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Abstract. Since Diffie-Hellman [14], many secure systems, based on dis-
crete logarithm or Diffie-Hellman assumption in Zp, were introduced in
the literature. In this work, we investigate the possibility to construct ef-
ficient primitives from exponentiation techniques over Zp. Consequently,
we propose a new pseudorandom generator, where its security is proven
under the decisional Diffie-Hellman assumption. Our generator is the
most efficient among all generators from Z

∗
p that are provably secure un-

der standard assumptions. If an appropriate precomputation is allowed,
our generator can produce O(log log p) bits per modular multiplication.
This is the best possible result in the literature (even improved by such
a precomputation as well). Interestingly, our generator is the first prov-
ably secure under a decisional assumption and might be instructive for
discovering potentially more efficient generators in the future. Our sec-
ond result is a new family of universally collision resistant hash family
(CRHF). Our CRHF is provably secure under the discrete log assumption
and is more efficient than all previous CRHFs that are provably secure
under standard assumptions (especially without a random oracle). This
result is important, especially when the unproven hash functions (e.g.,
MD4, MD5, SHA-1) were broken by Wang et al. [41–43].

1 Introduction

Diffie-Hellman protocol [14] is an exponentiation based key exchange pro-
cedure. It is provably secure (against a passive attack) [8] under a now
called decisional Diffie-Hellman (DDH) assumption. Since then, Diffie-
Hellman techniques in Z

∗
p have been largely employed to construct secure

systems, see a very partial list of random examples: key exchange [28,
8–10, 26], encryption [16, 12], key escow [3]. As provable security is al-
ways related to a mathematically hard problem, the systems above are
usually proven secure under an assumption of either discrete log, compu-
tational Diffie-Hellman, or the decisional Diffie-Hellman. These assump-
tions, throughout more than twenty years’ tests [1, 7, 32, 38, 39], have be-
come widely accepted standard assumptions. Naturally, exponentiation



in Z
∗
p has served as the main technique in embedding a hard problem into

such a system. In this work, we investigate the possibility to construct
efficient and secure primitives from exponentiations in Z

∗
p. Consequently,

we obtain a new pseudorandom generator and an efficient family of colli-
sion resistant hash function. Before going on, we first review the research
status in these two topics.

Pseudorandom Generator A key stream generator is a polynomial
time algorithm, which upon a short secret outputs a poly-length binary
stream. Encryption of a message is to bit-wise XOR it with the underlying
key stream. Decryption works in the obvious way. Key stream generators
are widely used in the real world, from ancient military communications to
today’s cell phone conversations. The notion of pseudorandom generator
(or cryptographically secure key stream generator) was formally defined
by Blum and Micali [6] and Yao [44]. In these (different but equivalent)
definitions, a generator is said to be secure if no PPT algorithm can distin-
guish the generator’s output from a uniformly random stream. Blum and
Micali [6] constructively showed that a one-way permutation suffices to
construct a pseudorandom generator. Then, they showed that a generator
that iterates gx (mod p) for a large prime p and that extracts the most
significant bit of x, is secure. This is improved by Long and Wigderson
[31] for extracting the most O(log log p) significant bits in each iteration.
Blum, Blum and Shub [5] showed that the parity sequence with an iter-
ation function x2 (mod N) is secure, where N is a RSA composite [36].
Yao [44] and Goldwasser et al [18] constructed more pseudorandom gen-
erators from the intractability of factoring. Alex et al. [2] showed that
inverting a RSA function is equivalent to guessing the least significant
bit of the input significantly better than 1/2. They further showed that
the least significant O(log log N) bits of RSA function xe (mod N) are
simultaneously secure. This results was also obtained by Vazirani and
Vazirani [40]. This implies a pseudorandom generator with each iteration
extracting O(log log N) bits. Hastad et al. [23] showed that generally a
secure pseudorandom generator exists if and only if a one-way function
exists. Hastad et al. [24] showed that the most (or least) significant ⌈n2 ⌉
bits of exponentiation function modulus a RSA composite N are simul-
taneously secure, where |N | = n. This results in a HSS generator that
extracts half of the RSA input in each iteration. Goldreich and Rosen
[22] improved the HSS generator with more efficient computation in each
iteration. These generators [24, 22] are further improved by Dedic et al.
[15] by removing the requirement of an extra extractor or hash. Recently,
Patel et al [33] and Gennaro [17] constructed a very efficient generator
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that output almost n bits for each iteration, while his construction as-
sumes a non-standard Discrete Logarithm Short Exponent Assumption.

