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Abstract. NLS is one of the stream ciphers submitted to the eSTREAM project.
We present a distinguishing attack on NLS by Crossword Puzzle (CP) attack method
which is newly introduced in this paper. We build the distinguisher by using linear
approximations of both the non-linear feedback shift register (NFSR) and the non-
linear filter function (NLF). Since the bias of the distinguisher depends on the Konst
value, which is a key-dependent word, we present the graph showing how the bias of
distinguisher vary with Konst. In result, we estimate the average bias to be around
O(2−30). Therefore, we claim that NLS is distinguishable from truly random cipher
after observing O(260) keystream words on the average. The experiments also show
that our distinguishing attack is successful on 90.3% of Konst among 232 possible
values.
Keywords : Distinguishing Attacks, Stream Ciphers, Linear Approximations, eS-
TREAM, Modular Addition, NLS.

1 Introduction

The European Network of Excellence in Cryptology (ECRYPT) launched a stream cipher
project called eSTREAM [1] whose aim is to come up with a collection of stream ciphers
that can be recommended to industry and government institutions as secure and efficient
cryptographic primitives. It is also likely that some or perhaps all recommended stream
ciphers may be considered as de facto industry standards. It is interesting to see a variety of
different approaches used by the designers of the stream ciphers submitted to the eSTREAM
call. A traditional approach for building stream ciphers is to use a linear feedback shift
register (LFSR) as the main engine of the cipher. The outputs of the registers are taken and
put into a nonlinear filter that produces the output stream that is added to the stream of
plaintext.

One of the new trends in the design of stream ciphers is to replace LFSR by a nonlinear
feedback shift register (NFSR). From the ciphers submitted to the eSTREAM call, there are
several ciphers that use the structure based on NFSR amongst them the NLS cipher follows
this design approach. The designers of the NLS cipher are Philip Hawkes, Gregory Rose,
Michael Paddon and Miriam Wiggers de Vries from Qualcomm Australia.

The paper studies the NLS cipher and its resistance against distinguishing attacks using
linear approximation. Typically, distinguishing attacks do not allow to recover any secret
element of the cipher such as the cryptographic key or the secret initial state of the NFSR but
instead they permit to tell apart the cipher from the truly random cipher. In this sense these
attacks are relatively weak. However, the existence of a distinguishing attack is considered
as an early warning sign of possible major security flaws.

In our analysis, we derive linear approximations of both NFSR and the nonlinear filter
(NLF). The main challenge has been to combine the obtained linear approximations in a



such way that the internal state bits of NFSR have been eliminated leaving the observable
output bits only. We call this type of attack as ”Crossword Puzzle” attack since the
state bits of approximations vanish by combining them in a horizontal way as well as in a
vertical way.

Our approach is an extension of the linear masking method introduced by Coppersmith,
Halevi, and Jutla in [3]. Note that the linear masking method was applied for the traditional
stream ciphers based on LFSR so it is not directly applicable for the ciphers with NFSR.

The work is structured as follows. Section 2 presents a framework of CP attack. Section 3
briefly describes the NLS cipher. In Section 4, we study best linear approximations for both
NFSR and NLF. A simplified NLS cipher is defined in Section 5 and we show how to design
a distinguisher for it. Our distinguisher for the original NLS cipher is examined in Section
6. We show how it works and also discuss its limitations. Section 8 concludes our work.

2 Framework of Crossword Puzzle (CP) Attack

The CP attack is a linear distinguishing attack which is applicable to a class of stream
ciphers that consist of the non-linear feedback shift register (NFSR) and the non-linear
filter (NLF). In general, the roles of the two non-linear components are as follows.

– NFSR transforms the current state si into the next state si+1 in a non-linear way using
the appropriate function NF1, i.e. si+1 := NF1(si) where s0 is the initial state and
i = 0, 1, 2, . . ..

– NLF produces an output zi from the current state si through a non-linear function NF2,
i.e. zi := NF2(si).

