Additionally it translates signals
that the ideal system outputs at petit_a! into user inputs to these machines and vice
versa. The machines, instead of making their normal final osguts, recognize certain
intermediate situations and output the decision to sugpye correctly finish the run as
needed for the ideal system. Figure 10 shows the resultirodpimes in the comparison of

the real and ideal system.

For such a behavior, the simulator switches twice per reahdpbefore and after a
switching step of the ideal system. Formally, this would me¢d to be visible in the sim-
ulator definition: The simulator is a synchronous maching @an make one transition in
each of its rounds. However, for ease of comparison with #a¢ system, we draw the
state-transition diagrams essentially with the globahos.®

Definition 8 (Simulator for One Transaction) The simulator for one transaction of la-
beled certified mail consists of submachiness’ and/orcm_r’ (intuitively depending on
whether only the sender, only the recipient, or both are Bnem_t’, andcm_v’, and
a dispatcherdis. The user ports of these machines are nained'? for x € {s,r} and
out_z’! for z € {s,r,t,v}. The network ports are named as in the real system.

5 Formally we use the clocking scherfigH, Sim, A, H, A, Sim) for an ideal system with separate
simulator. With the combination lemma of [47] (Lemma 2) tgstem wheré\ andSim are combined
into an adversarp’ and clocked agTH, A’ H, A’), i.e., the prescribed clocking for synchronous
systems, is well-defined, and does not change the views ofsaty)machines. Similarly, a scheme
is defined wher&H andSim are combined into one machind’ and clocked agM’, A, H, A), and
this also does not change any views. Hence we can use thdtattemparison with the real system.

16 Birgit Pfitzmann et al.

in_s’.(show) /
re as7 s2v.m,
r2sm celved -
)
in_s'.(send, r,) fjt'”g,/ T
[i=T]/ as’;, .
|n _s’.(show
sZrm (receive) -(show) /
@ E) (‘/\ s2v.my
s, in_s’. —.r25m t23m /- celved
pk,, pke, (msg, m) / Jas.
Global: sk as’,, s2r.m, 2t r‘;,
5

—r2s.m,/
out_s’.(suppress)

OO @

Fig. 11 Simulated sender transaction machines’. Differences tazm_s are denoted in bold face.

out_r’ (send m),
s2r.m,

in_r'.(receive, s, /) /ar,,
[i=T]/ - —~T2s.m,

S, 1,
Pk, pke,
Global: sk,

—s2r.m, /

out_r’.(suppress) ‘ Q_>Q_>Q—>

Fig. 12 Simulated recipient transaction machine_r’.

‘ s2t.m,[T=i+5]/
S, I

aty, t2s.my, t2r.m,
out_t’.(send, m
Pk, pk, pke, ol)
Global: sk,

s2v.m’, [T>i+6]/
av,, out_v’.(show)
Pk, pk,, pkc

Fig. 13 Simulated transactions machings_t’ andcm_v’ for third party and verifier.

Input atout,? | toport of

(send,r,1) ins’? cm.s’
(receive, s,1) in.r'? cm.r
(show, (s,7,7)) | ins'? cmzs’
(msg,m) ins'? cm.s’

Fig. 14 Dispatching of inputs from the ideal system in the simulator

The state-transition diagrams of the main machines are ddfim Figures 11 to 13. We
draw two states of the simulator that envelop one switchiapg sf the ideal system (and
thus try to simulate one real switching step) as one circliessma decision is made in the
middle. Inputs at network ports are always expected in the dif these two states; then
the machines make outputs at their user ports, disdlispatches them tm,!. Inputs at
out,? are expected in the second state, dispatched to the usessinpthe submachines as
defined in Figure 14, and then the machines make outputs afetfreork ports. The global
time T is now interpreted as an external global variable. ke, be an arbitrary fixed
message.

Onlycm_s’ uses new subprograms:

Incm_s'.

Reactively Simulatable Certified Malil 17

Subprogramas. Let (¢, 7sim) <+ comrppe(Mgim) and my «— signg ((s,7,1),
ml,, ¢). Generate a random string;,.,s Of sufficient length for a later call of
trans for ¢ with another message..®

Subprogranas). Transform the commitment withy — transgg.(c, Msim,, Tsim, M),
usingrqns if random bits are needed in this process. >:= ((s, 7, %), m, rg).

This was a simulator for the original, weakly polynomiaht systems. If we make the
real system strictly polynomial-time, we do the same fordineulator with the same global
parameters, the same length functions for network inpuid,emsily computable bounds
for the inputs from the ideal system.

7 Correctness of the Simulation for One Transaction (Over Jmt State)

We now want to show that the simulator for one transactien,one run of the subprotocol
“send” with potentially many runs of “show” for the resuljmeceipt, simulates correctly.
However, we want to do this in a modular way that later letstiplg transactions use
common signature and commitment keys, as well as a commowapéunction.

7.1 Methods to Prove Correct Simulation

To prove blackbox simulatability with the given simulatoedall Definition 7 and Fig-
ure 9), we show that arbitrary polynomial-time users and aeaersaries cannot distin-
guish whether they are interacting with the real transaatinthe ideal transaction plus
simulator. This is essentially what is called observati@tmivalence in formal methods
for distributed systems. The polynomial-time case wasdiefined in [38] for ar-calculus
system model. Ignoring probabilistic and cryptographmeass, there are essentially three
systematic methods for such proofs when the product stateesyf each system is too large
for ad-hoc treatment, as it is the case with a certified-maiigaction.

— Walkthroughs through both systems with all accepted injpuggch state, showing that
they produce identical outputs at the same times. This sporeds to an exploration of
the reachable space of corresponding states, typicaltphdapt. When automated, this
approach is called model checking.

— Bisimulation. This means to define a general relation betweerresponding” states
of the two systems, and to show that equal inputs in corredipgrstates lead to equal
outputs and to corresponding states again. When autontlig the typical approach
with general-purpose theorem provers.

— Calculi. This means a successive transformation from oseesy definition into the
other by a fixed set of provably secure transformation sté€ps. is a typical method
with process algebras.

For this proof, we chose the walkthrough approach, becausesystems for one transac-
tion are relatively straight-line and thus a step-by-stgument seemed easiest for human
provers and readers. In the outlook, Section 10.1, we disoo one could partially auto-
mate such a proof, but why it would still be a significant ceadje far beyond the scope of
this paper.

7.2 Assumptions on the Use of Joint Primitives

In the walkthroughs we will encounter situations that depen the cryptographic prim-
itives, and sometimes on the correct overall use of thosaifiwes with joint state. We

5 This is only a technicality that simplifies the proof. It réms thatMsg is polynomially bounded
or the sufficient length is independent:af as in the example commitment scheme in Section 4.2.

18 Birgit Pfitzmann et al.

will later prove that the overall probability of so-called@ sets where the observational
equivalence is not guaranteed (e.g., due to a forged sigr)atunegligible even for many
transactions. Besides the definitions and lemmas from @edt2 we will need one as-
sumption about the joint use of signatures.

Definition 9 (Assumption on the Joint Use of SignaturesyVhen considering a certified-
mail transaction with the transaction identifigs, r, 7) in the initial states of all machines
in the real and simulated variant and using a global variabke we make the following
assumptions.

a) No other application uses: to sign messages of the foi(ts, r, i), mz, ...) withz €
1,2,6.

b) The keyk has been correctly generated és:, pk) — gens(1%,1°7) and no applica-
tion uses it for anything other than signing.

¢) Whenever the real transaction and the simulated one #gtsign, thensk has the same
value (even if the real transaction and the simulated onenateexecuted in identical
environments) and less thah signatures have been made withoverall so far.

We immediately see from the state-transition functions ¢aah certified mail transac-
tion fulfils Assumption a) of the others. Hence this assuopis automatically fulfilled if
the many transactions of a certified-mail system are the apyfication that uses this key.
This assumption generalizes to other types of transaatientifiers than(s, r,) if each
signed message is again a tuple starting with this tramsaitentifier.

7.3 The Walkthrough Proof

We summarized the machines that handle one transactioe ivthsystems in Figure 10.
We call the real structuretruc and the simulated structurgruc’. Recall that network
channels involving the third party or the verifier are autieand reliable, while those be-
tween senders and recipients are insecure. By the formightiens of real structures from
intended structures sketched in Section 5, this meansnpats supposedly from sender
to recipient and vice versa are actually inputs from the eghrg, and thus outer inputs for
us, while the authentic channels only give additional ootgputs because the adversary
can listen there. We want to show that these two structusenéally have the same outer
input-output behavior by walkthroughs with all acceptabfguts in all reachable states.