Collision Resistant Hash Function Roughly speaking, collision re-
sistant hash function (CRHF) is a function that is hard to find two inputs
with an identical function value. CRHF was first proposed by Damgard
[13] from claw-free permutations. Their construction requires O(1/ log r)
time (r is a fixed integer) to process one bit while none of the concrete
schemes in his paper can achieve O(1/ log k) time per bit, where k is the
security parameter. CRHF in Pointcheval [35] and Shamir and Tauman
[37] require 1.5 modular multiplication per bit. Goldwasser et al. [19] re-
quires one modular squaring per bit. Bellare et al. [4] proposed a very
efficient CRHF but it assumes random oracle. Efficient CRHF from non-
standard assumptions are proposed in Peikert and Rosen [34] and Contini
et al. [11]. To our knowledge, no construction, provably secure under a
standard assumption, has achieved O(1/ log k) time per bit.

1.1 Contribution

In this work, through manipulating an exponentiation technique in Z
∗
p (p

a prime), we construct a new pseudorandom generator and a new family
of collision resistant hash function.

Our generator can output one bit per one modular multiplication and
more efficient than the previous generators from Z

∗
p (i.e., [6, 31]) that are

probably secure under a standard assumption. Our generator is the first
one provably secure under a decisional assumption and might be instruc-
tive for discovering potentially more efficient generators. But we point
out that, comparing with factoring based construction, our generator is
asymptotically the same efficient as HSS generator [24] and BBS generator
[5] but less efficient than GR generator [22], ACGS generator [2] genera-
tor and DRV generator [15]. We stress that here the comparison assumes
|p| = |N |, where N is the RSA modulus used in factoring based con-
struction. This is justified by the following: (1) in the current start of art
results, factoring and discrete log problems have the same heuristic crypt-
analytic result [38, 29]; (1) no known cryptanalytic result can separate the
decisional Diffie-Hellman and the discrete log problem in Z

∗
p, when p is a

safe prime. If an appropriate precomputation is allowed, our generator can
output O(log log p) bits per modular multiplication, which achieves the
current best result as GR generaor, DRV generator and ACGS generator
(although DR generator and DRV generator requires less precomputation
than ours and ACGS generator needs no precomputation at all).
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Our CRHF is provably secure under the discrete log assumption. It
requires only O( 1

log log p
) time per bit and is more efficient than all previ-

ous constructions that are provably secure under standard assumptions
(especially without a random oracle). This result is very important, espe-
cially when unproven hash constructions (e.g., MD4, MD5, SHA-1) were
broken recently [41–43].

2 Notions

In this section, we introduce some notions that will be used in this pa-
per. Denote Z the set of integers, R the set of real numbers. We say a
function ν : Z → R is negligible, if for any positive polynomial p(n),
limn→∞ ν(n)p(n) = 0.

Definition 1. We say two ensembles {Xn}n and {Yn}n are computa-

tionally indistinguishable, if for any probabilistic polynomial time al-

gorithm A and any polynomial p(n), when n large enough,

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| < 1/p(n).

Definition 2. Let Ul be a random variable uniformly distributed over

{0, 1}l. We say an efficiently computable function G : {0, 1}κ × Z →
{0, 1}∗ is a pseudorandom generator, if for any polynomially bounded

integer l ∈ Z, G(Uκ, l) is computationally indistinguishable from Ul.

