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Abstract. We describe a faithful embedding of the Dolev-Yao model of Backes,
Pfitzmann, and Waidner (CCS 2003) in the theorem prover Isabelle/HOL. This model
is cryptographically sound in the strong sense of reactive simulatability/UC, which
essentially entails the preservation of arbitrary security properties under active at-
tacks and in arbitrary protocol environments. The main challenge in designing a
practical formalization of this model is to cope with the complexity of providing
such strong soundness guarantees. We reduce this complexity by abstracting the
model into a sound, light-weight formalization that enables both concise property
specifications and efficient application of our proof strategies and their supporting
proof tools. This yields the first tool-supported framework for symbolically veri-
fying security protocols that enjoys the strong cryptographic soundness guarantees
provided by reactive simulatability/UC. As a proof of concept, we have proved the
security of the Needham-Schroeder-Lowe protocol using our framework.

1 Introduction

Security proofs of cryptographic protocols are known to be difficult and the automation of
such proofs has been studied soon after the first protocols were developed. From the start,
the actual cryptographic operations in such proofs were idealized into so-called Dolev-Yao
models, following [25, 26, 45], e.g., see [35, 56, 1, 41, 52, 13]. This idealization simplifies
proof construction by freeing proofs from cryptographic details such as computational
restrictions, probabilistic behavior, and error probabilities.

The first Dolev-Yao model with a cryptographic justification under arbitrary active at-
tacks was introduced by Backes, Pfitzmann, and Waidner in [10] and extended in [11, 8].
This model, henceforth called theBPW model, can be implemented in the sense of reactive
(blackbox) simulatability (BRSIM) [10] by real cryptographic systems that are secure ac-
cording to standard cryptographic definitions. The security notion of BRSIM means that
one system (here, the cryptographic realization) can be plugged into arbitrary protocols
instead of another system (here, the BPW model), while retaining essentially arbitrary
security properties [54, 19, 21, 12, 9]; it is also called UC for its universal composition
properties. The BPW model currently constitutes the only Dolev-Yao model that is known
to fulfill this strong security notion, as other soundness results are restricted to specific
security properties or protocol classes.

The BPW model constitutes a deterministic, symbolic abstraction of a comprehensive
set of cryptographic operations and allows one to prove the security of arbitrary protocols
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built from these operations with respect to the cryptographic definitions by means of sym-
bolic reasoning techniques, e.g., see the paper-and-pencil proofs in [7, 5, 6]. In order to
relate the BPW model to a cryptographic realization in the sense of BRSIM/UC, the BPW
model maintains certainnon-standard aspectscompared to other Dolev-Yao models. For
example, abstract ciphertexts in the BPW model do not hide the length of their respec-
tive plaintexts, a signature over a specific message can be transformed by the adversary
into another signature over the same message, and the protocols built on top of the BPW
model do not directly manipulate messages, but use pointers (calledhandles) to refer to the
messages being manipulated by the respective operations. While these aspects prevent the
direct use of existing tools for symbolic protocol analysis, they are necessary to achieve the
cryptographic soundness of the BPW model with respect to the strong soundness notion
of BRSIM/UC.1

The complexity of the BPW model raises the following question, whose answer was
initially unclear to us: Is it possible to reason efficiently about protocols based on this
model using a theorem prover and without sacrificing the strong soundness guarantees?
The main obstacle for an efficient mechanization is the complex state space, which in-
cludes message buffers, references to messages via handles, and the representation of
messages themselves by a pointer-like data structure. Standard techniques for reasoning
about state-based systems, such as Hoare logics and weakest precondition calculi, scale
poorly to complex state spaces and pointer structures. It is helpful to distinguish two types
of complexity in the BPW model: the inherent complexity required for BRSIM/UC cryp-
tographic soundness, which cannot be eliminated, and the complexity due to particular
modeling choices. Fortunately, we are able to reduce the latter kind of complexity, by
employing a series of carefully chosen abstractions, to the point where we can positively
answer the question raised above.

Our Contributions Our main contribution is a simplified and more abstract version of
the BPW model and its formalization in the theorem prover Isabelle/HOL [51], the higher-
order logic (HOL) [22, 4, 29] instance of the generic logical framework Isabelle. Our Is-
abelle/HOL theories are conservative extensions of HOL (i.e., the proofs rely only on the
axioms of HOL) and constitute the first framework that combines machine-assisted sym-
bolic reasoning about security protocols with the strong cryptographic soundness provided
by the notion of BRSIM/UC.

This contribution has two parts. First, to support reasoning about state-based programs,
we have embedded severalprogram logicsin Isabelle/HOL, including a weakest precondi-
tion calculus (WPC) and a Hoare logic for pre-/postcondition properties, and a linear-time
temporal logic (LTL) for temporal properties. Using standard techniques, proofs of tempo-
ral properties are reduced to pre-/postcondition assertions in Hoare logic, which can in turn
be reduced to the WPC. These are general-purpose reasoning tools, which can be reused
in other contexts. Our generalproof strategyis to employ the WPC, which uses rewriting
to efficiently compute weakest preconditions, to automatically prove lemmas about the
lower layers of our model (e.g., the functions of the BPW model). These lemmas are then
combined in Hoare logic proofs at the higher layers (e.g., the protocol). Second, we have

1 Weaker cryptographic soundness results that consider restricted security properties or restricted
protocol classes might not have to maintain such aspects and thus be accessible to existing proof
tools, cf. the paragraph on further related literature for more details.
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produced two formalizations of the BPW model, each of which abstracts different features
of the original model, while both faithfully represent its non-standard aspects.

In the first formalization, called theindexed BPW model, the component and commu-
nication model are abstracted into a light-weight, shallow embedding in Isabelle/HOL:
machines and message buffers are simplified into state-manipulating components provid-
ing a set of interface functions and communicating by function invocation. However, the
data representation closely follows the original BPW version: messages are represented
by pointer-like structures with sharing of submessages between different protocol partici-
pants. Unfortunately, this abstraction step is insufficient in itself; our first attempt to prove
the security of the Needham-Schroeder-Lowe protocol based on the indexed BPW model
failed, essentially due to a lack of abstraction in both the model (complex pointer struc-
tures) and the specifications (complicated invariants). As a consequence, the WPC was
either too slow to be useful or produced very large expressions that were difficult to un-
derstand. Moreover, they could not be further simplified, since an appropriate equational
theory was not available. Thus, we had to resort to Hoare logic reasoning at low layers
of the model, which required substantial user interaction and complicated intermediate
preconditions.

