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Abstra
t. We introdu
e the notion of Linear Integer Se
ret-Sharing

(LISS) s
hemes, and show 
onstru
tions of su
h s
hemes for any a

ess

stru
ture. We show that any LISS s
heme 
an be used to build a se
ure

distributed proto
ol for exponentiation in any group. This implies, for

instan
e, distributed RSA proto
ols for arbitrary a

ess stru
tures and

with arbitrary publi
 exponents.

1 Introdu
tion

In a se
ret sharing s
heme, a dealer distributes shares of a se
ret to a number

of shareholders, su
h that only 
ertain designated subsets of them - the quali�ed

sets 
an re
onstru
t the se
ret, while other subsets have no information about

it. The 
olle
tion of quali�ed sets is 
alled the a

ess stru
ture. In parti
ular,

the a

ess stru
ture 
onsisting of all sets of 
ardinality greater than t is 
alled a

threshold-t stru
ture.

Se
ret Sharing was �rst introdu
ed[19℄ as a way to store 
riti
al information

su
h that we get at the same time prote
tion of priva
y and se
urity against

loosing the information. Later, se
ret sharing has proved extremely useful, not

just as a passive storage me
hanism, but also as a tool in intera
tive proto
ols,

for instan
e in threshold 
ryptography. Here, the private key in a publi
 key

s
heme is se
ret shared among a set of servers, and the idea is that a quali�ed

subset of the servers 
an use their shares to help a 
lient to de
rypt or sign

an input message, but without having to re
onstru
t the private key in a single

lo
ation. As long as an adversary 
annot 
orrupt too large a subset of the servers,

he 
annot prevent the system from working, nor 
an he learn any information

on the private key.

The 
entral operation we need to perform se
urely in these appli
ations is

typi
ally an exponentiation, that is, we are given some �nite group G and an

input a 2 G, and we want to 
ompute a

s

, where s is a se
ret exponent whi
h

has been se
ret-shared among the servers. In some 
ases the group order is a

publi
 prime q. The problem is then straightforward to solve sin
e we 
an use

any standard linear se
ret sharing s
heme over the �eld Z

q

. The observation is

?

FICS, Foundations in Cryptography and Se
urity, 
enter supported by the Danish

resear
h Coun
il

??

Basi
 Resear
h in Computer S
ien
e, Center of the Danish National resear
h Foun-

dation



simply that for any linear s
heme (su
h as Shamir's) over Z

q

, the se
ret 
an be

written as a linear 
ombination s =

P

i2I

�

i

s

i

mod q, where I is any quali�ed

set of servers holding shares fs

i

j i 2 Ig, and where the �

i

's 
an be 
omputed

from the index set I. Now, if the servers provide a

i

= a

s

i

(and prove they did so


orre
tly), we 
an 
ompute a

s

=

Q

i2I

a

�

i

i

. However, there are other 
ases where

the group order is not prime and is not publi
 (or even unknown to everyone),

su
h as when G is Z

�

N

for an RSA modulus N or when G is a 
lass group. This

leads to various problems: it would be natural to try to build a se
ret sharing

s
heme over Z

t

where t is the order of G, but the standard 
onstru
tions do not

immediately work if t is not a prime. Matters are of 
ourse even worse if t is

unknown to everyone.

The literature 
ontains many te
hniques for getting around these problems.

The te
hniques work in various parti
ular s
enarios, but they all have short
om-

ings in general. We give a short overview here:

{ The bla
k-box se
ret sharing s
hemes of [8, 13, 20℄ 
an be used to share a

se
ret 
hosen from any Abelian group, in
luding Z

t

. This requires, of 
ourse,

that the dealer knows t so he 
an do 
omputations in Z

t

. This is never

the 
ase if G is a 
lass group, and if G = Z

�

N

, the dealer must know the

fa
torization of N . Note that in proa
tive threshold RSA s
hemes, ea
h

player typi
ally has to reshare his share of the private key from time to

time, however, we 
an of 
ourse not a�ord to reveal the fa
torization of N

to every shareholder.

{ In Shoup's threshold RSA proto
ol[21℄, the idea is to restri
t the modulus

N to be a safe prime produ
t, whi
h allows us to work in a subgroup of Z

�

N

whose order is the produ
t of two large primes. This is \
lose enough" to a

prime so that standard Shamir sharing of s will work. This requires that the

dealer knows the fa
torization. Moreover, for te
hni
al reasons, the proto
ol


an only 
ompute a

s�n!

where n is the number of servers. This is solved

by exploiting that we have the publi
 exponent e available. Assuming e is

relatively prime to n!, we 
an 
ompute a

s

eÆ
iently. The problem in general

is of 
ourse that we may not always be able to 
hoose the group order as

we like, and the inverse of s modulo the group order may not always be

available or it may not be prime to n!. For instan
e, we 
annot use small

publi
 exponents su
h as 3.

1

{ The se
ret sharing s
heme of [14℄ whi
h was also used in [12, 10℄ is a variant

of Shamir's s
heme, where we use polynomials over the integers. Using this

to share s does not require any knowledge of the order of G. However, the

s
heme does not allow re
onstru
tion of s by a linear 
ombination of shares,

instead one obtains the se
ret times some 
onstant, typi
ally s�n!. This 
auses

the proto
ol to produ
e a

s�n!

as output, and we have the same problem as

with Shoup's proto
ol.

1

Shoup suggests an alternative solution where any publi
 exponent 
an be used, but

this requires that one additionally assumes that the DDH assumption holds in the

RSA group



{ Finally, the method of Rabin [17℄ uses se
ret sharing in \two levels", i.e., the

se
ret exponent s is shared additively, su
h that s = s

1

+ :::+s

n

where server

i knows s

i

, and then s

i

is itself se
ret shared among the servers. S
hemes of

this type require no knowledge of the group order to do the sharing sin
e in

prin
iple, any se
ret-sharing s
heme 
an be used to share the s

i

's. On the

other hand, shares be
ome larger than with other s
hemes and extra rounds

of intera
tion is needed (to re
onstru
t s

i

) as soon as even one server i fails

to parti
ipate 
orre
tly. Hen
e (in 
ontrast to the other types of proto
ols)

this approa
h 
annot be made non-intera
tive, not even in the random ora
le

model.

A �nal issue with 
urrent state of the art of distributed exponentiation is that

known solutions (ex
ept the two-level method) do not generalize to non-threshold

a

ess stru
tures. The point of general stru
tures is that when we se
ret share the

private key a

ording to a threshold stru
ture, we are impli
itly assuming that all

servers are equally easy to break into, and so the only important parameter is the

number of 
orrupted servers. In reality, some servers may well be more reliable

than others, and so we may need to spe
ify whi
h sets should be quali�ed in a

more 
exible way, that is, we need a more general a

ess stru
ture.

1.1 Our Results

In this paper, we introdu
e a type of se
ret sharing s
heme 
alled Linear Integer

Se
ret-Sharing (LISS). In a LISS s
heme, the se
ret is an integer 
hosen from

a (publi
ally known) interval, and ea
h share is 
omputed as an integer linear


ombination of the se
ret and some random numbers 
hosen by the dealer. Re-


onstru
tion of the se
ret is also by 
omputing a linear 
ombination with integer


oeÆ
ients of the shares in a quali�ed set.

