
Symbolic and Cryptographic Analysis of the Secure
WS-ReliableMessaging Scenario

Michael Backes1, Sebastian Mödersheim2, Birgit Pfitzmann1, and Luca Viganò2

1 IBM Zurich Research Lab, Switzerland
2 Information Security Group, ETH Zurich, Switzerland

Abstract. Web services are an important series of industry standards for adding se-
mantics to web-based and XML-based communication, in particular among enter-
prises. Like the entire series, the security standards and proposals are highly modular.
Combinations of several standards are put together for testing as interoperability sce-
narios, and these scenarios are likely to evolve into industry best practices. In the
terminology of security research, the interoperability scenarios correspond to security
protocols. Hence, it is desirable to analyze them for security. In this paper, we analyze
the security of the new Secure WS-ReliableMessaging Scenario, the first scenario to
combine security elements with elements of another quality-of-service standard. We
do this both symbolically and cryptographically. The results of both analyses are pos-
itive. The discussion of actual cryptographic primitives of web-services security is a
novelty of independent interest in this paper.

1 Introduction
Web services are a series of standards that add higher-layer semantics and quality of ser-
vice to web-based communication. They use XML as the basic format for all exchanged
content and SOAP as the basis for message exchanges [19]. In principle, web services are
independent of the underlying transport protocol; in practice, as the name suggests, typical
web protocols are commonly used. An important principle of web services is modular-
ity (see [28]). This principle was in particular applied to the design of quality-of-service
features like security and message ordering. Thus, these features are addressed by a set of
standards and pre-standard proposals that can, at least syntactically, be combined in a highly
flexible way. It is well-known, however, that combinations of security elements have to be
treated with care in the sense that many combinations may not yield the properties that one
might expect. The equivalent to the classic notion of security protocols in the web-services
space is interoperability profiles or scenarios. While primarily defined for interoperability
testing, they are not unlikely to evolve into industry best practices for common cases. At the
same time, they are at the level of concreteness where an analysis for well-known protocol
security properties is possible.

In this paper, we present the first such analysis for an interoperability profile that com-
bines features from the standards and proposals for security and another quality-of-service
area, reliable messaging. It is the Secure WS-ReliableMessaging Scenario [25], which re-
cently arose from the WS-ReliableMessaging and WS-SecureConversation Composability
Interop Workshop held in April 2005.1 It is based on the WS-Security standard [37] and the

1 The title of [25] contains “scenarios” in the plural, but for our purposes the document defines one
protocol and we thus use the singular.



recent standard proposals WS-ReliableMessaging [29] and WS-SecureConversation [33]
with a few additional references to WS-Trust [34] and WS-Addressing [18].

We present two types of analyses:
1. an automated analysis based on a number of symbolic protocol analysis techniques

under the assumption of perfect cryptography, and
2. an analysis closer to real cryptography based on explicit cryptographic assumptions on

the underlying cryptographic algorithms used.

Both analyses refer to the properties that are already informally stated in WS-
ReliableMessaging [29], where they are pointed out as desirable security properties in the
context of reliable sending of messages. WS-ReliableMessaging does not address how these
properties can be achieved but refers to a suitable combination with the techniques offered
by the security-specific web services standards. The Secure WS-ReliableMessaging Sce-
nario provides such a combination, and our analysis exemplifies that the properties can
indeed be achieved by the techniques offered by existing web services standards.

Our first, symbolic analysis has been carried out by employing the AVISPA Tool [3],
which is a push-button tool for the analysis of security-sensitive protocols and applications,
under the assumption of perfect cryptography. The AVISPA Tool relies on a modular and
expressive formal language for specifying protocols and their security properties, and in-
tegrates different back-ends that implement a variety of state-of-the-art automatic analysis
approaches. For our analysis, we have employed OFMC [8] and CL-AtSe [44], which are
the two more mature back-ends of the tool and which both perform protocol falsification
and bounded verification by employing a number of symbolic techniques (where some ba-
sic techniques are common to the two back-ends while other ones are back-end specific).

The Secure WS-ReliableMessaging Scenario has a structure that is far more complex
than standard security protocols. Hence, an important part of modeling the protocol in a
way feasible for automated analysis has been the search for a way to restrict the number
of permissible interleavings of sending and receiving events without excluding attacks, i.e.,
every attack on the original protocol should be possible also on the simplified version. Be-
low, we will first explain how we have built such a specification, and then illustrate the goals
that we have checked in our analysis. Roughly speaking, we have shown that a client and
a service mutually authenticate each other on certain messages that they exchange when
executing the protocol, and that these messages remain secret. These problems give rise to
an infinite search space, so that automated tools need to make restrictions on some aspects
of the problem in order to analyze it. We have considered different settings by imposing
bounds on the number of possible parallel protocol sessions, on the number of message se-
quences that can be considered in each session, and on the number of payloads per message
sequence. Neither OFMC nor CL-AtSe have reported any attacks for the settings we consid-
ered, and they have thus verified the Secure WS-ReliableMessaging Scenario with respect
to the modeled security properties for these settings.

Our second analysis is manual (and thus more time-consuming, less flexible to protocol
additions, and more prone to human error), but more realistic with respect to the crypto-
graphic primitives. For instance, we show that we can treat the occurring key derivation
via hash functions in the standard model of cryptography as pseudo-random functions if
applied to certain pairs of arguments. For the other primitives, symmetric and asymmetric
encryption as well as symmetric authentication and signatures, we can use standard defini-
tions. We also discuss how close existing theorems on justifying symbolic analyses such as

2



Long-term keys:

pkeX , skeX Public and secret encryption key of X ∈ {C, S}.

pksX , sksX Public and secret signature key of X ∈ {C, S}.

pksCA Public signature key of a certification authority CA.

CertX Public key certificate of X ∈ {C, S}. We have CertX = X, pkeX , pksX ,

SigCA(X, pkeX , pksX), where SigCA(·) denotes a signature computed by the
certification authority CA, valid with respect to pksCA.

Cryptographic primitives:

EncX(·) A public-key encryption scheme, denoting encryptions computed with public
key pkeX for X ∈ {C, S}.

SigX(·) A digital signature scheme, denoting signatures computed with secret key sksX

for X ∈ {C, S}.

SymEnck (·) A symmetric encryption scheme, denoting encryptions computed with secret
key k .

Mack (·) A message authentication code, denoting MACs computed with secret key k .

Hash(·) A hash function, e.g., SHA-256.

Fig. 1. Keys and cryptographic algorithms used in the Secure WS-ReliableMessaging Scenario.

our first one come to replacing a from-scratch cryptographic analysis such as our second
one. Note, however, that the Secure WS-ReliableMessaging Scenario, like all other current
communication security standards, does not prescribe that provably secure primitives in the
cryptographic sense are used, in particular for the symmetric primitives. Thus, we cannot
claim that we proved exactly the standard implementations under what became known as
standard cryptographic assumptions such as the hardness of factoring. Our cryptographic
analysis is modular, and some results can immediately be reused for other profiles, e.g., the
analysis of the initial key exchange based mainly on WS-Trust and that of the key derivation
using elements of WS-SecureConversation.

Both our analyses have positive results, i.e., they demonstrate that at the abstraction level
of each analysis, the protocol is error-free. Note that our two analyses are complementary (in
particular, neither of them is derived from the other), but we consider it interesting future
work to investigate how to link the two kinds of analysis for web services in the style of
previous proofs of soundness of Dolev-Yao models, e.g., see [1, 5–7, 21, 42].

Outline of the Paper. We start by describing the Secure WS-ReliableMessaging Scenario and
the corresponding security properties in Section 2. Sections 3 and 4 contain the symbolic
and the cryptographic analysis of the scenario, respectively. After reviewing further related
work in Section 5, we give concluding remarks and an outlook on possible future extensions
of this work in Section 6.