In the above, we only consider the case of a binary generator. We
can also generalize it to the setting where the generator output is from
an arbitrary domain D (instead of {0, 1} only). In this case, the above
definition is modified such that Ut is uniformly random in Dt and G is
a function from D′ × Z to D∗ for some domain D′. We call a generator
satisfying the modified definition a pseudorandom number sequence

generator.

A pseudorandom function is a cryptographic approximation of a ran-
dom function. Loosely speaking, pseudorandom functions are functions
that are indistinguishable from random functions.

Definition 3. Let {Fn} be an ensemble of functions, where Fn : {0, 1}∗ →
{0, 1}l(n) is a random variable uniformly distributed over some set of func-

tions Ωn, where l is a fixed integer. If Ωn consists of all possible functions

from {0, 1}∗ to {0, 1}l(n), then {Fn} is called a random function en-

semble.
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We use Mf to denote the algorithm M with oracle access to the
function f (i.e., he can adaptively issue a query x, and in return he will
receive the function value f(x)). We call such an algorithm M an oracle

machine.

Definition 4. Let {Hn}n with Hn : {0, 1}∗ → {0, 1}l(n) be a random

function ensemble. Assume {Fn}n with Fn : {0, 1}∗ → {0, 1}l(n) is an

efficiently sampleable and efficiently computable function ensemble. {Fn}n
is said to be pseudorandom if for any PPT oracle machine M,

|Pr[MFn(1n) = 1]− Pr[MHn(1n) = 1]| (1)

is negligible.

Definition 5. A family of efficiently computable functions {Hs}s∈{0,1}∗

from {0, 1}∗ to {0, 1}l(|s|) is said to be Collision Resistant if for any

PPT algorithm A,

Pr[(x′, x)← A(s) for s← I(1n) s.t. Hs(x
′) = Hs(x) & x′ 6= x] (2)

is negligible, where I(1n) is the index generation for the function family

{Hs}, and the probability is taken over internal coin flips in both I(1n)
and A.

3 Our New Pseudorandom Generator

In this section, we will introduce our new pseudorandom generator. Our
generator is provably secure under the decisional Diffie-Hellman.

Let p = 2q + 1 and q be two large primes. Assume Gq is the subgroup
of Z

∗
p of order q and g is a generator of Gq. Let function | · |p : Gq → Zq

be defined as follows:

|x|p =







x if 1 ≤ x < q,
p− x if q + 2 ≤ x < p,
0 otherwise.

Note that Gq is exactly the set of quadratic residues in Z
∗
p. In addition,

(

q(q+1)
p

)

=
(

1+q−1

p

)

=
(

−1
p

)

= −1 as p ≡ 3 (mod 4). It follows that

either q ∈ Gq or q + 1 ∈ Gq but not both. More precisely, by Law of

Quadratic Reciprocity [25], we have that q ∈ Gq if q ≡ 1 (mod 4) and

q + 1 ∈ Gq if q ≡ 3 (mod 4). Further notice that
(

p−x
p

)

= −1, ∀x ∈ Gq.
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Therefore, we have that | · |p is a 1-1 and onto mapping from Gq to Zq.

Construction 1. We define a number sequence generator NSG as fol-
lows. Let (A0, A1) ∈ Gq × Gq is the initial secret. Starting from t = 2,
iteratively define At = g|At−1|p|At−2|p . Let A′

t = g|At|p. The output se-
quence is A′

0, A
′
1, A

′
2, · · · .

Now we show that our number sequence generator is secure under the
decisional Diffie-Hellman (DDH) assumption.

Theorem 1. Under the decisional Diffie-Hellman assumption, NSG is a

pseudorandom number sequence generator.

Proof. We need to show that St = A′
0, A

′
1, . . . , A

′
t is indistinguishable

from Ut+1 ← Gt+1
q for any polynomially bounded t. We use a hybrid ar-

gument. Let S
(v)
t be St, except A′

0, . . . , A
′
v being taken uniformly random

from Gq. Thus, S
(t)
t is uniformly random in Gt+1

q . If there exists an adver-

saryM distinguishing St from Ut+1, thenM can distinguish S
(w)
t , S

(w+1)
t

for some w ≥ 1 (Note the distributions of S
(0)
1 and S

(1)
t are identical).

