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Abstra
t. In a multipartite a

ess stru
ture, the set of players is divided

into K di�erent entities, in su
h a way that all players of the same entity

play the same role in the stru
ture. Not many results are known about

these stru
tures, when K � 3.

Even if the total 
hara
terization of ideal multipartite a

ess stru
tures

seems a very ambitious goal, we take a �rst step in this dire
tion. On

the one hand, we dete
t some 
onditions that dire
tly imply that a mul-

tipartite stru
ture 
annot be ideal. On the other hand, we prove that

three wide families of multipartite a

ess stru
tures are ideal. We be-

lieve that the te
hniques employed in these proofs are so general that

they 
ould be used to prove in the future more general results related to

the 
hara
terization of ideal multipartite a

ess stru
tures.
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1 Introdu
tion

Distributed 
ryptography studies 
ryptographi
 s
hemes where the power to per-

form a spe
i�
 task (as it 
ould be signing or de
rypting) is distributed among

a set of players or servers. With this approa
h, the system improves its se
urity

and trustworthiness. A key tool in almost all these systems are se
ret sharing

s
hemes. In these s
hemes, we start from a set of players and a family of autho-

rized subsets (the so-
alled a

ess stru
ture). Then, an external �gure (usually


alled dealer), takes a se
ret value and 
omputes from it some shares that he

sends se
retly to the players. The system must withhold two properties: (1) the

se
ret 
an be 
omputed from the shares of any authorized subset in an unequiv-

o
al way; (2) any non-authorized subset does not obtain any information about

the se
ret from the shares they hold.

The usual way to measure the eÆ
ien
y of se
ret sharing s
hemes is by

means of 
omparing the length of the shared se
ret with the length of the shares

that players hold. This 
omparison is made using the information rate. This

parameter takes its maximum value when the length of the shares is equal to



that of the se
ret, the so-
alled ideal 
ase. In general, �guring out if there exists

or not an ideal se
ret sharing s
heme realizing a given a

ess stru
ture, and

even more, 
onstru
ting it, is a very hard problem. For this reason, resear
h in

this area has fo
used on the study of spe
i�
 families of a

ess stru
tures, su
h

as threshold a

ess stru
tures [12℄, a

ess stru
tures de�ned by graphs [3℄, star

a

ess stru
tures [7℄, those with at most 5 parti
ipants [8℄, the bipartite a

ess

stru
tures [11℄, or weighted threshold a

ess stru
tures [1℄.

In this work we study some families of multipartite a

ess stru
tures: the

set of players is divided into K disjoint entities, and all players in ea
h entity

play exa
tly the same role inside the a

ess stru
ture. These a

ess stru
tures


an make a lot of sense in real life appli
ations, where persons or ma
hines are

divided into di�erent groups a

ording to their position in a 
ompany, their re-

sponsibilities, their 
omputational resour
es, or their probability to be 
orrupted

by an atta
ker.

When K = 1, we re
over threshold a

ess stru
tures, and when K = 2, we

re
over bipartite ones [11℄. For K = 3 (tripartite a

ess stru
tures), some partial

work has been done in [6, 1℄. To the best of our knowledge, however, there are not

many results involving multipartite a

ess stru
tures in general, for any value of

K. This work is a �rst step in this dire
tion.

We 
onsider three families of multipartite a

ess stru
tures, and we prove

that they are ideal. The two �rst families are multipartite for a general value of

K, whereas the third one is tripartite (K = 3). The proofs of these results are

not 
onstru
tive, but existential. Furthermore, we believe that the mathemati
al

te
hniques employed in the proofs are quite general and 
ould be applied to prove

that other general families of multipartite a

ess stru
tures are also ideal.

On the other hand, we also 
onsider the question of dete
ting multipartite

a

ess stru
tures that are not ideal. We prove that a list of di�erent 
ombinations

of authorized/non-authorized subsets in a multipartite a

ess stru
ture dire
tly

imply that this stru
ture 
annot be ideal.

The rest of the paper is organized as follows. In Se
tion 2 we re
all the basi



on
epts related to se
ret sharing s
hemes, we give the de�nition of general

multipartite a

ess stru
tures, we show that any a

ess stru
ture is a multipartite

one and we mention some studied 
ases of su
h stru
tures. We prove in Se
tion

3 that three spe
i�
 (but wide) families of multipartite a

ess stru
tures are

ideal. In Se
tion 4 we prove a result whi
h allows to ensure that a multipartite

a

ess stru
ture is not ideal, when some prohibited position is dete
ted among

the points whi
h represent subsets of players in the spa
e (Z

+

)

K

. We give two

simple examples of how to use this result to prove that some tripartite a

ess

stru
tures are not ideal. Finally we 
on
lude the work in Se
tion 5, where we

explain some possible future work to be done in this subje
t, by enun
iating some


onje
tures related to the 
hara
terization of ideal multipartite a

ess stru
tures.



2 Se
ret Sharing S
hemes

In this se
tion we brie
y introdu
e the ne
essary 
on
epts about se
ret sharing

s
hemes we need to understand the rest of our work.

In a se
ret sharing s
hemes, a dealer, that we will note asD, distributes shares

of a se
ret value among a set of players P = fP

1

; : : : ; P

`

g, in su
h a way that

only authorized subsets of players (those in the so-
alled a

ess stru
ture, that

we will note � � 2

P

) are able to obtain the se
ret from their shares. However,

subsets that are not authorized (that is, those in the family � = 2

P

� � ) do

not obtain any information on the se
ret. The family � must be monotone

in
reasing, that is, if A 2 � and A � B, then B 2 � . An a

ess stru
ture � is

determined 
ompletely by its basis �

0

= fA 2 � j A

0

=2 �; 8A

0

( Ag, pre
isely

by this monotone property. Analogously, the family of non-authorized subsets is

determined by its basis �

0

, the family of maximal non-authorized subsets.

The parameter that is usually used to measure the eÆ
ien
y of a se
ret

sharing s
heme is the information rate �, whi
h is de�ned as the quotient between

the length of the shared se
ret and the maximum length of the shares of the

players. It 
an be easily proved that � � 1. The ideal 
ase is when � = 1, that

is, the length of the shares of every parti
ipant is equal to the length of the

se
ret. We say that an a

ess stru
ture is ideal if there exists some ideal se
ret

sharing s
heme that realizes it. The optimal information rate �

�

(� ) of an a

ess

stru
ture � is the supremum of the information rates of all the se
ret sharing

s
hemes that realize � .

Se
ret sharing s
hemes where independently introdu
ed in 1979 by Shamir [12℄

and Blakley [2℄. Shamir introdu
ed a s
heme realizing a threshold a

ess stru
-

ture: authorized subsets of players are those ones with at least t players.

Other works introdu
ed se
ret sharing s
hemes realizing more general a

ess

stru
tures. For example, ve
tor spa
e se
ret sharing s
hemes [5℄ realize a

ess

stru
tures that in
lude threshold a

ess stru
tures. These s
hemes are also ideal.

Ve
tor spa
e a

ess stru
tures are de�ned by a publi
 fun
tion  : P[fDg ! E

(where E is a ve
tor spa
e over a �nite �eld GF (q)), su
h that A 2 � if and

only if  (D) 2 h (A)i.

If the dealer wants to share a se
ret s 2 GF (q), he 
hooses a random ve
tor

v 2 E su
h that v �  (D) = s. Then he 
omputes and sends se
retly to player

P

i

his share s

i

= v �  (P

i

). If A 2 � is an authorized subset, then  (D) =

P

P

i

2A

�

A

i

 (P

i

), for some 
oeÆ
ients �

A

i

2 GF (q). The players in A will be able

to re
over the se
ret s from their shares, as follows:

s = v �  (D) = v �

X

P

i

2A

�

A

i

 (P

i

) =

X

P

i

2A

�

A

i

v �  (P

i

) =

X

P

i

2A

�

A

i

s

i

:

It 
an be proved that no information on the se
ret 
an be obtained from the

shares of any non-authorized subset.