2 The Secure WS-ReliableMessaging Scenario
The Secure WS-ReliableMessaging Scenario is a two-party protocol initiated by a client C
and run together with a service S. It consists of three phases starting with a key-exchange

3



Quantities occurring in the protocols:

ID1, . . . , ID9 Message IDs of the individual protocol messages.

IDsk ID of the symmetric master key sk that is established in the initial key exchange
phase.

IDSeq Sequence ID denoting the sequence of exchanged messages.

N, N∗ Nonces used to compute the master key sk .

N1, N2 Nonces used to compute the authentication and encryption session keys sk 1 and
sk 2.

m Payload that should be reliably sent from C to S.

n Natural number denoting an acknowledged message.

k , k ′ Symmetric keys used within a hybrid encryption in the initial key exchange
phase.

sk Symmetric master key shared between C and S after the initial key exchange
phase. Derived from N and N∗ as sk = Hash(N, N∗).

sk1, sk 2 Symmetric session keys for authentication and encryption shared between C

and S after the start of the message sending. Derived from sk , N1, and N2 as
sk i = Hash(Ni, sk).

Fig. 2. Quantities used in the Secure WS-ReliableMessaging Scenario.

phase, followed by the message-sending phase which uses this key, and finished by a termi-
nation phase which cancels the validity of the exchanged keys.

In the following, we will use a straight font to denote cryptographic algorithms (Enc,
Sig, etc.), a straight font with capital letters to denote protocol-specific constants (RST,
RSTR, etc.), and an italic font to denote keys, identities, etc.

The key-exchange phase is based on public-key cryptography and hence requires a
mechanism to authenticate the respective public keys. The profile assumes a certification
authority CA, which has a secret key sksCA. Its public counterpart, pksCA, is known to
both C and S. The certification authority certifies the public keys of party X ∈ {C, S}
by signing the triple (X, pkeX , pksX) with its key sksCA, where pkeX and pksX denote
X’s public encryption key andX’s signature verification key, respectively. Note that pksCA

must have been conveyed in an authenticated manner to both C and S, and that pksCA must
not give certificates with the name X of an honest party to any other party.

Figures 1 and 2 summarize the notation for the keys held by both parties, the crypto-
graphic primitives we will be using, and the quantities involved in the protocol. For inter-
operability, the scenario uses specific cryptographic algorithms to implement the respec-
tive primitives — RSA-1.5 for public-key encryption, RSA-SHA1 for digital signatures,
AES128-CBC for symmetric encryption, and HMAC-SHA1 for message authentication
codes. In the cryptographic analysis that we carry out in Section 4, we do not fix specific
algorithms but require that the used algorithms satisfy the respective security definitions un-
der active attacks, e.g., indistinguishability under adaptive chosen-ciphertext attacks in the
case of public-key encryption. Efficient schemes that satisfy these definitions exist under
reasonable assumptions.

4



Composite Fields for Initial Key Exchange (Step 1-2):

body1 SymEnck(RST, S, N)

SigConf SigC(ID1, S, RST, C, body1,CertC)

header 1 EncS(k), SymEnck(SigConf )

body2 SymEnck′ (RSTR, ID sk , S, N∗)

header 2 EncC(k′), SymEnck′ (SigConf ),
SymEnck′ (SigS(ID2, C, RSTR, ID1, SigConf , body2))

Protocol Flows (Step 1-2 from WS-SecureConversation):

1. RequestSecurityToken: C −−
ID1, S, RST, C,CertC , header 1, body1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

2. RequestSecurityTokenResponse: C ←−
ID2, C, RSTR, ID1, CertC , header 2, body2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Fig. 3. The Key-exchange Phase, implemented via WS-SecureConversation.

2.1 Description of the Protocol
Before the protocol begins, each party X ∈ {C, S} has some starting information. Besides
its own encryption and signature keys, the client starts with the signature verification key
pksCA of the certification authority CA, a certificate CertC of its own public keys, and a
certificate CertS of the public keys of the service. The service starts only with the signature
verification key pksCA and with its own encryption and signature keys.

The protocol consists of nine steps. The first two steps constitute the key-exchange phase
of the protocol between the client and the service and essentially rely on the functionalities
offered by WS-SecureConversation; they are depicted in Figure 3. Similarly, the last two
steps cancel the validity of this key again as depicted in Figure 5. Steps three to seven
are depicted in Figure 4 and constitute the message-sending phase, which consists of the
creation of a message sequence, the secure sending of a message m, and the closing of
the sequence; each of these steps essentially relies on the functionalities offered by WS-
ReliableMessaging. An illustrative prose description of the individual protocol steps based
on Figure 3-5 is given in Appendix A.

The protocol is not simply a ping-pong protocol: after the key-exchange phase has been
completed, the client is allowed to start multiple sessions of the message-sending phase in
parallel and there are non-deterministic choices on the order of messages.

The necessary tests on the received messages follow the usual convention as described
in [36], e.g., an honest receiver of a message checks that the decrypted plaintexts are of the
correct format, that respective parts of the plaintext match corresponding parts sent unen-
crypted in the same message, and that the sender and receiver fields contain the expected
values. We do not always mention this explicitly in the following.

Possible Protocol Extensions. We moreover sketch a possible extension of the interoper-
ability scenario to reflect additional capabilities of the client and the service offered by the
WS-ReliableMessaging standard. The standard additionally allows a client to request an un-
received acknowledgment of a previously sent message, and it allows a service to ask the
client to re-send a message if it has not been received yet. This yields two additional steps
which are depicted in Figure 6. Their prose description is given in Appendix A.

5



Composite Fields for Message Sending (Step 3-7):

Session (IDsk , N2), (IDsk , N1)

body3 CS, C, IDsk

header 3 SymEncsk2
(Macsk1

(ID3, S, CS, C, body3))

body4 CSR, IDSeq

header 4 SymEncsk2
(SigConf ), SymEncsk2

(Macsk1
(ID4, C, CSR, ID3, body4))

body5 SymEncsk2
(PM, m)

header 5 SymEncsk2
(Macsk1

(ID5, S, PM, (IDSeq , n), body5))

body6 ()

header 6 SymEncsk2
(Macsk1

(ID6, C, SA, (IDSeq , n), body6))

body7 TS, IDSeq

header 7 SymEncsk2
(Macsk1

(ID7, S, TS, (TS, IDSeq ), body7))

Message Sending (Step 3-7), from WS-ReliableMessaging):

3. CreateSequence: C −−−−−
ID3, S, CS, Session , header 3, body3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

4. CreateSequenceResponse: C ←−−−−
ID4, C, CSR, Session , header 4, body4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

5. PayloadMessage: C −−−−−−−

ID5,S,PM,(IDSeq ,n),IDsk ,Session,

header5,body5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

6. SequenceAcknowledgment: C ←−
ID6, C, SA, (IDSeq , n), Session , header 6, body6
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

7. TerminateSequence: C −−−
ID7, S, TS, IDsk , Session , header 7, body7
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Fig. 4. The Message-sending Phase, implemented via WS-ReliableMessaging.

2.2 Security Properties
We consider a range of reasonable security requirements for the parties involved; some of
the requirements are explicitly mandated by the standards, others are optional and hold only
under stronger assumptions on the underlying cryptographic primitives.

The following security properties are explicitly pointed out in WS-ReliableMessaging:

– No Message Alteration: Payloads contained in the 5. PayloadMessage in a session be-
tween an honest client and an honest service cannot be altered by an adversary.

– No Message Disclosure: Payloads contained in the 5. PayloadMessage in a session be-
tween an honest client and an honest service remain secret from the adversary.

– Key Integrity and Confidentiality: If an honest client and an honest service established
a shared key sk after the first two steps of the protocol, both parties obtained the same
key. Moreover, this key is secret from the adversary.

– Authentication: If an honest service accepts a payload m presumably from an honest
client, then this honest client indeed sent this payload in the same session.