Without loss of generality, assume w is known (otherwise, one can guess
it correctly with probability 1/t). We construct a PPT adversary D to
break the DDH assumption. Upon receiving input (α, β, γ), D takes A′

0 ←
Gq, . . . , A

′
w−2 ← Gq, and defines A′

w−1 = α,A′
w = β,A′

w+1 = g|γ|p . For

v = w + 2, . . . , t, iteratively and normally computes Av = g|Av−1|p|Av−2|p

and A′
v = g|Av |p . Note here Aw+2 = β|γ|p . Finally, D feeds A′

0, . . . , A
′
t to

machineM, and outputs whatever he does. When (α, β, γ) is a DH tuple,

then the input toM is distributed exactly as S
(w)
t ; if (α, β, γ) is a random

tuple, then the input toM is distributed exactly as S
(w+1)
t . Thus, D has

a non-negligible advantage, contradiction. �

We have showed that Construction 1 is a pseudorandom number se-
quence generator. But in real applications, we are more interested in a
binary generator. A naive idea is to encode the output of NSG into a
binary form. However, one can easily show that it does not work. In the
following, we construct a simple function to convert an NSG sequence
into a binary pseudorandom sequence.

Construction 2. Let A′
0, A

′
1, . . . be the output sequence of NSG

in Construction 1. Let Lk(x) be the k least significant bits of x, where
k is a positive integer. Define Bi = Lk(|A

′
i|p) for all i ≥ 0. Then the
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output stream of the new generator is set to B0, B1, · · · . Denote this
binary generator by PSG2.

Theorem 2. If k = |q| − ω(log |q|), then PSG2 is a pseudorandom gen-

erator, where ω(x) means limx→∞
x

ω(x) = 0.

Proof. Denote Zt = B0, B1, . . . , Bt. Let Ut be a random variable uniform
in {0, 1}kt. We need to show that Zt is indistinguishable from Ut+1 for any
polynomially bounded t. Consider a random variable Z̃t = B̃0, B̃1, . . . , B̃t,
where B̃i = Lk(|Ci|p) and Ci ← Gq for all i = 0, 1, . . . , t. To prove the
theorem, it suffices to show that (1) Zt and Z̃t are indistinguishable, and
that (2) Z̃t and Ut+1 are indistinguishable.

- Zt and Z̃t are indistinguishable. If this is not true, there exists a
PPT algorithm D1 to distinguish them. Then, one can constructs an
algorithm D′

1 to distinguish St (in Construction 1) from Vt+1 ← Gt+1
q

as follows. D′
1 first applies operator Lk() to the received sequence,

then feeds the produced sequence to D1 and outputs whatever he
does. When the input to D′

1 is St, then the input to D1 is distributed
exactly as Zt; otherwise, it is distributed as Z̃t. Thus, a non-negligible
advantage of D1 implies a non-negligible advantage of D′

1, contradict-
ing Theorem 1.

- Z̃t and Ut+1 are indistinguishable. Note that | · |p is 1-1 and onto
mapping from Gq to Zq. Thus, if Ci is uniform in Gq, |Ci|p is uniform
in Zq. Let C̃i = |Ci|p. Thus, defining B̃i = Lk(|Ci|p) with Ci ← Gq

is equivalent to defining B̃i = Lk(C̃i) with C̃i ← Zq. We consider the
latter when defining Z̃t. Consider equation X ≡ w (mod 2k) with
an unknown X over Zq, where w ∈ {0, 1, . . . , 2k − 1}. For any w ∈
{0, 1, . . . , 2k−1}, there are either

⌊

q

2k

⌋

or
⌊

q

2k

⌋

+1 solutions in Zq for X.