Let us define a bias ǫ of an approximation as p = 1
2 (1 + ǫ), |ǫ| > 0 where p is the probability

of the approximation. 1 The CP attack is composed of the following steps. Note that the
operation + is a binary addition.

1. Find a linear approximation of the non-linear state transition function NF1 used by
NFSR : l1(si, si+1) = 0 with bias of ǫ1.

2. Find a linear approximation of the non-linear function NF2 applied by NLF : l2(sj) +
l3(zj) = 0 with bias of ǫ2.

3. Obtain two sets of clocks I and J such that
∑

i∈I l1(si, si+1) =
∑

j∈J l2(sj).
4. Build a distinguisher by computing

∑

i∈I

l1(si, si+1) +
∑

j∈J

(l2(sj) + l3(zj)) =
∑

j∈J

l3(zj) = 0

which has bias of ǫ
|I|
1 · ǫ

|J|
2 .

For the CP attack, it is an important task to find the approximations in Step 1 and Step
2 which have the relation described in Step 3. We describe a basic framework for achieving
this task.

Given l1(si, si+1) = 0, we divide l1 into n linear sub-functions u1, . . . , un. That is,

l1(si, si+1) = u1(si) + · · · + un−1(si) + un(si+1) (1)

1 This definition is useful for the bias of multiple approximations when the piling-up lemma is con-
sidered. If we have n independent approximations, the probability of n approximations becomes
1
2
(1 + ǫn).



If we set up a system of m approximations of l1 on the clocks i = i1, . . . , im, then, we have

l1(si1 , si1+1) = u1(si1) + u2(si1) + · · · + un(si1+1)
l1(si2 , si2+1) = u1(si2) + u2(si2) + · · · + un(si2+1)

· · ·
l1(sim

, sim+1) = u1(sim
) + u2(sim

) + · · · + un(sim+1)

(2)

Now, our goal is to find a set of linear approximations from NLF which corresponds to each
column of Approximation (2), which are eventually replaced by n linear functions of output
which are denoted as ζ1(zj1), . . . , ζn(zjn

). That is,

u1(si1) + u1(si2) + · · · + u1(sim
) = ζ1(zj1)

u2(si1) + u2(si2) + · · · + u2(sim
) = ζ2(zj2)

· · ·
un(si1+1) + un(si2+1) + · · · + un(sim+1) = ζn(zjn

)

(3)

Note that each line of approximation of (3) corresponds each column of Approximation (2).
Since NLF is assumed to produces an output zj from the current (single) state sj , the states
of each approximation in (3) should be unified to a single state.

It is practically possible since most of states of NFSR are linearly shifted except one non-
linearly updated state. Thus, any sub-linear function ui(sj) can be converted to another
linear function vj(si), i.e. ui(sj) = vt(sk). Therefore, each approximation of (3) is converted
to the following approximation which can be derived from NLF.

v11(sj1) + v12(sj1) + · · · + v1m(sj1) = ζ1(zj1)
v21(sj2) + v22(sj2) + · · · + v2m(sj2) = ζ2(zj2)
· · ·
vn1(sjn

) + vn2(sjn
) + · · · + vnm(sjn

) = ζn(zjn
)

(4)

If we combine Approximations (2) and (3) (or equivalently Approximation (4)), all the states
vanish and a distinguisher is produced by computing

∑n

i=1 ζj(zji
) = 0. The relation is true

with a non-zero bias.

There are more issues in regard to the bias of the distinguisher. Firstly, we assume that
all approximations are independent. However, practically, this is not always accurate since

many terms in the approximations could be related. This means that ǫ
|I|
1 · ǫ

|J|
2 provides as

a lower bound of the bias of the distinguisher and in practice, the distinguisher is going
to work better. The precise value of the bias can be computed by analysis of conditional
probabilities of random variables of states involved in the approximations.

