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Abstract. In a multipartite access structure, the set of players is divided
into K different entities, in such a way that all players of the same entity
play the same role in the structure. Not many results are known about
these structures, when K > 3.

Even if the total characterization of ideal multipartite access structures
seems a very ambitious goal, we take a first step in this direction. On
the one hand, we detect some conditions that directly imply that a mul-
tipartite structure cannot be ideal. On the other hand, we prove that
three wide families of multipartite access structures are ideal. We be-
lieve that the techniques employed in these proofs are so general that
they could be used to prove in the future more general results related to
the characterization of ideal multipartite access structures.
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1 Introduction

Distributed cryptography studies cryptographic schemes where the power to per-
form a specific task (as it could be signing or decrypting) is distributed among
a set of players or servers. With this approach, the system improves its security
and trustworthiness. A key tool in almost all these systems are secret sharing
schemes. In these schemes, we start from a set of players and a family of autho-
rized subsets (the so-called access structure). Then, an external figure (usually
called dealer), takes a secret value and computes from it some shares that he
sends secretly to the players. The system must withhold two properties: (1) the
secret can be computed from the shares of any authorized subset in an unequiv-
ocal way; (2) any non-authorized subset does not obtain any information about
the secret from the shares they hold.

The usual way to measure the efficiency of secret sharing schemes is by
means of comparing the length of the shared secret with the length of the shares
that players hold. This comparison is made using the information rate. This
parameter takes its maximum value when the length of the shares is equal to



that of the secret, the so-called ideal case. In general, figuring out if there exists
or not an ideal secret sharing scheme realizing a given access structure, and
even more, constructing it, is a very hard problem. For this reason, research in
this area has focused on the study of specific families of access structures, such
as threshold access structures [12], access structures defined by graphs [3], star
access structures [7], those with at most 5 participants [8], the bipartite access
structures [11], or weighted threshold access structures [1].

In this work we study some families of multipartite access structures: the
set of players is divided into K disjoint entities, and all players in each entity
play exactly the same role inside the access structure. These access structures
can make a lot of sense in real life applications, where persons or machines are
divided into different groups according to their position in a company, their re-
sponsibilities, their computational resources, or their probability to be corrupted
by an attacker.

When K = 1, we recover threshold access structures, and when K = 2, we
recover bipartite ones [11]. For K = 3 (tripartite access structures), some partial
work has been done in [6, 1]. To the best of our knowledge, however, there are not
many results involving multipartite access structures in general, for any value of
K. This work is a first step in this direction.

We consider three families of multipartite access structures, and we prove
that they are ideal. The two first families are multipartite for a general value of
K, whereas the third one is tripartite (K = 3). The proofs of these results are
not constructive, but existential. Furthermore, we believe that the mathematical
techniques employed in the proofs are quite general and could be applied to prove
that other general families of multipartite access structures are also ideal.

On the other hand, we also consider the question of detecting multipartite
access structures that are not ideal. We prove that a list of different combinations
of authorized /non-authorized subsets in a multipartite access structure directly
imply that this structure cannot be ideal.

The rest of the paper is organized as follows. In Section 2 we recall the basic
concepts related to secret sharing schemes, we give the definition of general
multipartite access structures, we show that any access structure is a multipartite
one and we mention some studied cases of such structures. We prove in Section
3 that three specific (but wide) families of multipartite access structures are
ideal. In Section 4 we prove a result which allows to ensure that a multipartite
access structure is not ideal, when some prohibited position is detected among
the points which represent subsets of players in the space (Z')X. We give two
simple examples of how to use this result to prove that some tripartite access
structures are not ideal. Finally we conclude the work in Section 5, where we
explain some possible future work to be done in this subject, by enunciating some
conjectures related to the characterization of ideal multipartite access structures.



2 Secret Sharing Schemes

In this section we briefly introduce the necessary concepts about secret sharing
schemes we need to understand the rest of our work.

In a secret sharing schemes, a dealer, that we will note as D, distributes shares
of a secret value among a set of players P = {P,..., P;}, in such a way that
only authorized subsets of players (those in the so-called access structure, that
we will note I" C 27) are able to obtain the secret from their shares. However,
subsets that are not authorized (that is, those in the family I' = 27 — I') do
not obtain any information on the secret. The family I' must be monotone
increasing, that is, if A € I' and A C B, then B € I'. An access structure I is
determined completely by its basis Iy ={A € I' | A’ ¢ I, VA’ C A}, precisely
by this monotone property. Analogously, the family of non-authorized subsets is
determined by its basis I'g, the family of maximal non-authorized subsets.

The parameter that is usually used to measure the efficiency of a secret
sharing scheme is the information rate p, which is defined as the quotient between
the length of the shared secret and the maximum length of the shares of the
players. It can be easily proved that p < 1. The ideal case is when p = 1, that
is, the length of the shares of every participant is equal to the length of the
secret. We say that an access structure is ¢deal if there exists some ideal secret
sharing scheme that realizes it. The optimal information rate p*(I") of an access
structure I" is the supremum of the information rates of all the secret sharing
schemes that realize I'.

Secret sharing schemes where independently introduced in 1979 by Shamir [12]
and Blakley [2]. Shamir introduced a scheme realizing a threshold access struc-
ture: authorized subsets of players are those ones with at least t players.

Other works introduced secret sharing schemes realizing more general access
structures. For example, vector space secret sharing schemes [5] realize access
structures that include threshold access structures. These schemes are also ideal.
Vector space access structures are defined by a public function ¢ : PU{D} — E
(where E is a vector space over a finite field GF(q)), such that A € I' if and
only if $(D) € (1(A)).