In our second formalization, called theterm-based BPW model, we address these prob-
lems by replacing the pointer-like messages with a simple inductive data type of messages.
Since the new representation eliminates message sharing between users and, moreover,
handles asymmetric key pairs and message lengths differently, its equivalence with the
indexed model is non-trivial. To ensure the correctness of this step, we have proved in Is-
abelle/HOL that our two formalizations are strongly bisimilar. Since bisimilarity preserves
BRSIM/UC, it is safe to replace the indexed model with the term-based model in protocol
security proofs. The term-based model makes efficient automatic reasoning possible in two
ways. First, it provides messages with a simple inductive structure that enables standard
structural induction. This was not possible in the indexed model. Second, it enables con-
cise property specifications using functional DY-like closure operators, such as Paulson’s
analyzeandparts [52], which close a set of messages under cryptographically accessible
submessages and all submessages, respectively. In fact, we were able to transfer Paulson’s
corresponding Isabelle/HOL theories to this term-based setting. The equational theories
associated with these operators enable the efficient use of Isabelle’s term rewriter for sim-
plification. Overall, the combination of these two enhancements drastically improves the
usability and performance of the WPC on the term-based BPW model when compared to
the indexed version.

Our second contribution is the specification and verification of the security of the
Needham-Schroeder-Lowe protocol in the term-based BPW model (and thus, by BR-
SIM/UC, also for the actual cryptographic implementation of the protocol). We consider
this a proof of concept for our formalization and proof techniques. Note in this regard
that [7, 57] have presented sound paper-and-pencil proofs of the NSL protocol and sound,
tool-supported proofs have been given by [47] (exploiting a soundness result for restricted
protocol classes and properties) and [20] (exploiting a recent soundness result with compo-
sitionality guarantees for specific protocol classes). However, our proof demonstrates that
relatively efficient cryptographically sound proofs in the sense of BRSIM/UC are indeed
possible and thereby provides evidence that this formalized framework can be successfully
applied to reason about many commonly studied protocols.
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Further Related Work Early work on linking Dolev-Yao-style symbolic models and
cryptography [3, 2, 30, 36] only considered passive attacks, and therefore cannot make
general statements about protocols. The same holds for [31].

The security notion of BRSIM was first defined generally in [53], based on simulatabil-
ity definitions for secure (one-step) function evaluation [27, 28, 15, 46, 18]. It was extended
in [54, 19], called UC (universal composability) in the latter, and has been widely applied
to prove individual cryptographic systems secure and to derive general theoretical results.

A cryptographic justification of a Dolev-Yao model in the sense of BRSIM/UC was
given in [10] with extensions in [11, 8]. Later papers [47, 37, 20] considered to what extent
restrictions to weaker security properties or less general protocol classes allow simplifica-
tions compared with [10]: Laud [37] has presented cryptographic foundations for a Dolev-
Yao model of symmetric encryption but specific to certain confidentiality properties where
the surrounding protocols are restricted to straight-line programs. Herzog et al. [31] and
Micciancio and Warinschi [47] have presented cryptographic underpinnings for a Dolev-
Yao model of public-key encryption, where the former result relies on a stronger assump-
tion than [10] and the latter restricts the classes of protocols and protocol properties that
can be analyzed using this primitive. Cortier and Warinschi [23] have considered secrecy
aspects by showing that symbolically secret nonces are also computationally secret, i.e.,
indistinguishable from a fresh random value given the view of a cryptographic adversary.
Baudet, Cortier, and Kremer [14] have established the soundness of equational theories in
a Dolev-Yao model under passive attacks. We stress that the imposed restrictions on pro-
tocol classes or protocol properties in the aforementioned works eliminated at least some
of the complications that are necessary if soundness in the stronger sense of BRSIM/UC is
desired, and that these Dolev-Yao models might thus be accessible to existing verification
tools without major adaptations.

Canetti and Herzog [20] have recently shown that a Dolev-Yao-style symbolic analysis
can be conducted using the framework of universal composability for a restricted class of
protocols, namely mutual authentication and key exchange protocols with the additional
constraint that the protocols must be expressible as loop-free programs using public-key
encryption as their only cryptographic operation. Concentrating on this specific protocol
class permitted the direct use of the automatic verification tool ProVerif [16] to symbol-
ically analyze secrecy aspects of the Needham-Schroeder-Lowe protocol by considering
the exchanged nonces as secret keys. This work is the closest to ours since it achieves
universal composition guarantees (for the case where this protocol class is composed into
larger protocols), in contrast to all of the aforementioned results. However, the results are
restricted to the functionalities noted above and hence do not provide soundness guar-
antees of a Dolev-Yao model in the sense of BRSIM/UC (which guarantees soundness
for composing arbitrary protocols). Extending their work to achieve this stronger notion
would require augmenting their model with at least some of the non-standard aspects of
the BPW model, thus raising the need for a tailored verification framework as well.

Efforts are also under way to formulate syntactic calculi for dealing with probabilism
and polynomial-time considerations, in particular [48, 40, 49, 33] and, as a second step,
to encode them into proof tools. Datta, Derek, Mitchell, Shmatikov, and Turuani [24]
have proposed a promising, comprehensive logic that enables them to prove computational
security properties using a logical deduction system. Laud [38] has designed a type system
for proving security protocols based on the BPW model. We are however not aware of any
mechanized implementations of these frameworks.
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Blanchet has recently presented an automated tool for proving secrecy properties of
cryptographic protocols that relies directly on the cryptographic approach by transform-
ing cryptographic games expressed in a probabilistic polynomial-time calculus [17]. This
approach appears to be highly promising not only due to its ability to analyze security
protocols without relying on abstractions of cryptography, but also because of its potential
to complement the line of work on proving soundness of Dolev-Yao models by formally
validating the existing paper-and-pencil proofs of soundness.

Organization In Sect. 2, we briefly review the BPW model and describe the encoding of
the component and communication model underlying the BPW model in Isabelle/HOL.
We formally introduce the indexed and the term-based BPW models in Sect. 3 and sketch
the proof of their strong bisimilarity. In Sect. 4, we formally define the composition of
a protocol with the BPW model in Isabelle. This yields a flexible template that can be
instantiated with arbitrary protocol specifications. We specify the Needham-Schroeder-
Lowe protocol and sketch its proof of security in Sect. 5. Finally, in Sect. 6, we draw
conclusions and discuss future work.

2 Overview of the BPW Model and its Formalization

In this section, we review the BPW model and discuss the principal abstractions and design
choices that we made in its formalization. The cryptographic realization of the BPW model
and details from the proof of cryptographic soundness are not necessary for understanding
the contributions of this paper and can be found in the original papers.

2.1 BPW Model

The BPW model constitutes a library of cryptographic operations, which keeps track of,
and controls access to, the terms known by each party. The BPW model provideslocal
functionsfor operating on terms andsend functionsfor exchanging terms between an
arbitrary, but fixed, numberN of users and the adversary. Some of these functions reflect
distinguished attack capabilities and are only offered to the adversary. At the interface,
terms are referred to indirectly byhandles(also calledpointersor local namesin other
terminologies). This indirection is necessary for the cryptographic soundness proof of the
BPW model in the strong sense of BRSIM/UC, since the BPW model and its cryptographic
realization work with vastly different objects: abstract terms and bitstrings, respectively.
Handles present these syntactically different objects in a uniform manner to the users and
hence avoid that the BPW model can be trivially distinguished from its realization because
of different interfaces.