A generalization of ve
tor spa
e se
ret sharing s
hemes are linear se
ret shar-

ing s
hemes [13℄. It is proved that any a

ess stru
ture 
an be realized by a linear

s
heme.



2.1 Multipartite A

ess Stru
tures

In this se
tion we introdu
e multipartite a

ess stru
tures. We will mention some

known works about this topi
 and we present some examples of stru
tures of this

family.

Let P = fP

1

; P

2

; : : : ; P

`

g be the set of players that are distributed into dif-

ferent disjoint entities X

1

; X

2

; : : : ; X

K

, where K � 2. Every entity X

j

has `

j

players, therefore the whole set of players is ` =

P

K

i=1

`

j

. We will say that the

a

ess stru
ture is multipartite when players in every entity play the same role.

More formally: an a

ess stru
ture � de�ned in the set of players P is multipar-

tite of partition X

1

; X

2

; : : : ; X

K

if �(� ) = � for any permutation � of P with

�(X

1

) = X

1

; : : : ; �(X

K

) = X

K

. In this 
ase we say that � is (X

1

; : : : ; X

K

)-

multipartite, or that � is K-multipartite.

In fa
t, any a

ess stru
ture is a multipartite one. In e�e
t, let us denote as

�

pq

, for two parti
ipants p; q 2 P , the transposition of two parti
ipants p; q in

P . In order to �nd parti
ipants with the same role in the stru
ture we de�ne

the relation: p � q if and only if �

pq

(� ) = � . It is not diÆ
ult to see that

the binary relation � is an equivalen
e relation. Therefore we 
an 
onsider the

quotient P= � = fX

1

; : : : ; X

K

g, where X

1

; : : : ; X

K

are the equivalen
e 
lasses

determined by the relation �.

Now one 
an prove that the stru
ture � is (X

1

; : : : ; X

K

)�multipartite. In

e�e
t, let � be a permutation of P with �(X

1

) = X

1

; : : : ; �(X

K

) = X

K

. It is easy

to see that su
h a permutation 
an be seen as a 
omposition of K permutations

of the 
lasses: � = �

1

Æ : : : Æ �

K

with �

i

(X

i

) = X

i

and �

i

(P

j

) = P

j

for any

player P

j

2 P �X

i

. Ea
h �

i


an be expressed as a 
omposition of transpositions

between elements inX

i

. So � is a 
omposition of transpositions between elements

of the same 
lass. This dire
tly implies �(� ) = � , as desired. Therefore,

Proposition 1. Any a

ess stru
ture is a multipartite a

ess stru
ture.

Multipartite a

ess stru
tures were introdu
ed in [11℄. The only known results

are the study of bipartite a

ess stru
tures (that is, when K = 2) in [11℄ and

some partial results in the tripartite 
ase (K = 3) in [6℄. In [11℄, bipartite a

ess

stru
tures are introdu
ed, ideal bipartite stru
tures are 
ompletely 
hara
terized,

and the information rate of non-ideal ones is bounded and studied. In [6℄ some


onditions for ideal tripartite a

ess stru
tures are introdu
ed. Some parti
ular

families of tripartite a

ess stru
tures have been proved ideal in [1℄.

A subfamily of multipartite a

ess stru
tures that has been widely stud-

ied in literature is the family of a

ess stru
tures de�ned by weights. In this

kind of a

ess stru
ture every parti
ipant p 2 P has asso
iated its own weight

!(p) 2 R

+

and we will say that a subset A � P is authorized if and only if

!(A) =

P

p2A

!(p) � t, where t � 0 is the threshold of the stru
ture. These

stru
tures are a subfamily of multipartite ones by 
onsidering X

i

= !

�1

(!

i

)

where !

1

; : : : ; !

K

are the di�erent weights derived from the mapping !. A par-

ti
ular 
ase studied in [11℄ are the stru
tures with only two possible weights,

whi
h results in a bipartite a

ess stru
ture. The stru
tures de�ned by weights



and threshold were introdu
ed by Shamir in [12℄. Some results were given in [9℄

for the 
ase when su
h stru
tures are representable by a graph, while a total


hara
terization of ideal weighted threshold a

ess stru
tures has been re
ently

given in [1℄.

We use the notation Z

+

= f0; 1; 2; : : :g for the set of non-negative integers.

Given the partition X

1

; X

2

; : : : ; X

K

of the set of parti
ipants P , for any subset

A � P we 
onsider the point �(A) = (x

1

(A); x

2

(A); : : : ; x

K

(A)) 2 (Z

+

)

K

, where

x

i

(A) = jA \X

i

j. We also 
onsider the set of points

�(� ) = f�(A) : A 2 �g � (Z

+

)

K

de�ned by the stru
ture � ; or the set of points de�ned by the basis of the stru
-

ture, �(�

0

) = f�(A) j A 2 �

0

g � (Z

+

)

K

. It is easy to prove that a multipartite

stru
ture � is 
ompletely determined by the set of points in �(� ), that is, A 2 �

if and only if �(A) 2 �(� ).

3 Some Families of Ideal Multipartite A

ess Stru
tures

In this se
tion we 
onsider some wide families of multipartite a

ess stru
tures.

We will prove that these a

ess stru
tures are ideal, by proving that they 
an be

realized by a ve
tor spa
e se
ret sharing s
heme.

In our results, we will use as a tool the following lemma, whi
h is well known

and 
an be proved by indu
tion on the number of polynomial indeterminates.

Lemma 1. Let p(x

1

; : : : ; x

`

) 2 Z[x

1

; : : : ; x

`

℄ be a polynomial with integer 
oef-

�
ients in the ` variables x

1

; : : : ; x

`

. The polynomial p(x

1

; : : : ; x

`

) is non null if

and only if there exist integer numbers �

1

; : : : ; �

`

su
h that p(�

1

; : : : ; �

`

) 6= 0.

Re
all that this result is not true for polynomials de�ned over �nite �elds

(for example, the polynomial p(x) = x

q

� x 2 Z

q

[x℄ is not the null polynomial,

for any prime number q, but p(�) = 0 for all � 2 Z

q

).

3.1 A First Family

LetX

1

; : : : ; X

K

be a partition of P . We de�ne the mapping � : P ! f1; 2; : : : ;Kg

that assigns to every parti
ipant the entity he belongs to. We will use the notation

�

i

= �(P

i

), meaning that the parti
ipants P

i

belongs to the entity X

�

i

. We also

de�ne, for a subset of players A � P , the set of entities represented by A as

�(A) = f�(P

i

) j P

i

2 Ag.

We 
onsider the multipartite a

ess stru
ture

� = fA � P : jAj � t and j�(A)j � dg

de�ned on the partition X

1

; : : : ; X

K

, for any 1 � d � t and d � K. That is, a

subset is authorized if and only if it 
ontains at least t players who 
ome from

at least d di�erent entities.



In order to prove that these a

ess stru
tures are ideal we will prove that

they are ve
tor spa
e a

ess stru
tures. The following lemma will be ne
essary

in order to prove that the spe
i�
 map  : P [ fDg �! GF (q)

t

that we are

going to 
onstru
t a
tually realizes the 
onsidered a

ess stru
ture � .