Secondly, when we set up a system of m approximations, we may choose different approxi-
mations instead of using the same single approximation l1(si, si+1) m times. In general, it
is an interesting research problem of selection of approximations for both NFSR and NLF
in order to maximize the bias of the distinguisher.

Note that the CP attack can be seen as an extension of the linear masking method introduced
by Coppersmith, Halevi, and Jutla in [3] with the reason that the CP attack is reducible to
the linear masking method when the NFSR is replaced by a linear feedback shift register
(LFSR) with ǫ1 = 1.

3 Brief description of NLS stream cipher

As we said the NLS keystream generator uses NFSR whose outputs are given to the nonlinear
filter NLF that produces output keystream bits. Note that we concentrate on the cipher



itself and ignore its message integrity function as irrelevant to our analysis. For details of
the cipher, the reader is referred to [2].

NLS has two components: NFSR and NLF that are synchronised by a clock. The state of
NFSR at time t is denoted by σt = (rt[0], . . . , rt[16]) where rt[i] is a 32-bit word. The state
is determined by 17 words (or equivalently 544 bits). The transition from the state σt to the
state σt+1 is defined as follows:

1. rt+1[i] = rt[i + 1] for i = 0, . . . , 15;
2. rt+1[16] = f((rt[0] ≪ 19) + (rt[15] ≪ 9) + Konst) ⊕ rt[4];
3. if t = 0 (modulo f16), rt+1[2] = rt+1[2] + t;

where f16 is 65537 and + is the addition modulo 232. The Konst value is a 32-bit key-
dependent constant. The function f : {0, 1}32 → {0, 1}32 is constructed using an S-box with
8-bit input and 32-bit output and defined as f(a) = S-box(aH) ⊕ a where aH is the most
significant 8 bits of 32-bit word a. Refer Figure 1. Each output keystream word νt of NLF
is obtained as

νt = NLF (σt) = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ (rt[6] + Konst). (5)

The cipher uses 32-bit words to ensure a fast keystream generation.

rt[0] ≪ 19 rt[15] ≪ 9

Konst

✲ ✛

❄

S-Box
031

✲ ✛♠α

rt[4] ✲

❄

rt+1[16]

Fig. 1. The f function

4 Analysis of NFSR and NLF

Unlike a LFSR that applies a connection polynomial, the NFSR uses a much more complex
nonlinear transition function f that mixes the XOR addition (linear) with the addition mod-
ulo 232 (nonlinear). According to the structure of the non-linear shift register, the following
equation holds for the least significant bit. Let us denote αt to be a 32-bit output of the
S-box that defines the transition function f . Then, we observe that for the least significant
bit, the following equation holds

αt,(0) ⊕ rt[0](13) ⊕ rt[15](23) ⊕ Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (6)



where αt,(0) and x(i) stand for the i-th bits of the 32-bit words αt and x, respectively.

To make our analysis simpler we assume initially that Konst is zero. This assumption is
later dropped (i.e. Konst is non-zero) when we discuss our distinguishing attack on the NLS
stream cipher.

4.1 Linear approximations of αt,(0)

Recall that αt is the 32-bit output taken from the S-box and αt,(0) is its least significant
bit. The input to the S-box comes from the eight most significant bits of the addition
((rt[0] ≪ 19) + (rt[15] ≪ 9) + Konst). Assuming that Konst=0, the input to S-box is
(rt[0]′ + rt[15]′), where rt[0]′ = rt[0] ≪ 19 and rt[15]′ = rt[15] ≪ 9. Thus, αt,(0) is com-
pletely determined by the contents of two registers rt[0]′ and rt[15]′. Observe that the input
of the S-box is affected by the eight most significant bits of the two registers rt[0]′ (we denote
the 8 most significant bits of the register by rt[0]′(H)) and rt[15]′ (the 8 most significant bits

of the register are denoted by rt[15]′(H)) and by the carry bit c generated by the addition of

two 24 least significant bits of rt[0]′ and rt[15]′. Therefore

the input of the S-box = rt[0]′(H)
+ rt[15]′(H)

+ c.