LISS s
hemes are 
losely related to - but not the same as - the bla
k-box se
ret

sharing s
hemes (BBSS) mentioned earlier of Desmedt-Frankl[13℄ and Cramer-

Fehr[8℄. Whereas BBSS s
hemes are designed to se
ret share elements from any

�nite abelian group, we work over the (in�nite) group of integers. This di�eren
e

has a number of 
onsequen
es that we return to below. LISS s
hemes are also

di�erent from the method in [14℄ based on integer polynomials, sin
e they require

a �nal division to get the se
ret while for LISS s
hemes we insist that linear


ombinations be suÆ
ient.

Note that it was shown in [5, 6℄ that perfe
t se
ret sharing and private 
om-

putation over 
ountably in�nite domains (like the integers) is not possible. How-

ever, this does not rule out s
hemes of our type sin
e we restri
t our se
rets to

be 
hosen from a publi
ally known interval and only aim for statisti
al rather

than perfe
t priva
y.

Cramer and Fehr introdu
e the 
on
ept of an integer span program (ISP)

and use it to 
onstru
t BBSS s
hemes. We show that any ISP 
an also be used

to build a se
ure LISS s
heme. Roughly speaking, an ISP is spe
i�ed by a matrix

with integer entries, and these entries are used as 
oeÆ
ients in the linear 
om-

binations that produ
e the shares from se
ret and randomness. In parti
ular, the




onstru
tion from [8℄ of an ISP for threshold-t a

ess stru
tures implies a LISS

s
heme for the same stru
ture. Moreover, we revisit the well known 
onstru
-

tion of Benaloh and Lei
hter [1℄ based on monotone formulas that was originally


on
eived for a �nite Abelian group, and we show that a LISS s
heme 
an be

built from any monotone formula. This implies that a LISS s
hemes exists for

any a

ess stru
ture, though not ne
essarily an eÆ
ient one.

The ISP 
onstru
tion of Cramer and Fehr was shown to imply optimal thresh-

old BBSS s
hemes. We show that this is not always the 
ase for LISS s
hemes:

if we base the Benaloh-Lei
hter 
onstru
tion on a monotone formula for the

threshold fun
tion, we obtain threshold LISS s
hemes. It now turns out that, de-

pending on how small a formula we 
an produ
e, this 
onstru
tion may produ
e

a threshold LISS s
heme with smaller shares or smaller randomness 
omplexity

than those 
oming from the Cramer-Fehr 
onstru
tion. With 
urrent of state of

the art, this does not happen in general, but we �nd that for a �xed threshold

and a large number of players, there are monotone formula 
onstru
tions that

produ
e smaller shares than Cramer-Fehr

2

.

It is interesting to note that if the known lower bound on the montone formula

size for the threshold fun
tion [3℄ turn out to be tight, this would make the

Benaloh-Lei
hter 
onstru
tion more eÆ
ient in general than the Cramer-Fehr


onstru
tion. While this may not seem likely with our 
urrent knowledge, it

does mean that determining the eÆ
ien
y of an optimal threshold LISS s
heme

remains an open question. The reason why BBSS s
hemes are di�erent from LISS

s
hemes in this respe
t is that when we use an ISP for building a BBSS s
heme,

the size of shares we get is independent of the size of the integers o

urring in the

des
ription of the ISP, but this is no longer true when we build a LISS s
heme.

Finally, we show that any LISS s
heme 
an be used to build a distributed

exponentiation proto
ol. The proto
ol does not use multilevel se
ret sharing.

Thus, it 
an be made non-intera
tive using any of the known te
hniques for this

purpose, su
h as the Fiat-Shamir heuristi
 (the random ora
le model) or [7, 11,

15℄. Furthermore, no player, in
luding the dealer, needs to know the order of the

group involved. This implies that we obtain the �rst non-intera
tive distributed

exponentiation proto
ol that works for any group and any a

ess stru
ture.

We also look at the parti
ular 
ase of distributed RSA. We generalize the re-

sults of Damg�ard and Dupont[10℄ to arbitrary a

ess stru
tures, and thus obtain

a distributed RSA signature s
heme for any a

ess stru
ture, any publi
 expo-

nent and any modulus, eÆ
iently and in 
onstant-round without using random

ora
les or any assumptions other than the RSA assumption.

We emphasize that our result that all LISS s
hemes 
an be used for dis-

tributed exponentiation does not hold for BBSS s
hemes, not even if we assume

that the dealer knows the group order

3

. The reason for this is that in order to

2

Note that in a later paper[9℄, Cramer, Fehr and Stam propose a 
onstru
tion that

they 
onje
ture to be more eÆ
ient than[8℄, but so far, the asymptoti
 eÆ
ien
y of

the s
heme remains unproved.

3

We note that the BBSS 
onstru
tions of [13, 8℄ are in fa
t appli
able to distributed

exponentiation, but this is due to spe
ial properties of those 
onstru
tions.



do the proof of se
urity for an exponentiation proto
ol using known simulation

te
hniques, the se
ret sharing s
heme needs to have the so 
alled share 
omple-

tion property: given an unquali�ed set of shares and the se
ret, we 
an 
ompute

by linear 
ombinations a 
omplete set of shares 
onsistent with what we were

given. It is not known whether BBSS or LISS s
hemes have this property in

general, in fa
t the answer is probably no. Here, we get around this problem by


oming up with a di�erent simulation te
hnique where share 
ompletion is not

needed. This te
hnique always works with a LISS s
heme, but fails with BBSS

when the group order is not publi
.

2 Linear Integer Se
ret Sharing

First we formally de�ne the required a

ess stru
tures.

De�nition 1. A monotone a

ess stru
ture on f1; : : : ; ng is a non-empty 
ol-

le
tion � of sets A � f1; : : : ; ng su
h that ; =2 � and su
h that for all A 2 �

and for all sets B with A � B � f1; : : : ; ng it holds that B 2 � .

De�nition 2. Let t and n be integers with 0 < t < n. The threshold-t a

ess

stru
ture T

t;n

is the 
olle
tion of sets A � f1; : : : ; ng with jAj > t.

Let P = f1; : : : ; ng denote the n shareholders (or players) and D the dealer. Let

� be a monotone a

ess stru
ture on P . The dealer D wants to share a se
ret

s from the publi
ally known interval [0::2

l

℄ to the shareholders P over � , su
h

that every set of shareholders A 2 � 
an re
onstru
t s, but su
h that a set of

shareholders A =2 � get no or little information on s. We 
all the sets whi
h are

allowed to re
onstru
t the se
ret quali�ed and the sets whi
h should not be able

to obtain any information about the se
ret forbidden.

For this purpose we use a distribution matrix M 2 Z

d�e

and a distribution

ve
tor � = (s; �

2

; : : : ; �

e

)

T

, where s is the se
ret, and the �

i

's are uniformly

random 
hosen integers in [0::2

l

0

+k

℄ for 2 � i � e, where k is the se
urity

parameter and l

0

is a 
onstant that is part of the des
ription of the s
heme. The

dealer D 
al
ulates shares by

M � � = (s

1

; : : : ; s

d

)

T

; (1)

where we denote ea
h s

i

as a share unit for 1 � i � d. Let  : f1; : : : ; dg ! P be

a surje
tive fun
tion. The i'th share unit is then given to the  (i)'th shareholder,

we say that  (i) owns the i'th row in M . If A � P is a set of shareholders, then

M

A

denotes the restri
tion of M to rows jointly owned by A. We denote d

A

for the number of rows in M

A

. Similarly, for s 2 Z

d

let s

A

2 Z

d

A

denote the

restri
tion of s to the 
oordinates jointly owned by A. The share of shareholder j

is then de�ned to be s

 

�1

(j)

, whi
h denotes all the entries in s whi
h shareholder

j owns, i.e., the share of shareholder j is the share units owned by j.