Thus, B̃i = w with probability 2−k + δw
q

for some δw ∈ [−1, 1]. Thus,

the statistic distance between Z̃t and Ut+1 (denoted by dist[Z̃t, Ut+1])

is at most
∑t

i=0 dist[B̃i, U
(i)
t+1] ≤

(t+1)2k

q
≤ t+1

2ω(log |q|) , negligible, where

U
(i)
t+1 is the ith k-bit component of Ut+1. For any distinguisher D2, we

have

|Pr[D2(Z̃t) = 1]− Pr[D2(Ut+1) = 1]|

=
∑

w∈Z
t+1
q
|Pr[Z̃t = w] Pr[D2(w) = 1]− Pr[D2(w) = 1]Pr[Ut+1 = w]|

=
∑

w∈Z
t+1
q

Pr[D2(w) = 1]|Pr[Z̃t = w]− Pr[Ut+1 = w]|

≤
∑

w∈Z
t+1
q
|Pr[Z̃t = w]− Pr[Ut+1 = w]|

= dist[Z̃t, Ut+1],
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negligible. �

From Theorem 2, we immediately have the following corollary.

Corollary 1. When k = |q| −
⌊

|q|
c

⌋

for a constant c > 1, the resulting

PSG2 is a cryptographically secure pseudorandom generator.

Corollary 2. When k = |p|− log2 |p|, then the resulting PSG2 is a pseu-

dorandom generator.

Remark 1. In each iteration, our generator involves two modular expo-
nentiations. By Lim and Lee [30], one modular exponentiation can be done
in |p|/2 modular multiplications, assuming pre-computation of g2i

, i =

0, . . . , |p| and g2j+2j+[|p|/2]
, j = 0, . . . , [|p|/2]. So our generator can asymp-

totically output one bit for each multiplication modular a prime p. This
result is better than other generators from Z

∗
p [6, 31] that are provably

secure under a standard assumption. More interestingly, in each itera-
tion, our generator can output bits of length almost |p|, while no previous
generator (including factoring based generator) proven secure in the stan-
dard assumption, has achieved this. Thus, the construction here might be
interesting for motivating more efficient generators in the future. Note if
a more complex version of pre-computation in [30] is adopted, then our
generator can output O(log log p) bits per modular multiplication. This is
the best result in the literature. Specifically, it has been achieved by GR
generator and DRV generator with even less precomputation than ours,
and by ACGS generator [2] with no precomputation at all.

4 A New Family of Collision Resistant Hash Function

In this section, we construct a family of collision resistant hash function.
We start with the following construction. This construction is essentially
a realization of the framework [13] but waived of the extra requirement
of making the input prefix-free. Later we will show how to obtain more
efficient constructions.

Construction 3. Let p = 2q +1 and q be two large primes, Gq be the
subgroup of order q in Z

∗
p. Our hash family H1 is indexed by (g0, g1, s),

where g0, g1, s← Gq. Let H be a hash function inH1 with index (g0, g1, s).
Upon input x = x1x2 · · · xt ∈ {0, 1}

∗, H(x) is computed as follows. First

set Yt+1 = s. For i = t, t − 1, . . . , 1, iteratively compute Yi = g
|Yi+1|p
xi .

Finally, define H(x) = Y1.
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Theorem 3. Assuming discrete log problem in Gq is hard, H1 is a colli-

sion resistant hash family. In addition, if the input is r bits, then assum-

ing a pre-computation, one hash requires a cost of at most r|p|/2 modular

multiplications.

Proof. The second argument follows from the precomputation of

g2i

j , g2i+⌊
|q|
2 ⌋

j , g2i+2i+⌊
|q|
2 ⌋

j , j = 0, 1, i = 1, · · · ,

⌈

|q|

2

⌉

.

We thus concentrate on the first argument. Assume H(x) = H(x′) for
some binary string x = x1x2 · · · xt and x′ = x′

1x
′
2 · · · x

′
l s.t. x 6= x′, for

some integer l, l′. Without loss of generality, assume l ≥ t. Then, there
must exist a unique index j with 0 ≤ j ≤ t such that x1 = x′

1, . . . , xj = x′
j

but x′
j+1 6= x′

j+1, where by default xt+1 = λ (meaning empty). Let Yi and
Y ′

i be the intermediate term with index i when computing H(x) and
H(x′), respectively. Since | · |p is a 1-1 and onto mapping, we have the
following result.