Accountability is also mentioned in WS-ReliableMessaging as one of the properties desir-
able in certain scenarios. As this scenario uses symmetric cryptography for the message
authentication, accountability in the sense of non-repudiation is clearly not a goal of this

6



Composite Fields for Session Closure (Step 8-9):

Session (IDsk , N2), (IDsk , N1)

body8 CST, ID sk

header 8 SymEncsk2
(Macsk1

(ID8, S, CST, C, body8)

body9 CSTR

header 9 SymEncsk2
(SigConf ),

SymEncsk2
(Macsk1

(ID9, C,CSTR, (IDsk , N1), body9)

Protocol Flows (Step 8-9, from WS-SecureConversation):

8. CancelSecurityToken: C −
ID8, S, CST, C, IDsk , Session , header 8, body8
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

9. CancelSecurityTokenResp: C ←−−−
ID9, C, CSTR, Session , header 9, body9
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Fig. 5. The Termination Phase, implemented via WS-SecureConversation.

scenario. The potential real-life accountability of this scenario is formally captured on the
protocol level by the message integrity property and otherwise given by non-protocol fac-
tors. We refer to Appendix C for additional useful properties that are not explicitly required
by the standard as well as for a refinement of the aforementioned properties tailored to the
Secure WS-ReliableMessaging Scenario.

3 Symbolic Security Analysis
The AVISPA Tool. We have carried out a symbolic analysis of the Secure WS-
ReliableMessaging Scenario by employing the AVISPA Tool [3], which is a push-button tool
for the automated validation, under the assumption of perfect cryptography and Dolev-Yao
adversary [26], of industrial-scale Internet security-sensitive protocols and applications. A
user interacts with the AVISPA Tool by specifying a security problem (a protocol paired
with a security property that it is expected to achieve) in the High-Level Protocol Specifica-
tion Language HLPSL [22], which is an expressive, modular, role-based, formal language
that allows for the specification of control flow patterns, data structures, alternative adver-
sary models, complex security properties, as well as different cryptographic operators and
their algebraic properties. The AVISPA Tool automatically translates a user-defined security
problem into an equivalent description of an infinite-state transition system that is then input
to the back-ends of the AVISPA Tool. The back-ends search the transition system for states
that represent attacks on the intended properties of the protocol.

The current version [3] of the tool integrates four back-ends that implement a variety
of state-of-the-art automatic analysis techniques, ranging from protocol falsification (by
finding an attack on the input protocol) to abstraction-based verification methods for in-
finite numbers of sessions. The back-ends are: the On-the-fly Model-Checker OFMC, the
Constraint-Logic-based Attack Searcher CL-AtSe, the SAT-based Model-Checker SATMC,
and the TA4SP verifier, which analyzes protocols by implementing tree automata based on
automatic approximations. All the back-ends of the tool analyze protocols by considering
the standard Dolev-Yao model of an active adversary that controls the network but cannot

7



Composite Fields for Protocol Extension:

ID5.1, ID5.1∗ Message IDs of the additional protocol messages.

body5.1 ()

header 5.1 SymEncsk2
(Macsk1

(ID5.1, C, NAck, (IDSeq , n), body5.1))

body5.1∗ ()

header 5.1∗ SymEncsk2
(Macsk1

(ID5.1∗ , C, AR, (IDSeq , n), body5.1∗ ))

Resend and Ack Inquiries (Between Step 5 and 6, from WS-
ReliableMessaging):

5.1. NotAcknowledged: C ←−
ID5.1, C, NAck, (IDSeq , n), Session , header 5.1, body5.1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

5.1∗. AckRequested: C −
ID5.1∗ , C, AR, (IDSeq , n), Session , header 5.1∗ , body5.1∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Fig. 6. Extension of the Secure WS-ReliableMessaging Scenario with Resend Inquiries.

break cryptography; in particular, the adversary can intercept messages and analyze them
if it possesses the respective keys for decryption, and it can generate messages from his
knowledge and send them under any party’s name. Upon termination, the AVISPA Tool
outputs that the protocol was verified with respect to the specified security problem, that an
attack was found, or that the available resources were exhausted.

For our analysis of the Secure WS-ReliableMessaging Scenario, we have employed
OFMC [8] and CL-AtSe [44], which are the two more mature back-ends of the tool, with
better scope and performance. OFMC and CL-AtSe both perform protocol falsification and
bounded verification by employing a number of symbolic techniques. Some of these tech-
niques are back-end specific, while other ones are common to the two back-ends, such
as the lazy intruder technique to symbolically represent all the possible messages that the
Dolev-Yao adversary can generate. These techniques enable both OFMC and CL-AtSe to
handle protocols with complex message terms and in particular to model the Secure WS-
ReliableMessaging Scenario in its full complexity, without having to simplify the messages
that are exchanged.2

The Model. The back-ends of the AVISPA Tool have successfully validated (or found a
number of new attacks on) security protocols such as those in the Clark/Jacob library [23], as
well as Kerberos, IKE, SET, and other protocols proposed by standardization organizations
such as the IETF, ITU, W3C, Oasis, IEEE, 3GPP, and OMA. Similar analyses have been
carried out by other (semi-)automated tools such as [9, 16, 17, 27, 43].

The Secure WS-ReliableMessaging Scenario has a structure that is far more complex
than that of standard security protocols. Nonetheless, thanks to its expressiveness, HLPSL
allows us to completely model the protocol, i.e., to provide a formal specification of the
complex interactions between the two honest parties, which we can model as two separate
client and service programs that communicate over an insecure network controlled by a
Dolev-Yao adversary. However, such a model is too complex for automated analysis as

2 The complexity of the Scenario prevents the usage of SATMC or TA4SP. We hope to soon be able to
report on the analysis with these back-ends as well; in particular, if analysis with TA4SP succeeded,
then that would prove that the protocol is safe for secrecy goals for any number of sessions.

8



even for a limited number of sessions, the set of permissible interleavings of sending and
receiving events is enormous. For instance, the messages sent by the client may arrive in any
order at the service. Additionally, both the client and the service can send “administrative”
messages, i.e., acknowledge messages, request the retransmission of messages, or request
the acknowledgment of messages. An important part of modeling the protocol in a way
feasible for automated analysis has thus been the search for a way to restrict the number of
interleavings without excluding attacks, i.e., such that any attack on the original protocol is
possible also on the simplified version.

We have performed a step-by-step simplification of the client and service programs,
whereby we have showed that these simplifications do not exclude any attacks.3 As we
lack space to give the HLPSL specification here due to its complexity and the amount of
explanation that would be necessary, we only sketch the main ideas behind our HLPSL
specification. In particular, we briefly illustrate the simplifications we have carried out for
the client program; the ones for the service program are similar, and more details can be
found in Appendix B.

In order to simplify the client, note, firstly, that it is not a restriction if the client sends
in one transition all the messages that it wishes to transmit via the 5. PayloadMessage

step as soon as it has received the 4. CreateSequenceResponse message. Secondly, the
client can neglect any requests of step 5.1. NotAcknowledged from the service to retrans-
mit messages, since the Dolev-Yao adversary has seen all messages and can thus replay
them to the service if this is necessary for an attack. Hence, we can consider a simplified
client program that, having sent all its payload messages, simply waits for acknowledg-
ment messages (6. SequenceAcknowledgment) or, after timing out, requests acknowledg-
ment from the service (5.1∗. AckRequested). Thirdly, since the Dolev-Yao adversary can
intercept all responses from the service, it might deliberately make the client produce ac-
knowledge request messages. Hence we can assume that the adversary can obtain acknowl-
edge request messages of step 5.1∗. AckRequested for every payload message. No attacks
are therefore excluded if the client program sends with every 5. PayloadMessage also an
5.1∗. AckRequested message.

