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Abstract. Hardware side channel vulnerabilities have been studied for
many years in embedded silicon-security arena including SmartCards,
SetTop-boxes, etc. However, because various recent security activities
have goals of improving the software isolation properties of PC plat-
forms, software side channels have become a subject of interest. Recent
publications discussed cache-based software side channel vulnerabilities
of AES and RSA. Thus, following the classical approach — a new side
channel vulnerability opens a new mitigation research path — this pa-
per starts to investigate efficient mitigations to protect AES-software
against side channel vulnerabilities. First, we will present several mit-
igation strategies to harden existing AES software against cache-based
software side channel attacks and analyze their theoretical protection.
Then, we will present a performance and security evaluation of our miti-
gation strategies. For ease of evaluation we measured the performance of
our code against the performance of the openSSL AES implementation.
In addition, we also analyzed our code under various existing attacks.
Depending on the level of the required side channel protection, the mea-
sured performance loss of our mitigations strategies versus openSSL (re-
spectively best assembler) varies between factors of 1.35 (2.66) and 2.85
(5.83).

Keywords: AES, Countermeasures, Computer architecture, Computer secu-
rity, Side channel attacks.

1 Introduction

Covert channels have long been recognized as a problem in designing secure
software. Overt channels use the system’s protected data objects to transfer
information in a secure way. That is, one subject writes into a data object and
another subject reads from that object. Subjects in this context are not only
active users, but are also processes and procedures acting on behalf of users.
The channels, such as buffers, files, shared memories, thread signals, etc. are
overt because the entity used to hold the information is a data object; that is,
it is an object that is normally viewed as a data container. Covert channels, in
contrast, use entities or system resources not normally viewed as a data container
to transfer information between subjects. These metadata objects, such as file
locks, busy flags, execution time, disk access times, etc. are needed to register the
state of the system. Covert channels involve the transfer of data across protected

⋆ Work done during an Intel internship. Affiliation: UCL Crypto Group (Belgium).



process boundaries between two cooperating processes. This observation was
very early captured in the fundamental paper on the confinement problem by
Lampson [Lam].

Overt channels are controlled by enforcing the access control policy of the
system being designed and implemented. This policy states when and how overt
reads and writes of data objects may be made. One part of the security analysis
must verify the system’s implementation correctly implements the stated access
control policy. Recognizing and dealing with covert channels is more elusive.
Objects used to hold the information being transferred are normally not viewed
as data objects, but can often be manipulated maliciously in order to transfer
information. In addition, the use of a covert channel requires collusion between
a subject with authorization to access information which then leaks the infor-
mation to an unauthorized object. Driven by strong military and government
security requirements there has been a large amount of covert channel research,
cf. [Lam,Kem83,Kem02]. Still it is extremely challenging to remove all covert
channels from a system.

Under the side channel view the entity leaking the information is not in-
tentionally cooperating in the act of leaking information, but the receiving
entity is still able to obtain information through the same types of resource
channels that are used for covert channels. There has been a lot of study of
side channels for hardware devices, cf. Kocher’s fundamental work [Koc]. He
showed that the execution time of a hardware device could leak information to
an unauthorized entity. But until very recently those side channel vulnerabili-
ties had no relevance for the classical PC world and were only aimed towards
embedded security devices. However, starting with Trusted Computing efforts
[AFS,CEPW,EP,ELMP+,Pea,Smi1,TCG] there are proposals to improve pro-
cess isolation in the PC. This has created a new research-vector to examine the
many covert channels in the PC and to study their effectiveness as software side
channels, cf. [BB,Ber,BZBMP,HK,Per,ST,TSSSM,OST].

In this new PC software side channel arena the first shared resource to be
studied is the system cache, cf. [Ber,Per,OST]. Let us clarify the history of
this cache-based side channel. In the 90’s, [Hu,Tro] pointed out how the clas-
sical cache behavior (miss or hit) might be used as a potential side channel.
While none of them targeted the analysis of real cryptographic ciphers1, in 2002
Page [Pag02] presented a very detailed hypothetical cache-based side channel
against DES. Then, although the first experimental cache-based side channel
results against DES and AES were finally presented by [TSSSM], it was again
Page [Pag03] who, in 2003, explicitly described the foundations of the three
recent publications [Ber,Per,OST]. Indeed, [Pag03] characterized two different
cache-based side channels — the trace-driven and the time-driven cache attack
methodology.