Now we would like to find the best linear approximation for αt,(0). We build the truth
table with 217 rows and 216 columns. Each row corresponds to the unique collection of
input variables (8 bits of rt[0]′(H), 8 bits of rt[15]′(H), and a single bit for c). Each column

relates to the unique linear combination of bits from rt[0]′(H) and rt[15]′(H). Table 1 displays
a collection of best linear approximations that are going to be used in our distinguishing
attack. In particular, we see that the third approximation of Table 1 has high bias with
only two terms. This seems to be caused by the fact that rt[0](12) ⊕ rt[15](22) is the only
input to the MSB of input of the S-box that is not diffused to other order bits. Note that

linear approximations of αt,(0) bias

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15) 1/2(1 + 0.048828)

rt[0](10) ⊕ rt[0](6) ⊕ rt[0](5) ⊕ rt[15](20) ⊕ rt[15](16) 1/2(1 + 0.048828)

rt[0](12) ⊕ rt[15](22) 1/2(1 − 0.045410)

rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10) ⊕ rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20) 1/2(1 − 0.020020)

Table 1. Linear approximations for αt,(0) when Konst = 0

rt[0]′(H) = (rt[0] ≪ 19)(H) = (rt[0](12), . . . , rt[0](5)) and rt[15]′(H) = (rt[15] ≪ 9)(H) =

(rt[15](22), . . . , rt[15](15)). Note also that none of the approximations contains the carry bit
c, in other words, the approximations do not depend on c.

4.2 Linear approximations for NFSR

Having a linear approximation of αt,(0), it is easy to obtain a linear approximation for NFSR.
For example, let us choose the first approximation from Table 1. Then, we have the following
linear equation:

αt,(0) = rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15) (7)



with the bias 0.048828 = 2−4.36. Now we combine Equations (6) and (7) and as the result
we have the following approximation for NFSR

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15)
⊕rt[0](13) ⊕ rt[15](23) ⊕ Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0

(8)

with the bias of 2−4.36.

4.3 Linear approximations of modular addition

Let us take a closer look at the modular addition + . We know that the least significant
bits are linear so the following equation holds

(r[x] + r[y])(0) = r[x](0) ⊕ r[y](0). (9)

All consecutive bits i > 0 of + are nonlinear. Consider the function (r[x] + r[y])(i) ⊕
(r[x] + r[y])(i−1). We observe that the function has a linear approximation as follows

(r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1) = r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) (10)

that has the bias of 2−1.

In a similar way, we also observe that the function (r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1) ⊕
(r[x] + r[y])(i−2) ⊕ (r[x] + r[y])(i−3) has the following approximation. For i > 2,

(r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1) ⊕ (r[x] + r[y])(i−2) ⊕ (r[x] + r[y])(i−3) =
r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) ⊕ r[x](i−2) ⊕ r[y](i−2) ⊕ r[x](i−3) ⊕ r[y](i−3)

(11)

that has the bias of 2−2.

4.4 Linear approximation for NLF

Recall that Equation (5) defines the output keystream generated by NLF. By Equation (9),
we obtain the relation for the least significant bits of NLF that takes the following form

νt,(0) = (rt[0](0) ⊕ rt[16](0)) ⊕ (rt[1](0) ⊕ rt[13](0)) ⊕ (rt[6](0) ⊕ Konst(0)). (12)

This relation holds with probability one.

For 2 ≤ i ≤ 31 and using Equation (10), we can argue that NLF function has linear
approximations of the following form:

νt,(i) ⊕ νt,(i−1) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))
⊕(rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1))
⊕(rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−1) ⊕ Konst(i−1))

(13)

with the bias of (2−1)2 = 2−2 under the condition that Konst = 0.