To analyze a security protocol based on the BPW model, one reasons about a system
where each useru runs its own protocol componentPu, which is implemented by invoking
the respective functions of the BPW model (Fig. 1). Each protocol component maintains
its own local state (e.g., to store the nonces it has generated) and provides interfaces for
communicating with its user and with the BPW model. Fig. 1 depicts two typical control
flows through the system: First, a user may give input to initiate the protocol, which then
constructs a term corresponding to the first protocol message through a series of local
interactions with the BPW model. Local means that term construction does not involve
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any interaction with the adversary; hence terms can be arbitrarily nested without revealing
their structure or the contents of subterms to the adversary during construction. The term
constructed may then be sent to the network (i.e., the adversary). Second, the adversary
may decompose terms and construct new ones by local interactions with the BPW model,
and send terms to users. The BPW model delivers terms sent by the adversary to the
protocol component of the respective user, where they are then processed according to the
protocol description.

2.2 Isabelle/HOL Preliminaries

Isabelle is a generic theorem prover, in which a variety of logics have been implemented.
We use an implementation of higher-order logic (HOL), which can roughly be seen as
logic on top of functional programming. We will assume that the reader has basic famil-
iarity with both logic and typed functional programming. Proof automation in Isabelle is
supported by a powerful simplifier that performs term rewriting and a tableau reasoner.
These are invoked in isolation or in combination using different proof tactics.

In Isabelle notation,t ::T denotes a termt of type T. The expressionc x ≡ t defines
the constantc with the parameterx as the termt . Definitions constitute the principal mech-
anism for producing conservative extensions of HOL. Type variables are identified by a
leading apostrophe, as in’a. Given types’a and ’b, ’a ⇒ ’b is the type of (total) func-
tions from ’a to ’b, ’a × ’b is the product type, and’a set is the type of sets of elements
of type ’a. The typeunit contains a single element. There are several mechanisms to de-
fine new types. Adatatype declaration introduces an inductive data type. For example,
the option type is defined bydatatype ’a option = None| Some ’a, which is polymor-
phic in the type variable’a. Functions of type’a ⇒ ’b option are used to model partial
functions from’a to ’b. The declarationtypes T1 = T2 merely introduces a new name
for the typeT2, possibly with parameters, as intypes ’a ⇀ ’b = ’a ⇒ ’b option. Is-
abelle/HOL includes a package supporting extensible record types. For example,record
point = x::nat y::nat defines a record type for points, of which the record(|x=1, y=2|)
is an element. Records are extensible:record cpoint = point + c::color extends points
with a color field. Behind the scenes, the definition of a record typer creates a record
scheme’a r scheme, which extends the declared typer with a polymorphic fieldmore
of type ’a. The typer is derived asunit r scheme. Record extensibility is based on the
instantiation of the record scheme parameter’a with one or more additional fields. Im-

6



portant for our formalization is that all extensions ofr are compatible with the scheme
r scheme. For example,cpoint is compatible with’a point scheme(but not withpoint).

2.3 Overview of the Formalization

We now summarize the abstraction steps and design choices that we have employed to
simplify the component and communication model as well as the operational semantics
underlying the BPW model. These simplifications enable a sound, light-weight formaliza-
tion of the BPW model, the protocols, and their properties.

Component and Communication Model From a typed perspective, the BPW model
and the protocol components can be represented by deterministic machines with transition
functions of typeΣ× I ⇒ (O option) × Σ, whereΣ is the machine’s state space and
I andO are inputs and outputs, respectively. The typesI andO as can be seen as (non-
recursive) inductive data types, where each constructor corresponds to a port name and
its arguments correspond to the values communicated over that port. Output is optional;
usually, the absence of output indicates that an error occurred. The general communication
framework underlying the BPW model stores messages in transit in so-called buffers, until
the messages are scheduled by the designated scheduler for the respective connection. The
most important special case is that machines are in charge of their outgoing connections
themselves and schedule outgoing messages immediately, i.e., messages are passed on
directly from sender to recipient. Since this is the case for the communication between
the BPW model and the protocol components, these buffers can be safely omitted in the
formalization leading to a substantial simplification.

Essentially, each machine transition can be seen as a function call (with parameters
passed at some input port) and producing either a return value (at some output port) or
an exception. Therefore, our formalization replaces the machine description of the BPW
model by components consisting of a set of interface functions manipulating a common
state, where communication over ports is replaced by function calls. Since state and excep-
tions play a crucial role in the BPW model, they are handled by appropriate abstractions in
our formalization. In a purely functional context, such as Isabelle/HOL, such abstractions
are provided by monads [50, 39]. Generally speaking, a monadM is a type constructor
equipped with unit and composition operations, enjoying unit and associativity properties,
respectively. A monadic interpretation of an operation with input typeA and output type
B has the function typeA⇒ B M. Different monads can represent a wide range of com-
putational phenomena including state, exceptions, and non-determinism. Here, we use the
deterministic state-exception monadS:

datatype ’a result = Exception | Value ’a −− result type
types (’a ,’ s) S = ’s ⇒ ’a result × ’s −− monad type

return :: ’a ⇒ ( ’a, ’s) S −− monad unit
return a ≡ λs. (Value a, s)

bind :: ( ’a ,’ s) S⇒ ( ’a ⇒ ( ’b ,’ s) S) ⇒ ( ’b ,’ s) S −− monad composition
bind m k≡ λs. let (a, t) = m s in

case a of Exception⇒ (Exception , t) | Value x⇒ k x t
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Note that the monadSis polymorphic in both the type of values and the type of states. The
unit (calledreturn ) embeds a value in the monad andbind is a sequential composition,
which passes results (values or exceptions) between function calls. We writedo x← m;
k x instead ofbind m k. There are also monad-specific operations for state assignment
and for throwing and catching exceptions. The set of all these monad operations forms a
simple imperative language that we use to formulate our models.

Runs and observations In the communication framework underlying the BPW model,
a system run is defined as a sequence of local transitions of the form(M, s , i , o, t ),
whereM names the machine making the transition from the local states and the inputi to
the local statet , and producing the outputo (if any). This corresponds to asmall step se-
mantics, where the transitions of all individual machines are considered. Theuser viewis
derived by projecting runs on the transitions performed by the honest users. Our formaliza-
tion uses abig step semantics, where internal transitions and communication are hidden.
A transition consists of a pair of states(s , t ), where t is reached froms by calling an
interface function. Formally, the transition relation for a monadic functionf :: A⇒ (B,
S) Mis defined bytr f ≡ {(s, t ) | ∃ r a. f a s = (r , t )}. The transition relation of a
component is the union of the relations derived from the components’ interface functions.
A run is a sequence of states arising from component transitions, triggered by external in-
put. The big step semantics arises naturally given our procedural view of communication,
and it clearly preserves BRSIM/UC since system-internal transitions do not affect the user
view. Most importantly, a big step semantics facilitates proofs, since it supports the top-
down case analysis of the system interface functions in invariant proofs, without the need
to show that the invariant is preserved by each internal transition. Another design choice
leading to simpler proofs is that we do not model user I/O events as part of each transition;
instead we record I/O traces in a global history variable, which is extended with every I/O
event. This can be seen as an observer component that logs all communication with the
users. The advantage of having the entire trace available in each state is that precedence
properties with reference to the past can be expressed as simple invariants (sets of states).