If the dealer wants to share a secret s € GF(q), he chooses a random vector
v € FE such that v - (D) = s. Then he computes and sends secretly to player
P; his share s; = v - ¢(F;). If A € I' is an authorized subset, then (D) =
Y pica M (P;), for some coefficients \{! € GF(q). The players in A will be able
to recover the secret s from their shares, as follows:

s=v-p(D)=v- Y MYEP) =Y Mv-yp(P)= Y Msi.

P;cA P,eA P,eA

It can be proved that no information on the secret can be obtained from the
shares of any non-authorized subset.

A generalization of vector space secret sharing schemes are linear secret shar-
ing schemes [13]. It is proved that any access structure can be realized by a linear
scheme.



2.1 Multipartite Access Structures

In this section we introduce multipartite access structures. We will mention some
known works about this topic and we present some examples of structures of this
family.

Let P = {Py, Ps,..., P;} be the set of players that are distributed into dif-
ferent disjoint entities Xi, X»,..., Xk, where K > 2. Every entity X; has ¢;
players, therefore the whole set of players is ¢ = Zfil £;. We will say that the
access structure is multipartite when players in every entity play the same role.
More formally: an access structure I" defined in the set of players P is multipar-
tite of partition Xy, Xo,..., X if o(I') = I" for any permutation o of P with
o(X1) = X1,...,0(Xk) = Xk. In this case we say that I' is (X1,...,Xk)-
multipartite, or that I" is K-multipartite.

In fact, any access structure is a multipartite one. In effect, let us denote as
Tpq> for two participants p,q € P, the transposition of two participants p,q in
P. In order to find participants with the same role in the structure we define
the relation: p ~ ¢ if and only if 7,4(I") = I'. It is not difficult to see that
the binary relation ~ is an equivalence relation. Therefore we can consider the
quotient P/ ~ = {Xy,..., Xk}, where Xy,..., Xk are the equivalence classes
determined by the relation ~.

Now one can prove that the structure I' is (Xy,..., Xk )—multipartite. In
effect, let o be a permutation of P with (X)) = X1,...,0(Xk) = Xk. It is easy
to see that such a permutation can be seen as a composition of K permutations
of the classes: 0 = 01 0... 00 with 0;(X;) = X; and 0;(P;) = P; for any
player P; € P — X;. Each o; can be expressed as a composition of transpositions
between elements in X;. So ¢ is a composition of transpositions between elements
of the same class. This directly implies o(I") = I, as desired. Therefore,

Proposition 1. Any access structure is a multipartite access structure.

Multipartite access structures were introduced in [11]. The only known results
are the study of bipartite access structures (that is, when K = 2) in [11] and
some partial results in the tripartite case (K = 3) in [6]. In [11], bipartite access
structures are introduced, ideal bipartite structures are completely characterized,
and the information rate of non-ideal ones is bounded and studied. In [6] some
conditions for ideal tripartite access structures are introduced. Some particular
families of tripartite access structures have been proved ideal in [1].

A subfamily of multipartite access structures that has been widely stud-
ied in literature is the family of access structures defined by weights. In this
kind of access structure every participant p € P has associated its own weight
w(p) € RT and we will say that a subset A C P is authorized if and only if
w(A) = > caw(p) > t, where t > 0 is the threshold of the structure. These
structures are a subfamily of multipartite ones by considering X; = w=!(w;)
where wy,...,wk are the different weights derived from the mapping w. A par-
ticular case studied in [11] are the structures with only two possible weights,
which results in a bipartite access structure. The structures defined by weights



and threshold were introduced by Shamir in [12]. Some results were given in [9]
for the case when such structures are representable by a graph, while a total
characterization of ideal weighted threshold access structures has been recently
given in [1].

We use the notation Z* = {0,1,2,...} for the set of non-negative integers.
Given the partition X7, Xs,..., Xk of the set of participants P, for any subset
A C P we consider the point m(A) = (z1(A4),z2(A),...,zx(A)) € (ZT)X, where
z;(A) = |AN X;|. We also consider the set of points

m(I) = {n(A) : Ael}c (zH)K

defined by the structure I'; or the set of points defined by the basis of the struc-
ture, m(Ip) = {n(A) | A € Iy} C (Z*)K. 1t is easy to prove that a multipartite
structure I" is completely determined by the set of points in 7(I"), that is, A € I
if and only if 7(A4) € n(I).

3 Some Families of Ideal Multipartite Access Structures

In this section we consider some wide families of multipartite access structures.
We will prove that these access structures are ideal, by proving that they can be
realized by a vector space secret sharing scheme.

In our results, we will use as a tool the following lemma, which is well known
and can be proved by induction on the number of polynomial indeterminates.

Lemma 1. Let p(x1,...,24) € Z[z1,...,x¢] be a polynomial with integer coef-
ficients in the ¢ variables x1,...,xy. The polynomial p(z1,...,xs) is non null if
and only if there exist integer numbers ay,...,ap such that p(ay,...,ap) # 0.

Recall that this result is not true for polynomials defined over finite fields
(for example, the polynomial p(z) = 29 — & € Zy[z] is not the null polynomial,
for any prime number ¢, but p(a) = 0 for all « € Z;).

3.1 A First Family

Let X,..., Xk be a partition of P. We define the mapping v : P — {1,2,..., K}
that assigns to every participant the entity he belongs to. We will use the notation
v; = v(P;), meaning that the participants P; belongs to the entity X,,. We also
define, for a subset of players A C P, the set of entities represented by A as
v(A)={v(P) | P, € A}.