Lemma 2 (Walkthrough Security of One Certified-Mail Transaction) Let the two struc-
tures summarized in Figure 10 be given, where all machinesstarted in Round with
the same security parameteand transaction identifiefs, r, i), the keys in the start states
have been chosen correctly and consistently, the signagsemption (Definition 9) holds,
and the ideal protocol length parameters = 6. Then they have the same probabilistic
input-output behavior and make the same use of the globahgige keys for all input se-
guences except for a set of runs calexdor setghat we define within the proof. This holds
both for the original weakly polynomial-time versions ahd strictly polynomial-time pa-
rameterized versions.

Each run in an error set corresponds in an obvious way to at&ituwhere a crypto-
graphic primitive has been broken. It will thus not be hardhow later that the error sets
are negligible; however, because of the joint use of priregtj we have to postpone this
proof to the consideration of multiple transactions.

Proof In the walkthroughs, corresponding machinesz andcm_z’ will essentially be in
the same state. The only exception is that the choice of threrdtments is done differently
in cm_s andcm_s’. For this, we will define an exact mapping of correspondingdoan
values that lead to the same future input-output behaviendd in all other places in the

Reactively Simulatable Certified Malil 19

walkthroughs, we only have to remember the current statkeofé¢al machines and of the
trusted host in the system with simulator. We distinguish tthree cases from our trust
model.

For the strictly polynomial-time case, note that the sirtedeand the real system have
the same bounds on the length of accepted messagesiAframa H, and that the bounds
for messages between the trusted host and the simulatorassuened to be chosen suf-
ficiently large for the simple message format used therehabrmessages from either of
these machines will always be completely read by the other.

Case S: Correct Sender onlyln this case, we have Figure 10 withauh_r andcm_r/,
and withths.

1. States reached without inpseind: The only round wherem_s andths accept an input
(send,r,l,m) at portin_s? is Round:. If they do not, both remain in their starting state
forever and do not make any outputs. Hemees’' does not get an inpusend, . ..) via

dis and also remains in its starting state. &s_t, cm_t’, cm_v, andecm_v’ only get inputs
on authentic connections froem_s andcm_s’, respectively, they also never get inputs and
make outputs.

2. States reached on inpsénd: If (send,r,{,m) is input atin_s? of ths in Roundyi, it
changes to Statg and outputgsend, r, 1) atout_a!, which dis dispatches tem_s’. Thus
cm_s andcm_s’ sendm;. These messages only differ in the computation of the com-
mitmentc. (Here the signature assumption is used; we do not mentisratiain.) We
therefore define a mapping of random valuesmafs’ to corresponding ones ein_s as

O (Tsims Ttrans) = T's < transgee(C, Mgim, Tsim, M), Wherery.,s is used if random bits
are needed in this process; recall that s’ chooses,.,s already in this round. By the
chameleon property, the resulting commitmengse equal, and thus so are the messages
my. Furthermore, the chameleon property implies that theltieguistribution of (¢, rs)
equals that itm_s.

Noms. If the adversary does not respond with a corregt(the test is equal fatm_s and
cm_s’ in the given states), thetin_s outputs(failed) at out_s! in Roundsi + 6, while
cm_s’ immediately sendésuppress) via dis to ths. Thusths changes from Statg to
s2, and in Round + 6 it outputs(failed) atout_s! as well. No network outputs are made
in this process, and all three machines finish in Stated.

Correctms. If cm_s and cm.s’ receive a correctms, then cms sendsms =
((s,r,1),m,rs), while cm_s’ inputs (receive) to ths via dis. Thusths changes from
States; to s3 and reveals the payload messaggrasg, m). Thuscm_s’ also sends
mg still in Round: + 2, using the value's «— transg. (¢, Mgim, Tsim, M), cOMputed
deterministically withr,.,,s. This is the sameg as used bym s.

After sendingns, the behavior o€m_s andcm_s’ with respect to the network is identi-
cal. If they send a message;, it arrives atcm_t andcm_t’ because these connections
are authentic, and it passes the test by definition, sacthat andcm_s’ will obtain a
correctmg. Thus in Round + 6, cm_s andcm_s’ either both enter the stateceived or
bothreceived’, andths entersreceived and remains in this state andsdiowing. In this
round, bothcm_s andths also outpu{sent) atout.s!.

This covers all states reachable and inputs accepteehby; cm_s’, andths as long as the
only input atin_s? is (send, ...). Ascm_t, cm_t’, cm_v, andcm_v’ only accept inputs on
authentic connections froom_s andcm_s’, respectively, the same holds for them.

3. Reactions on inpstow: Now we consider an inpshow) in Roundj atin_s?. Machine
cm_s accepts this input if it is in Stateceived or received’, while ths considers it in State
received or showing. Above we showed that the machines enter these states tnedsarhe
conditions in Round + 6, and thatcm_s’ is then in the same state asi_s. Now ths
goes into Statehowing and outputgshow), which dis dispatches tem_s’. Hencecm_s’

20 Birgit Pfitzmann et al.

sends the same messagg or m~ to cm_v/ ascm_s to cm_v on authentic connections. By
construction, these messages are accepted. dhusoutputs(received, (s, r,4),l, m) in
Roundj + 1, just like ths does because it is in Statkowing. In addition,cm_v’ outputs
(show), which is dispatched tths, butths is in Stateshowing and ignores it.

Case R: Correct Recipient Only.As the walkthrough proofs are tedious and follow the
same pattern, we postpone the remaining two to the appeddne we only summarize
the situations where we put runs into error sets. (We do ndtthewalkthroughs entirely
because they are the part of the proof that is unique to esttifiail, and they show that
the following situations are really the only ones where & and the simulated systems
deviate.)

— If no input (receive, s,1) is made tocm_r andthr (always in the correct round), or
cm_r andcm_r’ do not obtain a correct messagg, and thus they do not send.,
and the adversary nevertheless inputs a correct messagecm_t andcm_t’ later, or
m4% to cm_v andcm_v/, this must contain a correct message, i.e., test,, (m2) =
((s,r,4),m2,...). Then we let the run be in the error SBirge; with the forged sig-
naturesigs := my and attacked participant index:= r. Recall that by Assumption 9
no other application signs a message startipgr, i), m2, .. .) with sk, and that tuple
decomposition is unambiguous, i.e., this is indeed a fgrger

— Similarly, if cm_t andem_t’ do not obtain a correct messagg, butcm_r andem_r’
or cm_v andcm_v’ obtain a correcing, thensigs := mg is signature forgery for a
message startinf(s, r, i), m6,...), and we put the run in the error s€brge;, with
attacked participant := t.

— If em_r andcm_r’ sentmy and the adversary later shows a receigt containing a
differentm?, we put the run in the error sébrge;, with sig; := m4 andu :=r.

— If cm_r andem_r’ sentms but notm,, and the adversary can nevertheless show a receipt
of the formmy, it must contain a one-way preimagg with f(r;) = pr for the one-
time public keypr from mqy, while cm_r andcm_r’ never used the original preimage
rr except in the assignmepg — f(rg). This contradicts the one-way propertyfof
We put the run in the error s&wfBreaky,.

— If ecm_r andcm_r’ obtainedmg with a payloadm and the adversary can later show
a receiptm/, for a different payloadn’, then the receipt must contain a messagge
where the same commitments opened in a different wayom,;..(m',ry) = ¢ =
comyy.(m,rg). This contradicts the binding property of the commitmeys. put the
run in the error seBindBreak;, and sebindbreak := (m,rg, m’,).

Case SR: Correct Sender and Recipienfs in Case R, we only summarize the situations
where we put runs into error sets here.

— Similar to Case R, we encounter cases where the adversgssfarsignatureigs on a
message with identifien1 with sk, or on a message with identifier2 with sk,.. We
put those runs in the error sefterge;, with v := s or r, respectively.

— If cm_s andcm_s’ sendm;, but do not obtain a correet, via the adversary, and
the adversary nevertheless inputs an acceptaljeto cm_r and cm_r’, then this
contains values that open the commitmentrom m;, i.e., values(m?®,r%) with
¢ = compi.(m®,rg). However,cm_s did not use the values from the assignment
(¢,r5) « comrpi.(m) anywhere else. This situation therefore contradicts Lerima
We put the run in the error sétom OwfBreak, .

— If the adversary forwards correct messages andm,, but no acceptablens, and
nevertheless inputs an acceptablg to cm_s andcm_s’, then this contains a one-way
preimage, with f(r};) = pr for the one-time public keyr from m,. Howevercm_r
andcm_r’ never used the originalz except in the assignmepf, — f(rg). Hence we
put the run in the error s&dwfBreaky,.

Reactively Simulatable Certified Malil 21

— If the adversary forwards correct messagesandms, and an acceptable but incor-
rect third message§ = ((s,r,1), m% r%) with m® # m for the payloadn used
by cm_s andcm_s’, thencom,i.(m®,r%) = compr.(m,rs) = c for the commit-
ment used bym_s. We put the run in the error sé&tindBreak;, and sethindbreak :=
(m,rg,m*,rg).