In the definition of reactive simulatability, users and the adversary constitute proba-
bilistic, polynomially-bounded machines. In our formalization, we model them by univer-
sal quantification over all possible inputs, i.e., a single unbounded machine which non-
deterministically produces arbitrary input to the system in each transition. This safely
over-approximates the original setting, since the unbounded machine can (weakly) simu-
late any set of probabilistic, polynomially-bounded users and adversary.

Finally, the BPW model includes polynomial bounds on the length of handled mes-
sages and on the number of steps that each machine can perform. We have formalized the
enforcement of the message-length bound using an uninterpreted function of the security
parameter as the bound. This comprises, in particular, all polynomial functions and thus
constitutes a safe over-approximation. Step bounds are dealt with similarly.

Program Logics and Verification Tools We conclude this section with a brief overview
of the specification and proof machinery that we have constructed for verifying protocol
properties. While the present paper concentrates on themodelingof the BPW model in
Isabelle/HOL, a companion paper will be devoted to proof tools and techniques. We use
several program logics and proof systems to specify and verify security properties: first,
a weakest precondition calculus (WPC) based on Pitts’ evaluation logic [55] and a Hoare
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logic [32] on top of it, both tailored to our state-exception monad and, second, a linear-
time temporal logic (LTL) to specify temporal behavior such as invariants or precedence
properties [43]. We have derived a set of proof rules, similar to those of [42, 44], to re-
duce LTL properties to pre-/postcondition statements in Hoare logic, i.e., Hoare triples.
We prove these Hoare triples by using the rules of Hoare logic or by unfolding them to
statements of the WPC. The WPC allows us to automate proofs to a large extent, whereas
the Hoare logic gives us manual control, when automation fails. These logics and tools are
problem-independent and can be reused in different contexts.

3 Formalization of the BPW Model

Building on the simplified modeling framework outlined in Sect. 2.3, we present two for-
malizations of the BPW model in Isabelle/HOL. The first one, called theindexed BPW
model, closely adheres to the original data representation of the BPW model. The second
one, called theterm-based BPW model, abstracts the representation of messages to induc-
tively defined terms. Finally, we describe the bisimulation relation used in the proof of
their equivalence. Both versions share the types ofpartiesandknowledge maps:

datatype party = User user | Adv
types ’a kmap = party⇒ hnd⇀ ’a

Here,userdenotes the type of honest users, which is isomorphic to the set{1.. N}, and
hnd is the type of handles, which is isomorphic to the set of natural numbers. Knowledge
maps keep track of who knows what. They also serve as an access control mechanism by
mediating between the handles at the interface and the internal representation of messages
(of generic type’a).

3.1 Shared Messages: the Indexed BPW Model

Our first formalization of the BPW model remains close to the original BPW model by
using a pointer-like structure to represent messages. The state consists of a database stor-
ing messages, which are referred to by indices (of typeind, isomorphic to the natural
numbers), together with a knowledge map instantiated to indices.

record ’d iLibState =
db :: ind ⇒ ’d entry −− the database
knowsI:: ind kmap −− knowledge map

The database can be seen as a heap where entries are allocated. The knowledge map
records which entries are known by which parties. We say that a database index isde-
fined, if it is known by some party. Database entries have a content and a length field. Our
presentation covers public-key encryption, but omits signatures for brevity.

datatype ’d content =
iNonce −− nonce
| iGarbage −− garbage
| iPke ind −− public encryption key
| iSke −− private encryption key
| iData ’d −− payload data
| iPair ind ind −− pair
| iEncv ind ind −− valid ciphertext

9



| iEnci ind −− invalid ciphertext

record ’d entry =
cont :: ’d content −− content
len :: nat −− length of entry

Elements of the data type’d content correspond to message constructors, polymorphic
in the type’d of payload messages, which depends on the application. Constructor argu-
ments of typeind point to other entries in the database corresponding to submessages. For
example, in the termiEncv pki mi, which represents a valid encryption, the first argument
points to the public key used and the second to the message being encrypted. Also, each
public key points to the matching secret key of the key pair. In contrast to commonly used
Dolev-Yao models, our adversary may create garbage entries (constructoriGarbage) or
invalid ciphertexts (constructoriEnci). In a well-formed database, each defined index de-
termines a directed acyclic graph, the indexed BPW model representation of amessage.
We call payload data and pairsnon-cryptographicmessages and all otherscryptographic
messages. The length field in each entry is used to enforce a bound on the message length.

The BPW model interface functions manipulate the knowledge map and the database.
As examples of local interface functions, the main operations for public key cryptography
have the following types:

genenckeypairI :: party ⇒ (hnd× hnd, ( ’d, ’s) iLibStatescheme) S
encryptI , decryptI :: party ⇒ hnd⇒ hnd⇒ (hnd, ( ’d, ’s) iLibStatescheme) S

The function genenckeypairI returns a public/secret key pair,encryptI takes a public
key and a cleartext and returns the ciphertext, anddecryptI takes a secret key and a ci-
phertext and returns a cleartext. Message arguments and results are referred to by handles.
If some argument is invalid, an exception is raised. Note that these functions operate on the
record scheme( ’d, ’s) iLibStateschemeinstead of the plain state record’d iLibState.
Here, ’s stands for future extensions of the state, for example, with the protocol state
(Sect. 4). By using extensible records, all invariants proved about the BPW model auto-
matically carry over to all future extensions of the state without any explicit lifting. We
apply the same technique to the term-based BPW model.

One of the main differences between this model and other Dolev-Yao models is that
each encryption of a given message with the same public key (both referred to by handles)
results in a different ciphertext, that is, a new database entry pointed to by a fresh han-
dle. This reflects the fact that secure encryption is necessarily probabilistic and shows the
role of indices in modeling idealized randomness. In fact, all functions constructing cryp-
tographic messages produce fresh database entries with each invocation. The situation is
different for non-cryptographic messages, which are allocated only once and are shared
between users. In other Dolev-Yao models, freshness is often introduced by side condi-
tions on cryptographic messages, for example, requiring that a nonce has not occurred
so far in a message on the network. Another important difference with other Dolev-Yao
models is that the adversary (but not honest users) can learn the length of the cleartext un-
derlying a ciphertext (via a separate functionadv parse, not shown here), thus modeling a
length-revealing crypto system.