Lemma 2. Let t; d 2 Z

+

be integer numbers verifying 1 � d � t and let us


onsider the following polynomial in t variables, de�ned over the integers:

Q

r

1

;:::;r

t

(x

1

; : : : ; x

t

) =

�

�

�

�

�

�

�

�

�

x

1

x

2

1

: : : x

t�d

1

r

d�1

1

: : : r

2

1

r

1

1

x

2

x

2

2

: : : x

t�d

2

r

d�1

2

: : : r

2

2

r

2

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

t

x

2

t

: : : x

t�d

t

r

d�1

t

: : : r

2

t

r

t

1

�

�

�

�

�

�

�

�

�

:

The polynomial Q

r

1

;:::;r

t

(x

1

; : : : ; x

t

) is non null if and only if there exist d dif-

ferent numbers in r

1

; : : : ; r

t

2 Z

+

.

Proof. If d = t the result is trivial. In order to prove that the polynomial

Q

r

1

;:::;r

t

(x

1

; : : : ; x

t

) is not the null polynomial for d < t, we look for a 
oef-

�
ient di�erent from zero. Let us suppose that r

t�d+1

; : : : ; r

t

are di�erent. If

not, it is easy to argue in the same way, ex
hanging some indeterminates and

permuting some rows.

Developing this determinant by the �rst row we obtain:

Q

r

1

;:::;r

t

(x

1

; : : : ; x

t

) = x

1

�

�

�

�

�

�

�

�

�

x

2

2

x

3

2

: : : x

t�d

2

r

d�1

2

: : : r

2

2

r

2

1

x

2

3

x

3

3

: : : x

t�d

3

r

d�1

3

: : : r

2

3

r

3

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

2

t

x

3

t

: : : x

t�d

t

r

d�1

t

: : : r

2

t

r

t

1

�

�

�

�

�

�

�

�

�

+ p

1

(x

1

; : : : ; x

t

)

where p

1

(x

1

; : : : ; x

t

) is a polynomial in whi
h x

i

1

appears with i 6= 1, that is,

there are no terms of the form x

1

x

i

2

2

� : : : � x

i

t

t

in p

1

(x

1

; : : : ; x

t

). We 
an follow

the development of the determinant obtaining:

Q

r

1

;:::;r

t

(x

1

; : : : ; x

t

) = x

1

x

2

2

�

�

�

�

�

�

�

�

�

x

3

3

x

4

3

: : : x

t�d

3

r

d�1

3

: : : r

2

3

r

3

1

x

3

4

x

4

4

: : : x

t�d

4

r

d�1

4

: : : r

2

4

r

4

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

3

t

x

4

t

: : : x

t�d

t

r

d�1

t

: : : r

2

t

r

t

1

�

�

�

�

�

�

�

�

�

+ p

2

(x

1

; : : : ; x

t

)

where p

2

(x

1

; : : : ; x

t

) is a polynomial that does not 
ontain terms of the form

x

1

x

2

2

x

i

3

3

� : : : � x

i

t

t

. Iterating the pro
ess we obtain:

Q

r

1

;:::;r

t

(x

1

; : : : ; x

t

) = x

1

x

2

2

x

3

3

�: : :�x

t�d

t�d

�

�

�

�

�

�

�

�

�

r

d�1

t�d+1

: : : r

2

t�d+1

r

t�d+1

1

r

d�1

t�d+2

: : : r

2

t�d+2

r

t�d+2

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r

d�1

t

: : : r

2

t

r

t

1

�

�

�

�

�

�

�

�

�

+p

t�d

(x

1

; : : : ; x

t

)



where p

t�d

(x

1

; : : : ; x

t

) is a polynomial that does not 
ontain terms of the form

x

1

x

2

2

x

3

3

� : : : � x

t�d

t�d

. Sin
e the 
oeÆ
ient of the monomial x

1

x

2

2

x

3

3

� : : : � x

t�d

t�d

is a

non null Vandermonde determinant, the polynomial Q

r

1

;:::;r

t

(x

1

; : : : ; x

t

) is non

null.

Conversely, if there are not d di�erent numbers among r

1

; : : : ; r

t

2 Z

+

, then

any minor of order d of the last d 
olumns is zero; therefore, these 
olumns are

linearly dependent and so the polynomial is null. ut

Theorem 1. Let K; t; d be positive integer numbers with 1 � d � t, d � K and

let X

1

; : : : ; X

K

be a partition of P. The multipartite a

ess stru
ture de�ned in

the partition X

1

; : : : ; X

K

by

� = fA � P : jAj � t and j�(A)j � dg

is ideal.

Proof. If d = 1 then � is a threshold a

ess stru
ture and thus ideal. For d � 2,

we are going to prove that � is a ve
tor spa
e a

ess stru
ture, whi
h dire
tly

implies that it is ideal.

Observe that this stru
ture is de�ned by

�(�

0

) = f(a

1

; : : : ; a

K

) 2 (Z

+

)

K

: a

1

+ : : :+ a

K

= t with

at least d numbers a

i

6= 0g:

Re
all that the quantity of non null numbers a

i

is the quantity of entities (or


lasses in the partition) that appear in the subset A represented by point �(A) =

(a

1

; : : : ; a

K

). Following the notation X

i

= fP

i1

; : : : ; P

i`

i

g for the entities, where

X

0

= fP

01

g, with P

01

= D (the dealer), we de�ne the map  : P [ fDg �!

GF (q)

t

that will determine the stru
ture � as a ve
tor spa
e a

ess stru
ture,

as follows:

 (P

ij

) = (0; : : : ; 0; i

d�1

; i

d�2

; : : : ; i; 1)+�

ij

(1; 0; : : : ; 0)+�

2

ij

(0; 1; 0; : : : ; 0)+ : : :+

+�

t�d

ij

(0; : : : ; 0; 1; 0; : : : ; 0) = (�

ij

; �

2

ij

; : : : ; �

t�d

ij

; i

d�1

; i

d�2

; : : : ; i; 1);

for some values �

ij

to be determined. In order to �nd values �

ij

and q su
h that

the above map  de�nes the stru
ture � we 
onsider the polynomial:

Q(x

01

; x

11

; : : : ; x

1`

1

; : : : ; x

K1

; : : : ; x

K`

K

) =

Y

fP

r

1

i

1

;:::;P

r

t

i

t

g2I

Q

r

1

;:::;r

t

(x

r

1

i

1

; : : : ; x

r

t

i

t

)

with I = �

0

[ ffP

01

g [ A : A � P ; �(A) � d � 1; jAj = t � 1g and

where the fa
tors of the polynomial are de�ned as in Lemma 2. We will jus-

tify that Q(x

01

; x

11

; : : : ; x

1`

1

; : : : ; x

K1

; : : : ; x

K`

K

) is a non null polynomial ap-

plying Lemma 2 to every fa
tor. The �rst kind of fa
tors in polynomial Q are

Q

r

1

;:::;r

t

(x

r

1

i

1

; : : : ; x

r

t

i

t

) for fP

r

1

i

1

; : : : ; P

r

t

i

t

g 2 �

0

. These fa
tors are non null

be
ause there are at least d di�erent numbers among r

1

; : : : ; r

t

. The se
ond kind

of fa
tors is Q

0;r

1

;:::;r

t�1

(x

01

; x

r

1

i

1

; : : : ; x

r

t�1

i

t�1

) for A = fP

r

1

i

1

; : : : ; P

r

t�1

i

t�1

g



with �(A) � d�1, then fP

01

g[A has at least d di�erent numbers in 0; r

1

; : : : ; r

t�1

.

From the integrity of integer polynomial produ
t we obtain that Q is non null.

Then using Lemma 1 we 
an ensure the existen
e of �

01

; �

11

; : : : ; �

1`

1

; : : : ; �

K1

; : : : ; �

K`

K

2

Z su
h that

Q(�

01

; �

11

; : : : ; �

1`

1

; : : : ; �

K1

; : : : ; �

K`

K

) 6= 0:

Let p > K be a prime su
h that:

p > max

fP

r

1

i

1

;:::;P

r

t

i

t

g2I

jQ

r

1

;:::;r

t

(�

r

1

i

1

; : : : ; �

r

t

i

t

)j:

Let us suppose that map  de�ned above determines an a

ess stru
ture �

 

.