8 Multi-Transaction Systems

In a real certified-mail system it must be possible to exemaay certified-mail transac-
tions. We first present options for constructing the ovespditem. We then show how our
security proof for one transaction carries over to a muétibaction system in spite of the
joint use of primitives by these transactions.

8.1 Multi-tasking Options

There are multiple options for executing multiple tran&ats of certified mail, reflecting
programming styles known from real distributed systemsé wiultiple transactions (also
called sessions, tasks, or threads).

Network dispatchingln the real system, multiple transactions of multiple typéproto-
cols are running in the same overall machine with a fixed nurabphysical connec-
tions. Hence network inputs must be dispatched to the dgsretocol and transaction.
Three standard solutions are:

— Explicit dispatcher. The messages arrive on one conneatidra specific program,
called dispatcher, distributes them to the transactioas élpect them by some
transaction identifier. The transaction identifier may cdrom a flat domain, e.g.,
be chosen randomly or assigned by the dispatcher, or berttideai.e., starting
with a protocol identifier like “certified mail”.

— Dispatcher in the network layer. A dispatcher may alreadyberent in the under-
lying network stack in the ability to set up multiple netwaréssions, one for each
transaction.

— Token-based communication. The network outputs of a titsamay be given
to the caller of the transaction for transport. This can miré the communication
overhead as only top-level transactions communicate.

Another distinction with dispatcher solutions is whethéispatcher starts a new trans-
action if a message with an unregistered transaction ifi@mdirrives, or whether a local
caller must generate the transaction first.

User in- and outputsThe different transactions in one machine need inputs froair t
users and make outputs to these users. Typically the useoikex protocol, but some
transactions have an interface to people. This is essgrti@ same question as net-
work dispatching, only seen from the other side.

— Explicit dispatcher. The users make the inputs into a fixemtt’g(e.g., they call a
fixed library) which internally handles multiple transacts.

— Visible multi-tasking. Each user once calls afixed port toayate a new transaction
locally and then interacts directly with this transactibompractice, the transaction
may come from a pool instead of being newly generated.

Multi-tasking or not. In real systems, multi-tasking or multi-threading is often ineffi-
cient, and a high-level design with transactions is redlizg a low-level design with-
out, typically with global state and function tables. It nsgem uninteresting at this
point whether this happens with a real implementation ofifoedl mail (although in
principle the correctness of the transformation must bequ}y but it may even con-
cern ideal systems: While for a higher-level transacti@t tises only one certified-mail
transaction it may be best to consider just this transactorapplication using many

22 Birgit Pfitzmann et al.

lower-layer transactions may best represent them all asn@ohine also in some auto-
mated proof tools.

We believe that all these variants can be formalized witlmwablems for cryptographic
protocols. In the original report [46] we chose a scheme waiitlexplicit dispatcher for net-
work in- and outputs as well as for user in- and outputs. Furtmulti-tasking is partially
realized with global state, as there are global variabléstha dispatchers are not explic-
itly clocked as separate machines. However, these desisi@not inherent in the design
of the individual transaction machines. (The only excepi®the treatment of signature
keys as global variables, but these could be replaced by attines, in particular the
signer machines from Definition 2 with an additional disp&tc) Hence the same trans-
action machines could be used in any other multi-taskingmeh Similarly, the multi-
tasking scheme from [46] could essentially be used for otfarsactions than certified
mail, i.e., where the concrete in- and outputs of certified were dispatched according to
the concrete transaction identifigy, r,), arbitrary inputs and outputs could be dispatched
according to arbitrary transaction identifiers.

As the dispatching is tedious and has been defined and pnovell detail in [46], we
omit it here. Essentially, we defined an overall trusted Ad$tas well as overall real ma-
chine typedMs, Mr, Mt, andMv. Each real machine has at most one input and one output
port for its user, while the trusted host has all these pogdsther. Per round, a machine
accepts a list of inputs at each input port and dispatchen thehe appropriate transac-
tion machines. The list elements carry the full transaciiemtifiers (heres, r, i)), while
we usually omitted them in in- and outputs of the transaati@thines, e.g(failed) and
(show).” Similarly, each pair of overall machines has one networknestion (insecure for
senders and recipients, reliable and authentic for thirtdlgsaand verifiers) and dispatches
the network messages of its submachines over those. Ani@ulibroadcast machine is
present in the first two rounds to distribute public keys @xtestly. The trust model is that
any number of senders and recipients may be statically pdyuwhile the third party, ver-
ifier, and broadcast machine are correct. Egtcy; ;4 and Syscwu, .. denote the resulting
multi-transaction real and ideal system for a certain patamset, i.e., participant num-
bers, label and message set, and specific cryptographidipeésused in the real system.
Then our multi-transaction security theorem is (whereegsponding structures of the two
systems are defined in the canonical way via equal servitespts):

Theorem 1 The real multi-transaction certified-mail systeiscy ... IS as secure as the
ideal certified-mail systerfiyscy ;4 with blackbox simulatability,

poly,bb
SYScM real Zhee SYScM.id-

One reason why we chose this particular multi-tasking seheas that it avoids the ex-
plicit generation of new machines. This was not defined fairnumachines in 2000 (and
thus neither for our state-transition machines with Turimachine realizations), and to our
knowledge it is still not defined in 2004 even though many thetw and constructions
implicitly assume it. We do not doubt that it can be done, intipalar as similar con-
structions exist forr-calculus with polynomial-time restrictions [41]. Neveetess, there
may be subtleties in the overall polynomiality of such sgsteas well as tedious details
for defining how newly generated machines are connected (eegcannot simply allow
someone to generate a machine that connects to someorsesidgeiture machine, while
it must connect to the local signature machine). Hence waalidvant to assume this.

" Where we explicitly kept them, as but_v!.(received, (s, r,1), m) they are needed for their real
content, i.e., another transaction identifiet would augments, r, i) here, not replace it.

Reactively Simulatable Certified Malil 23

8.2 Proof of Multi-Transaction Composition

Independent of how we connect them, we have multiple trdiogecrunning and have to
show that the overall real system is as secure as the oveéeall $ystem. Recall that even
now in 2004 we cannot avoid proving this composition speadifidor certified mail as we
use joint state over primitives that do not have similar seation-wise abstractions yet.
The proof is nevertheless relatively generic, in particirdts treatment of signatures. As
we have omitted the precise definition of a dispatching sehkare, we prove this for a
scheme where all the transaction machines are simply rurrallpl, i.e., they interact
directly with the honest users and the adversary. Fornfaliyhis we rename the ports of
each machine by indexing them with the transaction identified we assume that each
machine is started with the correct initial inputs. Portaming is well-defined in [47]
and does not change the behavior. Assuming a definition ohimes whose number of
ports (or Turing tapes) depends on the security paramegee fbr the machine& andH
representing the overall adversary and honest users)raloégso holds for polynomially
many transactions. More precisely, the numbers of paditipand of overall rounds could
be polynomial in the security parameterand so could, with more general transaction
identifiers, the number of transactions per participant gtarted per round.

8.2.1 Overview. Our walkthrough lemma (Lemma 2) together with our definsioh the
error sets would immediately lead to a security proof for tsagsaction. To use the lemma
in this multi-transaction setting, we have to show that ewlevery transaction gets the
same external inputs in the real and the simulated settiven(ghough now other trans-
actions are running in parallel) and that the signatureraption (Definition 9) is always
fulfilled. For this, we show that the walkthrough proofs df tehnsactions can be joined
into one proof. Let an adversafyand honest usets for the multi-transaction systems be
given.

— We define corresponding reachable states of the multidardion real and simulated
structures as states where the global keys are equal, atrdradhction substructures
are in corresponding states. (We did not need a name forahiegspondence above, but
its restriction to the random values that are different im tbal and simulated sender
machines was callegdl.)

— We define each overall error set as the set of overall runsenieleast one run of a
transaction (easily defined as a restriction of the ovenal) belongs to the correspond-
ing transaction error set.

— Simple induction over the round number shows that in allaleuns that do not belong
to an error set, the multi-transaction systems are alwagsriresponding states, and all
transactions produce identical external inputs and ostpaot make equal use of the
global signature keys.

Hence the views oA andH are identical in all runs of the two multi-transaction stwres
except for the error sets. It is therefore sufficient for tlesiced computational indistin-
guishability of the views of to show that the overall error sets are negligible.