We have proved three basic invariants of the indexed BPW model, which are needed in
the bisimulation proof (Sect. 3.3) and express well-definedness conditions: the knowledge
map has a finite domain for each user and it is injective on that domain, and the arguments
of entries at defined indices are themselves defined.
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With respect to the original BPW model, we have made a number of simple abstrac-
tions in our formalization. First, we have factored out the access control lists in the entries
of the original version into our isomorphic representation using knowledge maps, thus
isolating a common element of our two formalizations. Second, we have replaced lists by
pairs, without loss of generality. Pairs are sufficient for modeling concrete protocols and,
because they are not recursively defined, simplify reasoning by obviating the need for cer-
tain inductive arguments. Third, we have abstracted the allocation of new objects such as
indices and handles from a counting scheme to an arbitrary (but still deterministic) alloca-
tion scheme2. As a consequence, public key pairs are linked via an explicit pointer from
the public to the secret key, instead of allocating them at successive indices. Again, this
abstraction pays off by simplifying reasoning: an extra invariant making the link between
key pairs explicit becomes obsolete.

As explained in the introduction, these abstractions turned out to be insufficient for a
practically useful verification framework. The main problems arose from the lack of an
inductive message structure supported by standard structural induction and from compli-
cated ad hoc property specifications expressed without knowledge and subterm derivation
operators (such as Paulson’sanalyzeand parts [52]). Even though such operators could
be defined in the indexed model, the fact that messages in the indexed BPW model do
not exists independently of the state would complicate their definition and the derivation
and application of the associated equational theories. These problems are addressed by our
second, term-based formalization of the BPW model.

3.2 Inductively Defined Messages: the Term-Based BPW Model

Fortunately, the sharing of messages between different users in the indexed BPW model
is inessential and can be eliminated. A more abstract representation of messages can be
obtained using an inductive data type of messages. Isabelle automatically generates an
induction scheme for each inductive data type. (Signatures are omitted for brevity.)

datatype ’d msg =
mNonce tag −− nonce
| mGarbage tag len −− adversary garbage
| mPke key −− public encryption key
| mSke key −− private decryption key
| mData ’d −− data item
| mPair ( ’d msg) ( ’d msg) −− pair of messages
| mEncv tag key( ’d msg) −− valid ciphertext
| mEnci tag key len −− invalid ciphertext

This data-type definition replaces the previous index arguments in the content fields of
database entries by recursive message arguments. Moreover, there are two other notable
changes in moving to this representation. First, the role played by indices in allocating
fresh database entries for cryptographic messages is taken by the elements of a new, but
isomorphic, typetag, which can be thought of as an (abstraction of) random coins. The
typekeyis just another name fortag. Matching key pairs are then simply those of the form
(mPke k, mSke k). Instead of replacing the first argument of the encryption constructors
by a recursive message argument, we directly record the corresponding key, thus avoid-
ing unnecessary well-formedness conditions on messages. Second, we now determine the

2 We use Hilbert’sε-operator, whereεx. x 6∈ A picks some freshx not inA, if there is one.
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length of messages by a partially interpreted recursive functionlen ofM :: ’d msg⇒ len,
which allows us to remove redundant length information from the state. Length fields are
still required for garbage and invalid ciphertexts, as the adversary can choose an arbitrary
length for these two atomic message types.

This abstraction step substantially simplifies the structure of states by eliminating the
need for the database and (largely) for length fields: a state of the term-based BPW model
simply consists of a knowledge map storing messages:

record ’d mLibState = knowsM::’d msg kmap

This economy of state variables, together with our ability to reason inductively about mes-
sages, leads to a quite dramatic improvement in proof automation.

The second substantial improvement, which leads to more concise specifications and
improved proof automation, stems from adapting to our setting the closure operatorsparts
andanalyzeand their equational theories developed by Paulson [52]. The termparts H
denotes the closure of the set of messagesH under all submessages, whereasanalyze
H closesH under all cryptographically accessible submessages. Hence, the expression
analyze (ran (knowsM s u))denotes the set of messages that the partyu can derive from
his knowledge in states (ran f denotes the range of the partial functionf). Usinganalyze
andparts, we define secrecy as follows:

secret :: ( ’a, ’b) mLibStatescheme⇒ ’a msg⇒ party set⇒ bool
secret s m U≡ parts{m} = {m} ∧

(∀ u. m∈ analyze(ran (knowsM s u) ∪ ran (knowsM s Adv)) −→ u∈ U)

The proposition( secret s m U)means that messagem is a secret shared by the set of par-
tiesU in states. Note that we require secrets to be atomic. For the definition of non-atomic
secrets we would need asynthesizeoperation corresponding to message construction on
top of analyze, since secrets could possibly be built from already known messages. The in-
clusion of the adversary knowledge strengthens the definition and is exploited in invariant
proofs, as we will see in Sect. 5.3.

3.3 Bisimulation with Indexed BPW Model

We now establish the bisimilarity of our two formalizations of the BPW model. By this
result, both versions yield identical views to the honest users which trivially preserves
BRSIM/UC. Due to the close correspondence described by the bisimulation, even state-
based properties can be easily translated from the term-based to the indexed version.

The bisimulation proof shows that all pairs of interface functions transform bisimilar
states into bisimilar states with identical output on all possible inputs. Since the interface
functions are deterministic, this is sufficient to establish a bisimulation between the two
versions3. We are thus using a shallow embedding of bisimulation: the notion of bisimu-
lation itself is not formalized explicitly. The message abstraction relation

message s i2t:: (ind × ’d msg) set

is the central element of our bisimulation: it associates database indices to messages and is
parametrized by a states of the indexed BPW model and a functioni2t mapping indices
to tags. The latter witnesses the fact that tags assume the role of indices for message

3 Formally, this can be explained as an instance of coalgebraic bisimulation [34].
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freshness. Note that the relation is defined independently of states of the term-based BPW
model. The inductive definition ofmessagecontains a rule for each constructor of the type
’d content. For example, the rule for valid ciphertexts reads:

[[ s ∈ contains i (iEncv pki mi); tg = i2t i ;
(pki , mPke k) ∈ message s i2t ;(mi, m) ∈ message s i2t]]

=⇒ (i , mEncv tg k m) ∈ message s i2t

This rule states that, at some fixed states, an indexi abstracts to the ciphertext message(
mEncv tg k m)if the indexi contains(iEncv pki mi), the indexpki abstracts to the public
key message(mPke k), the indexmi abstracts to messagem, and the tagtg is the image of
i under i2t . The main property proved formessageis its functionality.

The bisimulation relation essentially consists of pairs of states for which the domains
of the knowledge maps are identical and the message atknowsM s u h(if defined) is an
abstraction of the index atknowsI s u h.