These simplifications yield a client program that behaves as follows in every message
sending phase: it sends all payload messages together with the corresponding requests for
acknowledgment in one step, then waits until all messages are acknowledged, and finally
sends a 7. TerminateSequence message.

Goals. Let us define the security-relevant messages of the Secure WS-ReliableMessaging
Scenario to be the key-material (sk, sk1, and sk2) and all payloads transmitted with a
5. PayloadMessage. For our symbolic analysis, we have specified a number of secrecy and
authentication goals (giving rise to different HLPSL security problems for the Scenario):

– secrecy of all security-relevant messages, and
– mutual authentication between client and service on all security-relevant messages.

We model these goals by labeling several transitions in the HLPSL specification with special
events that express the meaning of the transition with respect to the goals of the protocol.

3 The simplified (restricted) version of the protocol that we obtain in this way is only useful for the
formal analysis, not for the practical deployment of the protocol: for instance, since a Dolev-Yao
adversary can replay old messages arbitrarily if this is necessary to mount an attack, we can restrict
the model to client programs that never retransmit old messages.

9



First, whenever a client c that believes to talk with service s creates a security-relevant
message m, then it generates a secret event secret(m,{c,s}) expressing that m must
remain secret between the parties in the specified set, in this case c and s. This allows us
to define a violation of secrecy by a state of the transition system in which the adversary
knows a message m for which a secrecy event has occurred with a set of parties to which
the adversary does not belong. Second, we define violations of authentication by labeling
the transitions with witness and request events. Whenever a party a that believes to talk
with another party b first “handles” some security-relevant message m (i.e., either creates it
or receives it for the first time), then it generates an event witness(a,b,id,m) where
id is an identifier that uniquely determines the purpose of the message in the protocol.
This witness event expresses that a uses message m for communication with b and for
purpose id. The service s generates an event request(s,c,id,m) when it receives a
payload m (supposedly) from the client c with index id. Similarly, if the client c receives
the acknowledgement for the id-th payload (supposedly) from the service s, and if c has
previously sent m as the id-th payload, then c generates the eventrequest(c,s,id,m).
Similar request events are generated for the authentication on the key-material. (Intuitively,
request events express that a party begins to rely on the agreement with another party on the
specified value.)

A violation of authentication is then defined as any of the two following situations. First,
weak authentication is violated whenever there is a request(b,a,id,m) but no match-
ing witness event witness(a,b,id,m), i.e., a party b believes a message m to come
from a, but a has never sent m, at least not for this purpose. Second, strong authentication
is violated whenever weak authentication is, or whenever a request event occurs more fre-
quently than the corresponding witness event (i.e., by a kind of replay, the adversary made
party b accept a message more often than it was actually said by a). Note that these goals
are equivalent to Lowe’s [41] notions of non-injective and injective agreement, respectively.

The security problems that we obtain by modeling these goals cover the main security
properties stated for the Secure WS-ReliableMessaging Scenario in Section 2.2 as follows:

– secrecy of all security-relevant messages covers no message disclosure and key confi-
dentiality,

– mutual authentication between client and service on all security-relevant messages cov-
ers no message alteration, key integrity, and authentication.

Bounds of the Analysis. The security problems associated with the Secure WS-
ReliableMessaging Scenario give rise to an infinite search space, so that, in order to analyze
this space, automated tools need to make some restrictions, i.e., to impose some bounds to
consider relevant protocol execution and analysis settings. In the following, we will describe
the restrictions that we imposed in our analysis with OFMC and CL-AtSe.

In general, there is no bound on the number of parties and sessions of the protocol
that can be executed in parallel. While one can bound the number of parties, by the argu-
mentations of [24] or by the symbolic session technique of OFMC [8], the problem of an
unbounded number of sessions cannot be solved in general since it gives rise to undecid-
ability. Moreover, there are two similar problems of unboundedness in the protocol: there
is no bound on the number of payload messages to be exchanged or on the number of new
message sequences that can be started, i.e., the protocol contains unbounded loops. All these
problems give rise to an unbounded number of steps of honest parties, while both OFMC

10



and CL-AtSe currently require analysis settings with bounded numbers of steps of honest
parties.

In general, there is also no bound on the complexity of messages that the adversary can
generate. However, as we remarked above, both OFMC and CL-AtSe implement the lazy
intruder technique, which uses a symbolic representation to avoid explicitly enumerating
the possible messages that the Dolev-Yao adversary can generate, and which allows for an
analysis without restricting this parameter of the problem.

We have therefore analyzed the protocol with OFMC and CL-AtSe under the following
execution/analysis settings: there are at most three parallel protocol sessions, the client can
start at most two message-sending sequences per protocol session, and there are at most
three payload messages per message sequence. Neither OFMC nor CL-AtSe have reported
any attacks on the protocol for these analysis settings. In particular, for three parallel ses-
sions, both OFMC and CL-AtSe verified the protocol within three hours (while the verifi-
cation of smaller settings required between few seconds to a minute).

4 Cryptographic Security Analysis
In this section, we complement the symbolic analysis of the security properties of the WS-
ReliableMessaging Scenario from Section 3 by a cryptographic analysis. Thus we now an-
alyze the security of the scenario in a cryptographic setting where the cryptographic primi-
tives and the perfect cryptography assumption are replaced with actual cryptographic algo-
rithms and the corresponding security notions that reason about probabilistic polynomial-
time attackers. It is known that, even if the symbolic analysis is careful in distinguishing
primitives like symmetric encryption and authentication, as both the analyzed scenario and
the analysis in Section 3 do, and even if one assumes that an implementation is made with
primitives secure according to the strictest usual cryptographic definitions, the results of
such a symbolic analysis may not carry over to the real implementation. The most promi-
nent example is that it cannot be avoided in general that the length of encrypted payload
data, such as the values m in the PayloadMessage, leaks. Other problems that may occur in
general scenarios are due to the probabilism of secure public-key encryption, key-stealing
attacks, and manipulations of symmetric encryptions unless authenticated encryption [11,
10] is used in the implementation [5, 4]. Consequently, in a Dolev-Yao-style cryptographic
library designed to be implemented based on arbitrary cryptographically secure primitives
and to be usable in a secure way within arbitrary protocols with arbitrary security proper-
ties, both the abstraction and the realization must have certain idiosyncrasies. Hence, while
it might be interesting to augment a tool like the AVISPA Tool by the idiosyncrasies of the
Dolev-Yao style model of [5, 6, 4], and while implementing the primitives of WS-Security
with the extended realizations from those papers (e.g., some additional tagging and ran-
domization) might realize the goal of web service security to offer completely composable
primitives also in a semantic sense, neither has been done yet. Other work on bridging the
gap between symbolic and cryptographic security concentrated more on keeping very close
to standard symbolic and real versions at the cost of generality. However, at present none
of them covers the protocol class of Secure WS-ReliableMessaging, nor the security prop-
erties required. The seminal work [1] treats passive attacks only. Active attacks have been
considered in this context in [42, 40, 21]. First, however, each of these papers treats only
one cryptographic primitive, asymmetric encryption in [42, 21] and symmetric encryption
in [40]. Secondly, [42] only treats integrity properties, while [40] only treats the secrecy

11



of fixed, protocol-internal messages and [21] only treats the secrecy of nonces, i.e., ran-
dom values chosen within the protocol and not usable for operations (such as encrypting)
in that protocol. It may be interesting future work to extend such results on restricted us-
age of cryptographic libraries to the typical usage in WS-Security protocols. Our following
considerations can be seen as a step in this direction.

Given these shortcomings of the current methods for deducing the security in the crypto-
graphic setting from a symbolic proof, we do not try to do that, but base our proof directly on
existing cryptographic work that explored the security of encryption, signatures, and MACs
when combined in specific ways. In the following, we assume that the public-key encryption
system Enc be secure against adaptive-chosen ciphertext attacks (short IND-CCA2-secure),
that the symmetric encryption scheme be secure under adaptive chosen-plaintext attacks
(short IND-CPA-secure), and that the signature scheme Sig and the message authentication
scheme Mac be secure against adaptive chosen-message attacks (short IND-CMA-secure).
These are the commonly accepted security definitions of these primitives under active at-
tacks so that we omit their rigorous definition. Primitives secure in this sense exist under
reasonable assumptions.