We consider the multipartite access structure

I'={AC®P : |A >t and |v(A)| > d}

defined on the partition Xi,...,Xg, forany 1 < d <t and d < K. That is, a
subset is authorized if and only if it contains at least ¢ players who come from
at least d different entities.



In order to prove that these access structures are ideal we will prove that
they are vector space access structures. The following lemma will be necessary
in order to prove that the specific map ¢ : P U{D} — GF(q)" that we are
going to construct actually realizes the considered access structure I'.

Lemma 2. Let t,d € ZT be integer numbers verifying 1 < d < t and let us
consider the following polynomial in t variables, defined over the integers:

Ty 22 ...mtl_drf_l cooriegl
T T3 ...mg_drg_l c.orirgl
QTl,...,Tt(xla'-'awt) =
—d d—1
N I R S A |

The polynomial Q... r,(T1,...,2¢) is non null if and only if there exist d dif-
ferent numbers in ri,...,ry € ZT.

Proof. If d = t the result is trivial. In order to prove that the polynomial
Qry,....re(T1,- .., 2¢) is not the null polynomial for d < ¢, we look for a coef-
ficient different from zero. Let us suppose that r;_g41,...,7; are different. If
not, it is easy to argue in the same way, exchanging some indeterminates and
permuting some rows.

Developing this determinant by the first row we obtain:

. xtdrd 3

3l .o 3
Qrypory(@1y ) =20 | 0L N 21 G2 T 7y

s A R e A |

where py(1,...,2;) is a polynomial in which xi appears with i # 1, that is,
there are no terms of the form xj23? - ... - 2" in py(z1,...,2¢). We can follow
the development of the determinant obtaining:

T3 ... xg_d rg_l r3ryl
x5 xt ... xfl_d rg_l raryl
2
Qi@ ) =025 | . . . . | ez, 1)
et ettt 21
where py(z1,...,2;) is a polynomial that does not contain terms of the form
T3z - ... - 2. Iterating the process we obtain:
d—1 2
TtidJrl e rt7d+1 Tt—d+1 1
d—1 2 1
9 3 —d rt7d+2 s T _dyo Tt—d+2
Qro,yoore (T1y -y Ty) = 12505 2,4 | .. . | H+pe—alz, ...

d-1 2
Ty ST Ty 1

axt)



where p;_4(x1,...,2¢) is a polynomial that does not contain terms of the form

zyx3x} - ... - 2t Since the coefficient of the monomial zyx323 - ... 2! % is a
non null Vandermonde determinant, the polynomial Q,,,. . ,,(®1,...,2;) is non
null.

Conversely, if there are not d different numbers among r1,...,7; € Z", then
any minor of order d of the last d columns is zero; therefore, these columns are
linearly dependent and so the polynomial is null. O

Theorem 1. Let K,t,d be positive integer numbers with 1 < d <t, d < K and
let X1,..., Xk be a partition of P. The multipartite access structure defined in
the partition Xq,..., Xk by

r={AcCP : |Al>t and |v(A)| >d}
1s ideal.

Proof. If d =1 then I' is a threshold access structure and thus ideal. For d > 2,
we are going to prove that I is a vector space access structure, which directly
implies that it is ideal.

Observe that this structure is defined by

m(lo) = {(a1,--.,ax) € (ZN)* 1 a1 +... + ag =t with

at least d numbers a; # 0}.

Recall that the quantity of non null numbers a; is the quantity of entities (or
classes in the partition) that appear in the subset A represented by point w(A) =
(a1,...,ax). Following the notation X; = {P;1,..., Py, } for the entities, where
Xo = {Po1}, with Py; = D (the dealer), we define the map ¢ : P U {D} —
GF(q)! that will determine the structure I" as a vector space access structure,
as follows:

$(Pij) = (0,...,0,i7 1,472 i 1) +045(1,0,...,0) +07(0,1,0,...,0)+...+

t—d 2 t—d :d—1 ;d—2 .
+ay; (O,...,O,1,07...,0):(aij,ozij,...,aij iR, 1),

for some values «;; to be determined. In order to find values o;; and ¢ such that
the above map v defines the structure I we consider the polynomial:

Q(To1, T11, -+, T1lyy -, TR, - - - TRy ) = 11 Qry ooy (Tryiys - -+ Tryiy)
{Priiq s sPryiy JET

with Z = Io U{{Pn}UA : A C P, v(A) > d—-1, |A] = ¢t — 1} and
where the factors of the polynomial are defined as in Lemma 2. We will jus-
tify that Q(zo1,Z11,--->T16yy---sTK1,s---> LK) 1S @ non null polynomial ap-
plying Lemma 2 to every factor. The first kind of factors in polynomial @ are
Qry,ore(Tryigy e ooy Trpsy) for {Priiyy .., Pryi,} € Ip. These factors are non null
because there are at least d different numbers among 71, ..., r;. The second kind
of factors is Qory,....r,_1 (Z01, Tryiys v r Try_yip_,) for A = {Prs ..., Pr, i, .}



with v(A) > d—1, then {Py; }UA has at least d different numbers in 0, ry,..., 7 1.
From the integrity of integer polynomial product we obtain that @ is non null.
Then using Lemma 1 we can ensure the existence of a1, 11, .+, Q1eyy ., AK1, -+ oy QK €
7 such that
Q(a01, A1ty -y Lty ooy KLy -y Ky ) F O

Let p > K be a prime such that:

p> mam{Prlil;---7Prtit}eI‘QT17---7rt (Qryigs- - O"r‘tit)|‘

Let us suppose that map 1 defined above determines an access structure I7.
Now we prove that Iy, = I" for any field GF(g) with ¢ a power of the prime p.