I2M :: (ind ⇒ tag) ⇒ (( ’d, ’s) iLibStatescheme× (’d, ’s) mLibStatescheme) set
I2M i2t ≡ {(s, t) . bij i2t ∧

(∀ u. dom(knowsI s u) = dom(knowsM t u)) ∧
(∀ u. ∀ h∈ dom(knowsI s u).

knowsI s u h = Some i∧ knowsM t u h = Some m−→ (i, m) ∈ message i2t s) }

We have actually defined a family of relations parametrized by a functioni2t of type ind
⇒ tag, which is required to be a bijection in order to map different database entries to

different messages. The proper bisimulation relation is the union over all family members,
i.e., the second-order propertyR =

⋃
i2t . I2M i2t. Since both indices and tags are freely

allocated, but not all indices are associated with a tag (e.g. payload data is untagged), the
parameteri2t cannot be determined statically. DefiningRas the union over all parameters
allows us to updatei2t with mappings( i , tg ), wherei is a fresh index andtg is a fresh
tag. Since the resulting map must again be a bijection, we achieve this update by swapping
the values ofi2t at i and i2t−1(tg).

The proof of bisimulation uses a set of derived proof rules similar to those of Hoare
logic, but involving two components instead of just one as for invariant proofs. These rules
rely on basic invariants proved for the indexed and the term-based BPW model.

4 Generic Protocol Modeling and Verification Framework

Based on the term-based BPW model, we model a generic framework for the specification
and cryptographically sound verification of security protocols. Afterwards, we instantiate
this framework to the concrete protocols under study.

4.1 Protocols and Observer

The global state extends the BPW model state with the local state for each protocol com-
ponent and the trace observed at the user interface.

record (’ i , ’o, ’d, ’s ) globState = ’d mLibState +
loc :: user⇒ ’s −− local state for each user
trace :: ( ’ i , ’o ) trace −− observed user i /o trace
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Our setup is polymorphic in four types: the type’d of payload data (from the BPW model),
the type’s of local states, as well as’ i and ’o, the types of user input and output, respec-
tively. Concrete protocols later instantiate these type parameters to concrete types. The
observer trace is a history variable, where all user I/O events are recorded. Its type is a
lists of pairs of a user name and an input or output event:

datatype (’i , ’o ) uio = uIn ’ i | uOut ’o −− user input / output
types (’ i , ’o ) trace = (user × (’ i , ’o ) uio) list

Next, we define the interface of protocol components. Each protocol component provides a
user and a network input handler and may produce output either for the user or the network
(Fig. 1).

datatype ’o proto out = pToUser ’o | pToNet netmsg −− protocol output

record (’ i , ’o, ’d, ’s ) proto comp =
proto userhandler :: ’ i ⇒ ( ’o proto out , ( ’ i , ’o, ’d, ’s ) globState) S
proto net handler :: user⇒ hnd⇒ ( ’o proto out , ( ’ i , ’o, ’d, ’s ) globState) S

types (’ i , ’o, ’d, ’s ) protocol = user⇒ ( ’ i , ’o, ’d, ’s ) proto comp

A protocol is then defined as a function from users to protocol components. The observer
has a single interface functionlog, which simply adds an I/O event to the trace.

Standard Alice-and-Bob notation and Paulson’s Isabelle protocol specifications [52]
are centered around the protocol messages that are transmitted between the different roles.
In the BPW model (and its formalization), we take a more process-oriented view by spec-
ifying the reaction of the protocol to user and network input. In particular, a protocol run
is always initiated and terminated by explicit, observable, user I/O events, possibly with
other user interaction in between. This user interaction enables the formulation of crypto-
graphically meaningful properties about user I/O traces.

4.2 The Complete System

We compose the BPW model with the protocol and the observer, yielding the complete
system. This system has two types of interface functions: the system user and network
handlers and the local functions provided by the BPW model to the adversary. We restrict
our presentation to the system user and network handlers, whose types are:

sysuserhandler :: ( ’ i , ’o, ’d, ’s ) protocol ⇒ user⇒ ’ i ⇒
( ’o sysout , ( ’ i , ’o, ’d, ’s ) globState) S

sysnet handler :: ( ’ i , ’o, ’d, ’s ) protocol ⇒ netmsg⇒
( ’o sysout , ( ’ i , ’o, ’d, ’s ) globState) S

Both handlers produce a system output of type’o sysout, which is just the system-level
version of type’o proto out. The user handler takes an input from the user (of type’ i ),
while the network handler takes a network message as an argument. Network messages
are triples(u, v, h), whereu is the supposed sender,v is the receiver, andh is a mes-
sage handle. The BPW model provides two send functions, one for users and one for the
adversary:

sendi , adv sendi :: netmsg⇒ (netmsg,( ’d, ’s) mLibStatescheme) S
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By invoking sendi (u, v, uh), the useru sends the message denoted by his handleuh to
the adversary (intended for userv). The result is a network messagesendi (u, v, ah),
whereah is the adversary’s handle for the same message. Such a handle is created if it
does not exist yet. The calladv sendi (u, v, ah)has a similar effect, but this time the
message is sent from the adversary to userv. Note that the adversary is free to falsify the
nameu of the originator. This gives the adversary complete control over the network, as
in other Dolev-Yao models.

In order to illustrate the message flow through the system (cf. Fig. 1), let us consider
the system network handler in more detail:

sysnet handler proto anm≡
do (v, u, mh)← adv sendi anm; −− get message from network
do pout← proto net handler (proto u) v mh; −− handle message
case poutof

pToUser uom⇒
do log (u, uOut uom); −− log output
return (sToUser u uom) −− output to user

| pToNet unm⇒
do anm← sendi unm; −− output to network
return (sToNet anm)

Its input is a network message from the adversary, which he sends to the receiveru using
the send functionadv sendi . The resulting network message contains a message foru,
which is fed into the protocol network handler of the receiver’s protocol component. The
output of the handler is either intended for the user, in which case the output is logged
by the observer and returned to the user, or it is a reply message that is sent back to the
network (adversary) via the user send functionsendi .

When specifying a concrete protocol in this framework, we need to provide the user
and network handlers for our protocol. This determines concrete types for user I/O, pay-
load data, and the local state of protocol components, instantiating the type variables’ i ,
’o, ’d, and’s. Once this is done, we are ready to specify and verify protocol properties.

5 A Cryptographically Sound Proof of the NSL Protocol

We model and verify the well-known three message version of the NSL protocol:

NSL1. u→ v : {Nu, u}Kv

NSL2. v → u : {Nu, Nv, v}Ku

NSL3. u→ v : {Nv}Kv

Here, we assume that each user has generated an asymmetric key pair and that the au-
thentic public keys of all users are known to every party. Below, we introduce our formal
specification of the NSL protocol. Afterwards, we describe the invariants we have verified
and sketch the proof of one such invariant. Finally, we discuss the benefits gained from the
abstractions we have made.