8.2.2 Proof that the Overall Error Sets are Negligibl&he proof of Lemma 2 defined
four types of error setskorge;, for runs where a signature of an honest participaig
forged, OwfBreak,, for runs where an unknown one-way preimage is foubh,dBreak j,

for runs where a commitment is opened in two ways, &beh OwfBreak,, for runs where
the adversary can open a commitment of an honest user. ht aligise of notation we use
the same error set names for runs of the multi-transactisiesy. The index denotes the
security parameter, i.e., we actually have four sequenibesar sets. As the finite sum of
negligible functions is again negligible, we only need towhhat each of these sequences
has negligible probability. The following reduction preaéssentially yield the concrete
complexity of the reductions. We therefore assume that aeradry and honest usefs

24 Birgit Pfitzmann et al.

andH are given that start at masttransactions of certified mail in at mgstounds, for a
system with at most honest participants, use overall runtiméogether with the correct
machines, and achieve that an error set has probabfiitya specifick.

Signature Forgery. Assume that the probability dforge;, is . We construct an adversary
Az against the signer machiség,. from Definition 2 withs* := w. It randomly chooses
a participant to attack among the at mostparticipants. It simulates the real configura-
tion using the public kepk obtained fromSig,. aspk,. l.e., it executes all machines of
this configuration with security parametefor at mostp rounds and with random values
chosen in the execution as usual, except that it sends ewesyagen; to be signed with
sk, to Sig,. instead and uses the result as the signature. In additikeejis track of the
conditions for putting the resulting run in the error $etge;, with the attacked participant
u = v. Such au was defined for each run iRorge;, in the proof of Lemma 2, and the
conditions can be verified efficiently. (Formally, we have joint runs of both systems in
the error sets, but it is easy to see that all error set camditcan be verified on the real
system alone.)

If such a condition is fulfilled Asz outputs the designated valugy; (again from the
proof of Lemma 2) as its forged signature. In each case, italraady shown in the walk-
through thatsig; is a valid signature fopk, and that the contained message was not
signed by the given transaction machine or any other simdlatachine, i.e A, did not
askSig,. to signm.

As v was chosen randomly, the success probabilithgf is at least/n. The runtime
of Ay is essentially- and it uses at mosit calls to the signature machine, as each machine
signs at most once per transaction.

Finding One-way Preimages.Assume that the probability abwfBreak;, is . We con-
struct an adversar,.s as in Definition 3. It randomly chooses one of the at mopbssi-
ble transactions, e.g., assuming they are sorted accomlstgrting round and, within the
round, lexicographically by transaction identifier. It silates the real configuration using
the given one-way imageaspr in the machinem_r for this transaction instead of setting
pr = f(rg) for randomry. It checks whether the resulting run belongsxafBreak;, for
the chosen transaction. If yes, a vatjewith f(r;) = pr = p is obtained, ands out-
puts it. It was already shown in the walkthroughs that theWnoknown) value -z was not
used outside the replaced assignmepnt= f(rz) up to this point; hence the simulation is
possible.
Hence the success probability&f,s is at leask/w, and its runtime is essentialty

Binding Property of the CommitmentsAssume that the probability dBindBreaky; is e.
We construct an adversahfy,;,q as in Definition 4a. Given a public commitment ke,
it simulates the real configuration using this commitmennt kéote that the corresponding
secret key is never used in the real system (only in the ston)jehence this simulation
is possible. If yes, it outputs the designated tulgtedbreak, for which we have already
shown that it fulfils the condition from Definition 4a.

Hence the success probability &f;.q is at leask, and its runtime is essentialy

One-way Property of the CommitmentsAssume that the probability afom OwfBreaky,

is e. We construct adversary algorithms, A, as in Lemma 1b. The first algorithdy
randomly chooses one of the at maspossible transactions as in the second case. It then
starts simulating the real configuration using the giveripulmmmitment keypkc. This is
possible as in the previous case. When the simuldtethrts the selected transaction with

a payload message, thenA; outputs thign as its ownm and its entire state agiz. Thus

A, can continue the simulation, using its additional inpas the commitmentin message

my for this transaction, instead of choosing it(@srg) < comry.(m). If the condition

for putting the run inCom OwfBreaky, for this transaction is fulfilled, theA, outputs the

Reactively Simulatable Certified Malil 25

designated valuggn®, r%) that open the commitment We have already shown that they
fulfill the condition from Lemma 1b and that (now unknown) is not used elsewhere, so
that the simulation is possible.

Hence the overall success probability/af andA, is at least/w, and their runtime is
essentiallyr.

Summary of the ReductionsThe four concrete-complexity reductions that we made for
individual values of immediately imply that if there were an overall polynomiehe ad-
versary and users successful against an overall polyngmialvariant of the real certified-
mail system, then one could break one of the underlying ogaiphic primitives. With a
bit more effort, one sees the same for the system with weaktlynpmial-time machines: It
is sufficient to show that the combination of all real machkiirseweakly polynomial-time.
This holds because every external input only results in grfohial amount of internal
activity, as can be seen by inspection of Definition 5. Thisfias the security proof of the
generic multi-transaction versions of our certified-mggtem.

A security proof for a system with a specific dispatching sebean be derived by
additionally comparing the real and simulated dispatclsicigemes. A detailed proof for
the specific dispatching scheme sketched at the end of 8e&tlocan be found in [46].
Altogether this finishes the proof of Theorem 1.

9 Symbolically Proving Properties of Certified Mail

One reason to define the security of real systems by abstiealt $ystems without proba-
bilism and cryptographic objects is as a link to formal melhan particular to automated
proof tools. Such tools can be used for at least three puspnghis context:

— To prove individual properties of the system in question,,ehe unforgeability of
receipts in certified mail.

— To prove that a higher protocol using the system in quest@sisecure as some ideal
system for the higher protocol. For instance, one might@tbat a multi-party contract
signing protocol based on certified mail is as secure as al idalti-party contract
signing system.

— Todirectly prove individual properties of a higher protbgsing the system in question.
For instance, one might directly prove that a multi-partgtcact signing protocol based
on certified mail provides unforgeability and fairness.

For the first and third possibility one needs preservatieotems for the desired properties
with respect to reactive simulatability, for the second #mic possibility a composition
theorem. Both are available in the underlying frameworkf{d 7]. The last possibility can
usually be replaced by the first two, but may be quicker if anerily interested in certain
properties.

This section sketches the earliest example of the first pitisgiby proving integrity
properties of certified mail. This corresponds to abstdhesrsions of properties that the
classic cryptographic literature used to define certified.ma

An integrity requiremenfor a setS of service ports is a seReq of finite traces of
events at these ports. Intuitively it describes the setlofad event sequences. Recall that
traces of events at any set of ports are well-defined for mutieei underlying system model.
Hence we can say that a run fulfils an integrity requirementair(the resulting trace at
S lies in Req or not). Now [47] defines that a structure fulfils an integrigguirement
Req perfectly if all its runs with all users and adversaries fulfeq, and computationally
if for all polynomial-time users and adversaries, the ptolits that Req is not fulfilled is
negligible in the security parametér The definition is lifted from structures to systems
(sets of structures) in the canonical way. The preservdtiearem states that fulfilling an
integrity requirement is preserved under reactive sinabltity. Hence if one proves an

26 Birgit Pfitzmann et al.

integrity requirement for the ideal certified-mail systatglso holds computationally for
the real system.

We now present integrity requirements on one transactiaredffied mail. For finite
traces, “after at mosfi rounds” is defined to be automatically fulfilled if less tharfurther
rounds exist.

Definition 10 (Integrity Requirements on Labeled Certified Mail) The integrity require-
ments on one transaction of certified mail, with transactaentifier (s, r,), for the three
cases of the trust model for one transaction, are the &etg defined by the following
formulas, where € {1,..., 7} corresponds to the item labels.

For correct senders (with correct or incorrect recipient).

1. Verifiability of Valid Receiptslf an output(sent) occurs atout_s! after an input(send,
r,l, m) at in_s? in Roundi, then a later input(show) at in_s? leads to the output
(received, I, m) atout_v! within one round.

2. Termination for SendeAn input(send, 7,1, m) atin_s? in Round: leads to an output
(sent) or (failed) at out_s! after at mostA rounds, and no second such output occurs
atout_s!.

For correct recipients (with correct or incorrect sender).

3. Unforgeable Receiptsf an output(received, (s, r,), 1, m) occurs atout_v! in a round
j,theni < j, and an inpuf(receive, s, 1) occurred atin_r? in Round;.

4. No Surprises for the Recipienf. an output(failed) occurs atout_r! after an input
(receive, s,1) atin_r? in Round;i, then no outputreceived, (s, 7, 1), 1, m) with anym €
X* occurs atout-v! in any round.

5. Fixed Receiptslf an output(received, m) occurs atout_r! after an input(receive, s, 1)
atin_r? in Roundi, then no outpufreceived, (s, r, i), 1, m’) for any differentn’ occurs
atout_v! in any round.