First we justify that I" C I'y. Let A € I" be a subset with |A| = ¢. Then
A € Ty, that is A € 7 and by definition of polynomial @, the ¢ vectors in ¥(A)
are linearly independent because their determinant is different from zero. So
these vectors form a basis of GF(q)* and then (D) € (1(A)). That is, we have
justified that A € Iy, when |A| = t. For any subset A € I', we have |A| > ¢, and,
of course, the assert is also true taking into account that d < t.

Secondly we show that Iy C I'. Equivalently we prove that if A ¢ I" then
A & I'y. Let us suppose that A ¢ I', then two possible cases can occur. If
|v(A)| < d we have A & I'y,. This fact is true because if A € Iy, then ¢(Pp;) =
> pea Bpt(p) for some scalars 8, € GF(q), then using the last d coordinates of
this expression we have (0,...,0,1) = Dicv(A) Bi(id=1,4972 .. i2,i,1) for some
scalars 3] € GF(q), so |v(A)| > d for the properties of Vandermonde vectors.
Then for A ¢ I' with [v(A)|] < d we have A ¢ I'y. In the second case A ¢ I’
is such that |v(A)| > d, then |A] < t. If |A| = ¢ — 1 with |v(A)| > d we have
A & I'y. This is true because in this case {Pp1} U A € Z, then vectors (D) and
¥ (A) are linearly independent by definition of polynomial @, so ¢¥(D) & (¢¥/(A)),
that is A € Iy. Of course from this case it can be deduced that for any A C P
with |A| < t, [v(A)| > d we also have A & I'y. O

3.2 A Second Family

Now we present a different result, proving that multipartite access structures
defined by ' ={ACP : |A|>¢ and x1(4) > nq,..., vx(A) > nk} (where
z;(A) = |AN X;| ) are also ideal for any values 0 < ny,...,ng < t satisfying
ny+...+ng < t. We will proceed in a similar way as before: we will prove first
a lemma that helps us to define the map expressing the structure as a vector
space access structure.

Lemma 3. Let t,d € Z be positive integer numbers with 1 < d < t, let

Vi,..., Vs € Z% be integer vectors, and consider the polynomial Quvy,..vie(@1,. .., 2) €
Z[x1,. ..,z in t variables defined by

T x% xi_d Vi

To x% xé_d Vo

Qvl,...,vt (xla v 7xt) =

T a7 ...xiid Vi



The polynomial Qv, .. v,(21,...,2¢) is non null if and only if there exists d
linearly independent vectors among vectors vi,...,Vy.

Proof. If d =t the result is trivial. As in the previous lemma, in order to prove
that the polynomial Qy,, v, (21,...,2;) with d < t is not the null polynomial,
we look for a coeflicient different from zero. Let us suppose without loss of
generality that v;_g441,...,V are linearly independent (if necessary, exchanging
some indeterminates and permuting some rows).

Developing this determinant as in Lemma 2 we have

Qv (@1, ) = TixaTs ... xijg ~det(Vi—dgq1y---5Ve) F0(21, .., Tt)
where p(z1,...,2;) is a polynomial that does not contain terms of the form
zyx3ad - ... -2t Since coefficient of monomial zyz3z3 - ... - 2!~ % is a non null
determinant, the polynomial Qy,,. . v,(%1,...,2;) is non null.

Reciprocally, if every subset of d vectors among vectors vy, ..., v; are linearly
dependent then the last d columns of the determinant are linearly dependent,
and so Qv,,.. v, (Z1,...,2¢) is null. O

Note that Lemma 2 is a particular case of Lemma 3 taking the corresponding
vectors vy,...,Vvs. Using Lemma 1 and Lemma 3 we prove the following result.

Theorem 2. Let K,t,ny,...,ng be non-negative integer numbers with ny +
...t ng <t andlet Xy,...,Xk be a partition of P verifying n; < |X;| = ¥;.
The multipartite access structure defined in the partition Xq,..., X by

I'={AcCP : [Al=t and [z1(A)| =2 m,..., [zx(A)] = nk}
is tdeal.
Proof. Observe that the structure is defined by
m(Io) = {(a1,...,aK) € (Z+)K ta1+...+ag =t,a1 > ny,...,ax > Nk}

Let ¢; = | X;| be the cardinalities of the partition classes. The family of associated
points for maximal non-authorized subsets is:

m(Lo) = {(a1,...,aK) € (Z+)K:a1+...+aK:t—1,a1 >nyy...,ak > ng U

U{(Tll — 1,[2,...,€K),(£1,TL2 — 1,...,ZK),...,(Zl,...,ZK_l,TLK — 1)}

Let d be the positive integer number d = n; + ...+ ng. Let us define the map
¥ : PU{D} — GF(q)" that will determine the structure I" as a vector space
access structure. For any P;; € X;, where Xo = {Py1} and Py; = D (the dealer),
we define for some values «;; (not determined, by the moment):

P(Py) = (0,...,0,vij) + a;5(1,0,...,0) + 07;(0,1,0,...,0) 4+ ...+

t—d _ 2 t—d
+a;;%(0,...,0,1,0,...,0) = (asj, ajj, . -, g5 %, Vij)



where the d-dimensional vectors v;; are defined as
Vo1 = (an (0), ey VnK (0)) € Zd
Vij = (Onyse- o 0ns 13 Vi (5), Onsys - -, Opy ) € Z%, for Pyj € P.

Here 0,,, denotes the nj-dimensional null vector, and V., (j) = (1,4,5%,...,5™ ")
denotes a n;-dimensional Vandermonde vector.