More formally, we let [0::2

l

℄ be the set of se
rets, then ea
h shareholder j is

asso
iated a positive integer d

j

= j 

�1

(j)j for 1 � j � n, su
h that the set of

possible shares for shareholder j, is a subset S

j

� Z

d

j

of the Z-module Z

d

j

. Ea
h



possible share for shareholder j is in the subset S

j

. The size of shareholder j share

is de�ned to be the number of bits used to uniquely represent the share from S

j

.

Note, that d =

P

n

j=1

d

j

, where d is the number of share units. Then let S = S

1

�

: : :� S

n

� Z

d

, whi
h de�nes the subset of possible shares for the shareholders.

De�ne the expansion rate to be � = d=n, where d is the number of share units and

n is the number of shareholders. Note, that for a given distribution of a se
ret,

the shares of the shareholdes 
an be 
onsidered as an element in the subset S. If

we use m bits to uniquely represent the shares in S, then we de�ne the average

share size to be m=�, whi
h is the number of share bits ea
h shareholder will

get on average.

De�nition 3. A LISS s
heme is 
orre
t, if the se
ret is re
onstru
ted from

shares fs

i

j i 2 Ag where A is a quali�ed set of shareholders, by taking an

integer linear 
ombination of the shares, with 
oeÆ
ient that depend only on the

index set A.

De�nition 4. A LISS s
heme is private, if for any two se
rets s; s

0

, independent

random 
oins r; r

0

and any forbidden set A of shareholders, the distribution of

fs

i

(s; r; k) j i 2 Ag and fs

i

(s

0

; r

0

; k) j i 2 Ag are statisti
ally indisinguishable.

More pre
isely, the statisti
al distan
e between the two distributions is negligible

in k.

In the following we de�ne the notion of an Integer Span Program (ISP, intro-

du
ed in [8℄) and show how any ISP 
an be used to build a 
orre
t and private

LISS s
heme.

De�nition 5. M = (M; ; ") is 
alled an Integer Span Program (ISP), if M 2

Z

d�e

and the d rows of M are labelled by a surje
tive fun
tion  : f1; : : : ; dg !

f1; : : : ; ng. Finally, " = (1; 0; : : : ; 0)

T

2 Z

e

is 
alled the target ve
tor. We de�ne

size(M) = d, where d is the number of rows of M .

De�nition 6. Let � be a monotone a

ess stru
ture and let M = (M; ; ") be

a integer span program. Then M is an ISP for � , if for all A � f1; : : : ; ng the

following holds.

- If A 2 � , then there is a ve
tor � 2 Z

d

su
h that M

T

A

� = ".

- If A =2 � , then there exists � = (�

1

; : : : ; �

e

)

T

2 Z

e

su
h that M

A

� = 0 2 Z

d

with �

1

= 1, whi
h is 
alled the sweeping ve
tor for A.

In other words, the rows owned by a quali�ed set must in
lude the target ve
tor

in their span, while for a forbidden set, there must exist a sweeping ve
tor whi
h

is orthogonal to all rows of the set, but has inner produ
t 1 with the target ve
tor.

We also say that M 
omputes � .

We de�ne �

max

= maxfjaj j a is an entry in some sweeping ve
torg

Note 1. In the 
ase of a span program, whi
h works over a �eld, the expli
it

requirement of a sweeping ve
tor is not ne
essary. This is be
ause the following

holds for �els, " 2 im(M

T

A

) if and only if there exists a sweeping ve
tor. When

working with the integers then only the \only if" impli
ation is guaranteed.



If we have an ISP M = (M; ; ") whi
h 
omputes � , we build a LISS

s
heme for � as follows: we use M as the distribution matrix, and set l

0

=

l + dlog

2

(�

max

(e� 1))e+ 1, where as before l is the length of the se
ret.

Now, the �rst requirement in De�nition 6 obviously makes the s
heme 
orre
t,

in that a quali�ed set A 
an 
ompute the se
ret by taking a linear 
ombination

of their values, sin
e there exsists �

A

2 Z

d

A

su
h that M

T

A

��

A

= " whi
h gives

s

T

A

� �

A

= (M

A

� �)

T

� �

A

= �

T

� (M

T

A

� �

A

) = �

T

� " = s

The Lemma below shows that the se
ond requirement is suÆ
ient to make

the s
heme private.

Lemma 1. If s 2 [0::2

l

℄ and the �

i

's are 
hosen uniformly at random in [0::2

l

0

+k

℄

for all 2 � i � e, then the LISS s
heme derived from M is private.

Proof. We have 
hosen � = (s; �

2

; : : : ; �

e

)

T

, with �

i

2 [0::2

l

0

+k

℄ as uniformly

random numbers for 2 � i � e, and the se
ret s 2 [0::2

l

℄.

Let s

0

2 [0::2

l

℄ be arbitrary. We �rst observe, that s

A

=M

A

� are shares that

a subset A 
an see. If A =2 � , then we by de�nition know that there exists a

sweeping ve
tor � su
h that M

A

� = 0 2 Z

d

A

.

De�ne s

0

= M(�+ (s

0

� s)�). We note that s

0

A

= s

A

, i.e., the shareholders

in A see the same shares, but the se
ret s

0

was shared instead of s. De�ne � to

be good if �

0

= �+ (s

0

� s)� has entries in the spe
i�ed range. Then the above

implies that if we restri
t the distribution of A's shares of s to the 
ases where

� is good, the resulting distribution equals the one generated from s

0

and �

0

.

It follows that the statisti
al distan
e between the distributions of A's shares

of s and s

0

is at most twi
e the probability that � is not good, whi
h we 
an

estimate by the union bound as e � 1 times the probability that a single entry

is out of range. So sin
e js

0

� sj � 2

l

, the distan
e is at most

2 �

2

l

�

max

(e� 1)

2

l

0

+k

� 2

�k

3 Constru
tions

3.1 Benaloh-Lei
hter

In this se
tion we show how to 
onstru
t an ISP based on Benaloh and Lei
hter

Generalized Se
ret Sharing s
heme [1℄. This s
heme was already shown to work

for se
ret sharing in any �nite group, but to use it over the integers, we need

to revisit the s
heme to make sure that the required sweeping ve
tors exist and


he
k the size of their 
oordinates.

As pointed out in [1℄, there is a one-to-one 
orresponden
e between monotone

a

ess stru
tures and monotone formulas. Every monotone a

ess stru
ture 
an

be des
ribed by a monotone formula, and every monotone formula des
ribes a

monotone a

ess stru
ture, where ea
h variable in the formula is asso
iated with

a shareholder in P . A subset of the shareholders 
orresponds to an input to the



formula by setting an input variable to 1 i� the 
orresponding shareholder is in

the the subset. A subset is in the a

ess stru
ture represented by the formula if

the formula a

epts the 
orresponding setting of the variables. So it is enough

to show how to 
onstru
t an ISP from an arbitrary monotone formula f .

The details of this follow from Benaloh and Lei
hter's original 
onstru
tion

and 
an be found in the appendix. Here, we only summarize the 
on
lusions:

One 
an eÆ
iently 
onstru
t a distribution matrix M 2 Z

d�e

for the a

ess

stru
ture representing by monotone formula f , where d; e are at most the size

of f . Moreover, ea
h row has only 0 or 1 entries and there are at most depth(f)

1's in every row. Finally, sweeping ve
tors have only 0; 1;�1 as entries.