Also applying Approximation (11), for i > 2, we get the following expression

νt,(i) ⊕ νt,(i−1) ⊕ νt,(i−2) ⊕ νt,(i−3) =
(rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1) ⊕ rt[0](i−2) ⊕ rt[16](i−2) ⊕ rt[0](i−3) ⊕ rt[16](i−3))
⊕(rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1) ⊕ rt[1](i−2) ⊕ rt[13](i−2) ⊕ rt[1](i−3) ⊕ rt[13](i−3))
⊕(rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−1) ⊕ Konst(i−1) ⊕ rt[6](i−2) ⊕ Konst(i−2) ⊕ rt[6](i−3) ⊕ Konst(i−3))

(14)
that has the bias of (2−2)2 = 2−4 under the condition that Konst = 0.

For non-zero Konst, the bias of Approximations (13) and (14) will be studied in Section
6.2.



5 CP attack on a simplified NLS

In this Section we present the CP attack on a simplified NLS. This is a preliminary stage of
our attack in which we apply the initial idea of crossword puzzle attack that will be later
developed and generalized. We assume that the structure of NFSR is unchanged but the
structure of NLF is modified by replacing the addition + by ⊕. Thus, Equation (5) that
describes the keystream becomes

µt = (rt[0] ⊕ rt[16]) ⊕ (rt[1] ⊕ rt[13]) ⊕ (rt[6] ⊕ Konst). (15)

This linear function is valid for 32-bit words so it can be equivalently re-written as a system
of 32 equations each equation valid for the particular ith bit. Hence, for 0 ≤ i ≤ 31, we can
write

µt,(i) = (rt[0](i) ⊕ rt[16](i)) ⊕ (rt[1](i) ⊕ rt[13](i)) ⊕ (rt[6](i) ⊕ Konst(i)). (16)

To build a distinguisher we combine approximations of NFSR given by Equation (8) with
linear equations defined by Equation (16). For the clocks t, t + 1, t + 6, t + 13, and t + 16,
consider the following approximations of NFSR

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ · · · ⊕ rt+1[16](0) = 0
rt+1[0](10) ⊕ rt+1[0](6) ⊕ rt+1[15](20) ⊕ · · · ⊕ rt+2[16](0) = 0
rt+6[0](10) ⊕ rt+6[0](6) ⊕ rt+6[15](20) ⊕ · · · ⊕ rt+7[16](0) = 0
rt+13[0](10) ⊕ rt+13[0](6) ⊕ rt+13[15](20) ⊕ · · · ⊕ rt+14[16](0) = 0
rt+16[0](10) ⊕ rt+16[0](6) ⊕ rt+16[15](20) ⊕ · · · ⊕ rt+17[16](0) = 0

(17)

Since rt+p[0] = rt[p], we can rewrite the above system of equations (17) equivalently as
follows:

rt[0](10) ⊕ rt[0](6) ⊕ rt+15[0](20) ⊕ · · · ⊕ rt+17[0](0) = 0
rt[1](10) ⊕ rt[1](6) ⊕ rt+15[1](20) ⊕ · · · ⊕ rt+17[1](0) = 0
rt[6](10) ⊕ rt[6](6) ⊕ rt+15[6](20) ⊕ · · · ⊕ rt+17[6](0) = 0
rt[13](10) ⊕ rt[13](6) ⊕ rt+15[13](20) ⊕ · · · ⊕ rt+17[13](0) = 0
rt[16](10) ⊕ rt[16](6) ⊕ rt+15[16](20) ⊕ · · · ⊕ rt+17[16](0) = 0

(18)

Consider the columns of the above system of equations. Each column describes a single
bit output of the filter (see Equation (16)), therefore the system (18) gives the following
approximation:

µt,(10) ⊕ µt,(6) ⊕ µt+15,(20) ⊕ µt+15,(16) ⊕ µt+15,(15) ⊕ µt,(13)

⊕µt+15,(23) ⊕ µt+4,(0) ⊕ µt+17,(0) = K
(19)

where K = Konst(10)⊕Konst(6)⊕Konst(20)⊕Konst(16)⊕Konst(15)⊕Konst(13)⊕Konst(23).
Note that the bit K is constant (zero or one) during the session. Therefore, the bias of
Approximation (19) is (2−4.36)5 = 2−21.8.