Furthermore, we have to require that the hash function Hash used to compute the secret
key sk based on two secret nonces does not degenerate the randomness induced by the
nonces. This would be clear if we worked in the random oracle model; however, the specific
setting of the scenario allows us to work in the standard model with a sufficient condition
being that Hash, when applied to pairs, is a pseudo-random function in its first argument.

We obtain the following theorem (whose proof is postponed to Appendix D for the sake
of space), in which we assume that the Secure WS-ReliableMessaging Scenario is run as
a stand-alone protocol. This is not necessarily realistic for a web-services implementation;
then our approach may have to take policies into account as in [14].

Theorem 1. (Cryptographic Security of Secure WS-Reliable Messaging Scenario) If Enc is
IND-CCA2-secure, if Sig is IND-CMA-secure, if SymEnc is IND-CPA-secure, and if Hash,
when applied to pairs, is a pseudo-random function in its first argument, then key integrity
and key confidentiality are cryptographically fulfilled for the scenario, i.e., if the protocol is
run with a probabilistic polynomial-time adversary, the keys are authentic with overwhelm-
ing probability, and the keys are indistinguishable from fresh random keys given the view of
the adversary. If additionally Mac is IND-CMA-secure, then message integrity and no mes-
sage disclosure as well as all optional properties listed in Section C are cryptographically
fulfilled. 2

5 Further Related Literature
Work is currently underway on scaling-up formal analysis methods and tools to web ser-
vices security protocols, e.g., [12–15, 30], although none of these works performs a cryp-
tographic protocol analysis. In particular, the TulaFale tool [15] compiles descriptions of
XML/SOAP-based security protocols and properties into the applied pi-calculus and then
employs the ProVerif tool [16]. We considered employing also TulaFale for the automatic
symbolic analysis of Secure WS-ReliableMessaging, but its input language would first need
to be extended to express all the constructs of the profile, and we thus leave this analy-
sis and the comparison with our own symbolic analysis as future work. Recent work has

12



also considered the automated analysis of XML-based web services: [38] presents a formal
analysis of an encoding of the original XML messages into standard security protocol no-
tation, showing that this encoding is without loss of attacks. Based on this encoding, the
Casper/FDR tool can then check security properties for an unbounded number of sessions
thanks to the employed data independence technique (which is similar to the abstraction
techniques in TA4SP). The considered protocol, however, is simpler than the Secure WS-
ReliableMessaging Scenario (e.g. no open-ended exchange of payload messages) and its
analysis with Casper/FDR required simplifications of the message terms. It is thus not clear
if the method of [38] could also work on complex protocols such as the one considered in
this paper.

Another type of analysis of a web services security protocol is that of an interoperability
profile of WS-Federation in [32]. The analyzed profile [35] is a passive requestor profile,
i.e., the user is represented only by a browser. The emphasis therefore lies on treating a
browser in a protocol security proof. The analysis is by hand, and as only signatures and
secure channels occur as cryptographic primitives, there is not much discussion of detailed
properties of the cryptographic primitives in web services.

6 Conclusion and Outlook
We have given a symbolic and a cryptographic analysis of the security of the new Secure
WS-ReliableMessaging Scenario, which constitutes the first web services scenario to com-
bine security elements with elements of another quality-of-service standard. The results of
both analyses are positive, i.e., they are proofs as far as the techniques faithfully represent
the standards; these restrictions concern the cryptographic primitives and in the symbolic
case the analysis settings. Our symbolic analysis is a further step in the use of formal proof
tools for the validation of security protocols and web services under the perfect cryptog-
raphy assumption. Our cryptographic analysis constitutes an important first step to reason
about the security of web services in the more realistic setting where the perfect cryptogra-
phy assumption is replaced by the complexity-theoretic definitions of cryptography. Some
of the cryptographic results are of more general applicability in web-service security than
for the specific settings analyzed here.

As future work on the symbolic side, we have begun considering additional symbolic
analysis settings, as well as employing abstraction techniques for carrying out unbounded
verification. To this end, it would be particularly interesting not only to employ AVISPA’s
TA4SP, but also to investigate the relationships and possible complementarity of our analysis
with an analysis carried out by TulaFale/ProVerif, especially since the model-checkers that
we used implement different techniques than those of ProVerif (which combines symbolic
representations based on first-order logic and abstractions). Moreover, it would be of great
help to be able to exploit the automatic compilation provided by TulaFale and we will thus
investigate how to do so for the AVISPA Tool. We believe that the work of [31] will be
helpful here, as it provides a preliminary translation procedure from protocol descriptions
in HLPSL to descriptions in the applied pi calculus, which thus allows one to apply the
ProVerif tool to some existing HLPSL protocol specifications.

On the cryptographic side, it would be interesting to see in which respect one can weaken
the security requirements imposed on the cryptographic primitives without invalidating the
security properties. Furthermore, we intend to apply our techniques to other profiles and
scenarios and possibly even to a policy-based analysis similar to [14] on the symbolic side.

13



References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational soundness
of formal encryption. In Proc. 1st IFIP TCS, LNCS 1872, pp. 3–22. Springer, 2000.

2. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Proc.
EUROCRYPT 2002, LNCS 2332, pp. 83–107. Springer, 2002.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma, P.-
C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the Automated
Validation of Internet Security Protocols and Applications. In Proc. CAV’2005, LNCS 3576, pp.
281–285. Springer-Verlag, 2005. URL: www.avispa-project.org.

4. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style crypto-
graphic library. In Proc. 17th IEEE CSFW, 2004.

5. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations (extended abstract). In Proc. 10th ACM CCS, pp. 220–230, 2003. Full version in
IACR Cryptology ePrint Archive 2003/015, Jan. 2003, http://eprint.iacr.org/.

6. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable cryp-
tographic library. In Proc. 8th ESORICS, LNCS 2808, pp. 271–290. Springer, 2003.

7. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive
systems. In Proc. 1st TCC, LNCS 2951, pp. 336–354. Springer, 2004.

8. D. Basin, S. Mödersheim, and L. Viganò. OFMC: A Symbolic Model-Checker for Security
Protocols. International Journal of Information Security, 4(3):181–208, 2005.

9. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET Purchase Protocols. Journal of
Automated Reasoning, to appear.

10. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis
of the generic composition paradigm. In Proc. ASIACRYPT 2000, LNCS 1976, pp. 531–545.
Springer, 2000.

11. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or re-
dundancy in plaintexts for efficient constructions. In Proc. ASIACRYPT 2000, LNCS 1976, pp.
317–330. Springer, 2000.

12. K. Bhargavan, R. Corin, C. Fournet, and A. Gordon. Secure sessions for web services. In ACM
Workshop on Secure Web Services (SWS). ACM Press, to appear, 2004.

13. K. Bhargavan, C. Fournet, and A. Gordon. A semantics for web service authentication. In Proc.
31st POPL, pp. 198–209, 2004.

14. K. Bhargavan, C. Fournet, and A. Gordon. Verifying policy-based security for web services. In
Proc. 11th ACM CCS, pp. 268–277, 2004.

15. K. Bhargavan, C. Fournet, A. Gordon, and R. Pucella. TulaFale: A security tool for web servics.
In Proc. 2nd FMCO, 2003. To appear in Springer LNCS, Revised Lectures, 2004.

16. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc. 14th
IEEE CSFW, pp. 82–96, 2001.

17. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static validation of protocol
narration. Journal of Computer Security, to appear.