Now we prove that �

 

= � for any �eld GF (q) with q a power of the prime p.

First we justify that � � �

 

. Let A 2 � be a subset with jAj = t. Then

A 2 �

0

, that is A 2 I and by de�nition of polynomial Q, the t ve
tors in  (A)

are linearly independent be
ause their determinant is di�erent from zero. So

these ve
tors form a basis of GF (q)

t

and then  (D) 2 h (A)i. That is, we have

justi�ed that A 2 �

 

when jAj = t. For any subset A 2 � , we have jAj � t, and,

of 
ourse, the assert is also true taking into a

ount that d � t.

Se
ondly we show that �

 

� � . Equivalently we prove that if A 62 � then

A 62 �

 

. Let us suppose that A 62 � , then two possible 
ases 
an o

ur. If

j�(A)j < d we have A 62 �

 

. This fa
t is true be
ause if A 2 �

 

then  (P

01

) =

P

p2A

�

p

 (p) for some s
alars �

p

2 GF (q), then using the last d 
oordinates of

this expression we have (0; : : : ; 0; 1) =

P

i2�(A)

�

0

i

(i

d�1

; i

d�2

; : : : ; i

2

; i; 1) for some

s
alars �

0

i

2 GF (q), so j�(A)j � d for the properties of Vandermonde ve
tors.

Then for A 62 � with j�(A)j < d we have A 62 �

 

. In the se
ond 
ase A 62 �

is su
h that j�(A)j � d, then jAj < t. If jAj = t � 1 with j�(A)j � d we have

A 62 �

 

. This is true be
ause in this 
ase fP

01

g [A 2 I, then ve
tors  (D) and

 (A) are linearly independent by de�nition of polynomial Q, so  (D) 62 h (A)i,

that is A 62 �

 

. Of 
ourse from this 
ase it 
an be dedu
ed that for any A � P

with jAj < t, j�(A)j � d we also have A 62 �

 

. ut

3.2 A Se
ond Family

Now we present a di�erent result, proving that multipartite a

ess stru
tures

de�ned by � = fA � P : jAj � t and x

1

(A) � n

1

; : : : ; x

K

(A) � n

K

g (where

x

i

(A) = jA \ X

i

j ) are also ideal for any values 0 � n

1

; : : : ; n

K

� t satisfying

n

1

+ : : :+n

K

� t. We will pro
eed in a similar way as before: we will prove �rst

a lemma that helps us to de�ne the map expressing the stru
ture as a ve
tor

spa
e a

ess stru
ture.

Lemma 3. Let t; d 2 Z

+

be positive integer numbers with 1 � d � t, let

v

1

; : : : ;v

t

2 Z

d

be integer ve
tors, and 
onsider the polynomial Q

v

1

;:::;v

t

(x

1

; : : : ; x

t

) 2

Z[x

1

; : : : ; x

t

℄ in t variables de�ned by

Q

v

1

;:::;v

t

(x

1

; : : : ; x

t

) =

�

�

�

�

�

�

�

�

�

x

1

x

2

1

: : : x

t�d

1

v

1

x

2

x

2

2

: : : x

t�d

2

v

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

t

x

2

t

: : : x

t�d

t

v

t

�

�

�

�

�

�

�

�

�

:



The polynomial Q

v

1

;:::;v

t

(x

1

; : : : ; x

t

) is non null if and only if there exists d

linearly independent ve
tors among ve
tors v

1

; : : : ;v

t

.

Proof. If d = t the result is trivial. As in the previous lemma, in order to prove

that the polynomial Q

v

1

;:::;v

t

(x

1

; : : : ; x

t

) with d < t is not the null polynomial,

we look for a 
oeÆ
ient di�erent from zero. Let us suppose without loss of

generality that v

t�d+1

; : : : ;v

t

are linearly independent (if ne
essary, ex
hanging

some indeterminates and permuting some rows).

Developing this determinant as in Lemma 2 we have

Q

v

1

;:::;v

t

(x

1

; : : : ; x

t

) = x

1

x

2

2

x

3

3

� : : : � x

t�d

t�d

� det(v

t�d+1

; : : : ;v

t

) + p(x

1

; : : : ; x

t

)

where p(x

1

; : : : ; x

t

) is a polynomial that does not 
ontain terms of the form

x

1

x

2

2

x

3

3

� : : : � x

t�d

t�d

. Sin
e 
oeÆ
ient of monomial x

1

x

2

2

x

3

3

� : : : � x

t�d

t�d

is a non null

determinant, the polynomial Q

v

1

;:::;v

t

(x

1

; : : : ; x

t

) is non null.

Re
ipro
ally, if every subset of d ve
tors among ve
tors v

1

; : : : ;v

t

are linearly

dependent then the last d 
olumns of the determinant are linearly dependent,

and so Q

v

1

;:::;v

t

(x

1

; : : : ; x

t

) is null. ut

Note that Lemma 2 is a parti
ular 
ase of Lemma 3 taking the 
orresponding

ve
tors v

1

; : : : ;v

t

. Using Lemma 1 and Lemma 3 we prove the following result.

Theorem 2. Let K; t; n

1

; : : : ; n

K

be non-negative integer numbers with n

1

+

: : : + n

K

� t and let X

1

; : : : ; X

K

be a partition of P verifying n

i

� jX

i

j = `

i

.

The multipartite a

ess stru
ture de�ned in the partition X

1

; : : : ; X

K

by

� = fA � P : jAj � t and jx

1

(A)j � n

1

; : : : ; jx

K

(A)j � n

K

g

is ideal.

Proof. Observe that the stru
ture is de�ned by

�(�

0

) = f(a

1

; : : : ; a

K

) 2 (Z

+

)

K

: a

1

+ : : :+ a

K

= t; a

1

� n

1

; : : : ; a

K

� n

K

g:

Let `

i

= jX

i

j be the 
ardinalities of the partition 
lasses. The family of asso
iated

points for maximal non-authorized subsets is:

�(�

0

) = f(a

1

; : : : ; a

K

) 2 (Z

+

)

K

: a

1

+ : : :+a

K

= t� 1; a

1

� n

1

; : : : ; a

K

� n

K

g[

[f(n

1

� 1; `

2

; : : : ; `

K

); (`

1

; n

2

� 1; : : : ; `

K

); : : : ; (`

1

; : : : ; `

K�1

; n

K

� 1)g:

Let d be the positive integer number d = n

1

+ : : :+ n

K

. Let us de�ne the map

 : P [ fDg �! GF (q)

t

that will determine the stru
ture � as a ve
tor spa
e

a

ess stru
ture. For any P

ij

2 X

i

, where X

0

= fP

01

g and P

01

= D (the dealer),

we de�ne for some values �

ij

(not determined, by the moment):

 (P

ij

) = (0; : : : ; 0;v

ij

) + �

ij

(1; 0; : : : ; 0) + �

2

ij

(0; 1; 0; : : : ; 0) + : : :+

+�

t�d

ij

(0; : : : ; 0; 1; 0; : : : ; 0) = (�

ij

; �

2

ij

; : : : ; �

t�d

ij

;v

ij

)



where the d-dimensional ve
tors v

ij

are de�ned as

v

01

= (V

n

1

(0); : : : ; V

n

K

(0)) 2 Z

d

v

ij

= (0

n

1

; : : : ; 0

n

i�1

; V

n

i

(j); 0

n

i+1

; : : : ; 0

n

K

) 2 Z

d

, for P

ij

2 P :

Here 0

n

j

denotes the n

j

-dimensional null ve
tor, and V

n

i

(j) = (1; j; j

2

; : : : ; j

n

i

�1

)

denotes a n

i

-dimensional Vandermonde ve
tor.