6 The CP attack on NLS

In this Section, we describe the CP attack on the real NLS. The main idea is to find the best
combination of approximations for both NFSR and NLF, while the state bits of the shift
register vanish and the bias of the resulting approximation is as big as possible. We study
the case for Konst = 0 at first and then, extend our attack to the case for Konst 6= 0. Since
NLS allows only a non-zero most significant byte of Konst, the second case corresponds to
the real NLS.



6.1 Case for Konst = 0

The linear approximations of αt,(0) are given in Table 1. For the most effective distinguisher,
we choose this time the third approximation from the table which is

αt,(0) = rt[0](12) ⊕ rt[15](22) (20)

and the bias of this approximation is 0.045410 = 2−4.46. By combining Equations (6) and
(20), we have the following approximation

rt[0](12) ⊕ rt[15](22) ⊕ rt[0](13) ⊕ rt[15](23) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (21)

that has the same bias.

Let us now divide (21) into two parts : the least significant bits and the other bits, so we
get

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)

(22)

Clearly, l1(rt)⊕ l2(rt) = 0 with the bias 2−4.46. Since l1(rt) has only the least significant bit
variables, we apply (12) which is true with the probability one. Then, we obtain

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l1(rt+1) = rt+1[4](0) ⊕ rt+2[16](0)
l1(rt+6) = rt+6[4](0) ⊕ rt+7[16](0)
l1(rt+13) = rt+13[4](0) ⊕ rt+14[16](0)
l1(rt+16) = rt+16[4](0) ⊕ rt+17[16](0)

(23)

If we add up all approximations of (23), then, by applying Equation (12), we can write

l1(rt) ⊕ l1(rt+1) ⊕ l1(rt+6) ⊕ l1(rt+13) ⊕ l1(rt+16) = νt+4,(0) ⊕ νt+17,(0) (24)

Now, we focus on l2(rt) where the bit positions are 12, 13, 22, and 23, then,

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)
l2(rt+1) = rt+1[0](12) ⊕ rt+1[0](13) ⊕ rt+1[15](22) ⊕ rt+1[15](23)
l2(rt+6) = rt+6[0](12) ⊕ rt+6[0](13) ⊕ rt+6[15](22) ⊕ rt+6[15](23)
l2(rt+13) = rt+13[0](12) ⊕ rt+13[0](13) ⊕ rt+13[15](22) ⊕ rt+13[15](23)
l2(rt+16) = rt+16[0](12) ⊕ rt+16[0](13) ⊕ rt+16[15](22) ⊕ rt+16[15](23)

(25)

Since rt+p[0] = rt[p], the above approximations can be presented as follows.

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt+15[0](22) ⊕ rt+15[0](23)
l2(rt+1) = rt[1](12) ⊕ rt[1](13) ⊕ rt+15[1](22) ⊕ rt+15[1](23)
l2(rt+6) = rt[6](12) ⊕ rt[6](13) ⊕ rt+15[6](22) ⊕ rt+15[6](23)
l2(rt+13) = rt[13](12) ⊕ rt[13](13) ⊕ rt+15[13](22) ⊕ rt+15[13](23)
l2(rt+16) = rt[16](12) ⊕ rt[16](13) ⊕ rt+15[16](22) ⊕ rt+15[16](23)

(26)

Recall the approximation (13) of NLF. If we combine (26) with (13), then we have the
following approximation.

l2(rt) ⊕ l2(rt+1) ⊕ l2(rt+6) ⊕ l2(rt+13) ⊕ l2(rt+16) =
νt,(12) ⊕ νt,(13) ⊕ νt+15,(22) ⊕ νt+15,(23)

(27)



By combining the approximations (24) and (27), we obtain the final approximation that
defines our distinguisher, i.e.