18. D. Box, F. Curbera et al. Web Services Addressing (WS-Addressing), Aug. 2004.
19. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and

D. Winer. Simple object access protocol (SOAP) 1.1, May 2000.
20. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In Proc. 30th

STOC, pp. 209–218, 1998.
21. R. Canetti and J. Herzog. Universally composable symbolic analysis of cryptographic proto-

cols (the case of encryption-based mutual authentication and key exchange). Cryptology ePrint
Archive, Report 2004/334, 2004.

14



22. Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani, S. Mödersheim, and
L. Vigneron. A High Level Protocol Specification Language for Industrial Security-Sensitive Pro-
tocols. In Proc. Workshop on Specification and Automated Processing of Security Requirements
(SAPS’04), pp. 193–205. Austrian Computer Society, 2004.

23. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0, 17. Nov. 1997.
24. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In Proc. 12th

ESOP, vol. 2618 of LNCS, pp. 99–113. Springer, 2003.
25. D. Davis, C. Ferris, V. Gajjala, K. Gavrylyuk, M. Gudgin, C. Kaler, D. Langworthy, M. Moroney,

A. Nadalin, J. Roots, T. Storey, T. Vishwanath, and D. Walter. Secure WS-ReliableMessaging
scenarios, Apr. 2005. ftp://www6.software.ibm.com/software/developer/
library/ws-rmseconscenar%io.doc.

26. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Informa-
tion Theory, 29(2):198–208, 1983.

27. B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols using Casper and
FDR. In Proc. Workshop on Formal Methods and Security Protocols (FMSP’99), 1999.

28. D. F. Ferguson, T. Storey, B. Lovering, and J. Shewchuk. Secure, reliable, transacted Web Ser-
vices – architecture and composition, Oct. 2003. Available at http://www-106.ibm.com/
developerworks/webservices/library/ws-securtrans%/.

29. C. Ferris, D. Langworthy et al. Web Services Reliable Messaging Protocol (WS-
ReliableMessaging), Feb. 2005.

30. A. Gordon and R. Pucella. Validating a web service security abstraction by typing. In Proc. 1st
ACM Workshop on XML Security, pp. 18–29, 2002.

31. A. Gotsman, F. Massacci, and M. Pistore. Towards an Independent Semantics and Verification
Technology for the HLPSL Specification Language. Electronic Notes in Theoretical Computer
Science 135(1):59–77 (Proceedings of the Workshop on Automated Reasoning for Security Pro-
tocol Analysis, ARSPA 2005), 2005.

32. T. Groß and B. Pfitzmann. Proving a WS-Federation Passive Requestor profile. In ACM Workshop
on Secure Web Services (SWS). ACM Press, to appear, 2004.

33. M. Gudgin, A. Nadalin et al. Web Services Secure Conversation Language (WS-
SecureConversation), Feb. 2005.

34. M. Gudgin, A. Nadalin et al. Web Services Trust Language (WS-Trust), Feb. 2005.
35. M. Hur, R. D. Johnson, A. Medvinsky, Y. Rouskov, J. Spellman, S. Weeden, and A. Nadalin.

Passive Requestor Federation Interop Scenario, Version 0.4, Feb. 2004. ftp://www6.
software.ibm.com/software/developer/library/ws-fpscenario2.d%oc.

36. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying security protocols. In
Proc. LPAR 2000, LNCS 1955, pp. 131–160. Springer, 2000.

37. C. Kaler et al. Web Services Security (WS-Security), version 1.0, Apr. 2002.
38. E. Kleiner and A. Roscoe. On the relationship of traditional and web services security protocols

(extended abstract). Unpublished manusscript, available from http://web.comlab.ox.
ac.uk/oucl/work/eldar.kleiner/, 2005.

39. H. Krawczyk. The order of encryption and authentication for protecting communications (or:
How secure is SSL). In Proc. CRYPTO 2001, LNCS 2139, pp. 310–331. Springer, 2001.

40. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adver-
saries. In Proc. 25th IEEE Symposium on Security & Privacy, pp. 71–85, 2004.

41. G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE CSFW, pp. 31–43,
1997.

42. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adver-
saries. In Proc. 1st TCC, LNCS 2951, pp. 133–151. Springer, 2004.

43. D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient automatic security
protocol analysis. Journal of Computer Security, 9:47–74, 2001.

44. M. Turuani. Sécurité des Protocoles Cryptographiques: Décidabilité et Complexité. Phd, Uni-
versité Henri Poincaré, Nancy, December 2003.

15



A Illustrative Description of the Individual Protocol Steps
In this section, we provide a flow-by-flow description of the Secure WS-ReliableMessaging
Scenario, based on Figure 3-5 for the steps of the original protocol, and based on Figure 6
for the auxiliary protocol steps.

A.1 Steps of the Original Protocol

1. RequestSecurityToken : The client first generates a fresh symmetric encryption key k
and a fresh nonce N and computes body 1 = SymEnck(RST, S,N). It then computes a
signature SigConf over (ID1, S,RST, C, body

1
,CertC) using its key sksC . (The name

SigConf reflects that this signature is called a signature confirmation in the scenario de-
scription since the service will include this signature in a subsequent protocol step to
confirm that it successfully received the signature.) The client then computes header 1 =
EncS(k), SymEnck(SigConf ), where the key pkeS used to compute EncS is part of CertS ,
and sends the 1. RequestSecurityToken message.

2. RequestSecurityTokenResponse : The service decrypts EncS(k) yielding k, then de-
crypts SymEnck(SigConf ) yielding SigConf . The service extracts CertC from SigConf ,
validates that CertC is a valid certificate with respect to the public key pksCA and veri-
fies the validity of SigConf with respect to the verification key pksC contained in CertC .
The service then decrypts body1 and aborts if this is not possible or the resulting cleartext
is not of the correct format (RST, S,N). The service then generates a fresh key k ′ and a
fresh nonce N∗, sets sk := Hash(N,N∗), and selects a unique key ID IDsk for sk . The
service then computes body 2 and header 2 as shown in the protocol description, where the
encryption EncC is computed with the public encryption key pkeC that is contained in the
certificate CertC , and sends the 2. RequestSecurityTokenResponse message.

3. CreateSequence : The client decrypts EncC(k′) yielding k′. It then decrypts the remain-
ing encrypted message parts with respect to k′, checks if the plaintexts are of the correct
form, and checks if the new signature is valid with respect to the public key pksS in the
certificate CertS . If so, the client extracts the nonce N ∗ and the key identifier ID sk and
computes the shared master key as sk := Hash(N,N ∗). The client may then open new
message sequences using the master key sk by first selecting two fresh nonces N1, N2 and
by computing keys sk i := Hash(Ni, sk) for i = 1, 2. The client then computes body 3 and
header 3 according to the protocol description and sends the 3. CreateSequence message.

4. CreateSequenceResponse : The service answers the sequence creation by first computing
the keys sk i from sk and Session and by decrypting header 3 with key sk2 and by checking
the validity of the contained message authentication code with respect to sk 1. If the code is
over a message of the correct form, the service computes body 4 and header 4 according to
the protocol description and sends the 4. CreateSequenceResponse message.

5. PayloadMessage : Once the client receives a response that the sequence has been es-
tablished, it can start to send payloads within that sequence. To uniquely identify a se-
quence, the client first selects a unique IDSeq denoting the ID of the sequence. The WS-
ReliableMessaging standard mandates that payloads be equipped with successive natural

16



numbers. The client can send the first payload m by constructing the message according to
the protocol description with n instantiated to 1. Honest clients are furthermore required to
be consistent in that they never send different payloads having the same sequence number,
e.g., as a response to a message resend inquiry. In the original interoperability scenario, this
message is called PingMessage because for concrete testing, a concrete payload, ping, was
also chosen.