6. Termination for RecipientAn input(receive, s, 1) atin_r? in Roundi leads to an output
(received, m) or (failed) atout_r! after at mostA rounds, and no second output of these
types occurs abut.r!.

For correct sender and recipient.

7. Unforgeable MessageH.an output(received, m) occurs atout.r! in a round; after
an input(receive, s,1) atin_r?, then the inpu{send, r, 1, m) occurred atin_s? before
roundj.

For the parameterized version of certified mail, we assumpetityping in these formulas,
i.e., inputs calledn andl must be in the message and label space, respectively, gmateut
with these names will be in the same sets.

By Theorem 3.2 of [47], logical derivations from integrityquirements are valid also
for computational fulfillment. Hence one can draw conclasion this abstract level, or,
e.g., join some of the requirements for correct recipiamis one. The current formulation
is standard predicate logic using round numbers. If oneté&s@sted in a simpler fragment
of logic, most of the requirements can be expressed in teahjagic; only requirements
mentioning “after at mos!\ rounds” are a bit awkward.

The following theorem validates the ideal system for onada&tion with respect to
these requirements.

Theorem 2 (Integrity of the Ideal Certified-Mail System for One Transaction) The
ideal system from Definition 1 fulfills Definition 10. More gisely, the trusted hoshsr ful-
fils all requirements, whilehs fulfils Requirements 1, 2, and 7, attd fulfils Requirements
3to 5.

Consequently, also the real system from Definition 5 fuliésé requirements.

Reactively Simulatable Certified Malil 27

Proof All requirements can easily be verified by inspection of tiagestransition diagrams.

The original report [46] formulates the requirements far thulti-transaction system
and includes the dispatching in the proof. Further, it cmista secrecy property, but that is
not proved via a preservation theorem, and an availalstile property stating that correct
senders and recipients can successfully exchange a nialéhtannels are authentic during
this transaction. In the ideal system this correspondsdatisence of the inputippress
for this transaction.

10 Qutlook
10.1 Automating the Walkthrough Proof

Without cryptographic and probabilistic aspects, a prd@&gual input-output behavior for
one transaction of the given complexity would seem autobdataith current techniques.
However, already with the probabilism, and even more withdtyptography, there was
no chance of automation in 2000 when we initially wrote thaper, and it would still be
a significant challenge now. (In contrast, we believe thad@ating proofs of distributed
protocolsusingthe certified-mail system is very feasible, because thd glesiem is free
from probabilism and cryptographic objects, and proofomaatically carry over to the
real system via composition and property preservationréms.) In 2000, there was no
automated proof over real cryptography at all. At presdmd,largest such proofs are the
security of Diffie-Hellman encryption against passive adaees, given the Diffie-Hellman
decision assumption and special-purpose formalizatibtiseounderlying algebra, and of
construction for stretching the output of a pseudorandomegor [50, 36]. None of these
proofs contains real distributed aspects yet.

We already mentioned in the outlook of [46] that we expectdtbfv-up work that
would abstract from individual primitives in order to allomutomation of parts of this
proof using standard tools, i.e., without probabilisticlamyptographic aspects. However,
there is still no suitable abstraction from one-way funtsiand commitments for our case
where special usage restrictions allow security in thedgtethmodel of cryptography. Early
ideal signature systems as in [23] are not abstract in theesexpected by standard proof
tools. Further, we use nested signatures (the messagelsigne, containsm; and thus
already a signature). Hence neither the temporal-logitrattfon from [43] nor a simple
ideal signature system by a database of signed statemexiglisable, and thus the Dolev-
Yao style library from [13] would be needed. It would seemgilole, however, to define a
similar certified-mail protocol without nested signatur@h this seems feasible now, but
far beyond the scope of the present paper.

10.2 Joint Use of Signatures

In the assumption on the joint use of a secret signature kefinition 9, the use of dif-
ferent transaction identifiers in a fixed position of the sigmmessages corresponds to the
same general principle as what we used to separate theexbrithil protocols. Among the
known ways to assign such transaction identifiers, we useadrarbhical scheme in this
place (the transaction identifier of the certified-mail gaction plus a message identifier).
If one idealizes from the signature scheme first, in pardices a step towards automating
the walkthrough proof (a hand-made proof based on an iggaliz would not be signifi-
cantly simpler than the current proof) this assumptioniisreteded, while Assumption b)
becomes part of the idealization. This holds both for id=dions by temporal logic and by
ideal systems.

28 Birgit Pfitzmann et al.

10.3 General Joint State Composition

The type of dispatching sketched in Section 8.1 and fullyrdefiin [46] was also later
used by Canetti and Rabin for their joint-state compositi@orem [25]. Their protocgl
corresponds to our real transaction machines, their pobfoto our multi-transaction real
machines with dispatching, their functionalify to our ideal transaction machines, and
their functionalityZ to our multi-transaction ideal system with dispatchinge Fitecon-
dition of their theorem is that simulatability holds for thrulti-transaction systems, i.€,
is as secure a#. |.e., they simply assume that a hand-proof of the jointestapects of
the real system is made somehow. The theorem then statesghatbcolr using the ideal
systemF can be rewritten by pulling the user input-output dispatghip intor.

This would be a similarly simple consequence of our dispatghesults but we did not
state it in [46]. Thus the addition made by [25] is to formadhate that higher protocols
that use a system defined by transaction machines and disgalike here can assume
that they interact with individual transaction machinestlee overall approach suggests.

10.4 Symbolic Proofs over Ideal Systems

Section 9 on integrity properties of certified mail was orig first step into an overall

program for linking formal methods and cryptography. Thstfiool-supported proof over
an abstraction from cryptography that was justified by a &mability result was made

in [10]. It proves integrity properties for a given ideal ®m® with the theorem prover
PVS and thus corresponds to the first possibility from Sec®ioThe second possibility, a
simulatability proof for a protocol that uses an ideal sidbsgn, was first explored in [9].

Important examples of the third possibility, symbolic pi®of properties of a protocol

using an ideal subsystem, but by hand, are the proofs of tediiNen-Schroeder-Lowe and
Otway-Rees protocols over an ideal Dolev-Yao-style crgmphic library in [13, 6].

11 Conclusion

We have proven the security of an efficient certified-maiteyswith respect to an ideal
system in the sense of reactive simulatability. The ideatesy is abstract enough to be
suitable for use in automated proof tools for larger systémgarticular it is deterministic
and does not contain cryptographic objects.

The certified-mail system is optimistic and labeled. Thisamethat a trusted third
party is needed only in case of a dispute, and the recipiemteago a mail subject in
advance. The communication model is synchronous; we haeeisied pros and cons of
synchronous protocols. The concrete protocol needs faurd® in the optimistic case,
which is optimal. Security holds in the standard model ofptography, under standard
assumptions, and with blackbox simulatability.

Reactive simulatability implies general composabilitpakt from its value for certified
malil, this paper (when first written) provided the first coroing evidence that a general
reactive simulatability definition with a composition tliem is a useful basis for specifying
and proving the security of practical reactive systems wmithiti-round transactions and
multiple related transactions, here the sending of mailsrving of receipts. It further
showed how simulatability is possible in the standard moéletyptography in spite of the
(restricted) use of committing primitives.

We also introduced the main techniques that later becamerkas joint-state composi-
tion, i.e., the composition of a system for multiple trang&ats from systems for individual
transactions that share keys of cryptographic primitives.

Finally, we have shown how properties of the ideal certifie@it system can be derived
symbolically and automatically hold for the real systemisiMaas one step in a program to
link cryptographic systems and formal methods that wasfiigmtly extended since.

Reactively Simulatable Certified Malil 29

Acknowledgments

We thankRan CanettiVictor ShoumndMichael Steinefor interesting discussions, and an
anonymous reviewer for detailed comments. Details of weadisus strictly polynomial-
time were first clarified withiMlichael Backesand Michael Steiner in the context of their
thesises, although this was finally not mentioned there.

Major parts of this work were written while the first two authevere with Universitat
des Saarlandes, Saarbriicken. This work was supportee Buttopean IST Project MAF-
TIA. However, it represents the view of the authors. The MMcproject was funded by
the European Commission and the Swiss Department for Edaaatd Science.

References

1. Ross Anderson, Roger Needham: Robustness Principl@sifitic Key Protocols; Crypto '95,
LNCS 963, Springer-Verlag, Berlin 1995, 236-247.

2. N. Asokan, Birgit Baum-Waidner, Matthias Schunter, Mieh Waidner: Optimistic Syn-
chronous Multi-Party Contract Signing; IBM Research Répgat 3089 (#93135) 12/14/1998,
IBM Research Division, Zurich, Dec. 1998.

3. N. Asokan, Matthias Schunter, Michael Waidner: OptimiBtrotocols for Fair Exchange; 4th
Conference on Computer and Communications Security (C&SY], 1997, 6-17.