Observe that if ¢ = d the result is true for any power ¢ = p” of a prime p
satisfying p > ¢;, for every i = 1,..., K.

In order to find values o;; and ¢ such that the above map ¢ defines the
structure I" for ¢t > d we consider the polynomial:

Q(CEOl,.’L'll,...,il?ul,...,.’l,'[(l,...,CUKgK) = H QVr1i17---7Vrtit(m7‘1i1"“’thit)
{PriiqsesPryiy JET

with Z = TyU{{Py;}UA : A € Ty, |A| = t—1} and where the factors of the poly-
nomial are the ones defined in Lemma 3. We will justify that Q(zo1, 11, -, %155 - -,
TK1y--+,TKex) 18 a non null polynomial applying Lemma 3 to every factor.
The first kind of factors in polynomial @ are Qr, .. r (Zryiy,--.,%r,,) for A =
{Pniu ce aPTtit} € FO? then |A| >t with |£L‘1(A)| > ni,..-, |xK(A)| > nk. The
last d coordinates of vectors in ¥(A) contain at least n; vectors corresponding

to users in X; for ¢ = 1,..., K, then these n1 + ...+ ng = d vectors are linearly
independent because their determinant is

Wiy 0 ... 0
0 Wa... O
: =|Wi| ... |[Wk| #0
0 0 ...Wg
where in this block diagonal determinant, every block determinant |W;| has Van-
dermonde form. Using Lemma 3 we have that these factors Qy, ... ¢, (@riys - - - » Tryi,)
are non null. The second kind of factors are Qo r,.....r, 1 (X01, Tryigs---» Try qis 1)

for A = {Pui,-..,Pr,_,i, .} wWith A € I'g, then the subset of ¢ vectors deter-
mined by {Pp1} U A has at least d linearly independent vectors determined by
the last d coordinates in the same way as above. So, by Lemma 3 the polyno-
mial factors determined by {Pp; } U A are non null. From the integrity of integer
polynomial product we obtain that @ is non null. Then using Lemma 1 we can
deduce the existence of ap1, @11,..., Q10,3 XK1, .., CKe, € Z such that

A(a01,a11,...,algl,...,aKl,...,aKgK) 7& 0
Let p > K be a prime such that:
P> mal’{Prlil7---;Prtit}eI|QVr1i17---7Vrtit (a’/‘1i17 ceey a’r‘tit)|‘

In order to prove that the map ¢ determines I" if we consider any field GF(q)
with ¢ a power of p, let us denote by Iy, the access structure defined by the map
1. Now we show that Iy, = I



First we justify that I" C I'y. Let A € I' be a subset with |A| = ¢. This
subset A satisfies |A| =t and |z1(A4)| > ny,..., |zx(A)| > nk, and so A € I.
Therefore A € 7 and by definition of polynomial @ the ¢ vectors in (A) are
linearly independent because their determinant is different from zero. So these
vectors form a basis of GF(q)! and then ¢ (D) € (¢)(A)). That is, we have
justified that A € Iy, when |A| = t. The assert is also true for any subset A € I
because since |A| > ¢, and n; + ...+ ng = d < t we can take ¢ users with at
least n; users from X, for every i =1,..., K.

Secondly we prove that Iy, C I'. Equivalently we see that if A ¢ I' then
A & I'y. Assume that A ¢ I', then two possible cases can occur. If for some i =
1,...,K we have |z;(A)| < n;, then A & I'y. In effect, if A € Iy then ¥(Pp1) =
ZP”EA Bp,; ¥ (P;j) for some scalars Bp,; € GF(q). Using the corresponding block
of n; coordinates of this expression we have V;,,(0) = > p, ¢ anx, BP;Va,(4), s0
|ANX;| > n; for the properties of Vandermonde vectors. Therefore, |z;(A4)| > n;
forevery i =1,..., K.

In the second case A & I is such that |z1(A)| > ny,..., |zx(A)| > nk, but
|A| < t. If |A] =t — 1 with |z1(A)| > n1,..., |zx(A)] > ng we have A & Iy.
This is true because in this case {Py1} U A € Z, then vectors (D) and 9 (A)
are linearly independent by definition of polynomial @, so ¥/(D) & (¥(A)), that
is A € I'y. Of course from this case it can be deduced that for any A C P with
|A| < t, |z1(A)| > n1,..., |k (A)] > nk we also have A & I'y. O

It is possible to obtain many other families of ideal multipartite access struc-
tures following the same techniques as in the proof of this Theorem 2, but defin-
ing the vector (D) assigned to the dealer in more general and different ways. As
an example, we will see in next section how to construct many different families
of ideal tripartite access structures by changing the position of the vector of the
dealer.

3.3 A Third Family: Tripartite Access Structures

In this section we deal with tripartite access structures. The participants are
divided into three disjoint entities X7, X2, X3 such that X; U Xo U X3 =P. To
simplify the notation, given a subset A of participants, we will use z; to refer
to the value z;(A) = |AN X,|, for i = 1,2,3. We identify a wide family of ideal
tripartite access structures, as stated in the following theorem, whose proof is
only sketched, for clarity and by lack of space.