6. SequenceAcknowledgment : At any point in time after the service has sent the
4. CreateSequenceResponse message and before it receives a 7. TerminateSequence mes-
sage (cf. below), the service is allowed to acknowledge receipt of already received payloads.
This is modeled in the 6. SequenceAcknowledgment message. Here n denotes either a sin-
gle natural number denoting an acknowledgment for the message with sequence number
n, or a range of numbers indicating an acknowledgment of all messages whose sequence
number is within this range.

7. TerminateSequence : If the client has received acknowledgments for all messages within
a sequence, it terminates the sequence by sending the 7. TerminateSequence message to the
service. This indicates to the service that the transmission of the respective messages within
the considered sequence has been successfully completed.

8. CancelSecurityToken : After a sequence has been terminated, the client can furthermore
ask to cancel the validity of the master key sk , i.e., it sends a message indicating to the ser-
vice that the key sk and all its derivates should be no longer considered for future sessions.
This is modeled using the 8. CancelSecurityToken message.

9. CancelSecurityTokenResponse : The service responds to the key cancellation by sending
a 9. CancelSecurityTokenResponse message, indicating that the previous message has been
successfully received and that the master key sk has been revoked.

A.2 Steps of the Extension of the Protocol

5.1. NotAcknowledged : After the service received a 3. CreateSequence message and be-
fore it receives a 7. TerminateSequence message, the service can ask the client to re-
send a message that it has not received yet. The corresponding message closely resem-
bles the 5. PayloadMessage where the number n denotes the number of the message that
should be re-sent. If a client receives a message of that form, it re-sends the corresponding
5. PayloadMessage for the considered number and message.

5.1∗. AckRequested : Similar to the previous flow, the client can request acknowl-
edgment for a message it previously sent to the service and for which it did not
get an acknowledgment. If the service receives such a request, it responds with a
6. SequenceAcknowledgment message if the corresponding message has been received,
otherwise with a 5.1. NotAcknowledged message.

B More About the Symbolic Security Analysis

B.1 The AVISPA Tool.
The AVISPA Tool [3] is a push-button tool for the automated validation, under the assump-
tion of perfect cryptography, of industrial-scale Internet security-sensitive protocols and

17



applications. It provides a modular and expressive formal language for specifying protocols
and their security properties, and integrates different back-ends that implement a variety of
state-of-the-art automatic analysis techniques, ranging from protocol falsification (by find-
ing an attack on the input protocol) to abstraction-based verification methods for both finite
and infinite numbers of sessions.

More specifically, a user interacts with the AVISPA Tool by specifying a security prob-
lem (a protocol paired with a security property that it is expected to achieve) in the High-
Level Protocol Specification Language HLPSL [22], which is an expressive, modular, role-
based, formal language that allows for the specification of control flow patterns, data struc-
tures, alternative adversary models, complex security properties, as well as different crypto-
graphic operators and their algebraic properties. The AVISPA Tool automatically translates
a user-defined security problem into an equivalent specification written in the rewrite-based
formalism Intermediate Format IF. An IF specification describes an infinite-state transi-
tion system amenable to formal analysis: this specification is input to the back-ends of
the AVISPA Tool, which implement a variety of techniques to search the corresponding
infinite-state transition system for states that represent attacks on the intended properties of
the protocol.

As we remarked above, for our analysis of the Secure WS-ReliableMessaging Scenario,
we have employed the back-ends OFMC [8] and CL-AtSe [44], which employ a number
of automated reasoning and simplification techniques that enable them to handle protocols
with complex message terms and in particular to model the Secure WS-ReliableMessaging
Scenario in its full complexity, without simplification of the messages that are exchanged.
Although the complexity of the Scenario prevents the usage of the back-ends SATMC and
TA4SP, we hope to soon be able to report on the analysis with these back-ends as well. In
particular, if analysis with TA4SP succeeded, then that would prove that the protocol is safe
for secrecy goals for any number of sessions (by over-approximation).

B.2 The Model.
The Secure WS-ReliableMessaging Scenario has a structure that is far more complex than
standard security protocols. Nonetheless, thanks to its expressiveness, HLPSL allows us
to completely model the protocol, i.e., to provide a formal specification of the complex
interactions between the two honest parties, which we can model as two separate client and
service programs that communicate over an insecure network controlled by a Dolev-Yao
adversary.

However, such a model is too complex for automated analysis as even for a limited
number of sessions, the set of permissible interleavings of sending and receiving events is
enormous. For instance, the messages sent by the client may arrive in any order at the ser-
vice. Additionally, both the client and the service can send “administrative” messages, i.e.,
acknowledge messages, request the retransmission of messages, or request the acknowl-
edgment of messages. An important part of modeling the protocol in a way feasible for
automated analysis has thus been the search for a way to restrict the number of interleav-
ings without excluding attacks, i.e., such that any attack on the original protocol is possible
also on the simplified version.

We perform a step-by-step simplification of the client and service programs, and we ar-
gue that these simplifications do not exclude any attacks. Note that the simplified (restricted)
version of the protocol that we obtain in this way is only useful for the formal analysis, not

18



for the practical deployment of the protocol: for instance, since a Dolev-Yao adversary can
replay old messages arbitrarily if this is necessary to mount an attack, we can restrict the
model to client programs that never retransmit old messages.

The following discussion will allow us to sketch the main ideas behind our HLPSL
specification. We do lack space, however, to give the HLPSL specification in full here due
to its complexity and the amount of explanation that would be necessary. As a concrete
example, we will give an excerpt of our specification in the next subsection.

Simplifying the Client. First, it is not a restriction if the client sends in one transition all the
messages that it wishes to transmit via the 5. PayloadMessage step as soon as it has received
the 4. CreateSequenceResponse message. Second, the client can neglect any requests of
step 5.1. NotAcknowledged from the service to retransmit messages, since the Dolev-Yao
adversary has seen all messages and can thus replay them to the service if this is necessary
for an attack. Hence, we can consider a simplified client program that, having sent all its pay-
load messages, simply waits for acknowledgment messages (6. SequenceAcknowledgment)
or, after timing out, requests acknowledgment from the service (5.1∗. AckRequested).
Thirdly, since the Dolev-Yao adversary can intercept all responses from the service, it might
deliberately make the client produce acknowledge request messages. Hence, we can assume
that the adversary can obtain acknowledge request messages of step 5.1∗. AckRequested for
every payload message. No attacks are therefore excluded if the client program sends with
every 5. PayloadMessage also an 5.1∗. AckRequested message.

These simplifications yield a client program that behaves as follows in every message
sending phase: it sends all payload messages together with the corresponding requests for
acknowledgment in one step, then waits until all messages are acknowledged, and finally
sends a 7. TerminateSequence message.

Simplifying the Service. The first simplification concerns the 5.1. NotAcknowledged

message. Whenever the service receives 5.1∗. AckRequested, but the corresponding pay-
load message has not yet been received, it answers with 5.1. NotAcknowledged to
make the client send the payload message again. An adversary can therefore obtain
the 5.1. NotAcknowledged message for every payload message sent by the client since,
by the client simplification described above, it also has the respective messages of
step 5.1∗. AckRequested. We thus let the service generate, and send to the adversary,
all such 5.1. NotAcknowledged messages as soon as the service has received the first
5. PayloadMessage. This simplification is not a restriction, but a slight over-approximation
of the situations that can occur. In general, it can happen that such an over-approximation
introduces false attacks, i.e., ones that do not work in the original model, but this has not
happened in the analysis of this protocol.

The second simplification concerns the 6. SequenceAcknowledgment message,
which we deal with in a similar way. As soon as the service has received all
5. PayloadMessage messages up to an index i, the adversary can easily obtain from him
the 6. SequenceAcknowledgment by sending the 5.1. AckRequested message (which, as
remarked before, the adversary knows at this time). We thus can simplify the service to
always directly send the sequence acknowledgment messages as soon as possible, i.e., as
soon as all messages up to a certain index are received.