Trace-driven methodology. Trace-driven vulnerabilities, cf. [Hu,Tro,Per,OST],
rely on the ability of the attacker to capture a profile of cache activity that
results from running the algorithm under attack. This requires that the attacker
can get access to a profile in which the cache-activity is observable and then
process it to extract the cache-activity profile from other profile content. The
result records if the cache produced a hit or miss for every access to memory.
From such a trace it is relatively easy to relate S-box accesses for AES and DES
assuming they are implemented via tables. By adapting the plaintext fed into

1 We note that [KSWH] pointed also out that the classical cache-behavior might give
raise to a side channel attack against cryptographic ciphers.



the algorithm and hence provoking different cache access patterns, the attacker
can uncover the values of the key dependent variables that cause this specific
cache behavior expressed in the trace profile.
Time-driven methodology. Time-driven attacks, cf. [Ber,HK,TSSSM], depend on
the fact that when one runs the algorithm under attack, the execution time is
effected directly by the number of cache misses. Using this relationship, the at-
tacker can make algorithm-specific, statistically based inferences about the state
during processing. Using this inference and a large number of measurements that
produces the desired feature, the attacker can relate the plaintexts to the key-
related variables and hence uncover their value. Because the core assumption of
time-driven attacks is statistical, they generally result in higher online workload
since the attack is dependent on enough statistical precision.

As time-driven cache-based side channel attacks appear to be much easier to
implement, it is not surprising that the first practical results were time-driven,
cf. [Ber,HK,TSSSM]. Namely, given the fundamental observations described in
Hu [Hu] and Page [Pag03] it is fairly straightforward to construct a pure software
cache-based side channel attack which is trace-driven. And indeed, using the core
idea of [Hu], [Per] and [OST] succeeded to implement trace-driven cache-based
side channels against RSA and AES.

Now, given the fact that cache-based side channel software attacks are a par-
ticular concern for modern security-efforts of all classical PC architectures it is
obvious that it is important to find efficient software modifications to protect
AES software against these kind of vulnerabilities. Also, this research is espe-
cially important as proposed hardware countermeasures such as those by Page
[Pag05] cannot be expected to be in place within the near future.

Our software mitigations strategy is based on three principles: (1) compact
tables, (2) frequently randomized tables and (3) pre-loading of relevant cache-
lines. Using all three countermeasures simultaneously in an efficient manner and
individually scaling them as appropriate for the power of the side channel adver-
sary sets our mitigation strategy apart from all previously proposed mitigations.

The paper is organized as follows. The next section introduces notations and
preliminaries which are used throughout the full paper. To study the effectiveness
of our mitigation strategies, we will also define in section 3 the concept of a side
channel adversarial threat model. Hereafter, section 4 successively develops the
mitigations we are proposing, and section 5 presents the experimental efficiency
and security results of the proposed mitigations. For completeness we also present
in the appendix the complete x86-assembly code of our software-mitigations.

2 Notations and Preliminaries

2.1 Description of AES

AES has been extensively described in the literature (e.g. [DR2]). We will here
only recall specific points needed throughout the present paper. We use a byte
as a contiguous sequence of eight bits {0, 1}8 taking values in {0, . . . , 255}.
AES deals with elements of n bytes (n = 16, 24 or 32) represented by b =
(b0 , . . . , bn−1). For the rest of the paper, we will use n = 16, but it is straight-
forward to extend our results to longer key sizes. Any plaintext pi is repre-
sented the same way, pi = (p0,i , . . . , p15,i), where pj,i is the j-th byte of pi.
A 16-byte key k = (k0 , . . . , k15) is expanded by KeyExpansion into 10 round

keys K(r) = (K
(r)
0 , . . . , K

(r)
15 ) for r = 0, . . . , 10; with k = K(0) (the number of

round equals 10, 12 or 14, respectively, when n is 16, 24 or 32). After an initial