l1(rt) ⊕ l1(rt+1) ⊕ l1(rt+6) ⊕ l1(rt+13) ⊕ l1(rt+16)
⊕l2(rt) ⊕ l2(rt+1) ⊕ l2(rt+6) ⊕ l2(rt+13) ⊕ l2(rt+16)
= νt,(12) ⊕ νt,(13) ⊕ νt+15,(22) ⊕ νt+15,(23) ⊕ νt+4,(0) ⊕ νt+17,(0)

= 0

(28)

The second part of the approximation can be computed from the output keystream that is
observable to the adversary. As we use Approximation (21) five times and Approximation
(13) twice, the bias of the approximation (28) is (2−4.46)5 · (2−2)2 = 2−26.3.

6.2 Case for Konst 6= 0

Since the word Konst occurs in NFSR and NLF as a parameter, the biases of linear
approximations of both αt,(0) and NLF vary with Konst. If we divide Konst into two
parts as Konst = (Konst(H),Konst(L)) where Konst(H) = (Konst(31), . . . ,Konst(24)), and
Konst(L) = (Konst(23), . . . ,Konst(0)), then, linear approximations of αt,(0) mainly depend
on Konst(H) and those of NLF depend on Konst(L).

Biases of αt,(0) with non-zero Konst(H) Since the most significant 8 bits of Konst

mainly contribute to form of the bit αt,(0), the bias of Approximation (20) fluctuates ac-
cording to the 8-bit Konst(H). This relation is illustrated in Figure 2.
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Fig. 2. Biases of approximations of αt,(0) with Konst(H)

From this figure, we can see that the bias of Approximation (20) becomes the smallest when
Konst(H) is around 51 and 179 whereas the biggest when Konst(H) is around 127 and 255.
The average bias of (20) with Konst(H) is 2−4.4.



Biases of NLF with Konst(L) Figure 3 displays the bias variation of Approximation
(13) according to Konst(L) at i = 13. Note that the graph shows the bias distribution from
14 LSBs of Konst(L) (that is, 214) since the bits Konst(23), . . . ,Konst(14) have not effect on
the bias for i = 13. We don’t display the graph of Approximation (13) at i = 23 because the
graph is similar to Figure 3 with only the slope changed by considering 24 bits of Konst(L).
On the average, the bias of (13) for any i > 0 is 2−1.
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Fig. 3. Biases of NLF with Konst(L) at i = 13 and i = 23

6.3 Average bias of the distinguisher

According to Section 6.2, the average bias of the distinguisher (28) can be computed in a
following way. Note that Konst is expressed in hexadecimal.

1. Set Konst = 01000000h (Note that non-zero Konst(H) is allowed in NLS.)
2. Find the bias ǫ1 of Approximation (20) for NFSR.
3. Find the bias ǫ2 of Approximation (13) for NLF.
4. Compute and store the bias ǫ of the distinguisher (28) by ǫ = ǫ51 · ǫ22.
5. Increase Konst by 1 and repeat Step 2,3 and 4 until Konst = ffffffffh.
6. Compute the average of ǫ.

In order to reduce the complexity of computing the average of ǫ, we assume that ǫ1 is
affected by only Konst(H), not by Konst(L) in Step 2. Then, ǫ1 and ǫ2 can be computed
independently. Therefore, the above algorithm is amended as follows.

1. Set Konst(H) = 01h
2. Find the bias ǫ1 of Approximation (20) and store ǫ∗1 = ǫ51.
3. Increase Konst(H) by 1 and repeat Step 2 until Konst(H) = ffh.
4. Compute the average of ǫ∗1, which is called (ǫ∗1)avg.
5. Set Konst(L) = 000000h
6. Find two biases of Approximation (13) at i = 13 and i = 23, which is called ǫ2,13 and

ǫ2,23 respectively.
7. Store ǫ∗2 by calculating ǫ2 = ǫ2,13 · ǫ2,23.