5.1 Protocol specification

We specify the NSL protocol in our framework by defining a protocol component for each
user. Each such componentPu records the set of nonces it generates in protocol sessions
with userv in the local variablenonces, under the name of userv:
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record ustate = nonces:: user⇒ hnd set −− set of nonce handles

We can initiate a protocol run by indicating the name of the responder. The protocol is
terminated by returning the name of the initiator to the responder. Thus, both user input
and output are of typeuser. Moreover, the only payload data used in the NSL protocol are
user names. Therefore, we use an abbreviation for the states of the protocol:

types NSLstate =(user , user , user , ustate) globState

The NSL protocol is then specified by instantiating the user and network handlers:

NeedhamSchroederLowe::(user, user , user , ustate) protocol
NeedhamSchroederLowe u≡ (|

proto userhandler =λv. −− initiate protocol with v
do enforceb(u 6= v); −− avoid talking to self
mk msg1 u v, −− first message

proto net handler =λv emh. −− respond to protocol messages
do enforceb(u 6= v); −− avoid talking to self
do pm← parsemsg u v emh;
case pmof

msg1 vnh vid⇒ mk msg2 u v vnh −− second message
| msg2 unh vnh vid⇒ mk msg3 u v vnh −− third message
| msg3 vnh⇒ return (pToUser v) −− terminate protocol with v

|)

The user handler for useru initiates a protocol run with userv by constructing the first
protocol message. The network handler takes the namev of the sender and a message
handleemh, parses the message and, depending on the result, replies by either producing
a reply message or by terminating the protocol, indicating which user has (supposedly)
been authenticated. Theenforcebstatements prevent a protocol component from talking
to itself by throwing an exception if the stated condition is not satisfied.

As an example, we show the definition ofmk msg1 u v, which constructs the first pro-
tocol message (NSL1):

mk msg1::user⇒ user⇒ (user protoout , NSLstate) S
mk msg1 u v≡

do nh← genadd nonce u v; −− generate and register nonce
do uih ← store (User u) u;
do mh← pair (User u) (nh, uih)
do emh← encrypt(User u) (pke (User u) v) mh;
return (pToNet(u, v, emh)) −− send 1st message

In this definition,pke (User u) vdenotes the handle by which useru refers to userv’s
public keymPke(ukey v). The statementgenadd nonce u vgenerates a fresh nonce and
adds it tononces( loc s u) v, i.e. the nonces used by useru in sessions with userv. The
subsequent calls incrementally construct the message.

5.2 Verified Properties

The main property we have proved is that the responder authenticates the initiator. This
is formulated as a property of the observed user I/O trace and therefore transfers to the
cryptographic level.
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Fig. 2. Invariants of the NSL protocol

authRI :: NSLstate set
authRI≡ {s. ∀ I R. Commit R I∈ set ( trace s) ∧ I 6= R−→ Init I R ∈ set ( trace s)}

Here Init I R is a nicer syntax for( I , uIn R) and Commit R Ifor (R, uOut I ). We
require that the initiator and responder are distinct. The observer history variabletrace
makes the entire trace of I/O events available in each states. To express the authentication
property is it sufficient to considerset ( trace s), the unorderedsetof I/O events at state
s. The use of a history variable to record I/O traces has the advantage of reducing temporal
precedence properties with reference to the past to simple invariants (i.e. sets of states).
The actual theorem states thatauthRIis an invariant. This is formulated in Isabelle as the
LTL property:

theorem authRI invariant: NSLtrsys|= 2(Pred authRI)

This theorem says that all states on all runs of the transition systemNSLtrsysderived
from the NSL protocol system satisfyauthRI. The proof of this invariant is based on the
auxiliary invariants listed in Fig. 2, along with their dependencies.

The basic invariantscorrectNonceOwneranduniqueNonceUsestate properties of the
local variablenonces: handles stored in this variable do indeed denote nonces and each
nonce recorded in this variable is created by a unique user for a protocol session with a
unique responder. The invariantsuniqueInitNonceanduniqueResponseNonceexpress that
the initiator nonce in message NSL1 and the responder nonce in NSL2 uniquely determine
all the other fields of the respective message. Based on these invariants we can prove that
the protocol nonces remain secret (invariantnonceSecrecy) between the protocol partici-
pants:

nonceSecrecy:: NSLstate set
nonceSecrecy≡ {s. ∀ u v n. n∈ Nonces s u v−→ secret s(mNonce n) {User u, User v}}

Here,Noncesis the set of nonces denoted by handles stored in the variablenonces:

Nonces:: NSLstate⇒ user⇒ user⇒ tag set
Nonces s u v≡ {n. ∃ h. knowsM s(User u) h = Some(mNonce n) ∧ h∈ nonces(loc s u) v}

The notion of secrecy was already defined in Sect. 3.2. Finally, the authentication prop-
erty authRI is derived from the conjunction of four auxiliary invariants,beforeCommit,
beforeM3, beforeM2andbeforeM1, each of these going one message back in the protocol
(indicated by the dashed line in Fig. 2).
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5.3 A Typical Invariant Proof

A protocol invariant is usually proved by showing that it is preserved by all system inter-
face functions. As an example, let us consider the proof ofnonceSecrecy. We point out
some interesting cases and defer the discussion of our general proof strategy to Sect. 5.4.

We proceed bottom-up by showing that the invariant is preserved by all BPW model in-
terface functions. Unsurprisingly, the most interesting cases are the send functions, where
messages are exchanged between parties. The lemma for the user send functionsendi
reads as follows:

lemma nonceSecrecysendiN:
{nSsendpre u h∩ nonceSecrecy∩ correctNonceOwner∩ finiteKnowsM}

sendi (u, v, h)
{> λx. nonceSecrecy}

This Hoare triple states that ifsendi is called in a state satisfying the precondition and
terminates normally, then the resulting state again satisfiesnonceSecrecy. Note that pre-
viously proved invariants are used to strengthen the precondition. The basic auxiliary in-
variantscorrectNonceOwnerandfiniteKnowsMare sufficient to establish the preservation
of nonceSecrecyby all BPW model interface functions exceptsendi , where we need the
additional preconditionnSsendpre:

nSsendpre :: user⇒ hnd⇒ NSLstate set
nSsendpre u h≡ {s. ∀ m n w ua va.

knowsM s(User u) h = Some m−→ n∈ Nonces s ua va−→
mNonce n∈ analyze({m} ∪ ran (knowsM s w) ∪ ran (knowsM s Adv)) −→

w∈ {User ua, User va} }

Note the similarity with the definition ofnonceSecrecy. Intuitively, this predicate states
that the messagem to be sent (and referred to by the handleh) can be added to the knowl-
edge of the adversary without compromising the secrecy of any protocol nonces. This pre-
condition is formulated in a largely protocol-independent manner. It remains to be shown
that our concrete protocol messages satisfy this condition.

Interestingly, the strengthening of the definition of secrecy obtained by adding the
adversary knowledge under theanalyzeoperator is essential. This has the effect that nonce
secrecy is trivially preserved by the adversary’s send functionadv sendi . Without this
strengthening, the predicatenSsendpre would arise as a precondition ofadv sendi and
make that case unprovable, since we do not have any control over what messages the
adversary may send to users. The strengthening shifts the precondition to the user side,
where the protocol determines which messages are sent.