AddRoundKey, AES performs r successive rounds where SubBytes, ShiftRows,
MixColumns and AddRoundKey are applied to a state. A state is defined as

x(r) = (x
(r)
0 , . . . , x

(r)
15 ) and it is the result of the r-th AddRoundKey. The ini-

tial state is obtained by the first AddRoundKey, i.e., x
(0)
j,i = pj,i ⊕ kj . We then

introduce the r-th round of a plaintext p
(r)
i = (p

(r)
0,i , . . . , p

(r)
15,i) as input of the

r-th AddRoundKey, i.e., x
(r)
j,i = p

(r)
j,i ⊕K

(r)
j . An encryption of plaintext p by AES

with key k produces a ciphertext c, denoted as c = EAES(p,k).
Popular software implementations of AES (OpenSSL [OpenSSL] for example)

usually perform the round operations with a granularity of a word (4 bytes). Each
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Here, T0, T1, T2, T3 are four lookup tables with 1 byte input and 1 word output

and K
(r)
i = (K

(r)
4i , K

(r)
4i+1 , K

(r)
4i+2 , K

(r)
4i+3) is the i-th word of the r-th round key.

Note that the last round uses another lookup table T4. The lookup tables are
precomputed and provide a noticeable increase of performances.

2.2 Large tables and caches

Let us briefly elaborate a little bit on the vulnerability caused by careless large
table AES implementations and the behavior of caches. For a thorough intro-
duction into caches we refer the reader to [Sha,MP]. For our purposes, a simple
mechanism like the following direct mapped cache suffices. With s and b being
respectively the number of cache lines and the size of a cache line, the main
memory is divided in contiguous blocks of b bytes. A data in main memory with
address a will be mapped into the cache line i := a mod s, as shown in the
following picture:

Fig. 1. Directly mapped cache.

During compilation of the AES program, the 1kB S-Box tables T0, T1, T2, T3

are given addresses in memory, from which their position in the cache will



be later derived. Consider now such an acceess through pj,i ⊕ kj (for a j ∈
{0, . . . , 15}). This will fetch into the cache b contiguous bytes of Tx[p∗j,i ⊕ kj ],
with 〈p∗j,i〉8−log

2
(b) = 〈pj,i〉8−log

2
(b) and x ∈ {0, . . . , 4}, where 〈·〉m denotes the

upper m most significant bits. That means that the side channel — cache miss

or hit — cannot distinguish byte accesses within a cache-line as the bytes inside
a cache-line are all “somehow” equivalent. This can also be observed through
the byte time-signature where peaks are gathered in sets of 28−log

2
(b) values. As

an example see Figure 2.
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Fig. 2. Signature chart for an individual byte. The X-axis represents values from 0
to 255 a particular byte can take, while the Y-axis gives the relative timing for each
individual value compared to the mean timing.

As aforementioned said, the cache can leak about the behavior of security
programs and cryptographic applications. Successful cache-based side channel
attacks have been recently presented in [Ber,OST,Per].

In one hand, Bernstein’s time-driven attack correlates measured encryption
times of a remote computer using a secret session key, with profiled encryption
times of a similar computer with a known session key. This kind of attack enables
the attacker to easily disclose a large percentage of the secret key.

On the other hand, access-driven attacks analyze the required time for the
processor to access specific memory location. Depending whether a specific mem-
ory data has been kept in cache or has been evicted by another process, program,
thread etc., a cache-hit or a cache-miss occurs on the next access. Osvik et al.

targeted AES implementations in various scenarios, while Percival managed to
spot usage of precomputed values during RSA encryption.

As the cache operates transparently for programs, preventing a variation
of execution times appears unrealistic — as already observed by [Ber]. For an
effective but simple example, consider how the execution time distribution (cf.
Fig. 3) of AES (openSSL) indicates a potential information leakages. According
to the central limit theorem, the distribution should be Gaussian; any divergence
from that should be considered as potentially harmful.