Observe that if t = d the result is true for any power q = p

r

of a prime p

satisfying p > `

i

, for every i = 1; : : : ;K.

In order to �nd values �

ij

and q su
h that the above map  de�nes the

stru
ture � for t � d we 
onsider the polynomial:

Q(x

01

; x

11

; : : : ; x

1`

1

; : : : ; x

K1

; : : : ; x

K`

K

) =

Y

fP

r

1

i

1

;:::;P

r

t

i

t

g2I

Q

v

r

1

i

1

;:::;v

r

t

i

t

(x

r

1

i

1

; : : : ; x

r

t

i

t

)

with I = �

0

[ffP

01

g[A : A 2 �

0

; jAj = t�1g and where the fa
tors of the poly-

nomial are the ones de�ned in Lemma 3. We will justify thatQ(x

01

; x

11

; : : : ; x

1`

1

; : : : ;

x

K1

; : : : ; x

K`

K

) is a non null polynomial applying Lemma 3 to every fa
tor.

The �rst kind of fa
tors in polynomial Q are Q

r

1

;:::;r

t

(x

r

1

i

1

; : : : ; x

r

t

i

t

) for A =

fP

r

1

i

1

; : : : ; P

r

t

i

t

g 2 �

0

, then jAj � t with jx

1

(A)j � n

1

; : : : ; jx

K

(A)j � n

K

. The

last d 
oordinates of ve
tors in  (A) 
ontain at least n

i

ve
tors 
orresponding

to users in X

i

for i = 1; : : : ;K, then these n

1

+ : : :+n

K

= d ve
tors are linearly

independent be
ause their determinant is

�

�

�

�

�

�

�

�

�

W

1

0 : : : 0

0 W

2

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : W

K

�

�

�

�

�

�

�

�

�

= jW

1

j � : : : � jW

K

j 6= 0

where in this blo
k diagonal determinant, every blo
k determinant jW

i

j has Van-

dermonde form. Using Lemma 3 we have that these fa
torsQ

r

1

;:::;r

t

(x

r

1

i

1

; : : : ; x

r

t

i

t

)

are non null. The se
ond kind of fa
tors are Q

0;r

1

;:::;r

t�1

(x

01

; x

r

1

i

1

; : : : ; x

r

t�1

i

t�1

)

for A = fP

r

1

i

1

; : : : ; P

r

t�1

i

t�1

g with A 2 �

0

, then the subset of t ve
tors deter-

mined by fP

01

g [ A has at least d linearly independent ve
tors determined by

the last d 
oordinates in the same way as above. So, by Lemma 3 the polyno-

mial fa
tors determined by fP

01

g[A are non null. From the integrity of integer

polynomial produ
t we obtain that Q is non null. Then using Lemma 1 we 
an

dedu
e the existen
e of �

01

; �

11

; : : : ; �

1`

1

; : : : ; �

K1

; : : : ; �

K`

K

2 Z su
h that

A(�

01

; �

11

; : : : ; �

1`

1

; : : : ; �

K1

; : : : ; �

K`

K

) 6= 0:

Let p > K be a prime su
h that:

p > max

fP

r

1

i

1

;:::;P

r

t

i

t

g2I

jQ

v

r

1

i

1

;:::;v

r

t

i

t

(�

r

1

i

1

; : : : ; �

r

t

i

t

)j:

In order to prove that the map  determines � if we 
onsider any �eld GF (q)

with q a power of p, let us denote by �

 

the a

ess stru
ture de�ned by the map

 . Now we show that �

 

= � .



First we justify that � � �

 

. Let A 2 � be a subset with jAj = t. This

subset A satis�es jAj = t and jx

1

(A)j � n

1

; : : : ; jx

K

(A)j � n

K

, and so A 2 �

0

.

Therefore A 2 I and by de�nition of polynomial Q the t ve
tors in  (A) are

linearly independent be
ause their determinant is di�erent from zero. So these

ve
tors form a basis of GF (q)

t

and then  (D) 2 h (A)i. That is, we have

justi�ed that A 2 �

 

when jAj = t. The assert is also true for any subset A 2 �

be
ause sin
e jAj � t, and n

1

+ : : : + n

K

= d � t we 
an take t users with at

least n

i

users from X

i

, for every i = 1; : : : ;K.

Se
ondly we prove that �

 

� � . Equivalently we see that if A 62 � then

A 62 �

 

. Assume that A 62 � , then two possible 
ases 
an o

ur. If for some i =

1; : : : ;K we have jx

i

(A)j < n

i

, then A 62 �

 

. In e�e
t, if A 2 �

 

then  (P

01

) =

P

P

ij

2A

�

P

ij

 (P

ij

) for some s
alars �

P

ij

2 GF (q). Using the 
orresponding blo
k

of n

i


oordinates of this expression we have V

n

i

(0) =

P

P

ij

2A\X

i

�

P

ij

V

n

i

(j), so

jA\X

i

j � n

i

for the properties of Vandermonde ve
tors. Therefore, jx

i

(A)j � n

i

for every i = 1; : : : ;K.

In the se
ond 
ase A 62 � is su
h that jx

1

(A)j � n

1

; : : : ; jx

K

(A)j � n

K

, but

jAj < t. If jAj = t � 1 with jx

1

(A)j � n

1

; : : : ; jx

K

(A)j � n

K

we have A 62 �

 

.

This is true be
ause in this 
ase fP

01

g [ A 2 I, then ve
tors  (D) and  (A)

are linearly independent by de�nition of polynomial Q, so  (D) 62 h (A)i, that

is A 62 �

 

. Of 
ourse from this 
ase it 
an be dedu
ed that for any A � P with

jAj < t, jx

1

(A)j � n

1

; : : : ; jx

K

(A)j � n

K

we also have A 62 �

 

. ut

It is possible to obtain many other families of ideal multipartite a

ess stru
-

tures following the same te
hniques as in the proof of this Theorem 2, but de�n-

ing the ve
tor  (D) assigned to the dealer in more general and di�erent ways. As

an example, we will see in next se
tion how to 
onstru
t many di�erent families

of ideal tripartite a

ess stru
tures by 
hanging the position of the ve
tor of the

dealer.

3.3 A Third Family: Tripartite A

ess Stru
tures

In this se
tion we deal with tripartite a

ess stru
tures. The parti
ipants are

divided into three disjoint entities X

1

; X

2

; X

3

su
h that X

1

[X

2

[X

3

= P . To

simplify the notation, given a subset A of parti
ipants, we will use x

i

to refer

to the value x

i

(A) = jA \X

i

j, for i = 1; 2; 3. We identify a wide family of ideal

tripartite a

ess stru
tures, as stated in the following theorem, whose proof is

only sket
hed, for 
larity and by la
k of spa
e.