8. Increase Konst(L) by 1 and repeat Step 6 and 7 until Konst(L) = 00ffffffh.
9. Compute the average of ǫ∗2, which is called (ǫ∗2)avg.

10. Compute the average bias of the distinguisher (28) by multiplying (ǫ∗1)avg by (ǫ∗2)avg.

In result, the distinguisher (28) has (ǫ51)avg of 2−24 and (ǫ22)avg of 2−6 respectively. Therefore,
the average bias of distinguisher appears to be 2−24 · 2−6 = 2−30.

6.4 The success rate of distinguishing attack

As mentioned in the earlier section, let us denote the bias of the approximation of αt,(0) by
ǫ1, the bias of Approximation (13) at i = 13 by ǫ2,13 and the bias of Approximation (13) at
i = 23 by ǫ2,23.

Since the specification of the NLS cipher allows the adversary to observe up to 280 keystream
words per one key/nonce pair, we assume that our attack is successful if the bias of distin-
guisher satisfies the following condition:

ǫ51 · ǫ2,13 · ǫ2,23 > 2−40. (29)

The experiments show that the bias of Distinguisher 28 satisfies the condition (29) on around
85.9% of Konst. See Figure 4.

7 Improving distinguishing attack by multiple distinguishers

In this section, we are going to reduce the unsuccessful portion of Konst by considering
multiple distinguishers, in particular, by multiple approximations of α(0). Since the NLS
produces 32-bit keystream word per a clock, the actual volume of data required is not
increased by multiple distinguishers even though more computation is required.

The motivation is that Approximation (20) is not always best choice for the distinguisher
on all the possible values of Konst. The bias of the distinguisher using Approximation (20)
is very small for some values of Konst(H) (e.g. Konst(H) = 51 or 179). In order to defeat
this problem, let us choose the fourth approximation from Table 1. Then, we have

αt,(0) = rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10) ⊕ rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20) (30)

which has the smallest bias when Konst(H) is around 41, 139 and 169 whereas the biggest
when Konst(H) is around 57 and 185. The average bias of (30) is 2−6.2 when only absolute
values are taken. See Figure 2.

Having this approximation, we build an approximation of NFSR as follows

rt[0](10) ⊕ rt[0](11) ⊕ rt[0](12) ⊕ rt[0](13) ⊕⊕rt[15](20) ⊕ rt[15](21) ⊕ rt[15](22) ⊕ rt[15](23)
⊕Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0.

(31)

Then, we can build a new distinguisher by combining Approximation (14) on NLF (we omit
the detail process due to the similarity of Distinguisher (28)). In result, we have a following
new distinguisher

νt,(10) ⊕ νt,(11) ⊕ νt,(12) ⊕ νt,(13) ⊕ νt+15,(20) ⊕ νt+15,(21) ⊕ νt+15,(22) ⊕ νt+15,(23)

⊕νt+4,(0) ⊕ νt+17,(0) = 0.
(32)



Distinguisher (32) has (ǫ∗1)avg of 2−27.8 and (ǫ∗2)avg of 2−10. Therefore, the average bias of
distinguisher appears to be 2−27.8 · 2−10 = 2−37.8.

By observing two distinguishers together and selecting always the better bias among them,
we improve the success rate of the distinguishing attack. The experiments show that the
best bias between Distinguisher 28 and 32 satisfies the condition (29) on around 90.3% of
Konst. See Figure 4.
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Fig. 4. The success rate of Konst according to the bias

8 Conclusion

We presented a linear distinguishing attack on NLS by Crossword Puzzle attack method
newly introduced in this paper. The bias of distinguisher appears to be 2−30 on the average
so that NLS is distinguishable from a random function by observing 260 keystream words.
Even though there are a fraction of Konst which requires the data complexity bigger than
280, we show that it is possible for attacker to reduce the fraction of Konst by combining
multiple distinguishers which have biases of less than 2−40 on the average.
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