4. N. Asokan, Victor Shoup, Michael Waidner: Optimistic Fekchange of Digital Signatures;
IEEE Journal on Selected Areas in Communications 18/4 (2688-610.

5. Michael Backes: Unifying Simulatability Definitions inrgptographic Systems under Differ-
ent Timing Assumptions; 14th International Conference onclirrency Theory (CONCUR),
LNCS 2761, Springer-Verlag, Berlin 2003, 350—-365.

6. Michael Backes: A Cryptographically Sound Dolev-YaolS&tgecurity Proof of the Otway-
Rees Protocol; to appear in 9th European Symposium on RisieaComputer Security (ES-
ORICS 2004), LNCS, Springer-Verlag.

7. Feng Bao, Robert Deng, Wenbo Mao: Efficient and Practie#l Exchange Protocols with
Off-Line TTP; 1998 IEEE Symposium on Research in Security Rrivacy, 77-85.

8. Michael Backes, Dennis Hofheinz: How to Break and Repbiniaersally Composable Signa-
ture Functionality; to appear in 7th Information Securityrnerence (ISC), LNCS, Springer-
Verlag, 2004.

9. Michael Backes, Christian Jacobi: Cryptographicallyi®band Machine-Assisted Verifica-
tion of Security Protocols; 20th International Symposiumildeoretical Aspects of Computer
Science (STACS), LNCS 2607, Springer-Verlag, Berlin 208%7%H—686.

10. Michael Backes, Christian Jacobi, Birgit Pfitzmann:iieg Cryptographically Sound Imple-
mentations Using Composition and Formally Verified Bisiatidn; Formal Methods Europe,
LNCS, Springer-Verlag, Berlin 2002, 310-329.

11. Michael Backes, Birgit Pfitzmann: Symmetric Encryptiora Simulatable Dolev-Yao Style
Cryptographic Library; 17th IEEE Computer Security Fourmtegs Workshop (CSFW), 2004,
204-218.

12. Michael Backes, Birgit Pfitzmann, Michael Steiner, MiehWaidner: Polynomial Fairness and
Liveness; 15th IEEE Computer Security Foundations Worggi&SFW), 2002, 160-174.

13. Michael Backes, Birgit Pfitzmann, Michael Waidner: A Gmsable Cryptographic Library
with Nested Operations; 10th Conference on Computer andn@oritations Security (CCS),
ACM, 2003, 220-230.

14. Michael Backes, Birgit Pfitzmann, Michael Waidner: Secdsynchronous Reactive Systems;
Cryptology ePrint Archive, Report 2004/082, http://epiacr.org/, March 2004

15. Donald Beaver: Secure Multiparty Protocols and Zerowladge Proof Systems Tolerating a
Faulty Minority; Journal of Cryptology 4/2 (1991) 75-122.

16. Mihir Bellare, Phillip Rogaway: Entity Authenticati@md Key Distribution; Crypto '93, LNCS
773, Springer-Verlag, Berlin 1994, 232—-249.

17. Michael Ben-Or, Oded Goldreich, Silvio Micali, RonaldRivest: A Fair Protocol for Signing
Contracts; IEEE Transactions on Information Theory 3649Q) 40—46.

18. Manuel Blum: How to Exchange (Secret) Keys; ACM Transaston Computer Systems 1/2
(1983) 175-193.

30

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Birgit Pfitzmann et al.

Dan Boneh, Moni Noar: Timed Commitments and Timed Sigmeat Crypto 2000, LNCS
1880, Springer-Verlag, Berlin 2000, 236—254.

Jurjen Bos, David Chaum, George Purdy: A Voting Schemeuhblished manuscript, pre-
sented at the rump session of Crypto '88.

Gilles Brassard, David Chaum, Claude Crépeau: MininRisclosure Proofs of Knowledge;
Journal of Computer and System Sciences 37 (1988) 156—189.

Ran Canetti: Security and Composition of Multiparty @ographic Protocols; Journal of
Cryptology 13/1 (2000) 143-202.

Ran Canetti: Universally Composable Security: A NewaB&m for Cryptographic Protocols;
42nd Symposium on Foundations of Computer Science (FOEEE 2001, 136-145.

Ran Canetti: Universally Composable Signature, Ceatifin, and Authentication; 17th IEEE
Computer Security Foundations Workshop (CSFW), 2004, 239

Ran Canetti, Tal Rabin: Universal Composition with §@tate; Crypto 2003, LNCS 2729,
Springer-Verlag, Berlin 2003, 265-281.

David Chaum, Eugéne van Heijst, Birgit Pfitzmann: Cogpaphically Strong Undeniable Sig-
natures, Unconditionally Secure for the Signer; Cryptq I9CS 576, Springer-Verlag, Berlin
1992, 470-484.

Ivan Bjerre Damgard: Collision Free Hash Functions Ruadlic Key Signature Schemes; Eu-
rocrypt '87, LNCS 304, Springer-Verlag, Berlin 1988, 20362

Robert H. Deng, Li Gong, Aurel A. Lazar, Weiguo Wang: Ricat Protocols for Certified
Electronic Mail; Journal of Network and Systems Managerdédt(1996) 279-297.

Rosario Gennaro, Silvio Micali: Verifiable Secret Shgras Secure Computation; Eurocrypt
'95, LNCS 921, Springer-Verlag, Berlin 1995, 168-182.

Oded Goldreich, Hugo Krawczyk: On the Composition ofiZz€nowledge Proof Systems;
SIAM Journal on Computing 25/1 (1996) 169-192.

Oded Goldreich: Sending Certified Mail using Obliviousrisfer and a Threshold Scheme;
Technion - Israel Institute of Technology, Computer SceeBepartment, Technical Report,
1984.

Shafi Goldwasser, Leonid Levin: Fair Computation of GahEunctions in Presence of Im-
moral Majority; Crypto '90, LNCS 537, Springer-Verlag, Bar1991, 77-93.

Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A DajiSignature Scheme Secure Against
Adaptive Chosen-Message Attacks; SIAM Journal on Computif2 (1988) 281-308.

Oded Goldreich, Silvio Micali, Avi Wigderson: How to Blany Mental Game — or — a Com-
pleteness Theorem for Protocols with Honest Majority; 1S¢fmposium on Theory of Com-
puting (STOC), ACM, New York 1987, 218—-229.

Martin Hirt, Ueli Maurer: Player Simulation and Genehalversary Structures in Perfect Mul-
tiparty Computation; Journal of Cryptology 13/1 (2000) 82—

Russell Impagliazzo, Bruce M. Kapron: Logics for Reasgrabout Cryptographic Construc-
tions; 44th Symposium on Foundations of Computer Scien€<), IEEE, 2003, 372-381.
ISO/IEC: Information technology — Security techniguedNon-reputation Part 3: Mecha-
nisms using asymmetric techniques; ISO/IEC Internatidtaindard 13888-1, 1st Edition,
12.01.1997.

Patrick Lincoln, John C. Mitchell, Mark Mitchell, Andi&cedrov: A Probabilistic Poly-Time
Framework for Protocol Analysis; 5th Conference on Compamel Communications Security
(CCS), ACM, 1998, 112-121.

Silvio Micali: Certified E-Mail with Invisible Post Offies—or—A Low-Cost, Low-
Congestion, and Low-Liability Certified E-Mail System; pemted at RSA Conference 1997.
Silvio Micali, Phillip Rogaway: Secure Computationypto '91, LNCS 576, Springer-Verlag,
Berlin 1992, 392—-404.

John Mitchell, Ajith Ramanathan, Andre Scedrov, VaaeS®ague: A Probabilistic
Polynomial-Time Calculus for the Analysis of CryptograpRrotocols; March 2004t t p:
/1theory. stanford. edu/ peopl e/ j cnf paper s/ ProbProcessCal c. pdf.
Torben Pryds Pedersen: Non-Interactive and Informaliweoretic Secure Verifiable Secret
Sharing; Crypto '91, LNCS 576, Springer-Verlag, Berlin 20929-140.

Birgit Pfitzmann: Sorting Out Signature Schemes; 1stf@ence on Computer and Commu-
nications Security (CCS), ACM, 1993, 74-85.

Birgit Pfitzmann, Matthias Schunter, Michael Waidnerygographic Security of Reac-
tive Systems; Workshop on Secure Architectures and Infooma=low, Electronic Notes
in Theoretical Computer Science (ENTCS), March 2000t p: / / www. el sevi er. nl /

| ocat e/ entcs/vol ume32. htm .

Reactively Simulatable Certified Malil 31

45. Birgit Pfitzmann, Matthias Schunter, Michael Waidneec@e Reactive Systems; IBM Re-
search Report RZ 3206 (#93252) 02/14/2000, IBM ResearclsiDiy, Zurich, May 2000,
http://ww. senper. org/sirene/ publ /Pf SWL_0O0OReact Si nul | BM ps. gz.