Theorem 3. Let � be a tripartite a

ess stru
ture. Assume that there exist non-

negative integer numbers d

1

; d

2

; d

3

; d

12

; d

13

; d

23

; t, verifying

(i) 0 � d

i

� t, for all i = 1; 2; 3,

(ii) d

1

+ d

2

+ d

3

� d

ij

� d

jk

� t � d

1

+ d

2

+ d

3

� (d

12

+ d

13

+ d

23

), for all values

of i; j; k 2 f1; 2; 3g, i 6= j, i 6= k, j 6= k,

(iii) and 0 � d

ij

� min(d

i

; d

j

), for all values of i; j 2 f1; 2; 3g, i < j,

su
h that � 
an be expressed as �(� ) = A

1

[A

2

[A

3

[A

12

[A

13

[A

23

[ T ,

where:



{ A

i

= ; or A

i

= f (x

1

; x

2

; x

3

) : x

i

� d

i

g for i = 1; 2; 3,

{ A

ij

= ; or A

ij

=

�

(x

1

; x

2

; x

3

) : x

i

+ x

j

� d

i

+ d

j

� d

ij

^ x

i

� d

i

� d

ij

x

j

� d

j

� d

ij

�

for i; j 2 f1; 2; 3g, i < j

{ T =

8

<

:

x

1

� t� (d

2

+ d

3

� d

23

) x

1

+ x

2

� t� d

3

(x

1

; x

2

; x

3

) : x

1

+ x

2

+ x

3

� t ^ x

2

� t� (d

1

+ d

3

� d

13

) ^ x

1

+ x

3

� t� d

2

x

3

� t� (d

1

+ d

2

� d

12

) x

2

+ x

3

� t� d

1

9

=

;

Then � is a ve
tor spa
e a

ess stru
ture, and so ideal.

Proof. (Sket
h.) Let d = t+d

12

+d

13

+d

23

� (d

1

+d

2

+d

3

). We have that d � 0.

We will 
onsider a ve
tor spa
e L with dimension equal to t. In this spa
e,

we will 
onstru
t three ve
tor subspa
es L

1

; L

2

; L

3

su
h that dim(L

i

) = d

i

,

dim(L

i

\L

j

) = d

ij

and dim(L

1

\L

2

\L

3

) = d. The idea is that ve
tors assigned

to parti
ipants in the entity X

i

will be in the subspa
e L

i

. Re
all that we use `

i

to denote the total number of parti
ipants in ea
h entity X

i

.

Intuitively, given a ve
tor in the spa
e L, we will think it as

(�

123

k �

12

k �

13

k �

23

k �

1

k �

2

k �

3

) ;

where �

123

is the part of the ve
tor (the �rst d 
oordinates) generated by a

basis of L

1

\ L

2

\ L

3

; we 
onsider the most simple basis, formed by e

1

; : : : ; e

d

,

where e

i

is the ve
tor in Z

t

whi
h has 1 in the i-th position and 0 in the rest of

positions. Then, �

12

is the part of the ve
tor (d

12

�d 
oordinates) 
orresponding

to (L

1

\ L

2

) � L

3

, �

1

is the part of the ve
tor (d

1

� d

12

� d

13

+ d 
oordinates)


orresponding to L

1

� L

2

� L

3

, and so on.

For users P

1j

in the �rst entity X

1

, we de�ne  (P

1j

) as a linear 
ombination

of the ve
tors whi
h generate L

1

, in su
h a way that  (P

1j

) =2 L

2

+L

3

. That is,

 (P

1j

) = (�

d

1

�1

j

; : : : ; �

d

1

�d

j

k �

d

1

�(d+1)

j

; : : : ; �

d

1

�d

12

j

k �

d

1

�(d

12

+1)

j

; : : : ; �

d

1

�(d

12

+d

13

�d)

j

k

0; : : : ; 0 k �

d

1

�(d

12

+d

13

�d)�1

j

; : : : ; �

2

j

; �

j

; 1 k 0; : : : ; 0 k 0; : : : ; 0);

for some integer values �

j

whi
h will be determined later.

Analogously, for users P

2k

in the se
ond entity X

2

, we de�ne  (P

2k

) as a

linear 
ombination of the ve
tors whi
h generate L

2

, in su
h a way that  (P

2k

) =2

L

1

+ L

3

. That is,

 (P

2k

) = (�

d

2

�1

k

; : : : ; �

d

2

�d

k

k �

d

2

�(d+1)

k

; : : : ; �

d

2

�d

12

k

k 0; : : : ; 0 k

�

d

2

�(d

12

+1)

k

; : : : ; �

d

2

�(d

12

+d

23

�d)

k

k 0; : : : ; 0 k �

d

2

�(d

12

+d

23

�d)�1

k

; : : : ; �

2

k

; �

k

; 1 k 0; : : : ; 0);

for some integer values �

k

to be determined later.

Finally, for users P

3m

in the third entity X

3

, we de�ne  (P

3m

) as a linear


ombination of the ve
tors whi
h generate L

3

, in su
h a way that  (P

3m

) =2

L

1

+ L

2

. Namely,

 (P

3m

) = (


d

3

�1

m

; : : : ; 


d

3

�d

m

k 0; : : : ; 0 k 


d

3

�(d+1)

m

; : : : ; 


d

3

�d

13

m

k






d

3

�(d

13

+1)

m

; : : : ; 


d

3

�(d

13

+d

23

�d)

m

k 0; : : : ; 0 k 0; : : : ; 0 k 


d

3

�(d

13

+d

23

�d)�1

m

; : : : ; 


2

m

; 


k

; 1);

for some integer values 


m

to be determined later.

With respe
t to the ve
tor  (D), depending on where we pla
e it, we will

obtain the di�erent possibilities listed in the statement of this theorem. For

example, if  (D) =2 L

i

+ L

j

, for all i; j 2 f1; 2; 3g, i < j then we will have

A

i

= A

ij

= ;, for all i; j 2 f1; 2; 3g, i < j. In this 
ase, we will de�ne

 (D) = (�

t�1

; �

t�2

; : : : ; �

2

; �; 1) 2 Z

t

for some indeterminate integer value �. The 
ase on the other extreme happens

if we impose  (D) 2 L

1

\ L

2

\ L

3

. In this 
ase we have A

i

6= ; and A

ij

6= ;, for

all i; j 2 f1; 2; 3g, i < j, and then we de�ne

 (D) = (�

d�1

; �

d�2

; : : : ; �

2

; �; 1; 0; : : : ; 0) 2 Z

t

again for some indeterminate integer � (that is, the ve
tor  (D) has 
oordinates

equal to 0 anywhere but in the �rst d 
oordinates �

123

, whi
h 
orrespond to

L

1

\ L

2

\ L

3

).

There are many intermediate 
ases, and ea
h one leads to a di�erent family

of tripartite a

ess stru
ture. As a matter of example, if  (D) 2 L

1

but  (D) =2

L

2

+ L

3

, then we have that A

2

= A

3

= A

23

= ;, but A

1

, A

12

and A

13

are

not empty. In this 
ase, the ve
tor  (D) has exa
tly the same form as a ve
tor

 (P

1j

) 
orresponding to the �rst entity X

1

, obviously for some indeterminate �

di�erent from the indeterminates f�

j

g

1�j�`

1

.

To show that there exist spe
i�
 values for q and for the values �, f�

j

g

1�j�`

1

,

f�

k

g

1�k�`

2

and f


m

g

1�m�`

3

su
h that the map  , de�ned as above over GF (q)

t

,

determines exa
tly the a

ess stru
ture � , we pro
eed as in Theorems 1 and 2.

That is, we de�ne a very big polynomial

Q (�; f�

j

g

1�j�`

1

; f�

k

g

1�k�`

2

; f


m

g

1�m�`

3

) =

Y

A2I

Q

A

�

�; f�

j

g

P

1j

2A

; f�

k

g

P

2k

2A

; f


m

g

P

3m

2A

�

;

where ea
h polynomial Q

A


onsists of some maximal minor of the matrix whose

rows are the ve
tors  (P ) for all P 2 A. The 
omposition of the family I will

depend on the spe
i�
 position of the ve
tor  (D), but typi
ally it will 
ontain �

0

and subsets of the form A = fDg[B, where B is some maximal non-authorized

subset of the stru
ture � (we omit the details for simpli
ity).