- Case j < t : We immediately have Yj+1 = Y ′
j+1. However, xj+1 6=

x′
j+1 and j + 1 ≤ t, g

|Yj+2|p
xj+1 = g

|Y ′
j+2|p

x′
j+1

. Thus, the discrete logg0
g1

is obtained. If this event happens with non-negligible probability, we
can transform the adversary to break the discrete log assumption,
contradiction!

- Case j = t: In this case, since x 6= x′, it follows that l > t. Thus,

s = g
|Y ′

t+2|p

x′
t+1

. Therefore, we can obtain the discrete log either logg1
s or

logg0
s. If this happens with non-negligible probability, we can easily

transform the adversary to break the discrete log assumption. �

In the following, we present a more efficient construction of collision
resistant hash family.

Construction 4 Let p = 2q + 1 and q be two large primes, Gq be the
subgroup of order q in Z

∗
p. |q| = k + 1. Our hash family H2 is indexed

by (g00, g01, g10, g11, . . . , g(k−1)0, g(k−1)1), where gij ← Gq, i = 0, . . . , k −
1, j = 0, 1. Let H be the hash function in H2 with index {gij : 0 ≤ i ≤
k − 1, j = 0, 1}. Upon input x = x1x2 · · · xt for xi ∈ {0, 1}

k (i < t) and
|xt| ≤ k, H(x) is computed as follows. Let xj = xj0xj1 · · · xj(k−1) for xjl ∈

{0, 1}. For a l-bit string z = z0z1 · · · zl−1 (l ≤ k), denote gz =
∏l−1

j=0 gjzj .

Yt+1 = s. For i = t, t− 1, . . . , 1, iteratively compute Yi = g
|Yi+1|p
xi . Finally,

define H(x) = Y1.
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Theorem 4. Under the discrete log assumption, H2 is a collision resis-

tant hash family. In addition, if the input is r bits, one function evaluation

costs no more than 3r modular multiplications.

Proof. The second argument follows from the facts: an r-bit input is
uniformly divided into t = r/k segments; for each segment xi, gxi is
computed in k modular multiplications; each exponentiation in Z

∗
p costs

at most 2|p| modular multiplications. We thus focus on the first argument.
We show that if the conclusion is wrong, we construct an algorithm S
to solve the discrete log problem over Gq. Assume H2 is broken by an
adversary A. Then S is constructed as follows. Upon input g, h ∈ Gq, take

w0
ij , w

1
ij ← Zq, and define gij = gw0

ijhw1
ij , for i = 0, 1, . . . , k − 1, j = 0, 1.

S provides p, (g10, g11, . . . , g(k−1)0, g(k−1)1) to A and in turn receives a
collision pair x, x′ (x 6= x′) from A. Assume x = x1x2 · · · xt and x′ =
x′

1x
′
2 · · · x

′
t′ for some t, t′ > 0. W.L.O.G, assume t ≤ t′. Let J be the

smallest index such that xJ 6= x′
J . Let Yt+1 = Y ′

t′+1 = s, iteratively define

Yi = g
|Yi+1|p
xi and Y ′

j = g
|Y ′

j+1|p

x′
j

. Thus, we have YJ = Y ′
J . So

g
|YJ+1|p

P

i:xJi=1 w0
Jih

|YJ+1|p
P

i:xJi=1 w1
Ji

= g
|Y ′

J+1|p
P

i:x′
Ji

=1 w0
Jih

|Y ′
J+1|p

P

i:x′
Ji

=1 w1
Ji

If |Y ′
J+1|p

∑

i:x′
Ji=1 w1

Ji 6= |YJ+1|p
∑

i:xJi=1 w1
Ji (mod q), then discrete

log logg h can be efficiently obtained from the above relation. On the
other hand, we show the probability that this condition is violated for
some J is negligible. Indeed, let v = logg h, zij = logg gij. Then given
zij = w0

ij + vw1
ij , i = 0, 1, . . . , k − 1, j = 0, 1. Thus, given {gij : i =

0, 1, . . . , k − 1, j = 0, 1}, {w1
ij : i = 0, . . . , k − 1, j = 0, 1} is indepen-

dent of the view of A. Thus, |Y ′
J+1|p

∑

i:x′
Ji=1 w1

Ji = |YJ+1|p
∑

i:xJi=1 w1
Ji

(mod q) holds for a particular J with probability 1/q. So the probability
that there exists a J violating the condition is no more than k/q. �

Now we further improve Construction 4 to reduce the computation
cost by factor log k but increase the storage by a factor k.

Construction 5 Denote the new hash family by H3. The construction
is similar toH2. ButH3 is indexed by (g00, g01, g0(k−1), g10, g11, . . . , g(k−1)(k−1)),
where gij ← Gq, i = 0, . . . , k − 1, j = 0, . . . , k − 1. Let H be the hash
function in H3 with index {gij : 0 ≤ i ≤ k−1, 0 ≤ j ≤ k−1}. Upon input
x = x1x2 · · · xt for xi ∈ {0, . . . , k − 1}k (i < t) and |xt| ≤ k, H(x) is com-
puted as follows. Let xj = xj0xj1 · · · xj(k−1) for xjl ∈ {0, . . . , k − 1}. For
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a k-ary string z = z0z1 · · · zl−1 (l ≤ k), denote gz =
∏l−1

j=0 gjzj . Yt+1 = s.

For i = t, t − 1, . . . , 1, iteratively compute Yi = g
|Yi+1|p
xi . Finally, define

H(x) = Y1.

Theorem 5. Under the discrete log assumption, H3 is a collision resis-

tant hash family. In addition, if the input is r bits, one function costs no

more than 3r/ log k modular multiplications.

The proof of the theorem is almost identical to Theorem 4. Construction 5
is computationally more efficient than Construction 4 but it requires more
storage. Thus, these two constructions have their own merit of existence.

Remark 2. Our CRHF H3 is the first construction provably secure in
the standard assumption and only requires O(1/ log k) time for each bit.
Bellare et al. [4] proposed a notion of incrementality for CRHF, which
means one can evaluate H(x|y) from H(x)|y instead of from the scratch.
Our constructions satisfy this property too.

5 Application to Pseudorandom Function

In this section, we unite our pseudorandom generator and collision re-
sistant hash function by employing them to construct (universal) pseu-
dorandom functions. To do this, we first show that a collision resistant
hash function can be used to extend an input-restricted pseudorandom
function to a universal pseudorandom function. To be specific, we just use
state this result in term of an input-restricted GGM construction [21].

Construction 6. Let G : D → D2 be a pseudorandom generator.
Assume G(x) = G0(x)|G1(x), where Gi(x) ∈ D, i = 0, 1. H is a collision
resistant hash function. A family of function F : K×{0, 1}∗ ← D is defined
as follows. Given a private index k ∈ K and input x ∈ {0, 1}∗, compute
u0u1 · · · ut−1 = H(x), Fk(x) is defined to be Gut−1 ◦Gut−2 ◦ · · · ◦Gu0(k).

Theorem 6. Let H be a collision resistant hash function, G is a pseu-

dorandom generator. Then F is a family of pseudorandom function.

Proof. Let X be the input queried by adversary. If a collision in X under
H() (i.e., ∃x1, x2 ∈ X with H(x1) = H(x2)) happens with non-negligible
probability, then H() is not collision resistant. Otherwise, the proof is
identical to the proof of Theorem 3.6.5 in [20]. The details are omitted.
�
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Corollary 3. Let H be the collision resistant hash family in Construction

5, and G be the pseudorandom generator in Construction 2. Then for l-bit
input x, our pseudorandom function can be computed in roughly ( 3l

log k
+

2k2) modular multiplications.

Remark 3. If we do not apply H to the input first, then the underlying
pseudorandom function (by using construction 3.6.6 in [20]) requires more
than 2lk modular multiplications, inefficient!
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