Using invariantskeySecrecy, uniqueInitNonce, anduniqueRespNonce, we can indeed
show that the protocol messages satisfy the preconditionnSsendpre (the BPW-model
invariant keySecrecyguarantees that secret keys do not leak to the adversary). For ex-
ample, for the preservation ofnonceSecrecyby the system user handler, we have proved
that proto userhandler establishes a postcondition stating that message NSL1 has been
constructed with a fresh nonce. Together with the invariantkeySecrecy, this fact implies
nSsendpre for message NSL1. The cases for messages NSL2 and NSL3 are similar, but
require the additional use ofuniqueInitNonceanduniqueRespNonce, respectively.

The preservation results on the BPW-model level are easily lifted to protocol functions
not calling sendi (e.g. mk msg1) by repeated application of the Hoare proof rule for
sequential composition, “pulling” the invariant over the individual function calls.
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5.4 Discussion and Evaluation

Reasoning in the BPW model is inherently stateful and, as originally proposed involves
complex pointer-based data structures. As observed in the introduction, our main task in
formalizing this model was to develop abstractions, proof strategies, and supporting proof
tools to allow us to reduce this complexity and reason efficiently about the state and the
state-transitions that result from calls to the interface functions. One of our strategies was
to automate as much reasoning as possible using the WPC. The main enabling factors
for this strategy were the model abstraction provided by moving from the indexed to the
term-based model and the property abstraction introduced by using the operatorsanalyze
and parts along with their equational theories. We now routinely use the WPC up to the
level of BPW-model interface functions and switch to Hoare logic only at the protocol and
system levels.

More precisely, we have adopted the following proof strategy for systematically prov-
ing invariants, which we illustrate using the NSL protocol and a hypothetical invariant
I as an example. We explain our three-step strategy in a top-down manner, although in
practical work we often proceed bottom-up. First, we apply a LTL proof rule to reduce the
temporal statement thatI is an NSL invariant (expressed asNSLtrsys|= 2(Pred I)) to a
set of Hoare triples of the form:

{I ∩ J} h x {> λz. I}

There is one such triple for each system interface functionh, stating thath preservesI
on all inputsx. The LTL proof rule achieving this reduction embodies an induction over
positions in system runs and uses auxiliary invariants (here represented byJ) in order to
strengthen the induction hypothesis. Second, we use the rules of Hoare logic to decom-
pose these preservation statements into similar statements about the BPW-model interface
functions. However, as illustrated in Sect. 5.3, the preservation of the invariantI by BPW-
model interface functionsf may require auxiliary preconditions( pre f x):

{(pre f x) ∩ I ∩ J} f x {> λz. I}

We must ensure that we can derive any such auxiliary precondition( pre f x) of a BPW-
model interface functionf called in a protocol handlerh from the postconditions of func-
tions called inh before f4. In order to minimize the use of ad hoc lemmas, we prove
characteristic Hoare triples for the auxiliary functions appearing in the protocol handlers
(such asparsemsgand mk msg1in the NSL protocol). These Hoare triples have only
auxiliary invariants in the precondition and a strong postcondition characterizing the ef-
fect of the respective function. The idea is to collect all the information we need to prove
( pre f x) from such characteristic postconditions. The difficulty of this step depends on
the number of BPW interface functions requiring auxiliary preconditions, which are gen-
erally few (often onlysendi ). In the third step, we prove the preservation lemmas for the
BPW-model interface functions by unfolding them into the WPC and then applying the
automatic proof tools including the simplifier and the tableau reasoner. The former makes
heavy use of the equational theories ofanalyzeandparts. The automatic tools may require
additional lemmas about consequences of auxiliary invariants to complete the proof.

After abstracting most of the non-inherent complexity of the BPW model, we ob-
tained a framework in which cryptographically sound protocol verification in the sense of

4 Note that since the adversary’s interface functions are also system-level interface functions, they
are not allowed to have such auxiliary preconditions, ifI is to be system invariant.
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BRSIM/UC is possible. However, due to the pointer-like nature of handles we are con-
strained to the fine-grained BPW interface functions to handle messages in a constructor-
wise manner. This is the main remaining intrinsic complexity in our model. In contrast,
the complexity added by the non-standard aspects of the cryptographic operations (length-
revealing ciphertexts, signature transformations) do not complicate proofs significantly.

Paulson’s security protocol proofs in Isabelle/HOL provide a natural benchmark for
our own proofs and for judging the cost of this remaining complexity. Ideally, the cost
would be zero. That is, we could construct proofs using cryptographically sound abstrac-
tions with an effort comparable to that required when using the considerably simpler ab-
stractions provided by the Dolev-Yao model. For the moment, we are still some distance
from this ideal as our proofs are roughly two orders of magnitudes larger than Paulson’s.
Whereas he uses a few lines to prove an invariant, we need an entire Isabelle theory of sev-
eral hundred lines. A similar picture arises at the global level: his NSL proof needs roughly
3 pages (counting the automatically generated Isabelle documentation), while ours occu-
pies 140 pages. However, the length of a proof is a poor measure of its complexity. A
substantial part of this difference can be attributed to the fact that we have to show preser-
vation of every invariant by all 17 BPW-model interface functions before we can start
reasoning at the protocol level. However, as explained above, most lemmas can be de-
rived systematically and largely automatically using the WPC. A typical proof script for
a preservation lemma in an invariant proof requires 2–6 lines of tactics and the variation
between them is small. We think that the complexity of the property specifications and the
proofs (e.g., the invention of invariants) is comparable to Paulson’s and we are optimistic
about being able to further reduce this gap in the future.

6 Conclusion

We have developed an abstraction of the BPW model, along with strategies and proof
tools, that enables practical protocol security proofs with strong soundness guarantees. In
doing so, we have substantially reduced the non-inherent complexity of the BPW model
in a way that brings us closer to the considerably simpler abstractions provided by the
standard Dolev-Yao model and inductive proof techniques used, e.g., by Paulson.

We see a number of directions for future work. First, we would like to develop methods
to reduce the impact of the inherent complexity. One possibility is to investigate changes
to the model, either by building a higher-level interface for protocols or even changing
the model itself (which would, however, necessitate a new soundness proof). For exam-
ple, it would simplify proofs to reduce the number of interface functions from 17 to 3,
namely functions for building, parsing, and sending messages. This would enable more
compact protocol specifications as well as shorter proofs based on general results about
these functions. Second, we have built basic proof tools and have developed systematic
strategies for constructing proofs using the general automated reasoning tools provided by
Isabelle, mainly rewriting and tableau theorem proving. However we have not yet devel-
oped any specialized proof tactics tailored to our strategies. As mentioned in Sect. 5.4, we
see considerable potential for improvement here. Finally, we intend to carry out further
case studies in order to broaden our experience with our formalization and proof strate-
gies. It would be useful here to incorporate more features into our formalization such as
symmetric encryption and MACs. The technical details have been worked out [11, 8] and
await implementation.
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