Theorem 3. Let I be a tripartite access structure. Assume that there exist non-
negative integer numbers dy,ds, ds, d12, d13, d23, t, verifying
(i) 0<d; <t, foralli=1,2,3,
(Zl) dy +dy +ds — d,’j — djk >t>dy+dy+ds — (d12 +di3 + d23), for all values
ofi,j,k € {1,2,3}, i £ j, i #k, j £k,
(11t) and 0 < d;; < min(d;,d;), for all values of i,j € {1,2,3}, i < j,

such that I’ can be expressed as w([') = Ay UAs U A3 U A2 UA13U A UT,
where:



— A =0orA;={ (z1,z2,23) 1 7; > d; } fori=1,2,3,
—Aij:(Z)O’I"Aij: ($1,.’132,£L‘3):£L‘i+.'13jZdi+dj—dij A mizdi_dij}

:U]'Zdj—di]’
fori,je{1,2,3},i<j
1 >t — (da + ds — da3) T1+x2 >t —ds
- T= (ml,mg,iﬂg): T+ T2 +2T3 >t A mgztf(dl-i—dg,*dlg) N x4+ x3>1t—ds
x3 >t — (dy +do — dy2) To+T3 >t —ds

Then I' is a vector space access structure, and so ideal.

Proof. (Sketch.) Let d = t+dy2 + d13 + dog — (d1 +d2 + d3). We have that d > 0.
We will consider a vector space L with dimension equal to t. In this space,
we will construct three vector subspaces L1, Lo, L3 such that dim(L;) = d;,
dim(L; N L;) = d;; and dim(L;q N Ly N L) = d. The idea is that vectors assigned
to participants in the entity X; will be in the subspace L;. Recall that we use ¢;
to denote the total number of participants in each entity X;.

Intuitively, given a vector in the space L, we will think it as

(*123 || *12 || %13 || *23 || *1 || %2 || *3),

where #1253 is the part of the vector (the first d coordinates) generated by a
basis of Ly N Ls N L3; we consider the most simple basis, formed by eq,...,eq,
where e; is the vector in Z' which has 1 in the i-th position and 0 in the rest of
positions. Then, *;5 is the part of the vector (di2 — d coordinates) corresponding
to (L1 N Lg) — L3, %1 is the part of the vector (dy — dy2 — d13 + d coordinates)
corresponding to Ly — Ly — L3, and so on.

For users P;; in the first entity X, we define ¢)(P;;) as a linear combination
of the vectors which generate L1, in such a way that ¢(Py;) ¢ Lo + L. That is,

— — di—(d+1 — dy—(d 1 di—(d dig—d
B(Prj) = (@ e T e T g g et g (hethemd)
d1—(d diz—d)—1
0,...,0 @ft"erde=d=l a2 a;1]0,...,0]0,...,0),

for some integer values a;; which will be determined later.

Analogously, for users Py in the second entity Xo, we define ¢(Py) as a
linear combination of the vectors which generate Lo, in such a way that ¢ (Pay) ¢
Ll + L3. That iS,

_ — ds—(d+1 _
W(Pa) = (B, BT gD g e 0,0

do—(d da—(d doz—d do—(d doz—d)—
gzt | gl (detdsmd g g | gl (etdsmd=l 82 810, ..,0),

for some integer values (3 to be determined later.

Finally, for users Ps,, in the third entity X3, we define ¢(Ps,,) as a linear
combination of the vectors which generate Lg, in such a way that ¢(Ps,) ¢
L1 + Ly. Namely,

(Pym) = (v 71, yE 74 0,...,0 ||y @D ydsmdis )



yda—(distl) s (distdas—d) |0 0| 0,...,0]| yds(drstdas-d)=1 2 1y

for some integer values v, to be determined later.

With respect to the vector ¢(D), depending on where we place it, we will
obtain the different possibilities listed in the statement of this theorem. For
example, if (D) ¢ L; + Lj, for all 4,5 € {1,2,3}, i < j then we will have
A; =A;; =0, for all 4,5 € {1,2,3}, i < j. In this case, we will define

(D) = (p " w2 P 1) e ZF

for some indeterminate integer value p. The case on the other extreme happens
if we impose ¥(D) € Ly N Ly N Ls. In this case we have A; # 0 and A;; # 0, for
all 1,57 € {1,2,3}, i < j, and then we define

¢(D) = (/I/dil’/’l’d727"'7/"’27u7l707"'70) EZt

again for some indeterminate integer p (that is, the vector ¢(D) has coordinates
equal to 0 anywhere but in the first d coordinates %123, which correspond to
LiNLyNLs).

There are many intermediate cases, and each one leads to a different family
of tripartite access structure. As a matter of example, if ¢(D) € L; but (D) ¢
Ly + Ls, then we have that Ay = A3 = Ay3 = 0, but A;, A;» and A3 are
not empty. In this case, the vector ¥(D) has exactly the same form as a vector
¥(Py;) corresponding to the first entity X7, obviously for some indeterminate
different from the indeterminates {a;}1<j<g,.

To show that there exist specific values for g and for the values y, {o; }1<j<e,,
{Br}1<k<e, and {¥m }1<m<s, such that the map ¢, defined as above over GF(q)*,
determines exactly the access structure I', we proceed as in Theorems 1 and 2.
That is, we define a very big polynomial

Q (s i br<i<en s {8k b1<h<tn, {Ym f1<m<es) =

H Qa (,U'a {aj}PueAa {/Bk}PmeEAv {’Ym}PamEA) ’

A€eT
where each polynomial 4 consists of some maximal minor of the matrix whose
rows are the vectors 1(P) for all P € A. The composition of the family Z will
depend on the specific position of the vector ¥(D), but typically it will contain I
and subsets of the form A = {D} U B, where B is some maximal non-authorized
subset of the structure I' (we omit the details for simplicity).