So when sharing a se
ret usingM we need at most need d�depth(f) additions

to 
al
ulate all the d share units from (1). Ea
h share unit is the result of adding

at most of depth(f) integers of (l

0

+ k)-bit, i.e., ea
h share unit is at most

l

0

+ k + log depth(f) bits long.

From [22℄ we have the existen
e of a monotone formula for the majority

fun
tion of size O

�

n

5:3

�

and of depth O (logn). A threshold-t fun
tion T

t;n


an

be 
onstru
ted from the majority fun
tion, by �xing some of the inputs of the

majority fun
tion. This 
onstru
tion implies that we need a majority fun
tion

of size at most 2n to 
onstru
t the threshold-t fun
tion T

t;n

, i.e. [22℄ gives the

existen
e of a monotone formula for the threshold-t fun
tion T

t;n

of size O

�

n

5:3

�

and of depth O (logn).

It follows from the above that ea
h share unit is of size O (l

0

+ k + log log n)

and the 
omputation time of all the share units isO

�

n

5:3

logn(l

0

+ k + log logn)

�

,

where we assume it takes O (b) time to add two b-bit numbers and O (b) time

to generate a b-bit random integer. This implies that the average share size is

O

�

n

4:3

(l

0

+ k + log logn)

�

bits.

Boppana generalized Valiant's result in [2℄ where he showed that every threshold-

t fun
tion T

t;n


an be represented by a monotone formula of size O

�

t

4:3

n logn

�

.

Ea
h share unit size is still the same, hen
e the average share size be
omes

O

�

t

4:3

log n(l

0

+ k + log logn)

�

bits. The total 
omputation time of alle the

shares is O

�

t

4:3

n log

2

n(l

0

+ k + log logn)

�

.

3.2 Cramer-Fehr

In this se
tion we 
onsider the ISP's 
onstru
ted by Cramer and Fehr in [8℄.

As des
ribed, if we have an ISP M = (M; ; ") we use M 2 Z

d�e

as the

distribution matrix and we 
al
ulate the shares from (1). If we de�ne m

max

to be

the maximal entry in the distribution matrixM . We need d �e multipli
ations of

O (l

0

+ k +m

max

)-bit numbers and d�(e�1) additions of O (l

0

+ k +m

max

+ e)-

bit numbers to 
al
ulate the shares.

From the proof of Corollary 1 in [8℄ we have that for a threshold-t a

ess

stru
ture T

t;n

that

d = n(blogn
+ 2)

e = t(blogn
+ 2) + 1



We also know, thatm

max

= O

�

n

2

�

. If we assume that we useO (b) time to 
hoose

a b-bit random number, O (b) time to add two b-bit numbers, and O

�

b log

2

b

�

time to multiply two b-bit numbers. Then we need

O

�

tn log

2

n(l

0

+ k + n

2

) log

2

(l

0

+ k + n

2

) + tn log

2

n(l

0

+ k + n

2

+ t logn)

�

= O

�

tn log

2

n(l

0

+ k + n

2

) log

2

(l

0

+ k + n

2

)

�

time to 
ompute the shares. Furthermore, we have that ea
h share unit is of size

O

�

l

0

+ k + n

2

+ log(t logn)

�

= O

�

l

0

+ k + n

2

�

-bit, hen
e the average share size

is O

�

logn(l

0

+ k + n

2

)

�

.

3.3 Comparison

In this se
tion we 
ompare the average share size, the number of random bits

required to do the 
omputations, and the 
omputation 
omplexity of the LISS

s
heme based on Benaloh-Lei
hter 
onstru
tion (BL
) with the s
heme based on

the Cramer-Fehr 
onstru
tion (CF
) in the threshold-t 
ase.

First we make some observations. Re
all that l

0

= l+dlog

2

(�

max

(e�1))e+1.

For BL
 we get that l

0

= l+dlog

2

(n

5:3

�1)e+1, whi
h asymptoti
ally redu
es to

l

0

2 O (l + logn). In the CF
 we have that �

max

= 
2

n

and e = t(blogn
+2)+1,

i.e., l

0

= ldlog

2

(
2

n

t(blogn
 + 2))e + 1, whi
h asymptoti
ally redu
es to l

0

2

O (l + n).

First we will 
ompare the results of the CF
 with the BL
 based on the

threshold-t fun
tion build from Valiant [22℄ majority fun
tion. The results are


ompared in the table below, where we use l instead of the more s
heme de-

pendent l

0

. Let ss denote the share size of ea
h shareholder, rb the number of

random bits used in the 
omputation of the shares, and 
t the 
omputation time

of the shares.

CF
 BL
 (Valiant)

ss O

�

(l + k + n

2

) logn

�

O

�

(l + k + log log n)n

4:3

�

rb O ((l + k + n)t logn) O

�

(l + k + log log n)n

5:3

�


t O

�

tn log

2

n(l + k + n

2

) log

2

(l + k + n

2

)

�

O

�

n

5:3

logn(l + k + log logn)

�

These results show a great advantage of the CF
 if n is a dominating fa
tor of

the parameters, if this is not the 
ase, the asymptoti
 bounds are of the same

magnitute.

We may also base the BL
 on the result from Boppana [2℄, whi
h states that

the size of the formula for the threshold fun
tion T

t;n

is O

�

t

4:3

n logn

�

. We now


ompare it against the CF
 and let t be �xed while n grows. This implies that the

formula size is O (n logn) for a �xed value of t. This 
an be a reasonable model

in some 
ases: we may have a large number of share holders, while we believe

that the adversary 
an only 
orrupt a small number of them. In the table below

we 
ompare the results to the CF
 for a 
onstant value of t,



CF
 BL
 (Boppana)

ss O

�

(l + k + n

2

) logn

�

O ((l + k + log logn) logn)

rb O ((l + k + n) logn) O ((l + k + log logn)n logn)


t O

�

n log

2

n(l + k + n

2

) log

2

(l + k + n

2

)

�

O

�

n log

2

n(l + k + log logn)

�

Note that in this 
ase, the BL
 a
tually has a better share size and 
omputation

time 
omplexity than the CF
. This indi
ates that the BL
 with the 
urrent

state of the art 
an 
ompete with the CF
 in spe
ial 
ases.

Results of Radhakrishnan [3℄ show that the lower bound for a monotone

formula that 
omputes the threshold-t fun
tion T

t;n

for 2 � t �

n

2

, has size

at least b

t

2


n log(

n

t�1

). As he notes, that in the monotone formulas model, the


omplexities of 
omputing T

t;n

and T

n�t+1;n

are the same. Hen
e, the lower

bound of b

t

2


n log(

n

t�1

) holds for the fun
tion T

n�t+1;n

, 2 � t �

n

2

, as well.

This result is far below Valiants [22℄ and Boppana [2℄, so in parti
ular BL
 is in

general better than CF
 if the bound turns out to be tight.

To summarize the results of this se
tion, we �nd that CF
 seems better in

the general 
ase of the threshold-t fun
tion, but if n is small 
ompared to the

other fa
tors, then the BL
 
an be just as good. Furthermore, for �xed t and

large n, the BL
 has an advantage over the CF
. The result of Radhakrishnan

gives a big gab for improvements from the 
urrent state of the art of threshold

fun
tions, whi
h would favor BL
. Finally, it must be stressed, of 
ourse, that the

BL
 has the advantage that it 
an be used over any monotone a

ess stru
ture.