The idea is that one 
an prove that the polynomial Q is not the null poly-

nomial, by proving that ea
h polynomial fa
tor Q

A

is not null (using the same

te
hniques as in Lemmas 2 and 3, showing that there exists some monomial

of the polynomials whose 
oeÆ
ient 
annot be 0). Therefore, there will exist

spe
i�
 integer values ~�; f~�

j

g

1�j�`

1

; f

~

�

k

g

1�k�`

2

; f~


m

g

1�m�`

3

su
h that

Q

�

~�; f~�

j

g

1�j�`

1

; f

~

�

k

g

1�k�`

2

; f~


m

g

1�m�`

3

�

6= 0:

Taking a large enough value of q, one 
an prove that the a

ess stru
ture �

 

de�ned by the resulting map  is exa
tly � , by proving �

 

� � and � � �

 

. ut



Note that this family of ideal tripartite a

ess stru
tures is quite more general

than the tripartite families proved ideal in [1℄. An open problem is to 
ompletely


hara
terize ideal tripartite a

ess stru
tures; that is, are there more ideal tri-

partite a

ess stru
tures, other than the ones listed in the statement of Theorem

3?

4 Dete
ting Non-Ideal Multipartite A

ess Stru
tures

In this se
tion we present some results related to the optimal information rate

of multipartite a

ess stru
tures. A ne
essary tool whi
h appears in the proofs

of these results is the 
on
ept of independent sequen
e of subsets, due to Blundo

et al. [4℄ and slightly generalized in [11℄. Let � be an a

ess stru
ture on a set of

parti
ipants P . We say that a sequen
e B

1

; B

2

; : : : ; B

m

, where ; 6= B

1

� B

2

�

� � � � B

m

� P ; is independent if

1. B

m

=2 � .

2. For all i = 1; 2; : : : ;m, there exists a set X

i

� P su
h that B

i

[X

i

2 � and

B

i�1

[X

i

=2 � , where B

0

= ;.

We say that a set A � X

1

[ : : : [ X

m

makes the sequen
e B

1

; B

2

; : : : ; B

m

in-

dependent. The use of independent sequen
es of subsets is very useful to �nd

upper bounds on the optimal information rates be
ause the following result holds

(Theorem 3.8 in [4℄, generalized in Theorem 2.1 of [11℄):

{ If A 2 � , �

�

(� ) �

jA j

m+ 1

.

{ If A =2 � , �

�

(� ) �

jA j

m

.

The following theorem expresses some prohibited positions in ideal multi-

partite a

ess stru
tures, sin
e the optimal information rate of a

ess stru
tures

satisfying the stated 
onditions 
annot be greater than 2=3.

Theorem 4. Consider a K-multipartite a

ess stru
ture � and non-negative

integers x

1

; : : : ; x

K

; Y

1

; : : : ; Y

K�1

satisfying x

K

� 1 and Y

i

� x

i

for all i =

1; : : : ;K � 1, su
h that (x

1

; : : : ; x

K

) 2 �(� ) and (Y

1

; : : : ; Y

K�1

; x

K

� 1) 2 �(� ),

and su
h that there exists at least one index i

�

2 f1; : : : ;K � 1g su
h that the

following 
onditions hold:

(i) Y

i

�

> x

i

�

� 1.

(ii) (x

1

; : : : ; x

i

�

�1

; x

i

�

� 1; x

i

�

+1

; : : : ; x

K�1

; x

K

) =2 �(� ).

(iii) (Y

1

; : : : ; Y

i

�

�1

; Y

i

�

� 1; Y

i

�

+1

; : : : ; Y

K�1

; x

K

� 1) =2 �(� ).

If Y

1

+ : : :+ Y

K�1

+ x

K

� 1 6= x

1

+ : : :+ x

K

then �

�

(� ) � 2=3.

Proof. Let us assume �rst that Y

1

+ : : : + Y

K�1

+ x

K

� 1 < x

1

+ : : : + x

K

.

Then, from the 
ondition Y

i

� x

i

for i = 1; : : : ;K � 1 we obtain x

1

+ : : : +

x

K

� 1 � Y

1

+ : : : + Y

K�1

+ x

K

� 1 < x

1

+ : : : + x

K

. Therefore we 
on
lude



that Y

i

= x

i

for any i = 1; : : : ;K � 1, whi
h gives us a 
ontradi
tion with the

existen
e of an index i

�

su
h that Y

i

�

> x

i

�

. Thus we 
an 
on
entrate on the


ase Y

1

+ : : :+ Y

K�1

+ x

K

� 1 > x

1

+ : : :+ x

K

.

We have two possible 
ases: there are at least two di�erent indexes i

�

; j

�

2

f1; : : : ;K � 1g satisfying 
onditions (i); (ii); (iii), or there is a unique index

i

�

2 f1; : : : ;K � 1g satisfying su
h 
onditions. We are going to 
onsider the two


ases in a separate way.

1. In the �rst 
ase, we assume for simpli
ity i

�

= 1 and j

�

= 2; so we have

Y

1

> x

1

� 1 and Y

2

> x

2

� 1. We 
an 
onsider two sub-
ases, depending on

whether the point (1; 0; : : : ; 0; 1) belongs to �(� ) or not.

{ If (1; 0; : : : ; 0; 1) =2 �(� ), then we 
onstru
t an independent sequen
e

with subsets B

1

� B

2

� B

3

and X

1

; X

2

; X

3

su
h that:

�(B

1

) = (x

1

� 1; x

2

; : : : ; x

K�1

; x

K

� 1);

�(X

1

) = (1; 0; : : : ; 0; 1);

�(B

2

) = (Y

1

� 1; Y

2

� 1; Y

3

; : : : ; Y

K�1

; x

K

� 1);

�(X

2

) = (0; 0; : : : ; 0; 1);

�(B

3

) = (Y

1

� 1; Y

2

; Y

3

; : : : ; Y

K�1

; x

K

� 1);

�(X

3

) = (1; 0; : : : ; 0; 0):

In this 
ase we have A = X

1

[X

2

[X

3

=2 � , with jAj = 2 and m = 3, so

the result �

�

(� ) � 2=3 holds.

{ If (1; 0; : : : ; 0; 1) 2 �(� ), then the appropriate independent sequen
e is


omposed by subsets B

1

� B

2

and X

1

; X

2

su
h that:

�(B

1

) = (1; 0; : : : ; 0; 0);

�(X

1

) = (0; 0; : : : ; 0; 1);

�(B

2

) = (Y

1

� 1; Y

2

; : : : ; Y

K�1

; x

K

� 1);

�(X

2

) = (1; 0; : : : ; 0; 0):

Now we have A = X

1

[ X

2

2 � , with jAj = 2 and m = 2, and so the

result �

�

(� ) � 2=3 holds again.

2. In the se
ond 
ase, we assume for simpli
ity i

�

= 1, and so we have Y

1

>

x

1

� 1. Note that if Y

1

= x

1

+ 1, then there must be another index j

�

(for

simpli
ity, j

�

= 2) su
h that Y

j

�

> x

j

�

(even if x

j

�

= 0), be
ause of the


ondition Y

1

+ : : :+ Y

K�1

+ x

K

� 1 > x

1

+ : : :+ x

K

. If this happens we 
an

apply the �rst 
ase, above, to i

�

= 1 and j

�

= 2; note that in the independent

sequen
es above, x

2

> 0 is not assumed at any time.

Therefore, we 
an 
on
entrate on the situation where Y

1

> x

1

+1. Again we


onsider two sub-
ases, depending on whether the point (1; 0; : : : ; 0; 1) is in

�(� ) or not.