3 Discussion of a side channel adversarial threat model

To study the effectiveness of our mitigation strategies, we will now introduce the
notion of a side channel adversarial threat model. We do this in order to describe
the effectiveness of the mitigations separately from discussing the effectiveness
of an adversaries ability to exploit a software side channel vulnerability. In a
software side channel, the adversary is executing a spy process on a platform that
is also executing a crypto process in a multi-tasking environment. To study the
cache side channel, the important ingredient is the accuracy of the information
that the adversary can obtain about the cache accesses of the target process.
Thus, as we describe mitigations, we will discuss how frequently the spy process
would need to get data about the cache accesses of the target process in order
to defeat the mitigation.
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Fig. 3. Distribution of execution times for an unprotected openSLL implementation of
AES. The execution times are averaged, regarding the value of one fixed byte of the
plaintext, over a large number of random plaintexts (measurements have been taken
according to [Ber]). In this example, two visible peaks suggest higher density around
two timing accesses.

According to the above section 2.2, for AES the spy process is trying to obtain
information about which cache lines are being accessed by the crypto process
when the crypto process accesses the S-Box tables. Against an adversary who
is able to obtain precise information about all cache accesses, a mitigation for
the crypto process would be to access all cache lines of the tables each time it
needed to access any entry in the table. This would be quite inefficient. However,
this is probably a higher bar than is really necessary, since we do not know of
any method for a spy process to obtain this precise information. Thus, we will
present several different alternate methods for defending against more realistic
(and demonstrated) spy processes.

The first method we present involves using a compact S-Box table which
fills (on most modern processors) only 4 cache lines, and then accessing each of
the 4 cache lines in every round. This method will defend against an adversary
who is not able to observe cache access behavior more frequently than the time
required by the crypto process to execute an AES round, cf. [Ber,TSSSM]

The second method we present does the above process only for the first
and last rounds, but for the middle rounds (2 through 9), uses still larger S-
box tables (which is more efficient). The reason this may still be an effective
mitigation is because it is more difficult for the adversary to use information
about the cache accesses of the middle rounds. Instead of accessing every cache
line of these larger tables with every round, we permute the tables some number
of encryption blocks, thus further obscuring the information from cache accesses.
We conjecture that this method will effectively defend against an adversary who
is only able to obtain information about cache access behavior every few rounds.
This is perhaps conservative, since we also don’t know of an attack that would be
effective against this method by an adversary who was able to obtain information
for individual AES rounds.

Finally, we introduce a third method that may be an effective mitigation
even against an adversary who is able to observe cache access behavior multiple
times during a round of AES. This method also uses the compact S-Box tables,
and accesses each cache line in the table every round, but adds the additional
step of permuting the compact S-Box tables, and changing the permutation very
frequently.

In an expanded version of the present paper we will show how our various
adversary models can be fitted into the formal side channel attack models of



[CJRR,BGK]. This allows formal security proofs of our presented software mit-
igations against side channel adversaries of specified power.

In the remainder of the paper, we will give more precise descriptions and
security arguments for these mitigation methods, and discuss their performance
on experimental implementations.

4 Mitigations against cache-based side channel attacks

As already mentioned before we will now explain our three individual mitigations
strategies in more detail: (1) compact S-box table, (2) frequently randomized
tables, (3) pre-loading of relevant cache-lines. However, due the lack of space
and especially for the reason of interest we will present our mitigations in a more
compact form. Namely, we will present the use of the compact S-box (first and
last round) and the large-table based (inner) rounds only while making direct use
of a permutation P . Therefore, assuming that a permutation P is somehow given
and can be efficiently computed, we will show first how a permuted compact S-
box byte PinvS[0 : 255] and as well a large permuted table word T[0 : 511]
can be efficiently computed.

4.1 Constructing permuted S-box and inner round T table.

For later use, we show in figure 4 how to compute the randomized (via P )
compact S-box table PinvS and as well the randomized (via P ) large table T.

4.2 Permuted compact round

First, we will show how to efficiently use a single and permuted compact S-
box table (256 bytes-table) in a single AES round. As already pointed out by
[OST] (and easy derivable from our section 2.2), substituting the five big 1KB
tables (as used in openSSL) by a compact S-box table (256 bytes-table) reduces
dramatically the information leakage due to potential cache misses.

But, in contrast to [OST] we add additional protection mechanisms to the
use of a single compact table:

– As the 256-bytes table fits in only 4 cache-lines, we can now afford it to
pre-fetch all 4 cache-lines of the compact table into the cache prior to using
the table.