However, the BL
 is only eÆ
ient if there is a polynomial-size monotone formula

des
ribing the a

ess stru
ture.

4 Distributed Exponentiation

In this se
tion we will 
onsider solutions to the the distributed exponentiation

problem based on LISS. The set-up is as follows: we have n servers P

1

; :::; P

n

, an

a

ess stru
ture � with an ISP M = (M; ; "), and an adversary Adv who may


orrupt any subset of servers not in � . The family of subsets not in � is 
alled

the adversary stru
ture

�

� . Finally, we have a spe
ial player C 
alled the 
lient

who may also be 
orrupted, independently of whi
h servers are 
orrupt

In this �rst solution we give, we 
onsider non-adaptive 
orruption in the

semihonest model, i.e., the adversary must 
hoose whi
h players to 
orrupt be-

fore the proto
ol starts, he sees all internal data and 
ommuni
ation of 
orrupt

players, he may 
ause them to stop playing at any time, but all players follow

the proto
ol as long as they parti
ipate. In order to solve the problem in this

model, we must assume that the adversary stru
ture is Q2, i.e., any set of form

A [ B, A;B 2

�

� is stri
tly smaller than fP

1

; :::; P

n

g. This ensures that the set

of honest servers is in � .

We will use Canetti's Universal Composability (UC) framework to state and

prove our proto
ols. For details on this framework, refer to [4℄. In order to fo
us

on the a
tual proto
ol for exponentiation, we will assume a trusted dealer who


hooses the group to use and se
ret-shares the exponent. In the UC framework,



this means we assume a fun
tionality representing the dealer is given, as detailed

below. We assume for simpli
ity syn
hronous 
ommuni
ation and also that the


lient C 
an broad
ast information to all servers. But we do not assume any

private 
hannels so all 
ommuni
ation between players is seen by the adversary.

Fun
tionality F

Deal

1. Upon re
eiving \start" from all honest players, 
hoose the group G to use

and an exponent s (in prin
iple any eÆ
ient algorithm for this 
ould be used

here).

2. Generate the distribution ve
tor � = (s; �

2

; : : : ; �

e

)

T

and 
al
ulate the shares

from

M � � = (s

1

; : : : ; s

d

)

T

;

�nally distributes the shares, su
h that s

i

is sent privately to P

 (i)

for 1 �

i � d. Finally, send a des
ription of G to all players and the adversary

(information allowing to represent group elements and 
omputing the group

operation).

Su
h a fun
tionality together with the proto
ol we give below will implement

the following fun
tionality

Fun
tionality F

Deal�and�Exp

1. Upon re
eiving \start" from all honest players, 
hoose the group G to use

and an exponent s (same algorithm as used in F

Deal

). Send a des
ription

of G (information allowing to represent group elements and 
omputing the

group operation) to all players and the adversary.

2. At any later time, upon re
eiving \Exponentiate a" for a 2 G from the


lient, send \Exponentiate a", to all players and the adversary. In the next

round, send \Result a

s

" to the 
lient and the adversary.

The proto
ol pro
eeds as follows:

Proto
ol Exponentiate

1. Initially, ea
h player sends \start" to F

Deal

, and stores the des
ription of G

and shares of s re
eived from F

Deal

.

2. On input a 2 G, C broad
asts a to the servers.

3. Ea
h P

j

sends to C a

i

= a

s

i

for ea
h 
omponent s

i

of the share held by P

j

.

4. Sin
e

�

� is Q2, C is guaranteed to re
eive valid 
ontributions from a quali�ed

set of players A 2 � . C uses the entries in the re
onstru
tion ve
tor for A

� = (�

1

; : : : ; �

d

A

)

T

together with the 
ontributions (a

1

= a

s

1

; : : : ; a

d

A

=

a

s

d

A

) to 
onstru
t

a

s

= �

d

A

i=1

a

�

i

i

:

Theorem 1. The Exponentiate proto
ol when given a

ess to F

Deal

, and a broad-


ast 
hannel from C to the servers, se
urely implements F

Deal�and�Exp

. The

adversary is assumed to non-adaptively 
orrupt any set in Q2 stru
ture

�

� in a

semi-honest fashion.



Proof. Se
urity is proved by 
onstru
ting an ideal model adversary whi
h works

in a setting where it may 
ommuni
ate with the ideal fun
tionality F

Deal�and�Exp

and must simulate everything the real life adversary Adv would see in a real at-

ta
k. This works by running internally a 
opy of Adv and pro
eeds as follows:

1. Let B be the set of servers 
orrupted by Adv. Having re
eived the des
ription

of G from F

Deal�and�Exp

, 
ompute a sharing of 0 to simulate the a
tion of

F

Deal

, i.e., the distribution ve
tor is � = (0; �

2

; : : : ; �

e

)

T

and the shares are

s = (s

1

; : : : ; s

d

)

T

=M � � (2)

Give to the Adv the shares from (2) belonging to the servers in B.

2. Upon re
eiving \Exponentiate a" and \Result a

s

" from F

Deal�and�Exp

, we

must simulate the 
ontributions that honest players send to C. To this end,

note that if we had used �

0

= � + s�

B

as distribution ve
tor in (2), then

the 
orrupted servers in B would get the same shares, but the se
ret value

would be s instead of 0.

Now, let R be a row in the distribution matrixM belonging to honest server

P

j

, say the i'th row, and let s

i

be the share unit we 
omputed from this

row in (2). Had we used �

0

instead of �, then the share unit 
oming from R

would have been s

0

i

= (�+ s�

B

) �R = s

i

+ s�

B

�R instead. The observation

is now that be
ause we know a

s

and s

i

, we 
an 
ompute a

s

0

i

even though we

do not know s. Con
retely, we simulate the 
ontribution from P

j

by

a

s

i

(a

s

)

�

B

�R

= a

s

i

+s�

B

�R

= a

s

0

i

Give all simulated 
ontributions to Adv.

We now need to prove that no environment 
an distinguish between the real

proto
ol and the simulated game. The is straightforward: First, the shares 
om-

puted in step 1 of the simulation are statisti
ally indistinguishable from the

shares 
omputed by F

Deal

by priva
y of the LISS s
heme and sin
e B in un-

quali�ed. Se
ond, in both the simulated game and real proto
ol, honest players

output always the 
orre
t value a

s

, by de�nition of F

Deal�and�Exp

, respe
tively


orre
tness of the LISS s
heme. Finally, given a; a

s

, the simulated and real 
on-

tributions from honest players are statisti
ally indistinguishable, sin
e the ve
tor

we use for the simulated sharing is �

0

= � + s�

B

whi
h is statisti
ally 
lose to

a uniformly 
hosen sharing ve
tor for s. ut

4.1 A
tive Adversaries and Distributed RSA

If we are not guaranteed that 
orrupted players follow the proto
ol, we 
an

expand the Exponentiate proto
ol in a natural way by having players prove

in zero-knowledge that their 
ontributions are 
orre
t. Given any appropriate

s
heme for proving 
orre
tness of 
ontributions, a 
orrupt player must either give


orre
t information or be disquali�ed. Sin
e this is equivalent to the semihonest



model, se
urity essentially follows from se
urity of the zero-knowledge proofs

and the proof we already gave above.