46. Birgit Pfitzmann, Matthias Schunter, Michael Waidneovbly Secure Certified Mail; IBM
Research Report RZ 3207 (#93253), IBM Research DivisiomicAuAugust 2000ht t p:

[I www. senper . or g/ si rene/ publ / Pf SW2Cert Mai | . ps. gz.

47. Birgit Pfitzmann, Michael Waidner: Composition and gty Preservation of Secure Reac-
tive Systems; 7th Conference on Computer and Communica8encurity (CCS), ACM, 2000,
245-254.

48. Birgit Pfitzmann, Michael Waidner: A Model for Asynchimrs Reactive Systems and its Ap-
plication to Secure Message Transmission; 2001 IEEE Syimposn Security and Privacy,
184-200.

49. Michael O. Rabin: Transaction Protection by Beaconsrnal of Computer and System Sci-
ences 27 (1983) 256-267.

50. Ajith Ramanathan, John Mitchell, Andre Scedrov, Vaad&ague: Probabilistic Bisimulation
and Equivalence for Security Analysis of Network ProtorBisundations of Software Science
and Computation Structures (FOSSACS) 2004, LNCS 2987 n§eriVerlag, Berlin 2004,
468-483.

51. Roberto Segala, Nancy Lynch: Probabilistic Simulatifam Probabilistic Processes; 5th Inter-
national Conference on Concurrency Theory (CONCUR), LNG& &pringer-Verlag, Berlin
1994, 481-497.

52. Matthias Schunter: Optimistic Fair Exchange; PhD thes&iniversitat des Saarlandes,
Saarbriicken, October 2000t t p: / / www. senper . or g/ si rene/ publ / Schu7_00.
thesis-final.ps.gz.

53. Umesh V. Vazirani, Vijay V. Vazirani: Trapdoor Pseudmdom Number Generators, with Ap-
plications to Protocol Design; 24th Symposium on Foundatiof Computer Science (FOCS),
IEEE, 1983, 23-30.

54. Andrew C. Yao: Protocols for Secure Computations; 23rdi®sium on Foundations of Com-
puter Science (FOCS), IEEE, 1982, 160-164.

55. Andrew C. Yao: Theory and Applications of Trapdoor Fiord; 23rd Symposium on Foun-
dations of Computer Science (FOCS), IEEE, 1982, 80-91.

56. Jianying Zhou, Dieter Gollmann: A Fair Non-repudiatirmtocol; 1996 IEEE Symposium on
Security and Privacy, 55-61.

57. Jianying Zhou, Dieter Gollmann: An Efficient Non-repatitin Protocol; 10th Computer Se-
curity Foundations Workshop (CSFW), IEEE, 1997, 126-132.

12 Appendix
12.1 Remaining Walkthrough Proofs

In the proof of Lemma 2 in the main text, we only presented thiéthrough proof for the
case of an honest sender and summaries of the other two v¥seww present the full
proofs of these other two cases.

Case R: Correct Recipient; Incorrect Sendekn this case, we have Figure 10 without
cm_s andcm_s’, and withthr. In Parts 1 and 2 we consider all states reachable and inputs
accepted except bym_v andem_v'.

1. States reached without inptdceive: The only round wherem_r andthr accept an
input (receive, s,1) at portin_r? is Roundi. If they do not, both remain in their starting
state forever and do not make any outputs; hentce’ does not get an inpyteceive, . . .)
via dis either and also remains in its starting state and does nog matjputs.

If the adversary nevertheless inputs a corregtat s2t? of cm_t andem_t’ in Round
i + 5 (the only round where these machines accept inputs), th& oantain a correct
messagens, i.e.,testyy, (m2) = ((s,r,i),m2,...). Then we put the run in the sébrge,
and set the forged signature &@; := mo and the attacked participant to:= r. Note

32 Birgit Pfitzmann et al.

that no other transaction machine signs a message stéfting:), m2, .. .) with sk,., and
recall that tuple decomposition is unambiguous. Other{ise without acceptable inputs)
cm_t andcm_t’ also do not make any outputs.

2. States reached on inpdceive: If (receive, s,1) is input atin_r?, thenthr changes to
Stater; and outputgreceive, s, 1), which dis dispatches t@m_r’. Thuscm_r andcm_r’
wait for an inputm; in Roundi + 1.

Nom;. If the adversary does not send a corregt, thencm_r outputs(failed) at out_r!
in Round: + 6, while cm_r’ immediately outputgsuppress) to thr via dis, andthr
changes from Statg to r,. Thus in Round + 6, thr outputs(failed) atout_r! as well
and changes into Stafeiled. No network outputs are made in this process, and,
cm_r’ andthr never accept any other inputs.
Again, if the adversary nevertheless inputs a corregtto cm_t andcm_t’ in Round
i+ 5, we let the run be iForge;, with sigy := mo for the messager, contained inn;
and withu := r.

my andms. If cm_r andem_r’ receive a correetr;, both sendns. If they receive a correct
ms = ((s,r,4),m,rg) in Roundi + 3, both sendn, andcm_r’ outputs(send, m) at
out_r’l. This is dispatched tehr, which changes into State. Thus bothcm_r andthr
output(received, m) atout_r! in Round: + 6, and all three make no further network
outputs or accept other inputs.
If the adversary additionally inputs a correet to cm_t andcm_t’ in Round: + 5, they
both outputmg att2s! andt2r!. Additionally,cm_t’ outputs(send, . ..) atout_t'!, but
thr ignores it, being already in Statg

my, NOmg, butms. If cm_r andecm_r’ do not receive a correet; (after sendingns,), both
wait until Roundi + 6.
If cm_t andcm_t’ obtain a correctns in Round: + 5, they both sendng, andcm_t’
outputs(send, m) atout_t'! for the m contained inms. Thusthr changes to State
and outputgreceived, m) atout_r! in Roundi + 6. As the channel fromm_t to cm_r
is authenticem_r obtainsmg as sent bym_t and also output&eceived, m) atout_r!.

m1, N0Oms, NOms. In this case, itm_r andcm_r’ obtain a correctng in Round: + 6, we
let the run be inForgey, with sigr := me andu := ¢. Note that the message signed
in mg starts((s,r, i), m6,...) and no other transaction machine signs such a message
with sky.
Otherwise,cm_r outputs(failed) in Round: + 6, and so doeshr (changing to State
failed) because we saw that it is still in State

3. Inputs tocm_v andecm_v': The remaining accepted inputs are at the psih$ of cm_v
andcm_v’; they must be made in a round> 4 + 7 and must be correct receipts. (Thus
this part of the proof mainly proves that receipts are urdale and fixed.) We now de-
note receipts and their parts with primes;(!’ etc.), and messages handled by the other
machines as before.

If a correct messagen, arrives,cm_v outputs(received, (s, r,),l’,m’') at out_v!,
while cm_v’ outputs(show) at out_v’!, which is dispatched tin_a?. Thenthr also out-
puts(received, (s, r,7),l’,m’) atout_v! if it is in Statereceived with the parameters= I’
andm = m’. We show that this is true except in certain cases that wenpuieirror sets.

Proof ofl’ = [(unforgeability of labels in receipts). Both acceptablenfe of m. must
contain correct messages, andmy. If cm_r andcm_r’ did not send a message:
with the same contenl(s, r,i), m2, m1,pr), let the run be inForge;, and sigy :=
m45 andwu := r. Note that no other transaction machine signs a messagegtar
((s,r,1),m2,...) with sk,.

From now on, we consider that they semt and thusn = m; andp’, = pr. The ver-
ifications incm_r andcm_r’ (implied by our notational conventions for state-tramsiti
diagrams) imply that the valuéin m; equald as it was input t@m_r andcm_r’, and

Reactively Simulatable Certified Malil 33

thus tothr. Furthermoregm_r’ makes no outpufsuppress) and thushr never changes

to Stater,.

Proof thatthr is in Statereceived (unforgeability of a receipt).

i. If the correctm/, contains the identifiem7, it contains a correct:}, in particular

a valuery, with f(r;) = pg. If cm_r andcm_r’ did not sendny, let the run be in
the setOwfBreaky,. Note that the originaty is internal tocm_r andcm_r" and only
used in the assignmepg, < f(rg).
If cm_r’ sentmy, it must have received a corregts, i.e., ((s,r, i), m,rs) with
comyi.(m,rs) = c for the component of m,. Then it outpusend, m) atout_r'l,
which causedhr to change to State;, and thus in Round + 6 to Statereceived,
storing this variablen.

ii. If the correctm/ contains the identifiem6, butcm_t andem_t’ did not sendmng,
let the run be inForge, andsigs := mg andu := ¢. Note that no other transaction
machine signs a message start{(ig r, <), m6, . ..) with sk;.