– Frequently permuting the compacted table with a new permutation injects
lots of entropy against adversaries which are relying on statistical success
probabilities.

The following figure 5 shows a permuted compact round with pre-fetching of
relevant cache-lines. The corresponding x86-assembler program is concluded in
the appendix. Also, thanks to the x86 SSE SIMD instructions, we observe that
the security-critical computations are totally constant time and are all done in
parallel without any branches.

4.3 Permuted non-compact tables

After having seen how to permute (via permuation P ) a compact round, we will
show now, how to compute the inner rounds by using the large permuted table
T from figure 4. The following figure 6 shows the corresponding pseudo-code,
while the corresponding x86-assembler program is concluded in the appendix.



input: Permutation P (with parameters A and B)
output: Permuted S-box PinvS[0 : 255] and inner round table T[0 : 511]

S-box is a 256-byte vector S[0 : 255];
(byte [0 : 255], word [0 : 511]) function permute S box(S[0 : 255], P );
begin

byte PinvS[0 : 255], m;
word T[0 : 511];

for all i do parallel PinvS[i] := 0;
for all j cache blocks in S do
begin

for all i entries in S do
begin

p := P (i);
m := if offset p is in cache block j then 255 else 0;
PinvS[j ∗ cacheblocksize + p mod cacheblocksize] : + = m ∧ S[i];

end
end
/* for version 2, build expanded table T for inner rounds from PinvS */
for all i ∈ [0 : 255] do
begin

word v1,v2,v3, c;

v1 := PinvS[i];
c := if v1 > 127 then 0x1b else 0;
v2 := (v1 ∗ 2) ⊕ c mod 256;
v3 := v1 ⊕ v2;
/* store twice so we can implement rotation by unaligned load */
T[2 ∗ i] := T[2 ∗ i + 1] := v2 ⊕ (v1 <<< 8) ⊕ (v1 <<< 16) ⊕ (v3 <<< 24);

end
return (PinvS,T);

end

Fig. 4. Constructing permuted S-box and inner round T table.



input: 16-byte vector b[0 : 15]
output: the result of applying one AES-round transformation to b

permuted S-box is a 256-byte vector PinvS[0 : 255];
as permutation P we simply implemented P (x) := (B + x) ∗ A mod 256

where A is odd;
/* P can be efficiently computed with SSE instructions */
r is a permutation of 16 bytes (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)

byte [0 : 15] function compact encrypt round(b[0 : 15], roundkey[0 : 15], A, B);
begin

byte v1[0 : 15], v2[0 : 15], v3[0 : 15], c[0 : 15];

for one representative i from each cache block of S, touch S[i];
for all i do b[i] := (b[i] + B) ∗ A mod 256;
for all i do v1[r[i]] := PinvS[i];
/* complete linear transform with SSE SIMD-instructions */
for all i do parallel c[i] := if v1[i] > 127 then 0x1b else 0;
for all i do parallel v2[i] := (v1[i] ∗ 2) ⊕ c mod 256;
for all i do parallel v3[i] := v1[i] ⊕ v2[i];
return roundkey ⊕ v2 ⊕ blrm4(v1, 1) ⊕ blrm4(v1, 2) ⊕ blrm4(v3, 3);

end

byte [0 : 15] function lbrm4(v[0 : 15], j);
begin

byte t[0 : 15];

for all i do parallel t[4 ∗ ⌊(i/4)⌋ + ((i mod 4 + j) mod 4)] := v[i];
return t;

end

Fig. 5. Permuted compacted round.



input: 16-byte vector b[0 : 15]
output: the result of applying one AES-round transformation to b

S-box is a 256-byte vector S[0 : 255];
T is a 2048-byte table for AES’s linear transform and PinvS

to enable unaligned rotates

byte [0 : 15] function inner round encrypt(b[0 : 15], roundkey[0 : 15]);
begin

byte t[0 : 15];
word w[0 : 3];

/* for performance we cannot touch all cache-lines in the inner rounds */
for all i do t[i] := (b[i] + B) ∗ A mod 256;
w[0] := Word(T, 8 ∗ t[0]) ⊕ Word(T, 3 + 8 ∗ t[5])⊕