Depending on the stru
ture of the group and the assumptions we are willing

to make, there are many di�erent ways to do the zero-knowledge proofs, see for

instan
e [20, 18, 21, 7, 11, 10, 12, 15℄. Most of the te
hniques 
an be made non-

intera
tive in the random ora
le model, or are already non-intera
tive given

some set-up assumption. If all else fails, generi
 zero-knowledge te
hniques 
an

be used[16℄.

However, a detailed a

ount of all possibilities is out of s
ope of this paper. We


on
entrate instead on distributed RSA as a parti
ularly interesting spe
ial 
ase.

The fun
tionality for initial set-up and the fun
tionality we want to implement

are modi�ed from the general 
ase as follows:

Fun
tionality F

RSA�Deal

1. Upon re
eiving \start" from all honest players, 
hoose the modulus n to use,

se
ret and publi
 exponents s; e and a random square v in G = Z

�

N

.

2. Generate the distribution ve
tor � = (s; �

2

; : : : ; �

e

)

T

and 
al
ulate the shares

from

M � � = (s

1

; : : : ; s

d

)

T

;

�nally distributes the shares, su
h that s

i

is sent privately to P

 (i)

for 1 �

i � d. Finally, send N; e; v and v

i

= v

s

i

mod N for every share unit s

i

to all

players and the adversary .

Fun
tionality F

RSA

1. Upon re
eiving \start" from all honest players, 
hoose the modulus N to use,

se
ret and publi
 exponents s; e. Send N; e to all players and the adversary

2. At any later time, upon re
eiving \Exponentiate a" for a 2 Z

�

N

from the


lient, send \Exponentiate a", to all players and \Exponentiate a; a

s

mod N"

to the adversary. Two rounds later, send \Result a

s

mod N" to all players.

The proto
ol we will use is the Exponentiate proto
ol from the previous

se
tion, with the extension that C will 
he
k ea
h 
ontribution a

i

= a

s

i

mod N

from server P

j

. We want to show that a suÆ
ient 
he
k 
an be done in 
onstant-

round without using random ora
les to ensure soundness and zero-knowledge,

and regardless of whi
h modulus and publi
 exponent is used. To do this, we

generalize the results from [10℄. Con
retely, we use the following well known

proto
ol, whi
h we will repeat in parallel d2 + 2 log

2

ne times:

1. P

j


hooses a random k +max- bit number r and sends to C u

1

= a

r

mod

N; u

2

= v

r

mod N . Here, max is the maximal bitlength of any s

i

that 
an

o

ur.

2. C sends a random bit b to P

j

.

3. P

j

sends z = r+ bs

i

, and C 
he
ks that a

z

= u

1

a

b

i

mod N; v

z

= u

2

v

b

i

mod N

The following Lemma is an easy 
onsequen
e of 
orresponding results in [10℄:



Lemma 2. The above proto
ol is statisti
al zero-knowledge. Furthermore, if a

i

6=

a

s

mod N then a polynomial time prover who 
an make C a

ept with probability

more than 1=(4n

2

) 
an 
ompute eÆ
iently a multiple of the order of v.

Note that the last result in the lemma implies that if an adversary 
an 
heat

the proto
ol on input a random v, he 
an fa
tor N by a standard redu
tion and

hen
e also break RSA.

Even though the soundness error for this proto
ol is not negligible, we 
an

show that 
he
king the 
ontributions in this way is suÆ
ient to allow C to

re
onstru
t the 
orre
t result eÆ
iently. This is done by a generalization of the

results from [10℄. There it was observed that as long as the expe
ted number of

a

epted in
orre
t 
ontributions is small enough, C 
an re
onstru
t eÆ
iently

by sear
hing exhaustively for a set of 
orre
t 
ontribution. In [10℄, this was done

for the 
ase of a threshold a

ess stru
ture. Here we have to be more 
areful

with the sear
h algorithm and the analysis be
ause we have no lower bound on

the number of honest players for a general a

ess stru
ture.

Algorithm Re
onstru
t

1. On input publi
 keyN; e, a 2 Z

�

N

and a set of 
ontributions to �nding a

s

mod

N , exe
ute the proto
ol above with ea
h server to 
he
k the 
orre
tness of

ea
h 
ontribution.

2. Let the set of a

epted 
ontributions be A

. Do the following for j =

0; :::; jA

j:

3. For ea
h subset B � A

 of size jA

j � j, run the re
onstru
tion algorithm

from the Exponentiate proto
ol on the 
ontributions in B, attempting to


ompute a

s

mod N . Let z be the result. If z

e

= a mod N , output z and

stop.

Lemma 3. The expe
ted number of subsets 
onsidered by Re
onstru
t is at most

2.

Proof. Let m be the number of in
orre
t 
ontributions submitted by 
orrupt

players. Clearly, the worst 
ase is if all 
orrupt players submit bad 
ontributions,

so we may assume that the number of honest players is n � m. Let p be the

probability that an in
orre
t 
ontribution is a

epted. Then

p

i

= Pr(i in
orre
t shares a

epted) = p

i

(1� p)

i

�

m

i

�

� p

i

m

i

Given that i in
orre
t shares are a

epted, we have n�m+ i 
ontributions, and

we �nish at the latest when we have sear
hed all subsets of size n � m. This

means 
he
king a total of

�

n�m+ i

n�m+ i

�

+

�

n�m+ i

n�m+ i� 1

�

+ :::+

�

n�m+ i

n�m

�

� (i+ 1)

�

n�m+ i

n�m

�

= (i+ 1)

�

n�m+ i

i

�

� (i+ 1)(n�m+ i)

i



subsets. It follows that the expe
ted number of subsets we 
he
k is at most

m

X

i=0

p

i

m

i

� (i+ 1)(n�m+ i)

i

�

m

X

i=0

p

i

m

i

2

i

n

i

�

m

X

i=0

(2pn

2

)

i

�

m

X

i=0

2

�i

� 2

using the above and the fa
t that p � 1=(4n

2

). ut

A �nal observation is that by 
hoosing z at random in Z

�

N

, and setting

v = z

2e

mod N , a simulator 
an easily 
reate a random square v for whi
h v

s

mod

N is known (namely z

2

mod N). It is then easy to simulate the information

F

RSA�Deal

sends to 
orrupt players. Using this, the proof of Theorem 1, Lemma

3 and Lemma 2, it is straightforward to show:

Theorem 2. Under the RSA assumption, the Exponentiate proto
ol expanded

with the above Re
onstru
tion algorithm and given a

ess to the F

RSA�deal

fun
-

tionality implements the F

RSA

fun
tionality. The adversary may non-adaptively

and a
tively 
orrupt any set in Q2 stru
ture

�

� .

We believe that the interest of this result is that it buys us full generality

in a

ess stru
ture and 
hoi
e of keys and no dependen
y on extra set-up or


omplexity assumptions. Sin
e the number of servers n 
an be expe
ted to be

quite small in pra
ti
e, the overhead 
ompared to more standard solutions is

moderate: a fa
tor of logn in 
omplexity and potentially 2 extra moves. However,

in pra
ti
e, faults are usually rare, so if the the 
lient attempts to get the result

from all 
ontributions �rst and only asks to have the proofs 
ompleted if this

fails, then the s
heme will be non-intera
tive \almost always".
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A LISS s
hemes from the Benaloh-Lei
hter Constru
tion

In this se
tion we show how to 
onstru
t an ISP based on Benaloh and Lei
hter

Generalized Se
ret Sharing s
heme [1℄. This s
heme was already shown to work

for se
ret sharing in any �nite group, but to use it over the integers, we need

to revisit the s
heme to make sure that the required sweeping ve
tors exist and

estimate the size of their 
oordinates.