The idea is that one can prove that the polynomial () is not the null poly-
nomial, by proving that each polynomial factor @4 is not null (using the same
techniques as in Lemmas 2 and 3, showing that there exists some monomial
of the polynomials whose coefficient cannot be 0). Therefore, there will exist

specific integer values fi, {&; }1<j<t,, {8k }1<k<tys {Fm }1<m<t, such that

Q (ﬁ, {& i<i<es {Brhi<h<ts {im}lgmses> #0.

Taking a large enough value of ¢, one can prove that the access structure I7
defined by the resulting map 1 is exactly I', by proving I, C I'and I' C Iy. O



Note that this family of ideal tripartite access structures is quite more general
than the tripartite families proved ideal in [1]. An open problem is to completely
characterize ideal tripartite access structures; that is, are there more ideal tri-
partite access structures, other than the ones listed in the statement of Theorem
3?7

4 Detecting Non-Ideal Multipartite Access Structures

In this section we present some results related to the optimal information rate
of multipartite access structures. A necessary tool which appears in the proofs
of these results is the concept of independent sequence of subsets, due to Blundo
et al. [4] and slightly generalized in [11]. Let I" be an access structure on a set of
participants P. We say that a sequence By, Ba, ..., B,,, where () £ By C By C
-+« C B, C P, is independent if

1. B, ¢TI.
2. For all 1 =1,2,...,m, there exists a set X; C P such that B; U X; € I' and
Bi—l U Xi ¢ F, where B() = (Z)

We say that a set A D X; U...U X,, makes the sequence B, Bs,..., B, in-
dependent. The use of independent sequences of subsets is very useful to find

upper bounds on the optimal information rates because the following result holds
(Theorem 3.8 in [4], generalized in Theorem 2.1 of [11]):

|A]

“m+1
_twAgr, )< Al
b) — m'

N

~IfAel, p*(I)

The following theorem expresses some prohibited positions in ideal multi-
partite access structures, since the optimal information rate of access structures
satisfying the stated conditions cannot be greater than 2/3.

Theorem 4. Consider a K-multipartite access structure I' and non-negative
integers Ti,...,Tx,Y1,..., YK 1 satisfying xx > 1 and Y; > x; for all i =
1,...,K —1, such that (z1,...,zx) € 7(I') and (Y1,..., Yk 1,25 — 1) € n(I'"),
and such that there exists at least one index i, € {1,...,K — 1} such that the
following conditions hold:

(i) Yi. >z, > 1.

(“’) (xla"'axi**laxi* - lvxi*Jrla"'afolvxK) ¢ 7T(F)
(Z“’) (1/*1,”"1/;*71,}/2,* - ]_,Y;;*+1,...,YK71,JJK - 1) ¢ W(F)
IfYi+...+Yxk 1+ax —1#21+...+ 2k then p*(I') < 2/3.

Proof. Let us assume first that Y1 + ...+ Yx_1 +zx — 1 < =1 + ... + zk.
Then, from the condition Y¥; > x; for ¢ = 1,...,K — 1 we obtain x; + ... +
rg —1<Yi+...+Yxk 1+2x —1< 21+ ...+ 2K. Therefore we conclude



that Y; = z; for any ¢ = 1,..., K — 1, which gives us a contradiction with the
existence of an index i, such that Y;, > z;,. Thus we can concentrate on the
case Vi+...+ Yk 1+ —1>z1+... + K.

We have two possible cases: there are at least two different indexes i,, j. €
{1,..., K — 1} satisfying conditions (i), (i7), (¢i¢), or there is a unique index
isx € {1,..., K — 1} satisfying such conditions. We are going to consider the two
cases in a separate way.

1. In the first case, we assume for simplicity ¢, = 1 and j, = 2; so we have
Y1 >z >1and Ys > 2o > 1. We can consider two sub-cases, depending on
whether the point (1,0,...,0,1) belongs to 7(I") or not.

— If (1,0,...,0,1) ¢ m(I'), then we construct an independent sequence
with subsets By C By C Bs and X1, X5, X3 such that:

m(By) = (z1 — 1, 29,..., 21,2k — 1),

m(X1) = (1,0,...,0,1),

7T(B2) = (Yi - ]-aYZ - laY?n"'aYKflaxK - ]-)a
m(X2) = (0,0,...,0,1)

7T(Bg) = (Yi — 1,Y2,Y3,...,YK_1,.’L'K — 1),
m(Xs) = (1,0,...,0,0).

In this case we have A = X; UX,U X3 ¢ I', with |A| = 2 and m = 3, so
the result p*(I") < 2/3 holds.

- If (1,0,...,0,1) € w(I"), then the appropriate independent sequence is
composed by subsets By C By and X7, X» such that:

Tr(Bl) = (]-a ). 70a0)
7[-(‘Xl) = (07 ). a )
7T(-BZ) = (YI ]- )f25 e YK*laxK - ]-)7
m(X2) = (1,0,...,0,0).

Now we have A = X; U X, € I', with |A] = 2 and m = 2, and so the
result p*(I") < 2/3 holds again.

2. In the second case, we assume for simplicity i, = 1, and so we have Y; >
xz1 > 1. Note that if Y1 = z; + 1, then there must be another index j, (for
simplicity, j, = 2) such that Y;, > z;, (even if z;, = 0), because of the
condition Y1 +...+Yx_1+xx —1 > 21 +... + xk. If this happens we can
apply the first case, above, to i, = 1 and j, = 2; note that in the independent
sequences above, xo > 0 is not assumed at any time.

Therefore, we can concentrate on the situation where Y7 > 7 + 1. Again we
consider two sub-cases, depending on whether the point (1,0,...,0,1) is in
m(I") or not.