Word(T, 2 + 8 ∗ t[10]) ⊕ Word(T, 1 + 8 ∗ t[15]) ;
w[1] := Word(T, 8 ∗ t[4]) ⊕ Word(T, 3 + 8 ∗ t[9])⊕

Word(T, 2 + 8 ∗ t[14]) ⊕ Word(T, 1 + 8 ∗ t[3]) ;
w[2] := Word(T, 8 ∗ t[8]) ⊕ Word(T, 3 + 8 ∗ t[13])⊕

Word(T, 2 + 8 ∗ t[2]) ⊕ Word(T, 1 + 8 ∗ t[7]) ;
w[3] := Word(T, 8 ∗ t[12]) ⊕ Word(T, 3 + 8 ∗ t[1])⊕

Word(T, 2 + 8 ∗ t[6]) ⊕ Word(T, 1 + 8 ∗ t[11]) ;
end

word function Word(x, y) ≡
extracts from byte array x 4 bytes at byte offset y and returns 32-bit word;

byte [0 : 3] function Bytes(x) ≡
returns a byte array for a given 32-bit word x;

Fig. 6. Permuted non-compact round.



5 Practical results of our mitigations

Although our aforementioned software mitigation strategies are very flexible and
allow various combinations with different security and performance strengths, we
simply tested the following configurations.

V1: All rounds compact, no permutation.

V2: Outer rounds (round 1 and round 10) are compact and the inner rounds
are all large (round 2 until round 9) and additionally tables are periodically
permuted.

V3: All rounds compact and tables are periodically permuted.

5.1 Performance

The following figure 7 succinctly summarizes our performance results when com-
paring the above three variants with the performance of the openSSL and the
best assembler implementation of the AES encryption/decryption algorithm.

Fig. 7. Performance of mitigations for AES.

5.2 Security

We verified experimentally that all of the methods described above are effective
in removing the timing vulnerabilities that were exploited by Bernstein [Ber].
This is easily visible from the following figure 8.

In the expanded (and complete) version of the present paper we will also
present our successful results of hedging AES software with our mitigations
against the very powerful adversaries implicitly given by [OST].
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Fig. 8. Distribution of execution times for our protected implementation (version V2)
of AES. The execution times are averaged, regarding the value of one fixed byte of the
plaintext, over a large number of random plaintexts (measurements have been taken
according to [Ber]). As expected, the distribution follows a Gaussian distribution.

6 Conclusions and recommendations for further research

In this paper, we have presented new methods and ideas to mitigate recently
demonstrated software side channel attacks. We have also presented appropriate
methods for discussing the effectiveness of such mitigations.

While Bernstein and OST [Ber,OST] also made numerous suggestions for
software methods for implementations of AES that would protect against cache-
based software side channels, the methods that we present in this paper are dif-
ferent from any of the ones suggested previously. For example, although [OST]
suggested the possibility of using the small S-Boxes, they correctly argued that
this mitigation by itself would not defeat their powerful adversaries, but would
only require him to use more time. Moreover, they did also not suggest to com-
bine this with accessing all of the cache lines in the small S-Boxes in every round
or periodically permuting this compact S-box.

Additionally, we also introduced the concept of evaluating the mitigations
relative to the power of the adversaries. This evaluation is useful in the search
for efficient enough and secure enough mitigations to these new side channel
vulnerabilities. Moreover, this paper presented also specific experimental results
deducted from experiments with the mitigations proposed.

We believe also that this is only the beginning of a new research path par-
allel to the hardware side channel research. Indeed, we are convinced that more
software side channels will be discovered, which will result in new interesting mit-
igation methods. Further work formalizing the power of side channel adversaries
will also be useful.
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Appendix

First round and second round code for our mitigation version 2.