As pointed out in [1℄, there is a one-to-one 
orresponden
e between monotone

a

ess stru
tures and monotone formulas. Every monotone a

ess stru
ture 
an

be des
ribed by a monotone formula, and every monotone formula des
ribes a

monotone a

ess stru
ture, where ea
h variable in the formula is asso
iated with

a shareholder in P . That is, it is enough to show how to 
onstru
t an ISP from

an arbitrary monotone formula f .



Note that the value of the monotone formula is true if and only if the set

of variables whi
h are true 
orresponds to a quali�ed set of P , i.e., a set in

� . Sin
e every monotone formula 
an be implemented using just AND- and OR-

operators, it is suÆ
ient to show how to 
onstru
t a distribution matrix repr. the

two operators given two matri
es whi
h express the two terms of the operator.

First we introdu
e some notation. LetM

u

2 Z

1;1

be the matrix with a single

entry whi
h is one, i.e.

M

u

= 1

We 
all M

u

and any M

a

2 Z

d

a

�e

a

for 0 � d

a

; e

a

a matrix for the 
onvienen
e

of 
onsisten
y. Furthermore, if we have a matrix M

a

2 Z

d

a

�e

a

, then we de�ne




a

2 Z

e

a

to represent the �rst 
olumn in M

a

, and R

a

2 Z

(d

a

�1)�e

a

to represent

all but the �rst 
olumn in M

a

. In the 
ase where d

a

= 1, we let R

a

denote the

\empty" matrix, where we by the \empty" matrix mean the matrix with no

entries. Also note, that the ve
tor 


a

sometimes only represents a single entry,

but we still denote it a 
olumn ve
tor. Furthermore, we let 0 denote the matrix

with only zero entries, the size of 0 should be 
lear from the 
ontext where it is

used.

Given any monotone formula f for a monotone a

ess stru
ture � , we 
on-

stru
t the distribution matrix M by the following three rules.

{ Ea
h variable x

i

in the formula f 
an be expressed by M

u

.

{ For any OR-term f = f

a

_ f

b

, let M

a

2 Z

d

a

�e

a

and M

b

2 Z

d

b

�e

b

be the

matri
es whi
h expresses the formulas f

a

and f

b

, respe
tively. Then we 
an


onstru
t a matrix M

OR

2 Z

(d

a

+d

b

�1)�(e

a

+e

b

)

expressing f , whi
h is de�ned

by letting the �rst 
olumn of M

OR

be the 
on
atenation of the two 
olumn

ve
tors 


a

and 


b

, then letting the following d

a

� 1 
olumns be the 
olumns

of R

a

expanded with e

b

su

eeding zero entries, and the last d

b

� 1 
olumns

be the 
olumns of R

b

expanded with e

a

leading zero entries. This is also

visualized by,

M

OR

=




a

R

a

0




b

0 R

b

(3)

{ For any AND-term f = f

a

^ f

b

, let M

a

2 Z

d

a

�e

a

and M

b

2 Z

d

b

�e

b

be the

matri
es whi
h expresses the formulas f

a

and f

b

, respe
tively. Then we 
an


onstru
t a matrix M

AND

2 Z

(d

a

+d

b

)�(e

a

+e

b

)

whi
h expresses the formula

f . It is de�ned by letting the �rst 
olumn of M

AND

be the 
olumn ve
tor




a

expanded with e

b

su

eeding zero entries, the next 
olumn to be the


on
atenation of 


a

and 


b

, the following d

a

� 1 
olumns be the 
olumns of

R

a

expanded with e

b

su

eeding zero entries, and the last d

b

� 1 
olumns be

the 
olumns of R

b

expanded with e

a

leading zero entries. This 
an also be



visualized by,

M

AND

=




a




a

R

a

0

0 


b

0 R

b

(4)

For the sake of 
larity we provide a simple example here to demonstrate the

pro
edure. Let

f = ((x

1

^ x

2

) ^ (x

3

_ x

4

));

then ea
h variable in f 
an be expressed by the matrix M

u

. If we let f = f

a

^ f

b

where f

a

= (x

1

^ x

2

) and f

b

= (x

3

_ x

4

), then we 
an express f

a

by the matrix

M

a

=

1 1

0 1

;

by using the AND-rule on x

1

and x

2

whi
h both are expressed by M

u

. Further-

more, we 
an express f

b

by the matrix

M

b

=

1

1

;

by using the OR-rule on x

3

and x

4

whi
h also are expressed by M

u

. Then �nally

we 
an express f by the matrix

M =

1 1 1

0 0 1

0 1 0

0 1 0

by using the AND-rule on f

a

and f

b

and their respe
tively matrix representations

M

a

and M

b

.

Note that ea
h variable x

i

in the formula f is represented by a row in the

resulting matrix. So we say, that the a given row is owned by the variable whi
h it

represents or the shareholder whi
h the variable represents, sin
e there is a one-

to-one 
orresponden
e between the shareholders and variables in the formula.

Futhermore, note that a variable 
an own more than one row in the resulting

matrix in the 
ase where it is represented more than on
e in the formula f .

In the sequel we will show that (M; ; ") de�nes an ISP, where M is the ma-

trix de�ned above,  is the fun
tion whi
h maps share units to the shareholders,

and " is the target ve
tor. Note that  is easily de�ned from the monotone

formula and the 
orresponding matrix M , it maps a given row in M to the

shareholder whi
h owns the row.

We pro
eed to show that (M; ; ") is an ISP for the given a

ess stru
ture

� by the following two lemmas.

Lemma 4. If A 2 � , then there exits �

A

su
h that M

T

A

�

A

= ".



Proof. We show how to 
onstru
t the re
onstru
tion ve
tor, �

A

, by indu
tion in

the number of variables in the formula f whi
h represents the a

ess stru
ture

� . If M 2 Z

d�e

, then we 
onstru
t the re
onstru
tion ve
tor � 2 Z

d

for A 2 � ,

su
h thatM

T

� = " but �

A




= 0, i.e., we do not use shares from the shareholders

not in A, whi
h is required.

In the base 
ase, f = x, there is only one shareholder, and the distribution

matrix is M =

1

, i.e., the shareholder gets the se
ret s, so the re
onstru
tion

ve
tor is � = (1)

T

.

In the 
ase of an OR-term, f = f

a

_ f

b

, then let M

a

and M

b

be the matri
es

whi
h represent the the formulas f

a

and f

b

, repspe
tively. By assumption we

know that one of matri
es should be able to re
onstru
t the se
ret. Take the

re
onstru
tion ve
tor for the one able to, e.g., �

a

= (�

1

; : : : ; �

t

)

T

. The new

re
onstru
tion ve
tor for the OR-term is �

OR

= (�

1

; : : : ; �

t

; 0; : : : ; 0)

T

, i.e. we put

zeros in the entires whi
h represent the shares from M

b

.