{ If (1; 0; : : : ; 0; 1) =2 �(� ), then we de�ne an independent sequen
e with

subsets B

1

� B

2

� B

3

and X

1

; X

2

; X

3

su
h that:

�(B

1

) = (x

1

� 1; x

2

; : : : ; x

K�1

; x

K

� 1);

�(X

1

) = (1; 0; : : : ; 0; 1);

�(B

2

) = (x

1

; x

2

; : : : ; x

K�1

; x

K

� 1);

�(X

2

) = (0; 0; : : : ; 0; 1);

�(B

3

) = (Y

1

� 1; Y

2

; : : : ; Y

K�1

; x

K

� 1);

�(X

3

) = (1; 0; : : : ; 0; 0):

In this 
ase we have A = X

1

[X

2

[X

3

=2 � , with jAj = 2 and m = 3, so

the result �

�

(� ) � 2=3 holds.

{ If (1; 0; : : : ; 0; 1) 2 �(� ), then we de�ne an independent sequen
e with

subsets B

1

� B

2

and X

1

; X

2

su
h that:

�(B

1

) = (1; 0; : : : ; 0; 0);

�(X

1

) = (0; 0; : : : ; 0; 1);

�(B

2

) = (Y

1

� 1; Y

2

; : : : ; Y

K�1

; x

K

� 1);

�(X

2

) = (1; 0; : : : ; 0; 0):

Now we have A = X

1

[ X

2

2 � , with jAj = 2 and m = 2, and so the

result �

�

(� ) � 2=3 holds again. ut

The following 
orollary is immediately derived from the result above.

Corollary 1. Consider a K-multipartite a

ess stru
ture � and non-negative

integers x

1

; : : : ; x

K

; Y

1

; : : : ; Y

K�1

satisfying x

K

� 1 and Y

i

� x

i

for all i =

1; : : : ;K�1, su
h that (x

1

; : : : ; x

K

) 2 �(�

0

) and (Y

1

; : : : ; Y

K�1

; x

K

�1) 2 �(�

0

),

and su
h that there exists at least one index i

�

2 f1; : : : ;K � 1g su
h that Y

i

�

>

x

i

�

� 1. If Y

1

+ : : :+ Y

K�1

+ x

K

� 1 6= x

1

+ : : :+ x

K

then �

�

(� ) � 2=3.

4.1 Some Examples

In this se
tion we show some simple examples of how the result of Theorem 4


an be used in pra
ti
e to dete
t that a given multipartite a

ess stru
ture is

not ideal. We are going to 
onsider two tripartite a

ess stru
tures. Given su
h

a tripartite a

ess stru
ture, one 
an �rst try to write it as one of the stru
tures

listed in the statement of Theorem 3; if this 
an be done, then the a

ess stru
ture

will be ideal. Otherwise, one 
an suspe
t that the a

ess stru
ture may not be

ideal, and so one 
an look for some of the prohibited positions des
ribed in the

statements of Theorem 4 and Corollary 1, in order to 
on
lude that the a

ess

stru
ture is not ideal.

Let us �rst 
onsider the tripartite a

ess stru
ture � de�ned by

�(� ) = f(x

1

; x

2

; x

3

) : x

1

+ x

2

+ x

3

� 4 ^ x

3

� 1g [ f(x

1

; x

2

; x

3

) : x

1

� 4g:

We 
an apply the result of Theorem 4 to subsets represented by points (x

1

; x

2

; x

3

) =

(2; 1; 1) and (Y

1

; Y

2

; x

3

� 1) = (4; 1; 0). Note that in this 
ase we have i

�

= 1,



be
ause Y

1

> x

1

� 1. All the 
onditions stated in the Theorem are satis�ed:

(x

1

; x

2

; x

3

) 2 �(� ), (Y

1

; Y

2

; x

3

� 1) 2 �(� ), (Y

1

� 1; Y

2

; x

3

� 1) = (3; 1; 0) =2 �(� )

and (x

1

� 1; x

2

; x

3

) = (1; 1; 1) =2 �(� ). Therefore, we 
on
lude that �

�

(� ) � 2=3

and so this a

ess stru
ture is not ideal.

In the se
ond example, we take a di�erent tripartite a

ess stru
ture � de-

�ned by

�(� ) = f(x

1

; x

2

; x

3

) : x

1

+x

2

+x

3

� 6g [ f(x

1

; x

2

; x

3

) : x

2

+x

3

� 4 ^ x

3

� 1g [

[ f(x

1

; x

2

; x

3

) : x

1

+ x

2

� 5g:

Again, it is possible to see that this a

ess stru
ture 
annot be written as one

of the ideal tripartite ones listed in the statement of Theorem 3. The following

step would be then to look for a prohibited position on it. In e�e
t, we 
an apply

in this 
ase Corollary 1 to subsets 
orresponding to points (x

1

; x

2

; x

3

) = (0; 3; 1)

and (Y

1

; Y

2

; x

3

� 1) = (1; 4; 0). These two points belong to �(�

0

) as required;

furthermore, we have Y

1

� x

1

and Y

2

> x

2

� 1 (so i

�

= 2). Therefore, we 
an

apply the result of the 
orollary, to 
laim that this a

ess stru
ture 
annot either

be ideal, be
ause �

�

(� ) � 2=3.

5 Con
lusions and Future Work

In this work we have studied general multipartite a

ess stru
tures, where players

are divided into K disjoint entities in su
h a way that players in an entity play

all the same role in the a

ess stru
ture. To remark the importan
e of these

stru
tures, we have �rst shown that any a

ess stru
ture is a multipartite one.

Then we have proved that three wide families of multipartite a

ess stru
tures are

ideal, by showing in an existential way that a ve
tor spa
e se
ret sharing s
heme

realizing them 
an be 
onstru
ted. The mathemati
al te
hniques employed in

these proofs are quite general, and so we expe
t that other general families of

multipartite a

ess stru
ture 
ould be proved ideal in the future, by using similar

ideas.

We have also proved a result (Theorem 4) whi
h gives some ne
essary 
ondi-

tions on a multipartite a

ess stru
ture to be ideal. Other ne
essary 
onditions

were already known [6℄: if we de�ne the sli
e of a K-multipartite stru
ture � as

�

(x

i

=a

i

)

= fA � P �X

i

: A [A

i

2 �g

where A

i

� X

i

with jA

i

j = a

i

, then �

(x

i

=a

i

)

is a (K � 1)-multipartite a

ess

stru
ture over P � X

i

. It is not diÆ
ult to see that any sli
e of an ideal mul-

tipartite a

ess stru
ture must be also ideal. This gives a sort of re
urren
e,

whi
h ends at K = 2, be
ause ideal bipartite a

ess stru
tures are 
ompletely


hara
terized (see [11℄). Using this idea, one 
ould maybe prove some result su
h

as:

� is ideal , � satis�es 
ondition C ^ any sli
e of � is ideal.



The problem is, obviously, to �nd the proper 
ondition C whi
h makes this result

true. To do this, possible tools to be used are independent sequen
es, geometri


and algebrai
 arguments (as in the 
hara
terization of ideal bipartite stru
tures

in [11℄), or the relation between matroids and ideal se
ret sharing (for example,

this relation has been exploited in [10℄ for the 
ase of bipartite a

ess stru
tures).

We have the intuition that a good 
andidate for 
ondition C is that, if � is a

K-multipartite a

ess stru
ture, then x

1

+ : : : + x

K

= t, for some 
onstant

positive integer t, and for all points (x

1

; : : : ; x

K

) 2 �(�

0

) satisfying x

i

� 1, for

all i = 1; : : : ;K. But up to this moment we have not been able even to prove that

this is a ne
essary 
ondition for � to be ideal, for general values of K. This has

been proved for the 
ase K = 3, by Collins [6℄, and by ourselves in a di�erent

way. Summing up, there is a lot of work to do in the domain of multipartite

a

ess stru
tures.
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