/* SSE version first round code--prefetch all 4 lines for outer rounds and

use compact S-box table with LT computation and does the permutation (x+B)*A

*/

mov edi,key // [ebp+16]

mov esi,inptr // [ebp+8]

movdqa xmm7,SSEmask

push ebp

movdqa xmm6,[SSE MULT+edi]

movdqa xmm5,[SSE BIAS+edi]

movdqu xmm0,0[esi]

pxor xmm0,[SSE KEY OFFSET+0*16+edi] // key addition

// begin round 1

paddb xmm0,xmm5 // add bias B

add ebp,[SSE SBOX+edi] // touch all sbox lines

movdqa xmm1,xmm7 // lower byte mask

pandn xmm1,xmm0 // pick off upper bytes (using not of mask)

add ebp,[SSE SBOX+64+edi] // touch all sbox lines

pmullw xmm0,xmm6 // multiplier A

add ebp,[SSE SBOX+128+edi] // touch all sbox lines

pand xmm0,xmm7 // lower byte mask

pmullw xmm1,xmm6 // note LSB is zero, and will stay zero

add ebp,[SSE SBOX+196+edi] // touch all sbox lines

por xmm0,xmm1 // merge bytes back

movd eax,xmm0 // pextrw eax,xmm0,0

pextrw ebx,xmm0,2

// try unaligned word loads with masking

movzx esi,al // 0, 5, 10, 15

movzx ebp,[SSE SBOX+esi+edi]

pextrw ecx,xmm0,5 // load 10, 11

movzx esi,bh // 5

mov esi,[SSE SBOX-1+esi+edi]

pextrw edx,xmm0,7 // load 14, 15

and esi,0xff00

or ebp,esi



movzx esi,cl // 10

mov esi,[SSE SBOX-2+esi+edi]

and esi,0xff0000

or ebp,esi

movzx esi,dh // 15

mov esi,[SSE SBOX-3+esi+edi]

and esi,0xff000000

or ebp,esi

movd xmm2,ebp

movzx esi,ah // do parts of last row 1 before shifting eax, ecx

mov ebp,[SSE SBOX-1+esi+edi]

and ebp,0xff00

movzx esi,ch // 11

mov esi,[SSE SBOX-3+esi+edi]

pextrw ecx,xmm0,4 // pextrw ecx,xmm2,4 // load 8,9

and esi,0xff000000

or ebp,esi

movd xmm4,ebp // save partial result

movzx esi,bl // 4, 9, 14, 3

shr eax,16 // finish load 2, 3 from initial movd

movzx ebp,[SSE SBOX+esi+edi]

movzx esi,ch // 9

mov esi,[SSE SBOX-1+esi+edi]

and esi,0xff00

or ebp,esi

movzx esi,dl // 14

mov esi,[SSE SBOX-2+esi+edi]

pextrw ebx,xmm0,3 // load 6, 7

and esi,0xff0000

or ebp,esi

movzx esi,ah // 3

mov esi,[SSE SBOX-3+esi+edi]

and esi,0xff000000

or ebp,esi

pextrw edx,xmm0,6 // load 12, 13

movd xmm3,ebp

movzx esi,cl // 8, 13, 2, 7

movzx ebp,[SSE SBOX+esi+edi]

unpcklps xmm2,xmm3 // combine first two rows

movzx esi,dh // 13

mov esi,[SSE SBOX-1+esi+edi]

and esi,0xff00

or ebp,esi

movzx esi,al // 2

mov esi,[SSE SBOX-2+esi+edi]

and esi,0xff0000

or ebp,esi

movzx esi,bh // 7

mov esi,[SSE SBOX-3+esi+edi]

and esi,0xff000000

or ebp,esi

movd xmm3,ebp

// finish last row

movzx esi,dl // 12, 1, 6, 11

movzx edx,[SSE SBOX+esi+edi]

pxor xmm1,xmm1 // preload zero



movzx esi,bl // 6

mov esi,[SSE SBOX-2+esi+edi]