In the 
ase where there is an AND-term, f = f

a

^ f

b

, then let the matri
es

M

a

and M

b

represent the formulas f

a

and f

b

, respe
tively. By assumption ea
h

of the matri
es M

a

and M

b


an re
onstru
t their part of the se
ret, let �

a

=

(�

a

1

; : : : ; �

a

t

)

T

and �

b

= (�

b

1

; : : : ; �

b

v

)

T

be the re
onstru
tion ve
tors for M

a

and M

b

. Then we 
laim that the re
onstru
tion ve
tor for the AND-term is

�

AND

= (�

a

1

; : : : ; �

a

t

;��

b

1

; : : : ;��

b

v

)

T

;

be
ause, if we de�ne

�

a

0

= (�

a

1

; : : : ; �

a

t

; 0; : : : ; 0)

T

�

b

0

= (0; : : : ; 0; �

b

1

; : : : ; �

b

v

)

T

;

we know that if M is the distribution matrix that represents the AND-term, then

(M � �)

T

� �

a

0

= s+ �

2

(M � �)

T

� �

b

0

= �

2

;

i.e., we have that

(M � �)

T

� �

a

0

� (M � �)

T

� �

b

0

= (M � �)

T

� (�

a

0

� �

b

0

)

= (M � �)

T

� �

AND

= s+ �

2

� �

2

= s:

Lemma 5. For all A =2 � there exists � = (�

1

; : : : ; �

e

)

T

su
h that M

A

� � = 0

with �

1

= 1.

Proof. We show how to 
onstru
t a sweeping ve
tor � by indu
tion in the 
on-

stru
tion of the matrix of formula f whi
h represents the a

ess stru
ture � .

Note, that we only need to verify that the inner produ
t of � is zero with the

rows from M whi
h are owned by the shareholders in A.

First note, that formulas only 
ontaining OR-terms, i.e., formulas on the form

f = (x

1

_ � � � _ x

i

), represents a monotone a

ess stru
ture where every share-

holder 
an re
onstru
t the se
ret. That is, for every A =2 � and A � P we have



that A = ;. That also implies that there is no base 
ase with formulas only


ontaining OR-terms.

By the above, we have that the base 
ase is a formula of the form f =

(x

1

_ � � �_x

i

)^ (x

i+1

_ � � �_x

j

), where there is only one AND-term. The variables

in f representing the shareholders in A 
annot be on both sides of the AND-term.

If some of the shareholders in A had variables on both sides of the AND-term,

then the shareholders in A were obviously quali�ed to re
onstru
t the se
ret. This

also implies that the shareholders 
annot own rows in both the upper and lower

part of the matrix (4). So if the shareholders owns rows is in the bottom of the

matrix (4), then � = (1; 0; : : : ; 0)

T

would qualify as sweeping ve
tor, and if the

shareholders owns rows in the top of the matrix (4), then � = (1;�1; 0; : : : ; 0)

T

would qualify as sweeping ve
tor.

The indu
tion step with an OR-term, f = f

a

_ f

b

, where we have matri
es

M

a

and M

b

whi
h represents the formulas f

a

and f

b

, respe
tively. Then if ea
h

of the formulas, f

a

and f

b

, 
ontain at least one AND-term, then by the indu
tion

assumption there exists �

a

and �

b

su
h that (M

a

)

A

��

a

= 0 and (M

b

)

A

��

b

= 0.

In that 
ase, de�ne � = (1; �

a

2

; : : : ; �

a

t

; �

b

2

; : : : ; �

b

v

)

T

, whi
h from (3) 
an be

argued to work, be
ause if we take the inner produ
t with � on an upper row

owned by a shareholder in A of the matrix (3), then it will be 0 by de�nition of

�

a

, and if take the inner produ
t with � on a lower row owned by a shareholder

in A of the matrix (3), then it will be 0 by de�nition of �

b

. If only one of the

formulas, f

a

or f

b

, has and AND-term, say f

a

, then neither of the forbidden players


an have variables in f

b

, sin
e this would enable them to re
onstru
t the se
ret.

That is, we need not to worry about the inner produ
t of � with the rows in the

lower part of (3). A similar argument holds if only f

b


ontains AND-terms.

The indu
tion step where we have an AND-term, f = f

a

^ f

b

, and let M

a

and

M

b

be the matri
es whi
h represent the formulas f

a

and f

b

, respe
tively. Then

we 
an observe from (4) that if the shareholders from A =2 � do not qualify

re
onstru
t the se
ret from f

a

, then by the indu
tion assumption there exists �

a

su
h that (M

a

)

A

� �

a

= 0, and we 
an use � = (1; 0; �

a

2

; : : : ; �

a

t

; 0; : : : ; 0)

T

as

sweeping ve
tor. But if the shareholders in A 
an re
onstru
t the se
ret from f

a

,

then we use � = (1;�1; 0; : : : ; 0;��

b

2

; : : : ;��

b

v

)

T

, where �

b

= (1; �

b

2

; : : : ; �

b

v

)

T

is the sweeping ve
tor for (M

b

)

A

, whi
h exists by assumption.

From the above two lemmas we have that (M; ; ") de�nes an ISP. We need

to remark some observations from the 
onstru
tion ofM to state some properties

of the LISS s
heme de�ned by the above ISP.

Let f denote a monotone boolean formula andM the matrix whi
h expresses

f . Let depth(f) denote the greatest depth of the formula and op(f) the number

of AND- and OR-operators in f .

Remark 1. If we look at (3) and (4), it follows that, if m

nz

is the number of non-

zero entries in a row in the distribution matrix M , then m

nz

� depth(f) + 1.

Remark 2. Ea
h non-zero entry in the distribution matrix M is 1.

Remark 3. It follows from (3) and (4), that ifM 2 Z

d�e

then d � op(f)+1 and

e � op(f) + 1.



From Remark 1 and 2 it follows, that if we have distribution matrix M 2

Z

d�e

whi
h represents a formula with depth at most depth(f), then we at most

need d �depth(f) additions to 
al
ulate all the d shares unit from (1). Ea
h share

unit is at most the addition of depth(f) integers of (l

0

+ k)-bit, i.e., ea
h share

unit is at most l

0

+ k + log depth(f) bits long.

Remark 3 gives that d is equal to the size of the formula whi
h the distribution

matrix represents.

From [22℄ we have the existen
e of a monotone formula for the majority

fun
tion of size O

�

n

5:3

�

and of depth O (logn). A threshold-t fun
tion T

t;n


an

be 
onstru
ted from the majority fun
tion, by �xating some of the inputs of the

majority fun
tion. This 
onstru
tion implies that we need a majority fun
tion

of size at most 2n to 
onstru
t the threshold-t fun
tion T

t;n

, i.e. [22℄ gives the

existen
e of a monotone formula for the threshold-t fun
tion T

t;n

of size O

�

n

5:3

�

and of depth O (logn).

It follows from the above that ea
h share unit is of size O (l

0

+ k + log log n)

and the 
omputation time of all the share units isO

�

n

5:3

logn(l

0

+ k + log logn)

�

,

where we assume it takes O (b) time to add two b-bit numbers and O (b) time

to generate a b-bit random integer. This implies that the average share size is

O

�

n

4:3

(l

0

+ k + log logn)

�

bits.

Boppana generalized Valiant's result in [2℄ where he showed that every threshold-

t fun
tion T

t;n


an be represented by a monotone formula of size O

�

t

4:3

n logn

�

.

Ea
h share unit size is still the same, hen
e the average share size be
omes

O

�

t

4:3

log n(l

0

+ k + log logn)

�

bits. The total 
omputation time of alle the

shares is O

�

t

4:3

n log

2

n(l

0

+ k + log logn)

�

. We will study the result of Boppana

further in Se
t. 3.3.