If cm_t andem_t’ sentmg, they must have received a correct tripte, m4, m¥).

If the content ofm? is unequal to that ofn, sent bycm_r andcm_r’, we let the
run be inForge;, with sigr := m4 andu := r. Otherwisem} = m, andmf =

((s,7,1),m,rg) With compg.(m, rg) = c for the component of m;. Thencm_t’

output (send, m). This causedhr to change to State;, and thus in Round +

6 to received, with this parametem, except if it was already in Statg with a
parametern” # m. This would imply thatm_r’ output(send, m’), which it does
only if the adversary sent a correat; containingm”, % with compi.(m”,r%) =

¢ = compc(m,rg). We then let the run be iBindBreak, and bindbreak :=

(m,rs,m",ré).

Proof ofm’ = m (unforgeability of the message in the receipt). Both cdrfeens ofm/,
contain a correciny, i.e., ((s,r, i), m’,) wherecomi.(m’, ry) = c for the compo-
nentc of my. Thism/’ is indeed the one thatn_v outputs.

If m’ # m, letthe run be iBindBreak;, andbindbreak := (m,rg, m’, r) with m, rg

frommg ormY as derived in the proof thahr is in Statereceived.

Case SR: Correct Sender and Recipienin this case, we have Figure 10 with all ma-
chines, and withhsr. As in Case S, inputs ton_t, cm_v andcm_t’, cm_v/ can only come
from cm_s andcm_s’, respectively, i.e., those will not do anything unlesss andcm_s’
do.

1. States reached without inputsid andreceive: As in the first two casegm_s, cm_r and
thsr only accept inputgsend, r, [, m) and(receive, s,1’) at portsin_s? andin_r? in Round:.

If neither of these inputs occurs, they remain in their sigrstate forever without making
any outputs, and so don_s’ andcm_r’.

2a. Inputsend alone:If (send,r, [, m) is input, but(receive, s,’) is not, therthsr changes

to Statesr; and outputg(send, r, 1), which dis dispatches t@m_s’, while cm_r’ obtains

no input.cm_s andcm_s’ then sendn;. As in Case S, we defing such that that these
messages are equam_r andcm_r’ never leave their starting state and send nothing. If
the adversary now inputs a correet to cm_s andcm_s’, let the run be inForge;, and
sigs = my andu := r. (No other transaction machine signs a message-, i), m2,...)
with sk,..) Otherwisecm_s outputs(failed) at out_s! in Roundi + 6, and so doeshsr,
being in Statar; (ignoring an outpufsuppress) from cm_s’). No further outputs are made,
or inputs accepted, in this process, ands, cm_s’, andthsr are in Statéailed.

2b. Inputreceive alone:If (receive, s,1) is input, but(send, . . .) is not,thsr changes to State
srp and outputgreceive, s, 1), whichdis dispatches tam_r’. Thencm_r andcm_r’ wait for
my, while cm_s andem_s’ remain in their starting states without making any outplfithe
adversary inputs a corregt; to cm_r andcm_r’, let the run be inForgey, andsigy := my
andu := s. Note that no other transaction machine signs a meggage i), m1,...) with

34 Birgit Pfitzmann et al.

sks. Otherwisecm_r outputs(failed) atout_r! in Round: 4+ 6 and so doeshsr, being in
Statesr, (ignoring an outpugsuppress) from cm_r’). No further outputs are made, or inputs
accepted, in this process.

2c. Different labelsif inputs (send, r, I, m) and(receive, s,1") with [# I’ are madethsr
changes to State; and makes outpufsend, r, 1) and(receive, s,1’), which are dispatched
as(send, r, 1, mg;,,) and(receive, s,1’). Hencecm_s andcm_s’ sendm;. As in Case S, we
define a mapping on the random values used such that these messages arelfetpeaal.
adversary now inputs am) to cm_r andcm.r’ that passes their test with (while m;
containg), let the run be inForge;, andsigy := m} andu := s. Otherwisecm_r andcm_r’
do not send any messages. If the adversary can then inputegbas to cm_s andcm_s/,
let the run be inForge, andsigr := mo andu := r. Otherwisecm_s andcm_s’ do not
send further messages either, ands andcm_r output(failed) in Roundi + 6. So does
thsr, being in Statars (ignoring outputgsuppress) from cm_s’ andcm_r’). The machines
cm_s, cm_s’, andthsr are in Statdailed.

2d. Two matching inputszinally, let inputs(send, r, I, m) and(receive, s, l) be made. Then
thsr goes to Stater, and outputgsend, r, 1) and(receive, s,1). When these are dispatched,
cm_s’ sendsm; like cm_s. From now on we distinguish the messages that arrive on an
insecure channel from those that were sent by a supersefipt “

No correctm§. If the adversary does not forward a correet to cm_r andcm_r’, then
cm_r outputs(failed) in Roundi + 6, while cm_r" outputs(suppress), which causes
thsr to change to State; and thus to outpyffailed) at bothout_s! andout_r! in Round
i + 6. If the adversary inputs a corregt; to cm_s andcm_s’ in Roundi + 2, let the
run be inForgey, andsigs := mo andu := r. Otherwisecm_s also outputgfailed) in
Round: + 6, and no machine makes any further output (ex¢epipress)) or considers
inputs. The machinesn_s, cm_s’, andthsr are in Statdailed.

Correctm$, no correctng. Ifthe adversary forwards a correeff tocm_r andcm_r’, both
sendms. If the valuec® in m¢ differs fromc in m;, let the run be inForge;, and
sigs := m{ andu := s. Thus from now on, we can assurnfe= c.

If no correctm§ is forwarded by the adversamrym_s outputs(failed) in Roundi + 6,
while cm_s’ inputs(suppress) to thsr, which changes to State; and thus tcfailed in
Round: + 6, outputting(failed) atout_s! andout_r!. They do not make further outputs
or consider inputs.

If the adversary nevertheless inputs a corregt to cm_r and cm_r’, let the run
be in ComOuwfBreak;,. Note thatmg§ must contain valuegm?®,rg) with ¢ =
comype(m®, %), and that the values from the assignmen(c, 7g) «— comrpc(m)

in cm_s, and similarlyr,;,, in cm_s’, has not yet been used anywhere else.
Otherwise,cm_r andcm_r’ wait for mg, but this does not come: It could only come
over an authentic connection froem_t andcm_t’, and those only react on a message
over an authentic connection fratm_s andcm_s’, respectively. Hencem_r andcm_r’/
also do not send further messages, andr outputs(failed) atout.r! as well.

Correctm$ andm$. If the adversary forwards a correet;, cm_s sendsns, while cm_s’
first only outputseceive atout_s’!, which is dispatched tthsr. Thusthsr changes from
Statesr, to srs and outputgmsg, m), whichdis dispatches tam_s’. Thencm_s’ sends
mg = ((s,7,1),m,rg) as well (as in Case S). th§ contains a valug}, # pr, let
the run be inforge;, andsigr := m§ andu := r. Otherwise, we can now speak of one
fixedpg.

Now thsr will output (sent) at out_s! and(received, m) atout_r! in Round: + 6 and
from then on always be in Stateceived or showing. Furthermore, the behavior of all
corresponding machines with respect to the network is lglédentical from now on,
andcm_s andcm_s’ enter the same final state. Hence only the final states andtsutp
of the real structure remain to be derived.
i. If the adversary does not forward a correet, thencm_r does not send, and
waits formeg. If the adversary nevertheless inputs a corregtto cm_s, then this

Reactively Simulatable Certified Malil 35

must contain am, with f(r%) = p% = pr. Then let the run be irOwfBreaky,
and note that the originaig is internal tocm_r and only used in the assignment
pr < f(rr). Otherwisecm_s sendsns. It arrives atcm_t because the connection
is authentic and passes the test by construction. Hencesendsng to cm_s and
cm_r, again over authentic connections. Hence they make oufptits) at out_s!
and(received, m) atout_r! in Round: + 6 as desired, andn_s is in Statereceived’.

. Now let the adversary input a correct message= ((s,,:), m%,r%) tocm_r. If

m® # m, thencomyp.(m®,r%) = comyi.(m,rs) = ¢* = c. Then let the run be
in BindBreaky, andbindbreak := (m,rg, m*,rg). Otherwisecm_r now storesn
and outputgreceived, m) in Roundi + 6. Thencm_s either obtains a correet,
or it sendsm; and getsng as in Case i. In both cases, it outp@snt) in Round
i + 6 and changes to Stateceived or received’.

3. Reactions on inputhow. The proof for an inpufshow) is identical to Case S, except
that Statesrs plays the role of Stats;.
This finishes the walkthrough proofs of the two cases omittethie main text of the

paper.