and esi,0xff0000

or edx,esi

movd xmm0,edx

por xmm0,xmm4 // merge partial results for last row

unpcklps xmm3,xmm0 // combine 3rd and 4th rows

movdqa xmm0,SSEmask1B // preload constant

unpcklpd xmm2,xmm3 // combine all rows

// compact table linear transform

pcmpgtb xmm1,xmm2 // < 0 means top bit is on

movdqa xmm4,xmm2 // copy v1

paddb xmm2,xmm2

pand xmm1,xmm0 // masked load of 1b

movdqa xmm0,xmm4 // copy v1

pxor xmm2,xmm1 // v2

movdqa xmm1,xmm4 // copy v1

psrld xmm4,16 // v1 >> 16

movdqa xmm0,xmm1 // continue copying v1

pslld xmm1,8 // v1 << 8

pxor xmm0,xmm2 // v1 ^ v2

pxor xmm2,xmm4 // xor in v1 >> 16

psrld xmm4,8 // continue shifting: v1 >> 24

pxor xmm2,xmm1 // xor in v1 << 8

pslld xmm1,8 // continue shifting: v1 << 16

pxor xmm2,xmm4 // xor in v1 >> 24

movdqa xmm4,xmm0 // copy v1^v2

pslld xmm0,24 // (v1^v2) << 24

pxor xmm2,xmm1 // xor in v1 << 24

psrld xmm4,8 // (v1^v2) >> 8

pxor xmm2,xmm0 // xor in (v1^v2) << 24

pxor xmm2,xmm4 // xor in (v1^v2) >> 8

// end of linear transform

pxor xmm2,[SSE KEY OFFSET+1*16+edi] // key addition

The inner round code for version 2 of our mitigation that uses the big (permuted)
tables in the inner rounds.

// begin round 2

paddb xmm2,xmm5 // add bias B

movdqa xmm3,xmm7 // lower byte mask

pandn xmm3,xmm2 // pick off upper bytes (using not of mask)

pmullw xmm2,xmm6 // multiplier A

pand xmm2,xmm7 // lower byte mask

pmullw xmm3,xmm6 // note LSB is zero, and will stay zero

por xmm2,xmm3 // merge bytes back

movd eax,xmm2 // pextrw eax,xmm2,0

pextrw ebx,xmm2,2

movzx esi,al // 0

mov ebp,[SSE TABLES+8*esi+edi]

pextrw ecx,xmm2,5

movzx esi,bh // 5

xor ebp,[SSE TABLES+3+8*esi+edi]

pextrw edx,xmm2,7

movzx esi,cl // 10

xor ebp,[SSE TABLES+2+8*esi+edi]

movzx esi,dh // 15



xor ebp,[SSE TABLES+1+8*esi+edi]

movzx esi,ah // last row, 1

movd xmm0,ebp

mov ebp,[SSE TABLES+3+8*esi+edi]

movzx esi,ch // last row, 11

xor ebp,[SSE TABLES+1+8*esi+edi]

pextrw ecx,xmm2,4 // pextrw ecx,xmm2,4 // load 8,9

movd xmm4,ebp // stop last row for now

movzx esi,bl // 4

mov ebp,[SSE TABLES+8*esi+edi]

shr eax,16 // finish pextrw 2, 3 via movd

movzx esi,ch // 9

xor ebp,[SSE TABLES+3+8*esi+edi]

movzx esi,dl // 14

xor ebp,[SSE TABLES+2+8*esi+edi]

pextrw ebx,xmm2,3 // load 6,7

movzx esi,ah // 3

xor ebp,[SSE TABLES+1+8*esi+edi]

pextrw edx,xmm2,6 // load 12,13

movd xmm1,ebp // 2nd row done

movzx esi,cl // 8

mov ecx,[SSE TABLES+8*esi+edi]

unpcklps xmm0,xmm1 // combine first two rows

movzx esi,dh // 13

xor ecx,[SSE TABLES+3+8*esi+edi]

movzx esi,al // 2

xor ecx,[SSE TABLES+2+8*esi+edi]

movzx esi,bh // 7

xor ecx,[SSE TABLES+1+8*esi+edi]

movd xmm1,ecx // 3rd row done

movzx esi,dl // 12

movd xmm3,[SSE TABLES+8*esi+edi]

pxor xmm4,xmm3

movzx esi,bl // 6

movd xmm3,[SSE TABLES+2+8*esi+edi]

pxor xmm4,xmm3

unpcklps xmm1,xmm4 // combine 3rd and 4th rows in xmm3

unpcklpd xmm0,xmm1 // combine all rows in xmm2

pxor xmm0,[SSE KEY OFFSET+2*16+edi] // key addition

// begin round 3