— If (1,0,...,0,1) ¢ «(I"), then we define an independent sequence with
subsets By C By C Bs and Xy, X5, X3 such that:

Bl) =\T1 — 1:$27"'7mK—17$K - 1))

=(0,0,...,0,1),

( (
( (

WEBQ = ((331,9027---,331(—1,331( —1),
EB3 :(Y1_17167"'7YK717'7’.K_1)7

In this case we have A = X; UX,U X3 ¢ I', with |A| =2 and m = 3, so
the result p*(I") < 2/3 holds.

- If (1,0,...,0,1) € w(I"), then we define an independent sequence with
subsets By C By and X7, X5 such that:

Now we have A = X; U X, € I', with |A] = 2 and m = 2, and so the
result p*(I") < 2/3 holds again. O

The following corollary is immediately derived from the result above.

Corollary 1. Consider a K-multipartite access structure I' and non-negative
integers Ti,...,Tx,Y1,-..,YK—1 satisfying tx > 1 and Y; > x; for all i =
1,...,K—1, such that (xy,...,zx) € 7(Iy) and (Y1,...,Yx_1,2Kx —1) € w(L0),
and such that there exists at least one indez i, € {1,...,K —1} such that Y;, >
i, >1L.IfY1+...+ Yk 1tz —1#z21+ ...+ 2z then p*(I") < 2/3.

4.1 Some Examples

In this section we show some simple examples of how the result of Theorem 4
can be used in practice to detect that a given multipartite access structure is
not ideal. We are going to consider two tripartite access structures. Given such
a tripartite access structure, one can first try to write it as one of the structures
listed in the statement of Theorem 3; if this can be done, then the access structure
will be ideal. Otherwise, one can suspect that the access structure may not be
ideal, and so one can look for some of the prohibited positions described in the
statements of Theorem 4 and Corollary 1, in order to conclude that the access
structure is not ideal.
Let us first consider the tripartite access structure I" defined by

m(I) ={(z1,22,23): x1+z2+23>4 A 23 >1} U {(21,22,23) : @1 > 4}.

We can apply the result of Theorem 4 to subsets represented by points (21, Z2, z3) =
(2,1,1) and (Y1,Y3,23 — 1) = (4,1,0). Note that in this case we have i, = 1,



because Y; > x; > 1. All the conditions stated in the Theorem are satisfied:
(ZL‘1,$27£E3) S 7T(F), (Yl,yvz,il,‘g—l) S 71'(F)7 (Yl—l,Yg,.’D?,—l) = (3,1,0) ¢ 71'(F)
and (z1 — 1,22,23) = (1,1,1) ¢ w(I"). Therefore, we conclude that p*(I") < 2/3
and so this access structure is not ideal.

In the second example, we take a different tripartite access structure I" de-
fined by

7T(F) = {(%1,.’1)2,973) : $1+CL'2+£U3 Z 6} U {(l‘l,l‘g,l‘g) : CL‘Q+$3 Z 4 A I3 Z l} U

U {(z1,x2,x3) : 1 + x2 > 5}.

Again, it is possible to see that this access structure cannot be written as one
of the ideal tripartite ones listed in the statement of Theorem 3. The following
step would be then to look for a prohibited position on it. In effect, we can apply
in this case Corollary 1 to subsets corresponding to points (z1, 22, z3) = (0,3,1)
and (Y1,Ys, 23 — 1) = (1,4,0). These two points belong to 7(I) as required;
furthermore, we have Y7 > 27 and Y2 > x5 > 1 (so i, = 2). Therefore, we can
apply the result of the corollary, to claim that this access structure cannot either
be ideal, because p*(I") < 2/3.

5 Conclusions and Future Work

In this work we have studied general multipartite access structures, where players
are divided into K disjoint entities in such a way that players in an entity play
all the same role in the access structure. To remark the importance of these
structures, we have first shown that any access structure is a multipartite one.
Then we have proved that three wide families of multipartite access structures are
ideal, by showing in an existential way that a vector space secret sharing scheme
realizing them can be constructed. The mathematical techniques employed in
these proofs are quite general, and so we expect that other general families of
multipartite access structure could be proved ideal in the future, by using similar
ideas.

We have also proved a result (Theorem 4) which gives some necessary condi-
tions on a multipartite access structure to be ideal. Other necessary conditions
were already known [6]: if we define the slice of a K-multipartite structure I" as

F(zi:ai):{AC'P—Xi:AUAiGF}

where A; C X; with |A;| = a;, then I'®i=%) is a (K — 1)-multipartite access
structure over P — X;. It is not difficult to see that any slice of an ideal mul-
tipartite access structure must be also ideal. This gives a sort of recurrence,
which ends at K = 2, because ideal bipartite access structures are completely
characterized (see [11]). Using this idea, one could maybe prove some result such
as:

I' is ideal < I satisfies condition C' A any slice of I' is ideal.



The problem is, obviously, to find the proper condition C' which makes this result
true. To do this, possible tools to be used are independent sequences, geometric
and algebraic arguments (as in the characterization of ideal bipartite structures
in [11]), or the relation between matroids and ideal secret sharing (for example,
this relation has been exploited in [10] for the case of bipartite access structures).
We have the intuition that a good candidate for condition C is that, if I" is a
K-multipartite access structure, then z; + ... + rx = t, for some constant
positive integer ¢, and for all points (z1,...,zx) € 7(I0) satisfying z; > 1, for
alli =1,..., K. But up to this moment we have not been able even to prove that
this is a necessary condition for I" to be ideal, for general values of K. This has
been proved for the case K = 3, by Collins [6], and by ourselves in a different
way. Summing up, there is a lot of work to do in the domain of multipartite
access structures.
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