The third simplification concerns the reception of 5.1∗. AckRequested messages by the
service. The service can reply to such a request in two different ways: if it has already re-

19



ceived all the payload messages for which the acknowledgement is required, then it will send
a 6. SequenceAcknowledgment message; otherwise, it will send a 5.1. NotAcknowledged

message for all payload messages it has not yet received. However, all these possible reply
messages by the service are already known to the adversary by the first and second sim-
plification above. We thus do need to process such 5.1∗. AckRequested messages from the
service program.

Let us now consider the 7. TerminateSequence message, which should only be gener-
ated by an honest client when it has received an acknowledgment for the entire sequence.
We cannot, however, directly derive a simplification of the service program from this, as we
cannot exclude that the adversary for some reason can somehow generate such a message
(possibly using messages from other protocol runs) and produce a confusion between ser-
vice and client. We therefore declare as an additional goal of our analysis that the service
can never receive a 7. TerminateSequence message before it has sent an acknowledgment
of all the messages that the client has sent. This is a reasonable additional goal and, given
this goal, we can safely simplify the service so that this 7. TerminateSequence message can
only be received after acknowledgment of all messages.

B.3 HLPSL Specification
As we remarked above, thanks to the expressivity of HLPSL, we have been able to formalize
a complete, generic HLPSL-specification of the Secure WS-ReliableMessaging Scenario
parameterized over the number of messages exchanged. Such a specification is, however,
too complex for automated analysis and we have thus devised the simplifications described
in the previous subsection. By applying these simplifications to our generic HLPSL specifi-
cation, we have obtained a specification which has some of these parameters as hard-wired
constants of the description. In particular, we have unrolled several loops and compressed
them into a single transition, e.g. that the client sends out all payload messages in one tran-
sition.

The resulting specification is over 10 pages long and we thus only briefly discuss an ex-
cerpt here (formal details about HLPSL, which we will not describe here, can be found in [3,
22]). Figure 7 shows one transition of the client role. This transition can fire when the client’s
state variable State is 2, which is the case when it has sent out a 3. CreateSequence mes-
sage and is waiting for a 4. CreateSequenceResponse. The pattern of this expected message
is described in the Rcv predicate: all those variables that are primed are learned during this
transition (and any value is acceptable in these positions) while all unprimed variables rep-
resent values determined already in previous steps. (Note that all identifiers that start with a
lower-case letter are constants.)

If the preconditions are satisfied, the client can start sending payload messages (accord-
ing to the 5. PayloadMessage format), but, as explained above, in our simplified model, the
client will now send out all his payload messages at once, together with all possible requests
for acknowledgment of the 5.1 ∗ .AckRequested format. Since, in our analysis settings, we
have limited the number of payload messages to 3, the client sends out 6 messages in this
transition (the Snd predicates). Note that primed variables like Msg_one’ on the right-
hand side of the transition that did not appear on the left-hand side and that are not part of

20



3. State = 2 /\
Rcv(ID4’.C.csr.IDsk.N2.IDsk.N1.{{ID1.S.rst.C.{rst.S.N}_K.

{C.PkeC.PksC}_inv(PksCA)}_inv(PksC)}_SK2.
{mac(SK1.ID4’.C.csr.ID3.csr.IDSeq’)}_SK2.csr.IDSeq’)

=|>
State’=3 /\

Snd(ID5_one’.S.ping.IDSeq’.one.IDsk.IDsk.N2.IDsk.N1.
{mac(SK1.ID5_one’.S.ping.IDSeq’.one.
{ping.Msg_one’}_SK2)}_SK2.{ping.Msg_one’}_SK2) /\

Snd(ID51star’.C.ar.IDSeq’.one.IDsk.N2.IDsk.N1.
{mac(SK1.ID51star’.C.ar.IDSeq’.one)}_SK2) /\

Snd(ID5_two’.S.ping.IDSeq’.two.IDsk.IDsk.N2.IDsk.N1.
{mac(SK1.ID5_two’.S.ping.IDSeq’.two.
{ping.Msg_two’}_SK2)}_SK2.{ping.Msg_two’}_SK2) /\

Snd(ID51star’.C.ar.IDSeq’.two.IDsk.N2.IDsk.N1.
{mac(SK1.ID51star’.C.ar.IDSeq’.two)}_SK2) /\

Snd(ID5_three’.S.ping.IDSeq’.three.IDsk.IDsk.N2.IDsk.N1.
{mac(SK1.ID5_three’.S.ping.IDSeq’.three.
{ping.Msg_three’}_SK2)}_SK2.{ping.Msg_three’}_SK2) /\

Snd(ID51star’.C.ar.IDSeq’.three.IDsk.N2.IDsk.N1.
{mac(SK1.ID51star’.C.ar.IDSeq’.three)}_SK2)

request(C,S,n1,N1) /\ request(C,S,n2,N2) /\
witness(C,S,one,Msg_one’) /\ secret(Msg_one’,{C,S}) /\
witness(C,S,two,Msg_two’) /\ secret(Msg_two’,{C,S}) /\
witness(C,S,three,Msg_three’) /\ secret(Msg_three’,{C,S})

Fig. 7. An excerpt of the HLPSL specification: a transition of the client role.

an equation (like State’=3) represent freshly generated values that the adversary cannot
predict.4

Finally, the transition generates several predicates relevant for the security properties.
With the request predicates, the client “requires” correspondence with the service on the
nonces of the initial request-security-token exchange. Also, for every payload message, the
client “declares” his intention to use it as the corresponding payload message and that it is
supposed to be a secret shared only with the service.

C Additional Security Properties and Refined Property Description
In this section, we give a more precise definition of the security properties informally stated
in Section 2.2. We capture these properties as follows, adapted to the scenario:

4 In some applications of the Scenario, the payload messages may be (partially) predictable or at
least guessable. The secrecy of payload message thus refers only to whether the Scenario itself
may reveal such values to an adversary.

21



– We treat no message alteration and authentication together as the following property
message integrity: Let an honest service S accept a 5. PayloadMessage with the param-
eters m (in body5), IDSeq , and n, and let C be the client identity seen by the service
in this session. Then if C is honest, it sent a 5. PayloadMessage with parameters m,
IDSeq , and n.

– No message disclosure is slightly refined as follows in the symbolic version: Let an
honest client send a 5. PayloadMessage with the parameter m, and let S denote the
service identity as seen by the client in this session. Then if S is honest, only S learns
m, assuming C and S do not reuse m. Cryptographically, we have to restrict this by
allowing the adversary to learn the length of m, while we can relax the precondition on
non-reuse of m, see Section 4.

– Key integrity and confidentiality are to some extent auxiliary properties used to show the
preceding properties. We refine them as follows: If an honest client derives a key sk in
Step 3 and sees S as the service identity, and if S is honest, then S has derived the same
key in Step 2 of a local session. If an honest server derives a key sk in Step 2 and sees C
as the client identity, if C is honest, and if S then accepts a CreateSequenceResponse

in the same session, then C has derived the same key in Step 3 of a local session. Fur-
thermore, in both cases, symbolically no other party learns the key. Cryptographically,
the key is indistinguishable from a random value at the time Step 2 has been finished.

The following properties are not explicitly required by the standard but they are useful
as well:

– Message freshness: If a service accepts a message as defined under message in-
tegrity, then the client sent the corresponding message not before the service sent its
CreateSequenceResponse message.

– Key freshness for client: If a client derives sk in Step 3, then the service started the
session in which it derived sk not before Step 1 of the client’s session.

– Correct Confirmation: If a client receives a message that confirms receipt of a message
by an honest service, the service has indeed received this message.

– Liveness: If an honest client sends a message to an honest service, and if the underly-
ing network guarantees that all messages are eventually delivered, then the client will
eventually receive a confirmation of the receipt of the message by the service.

– Successful session termination: If an honest client and an honest service successfully
terminated a session, both will no longer use the shared session keys sk1 and sk2.

– Successful cancellation of master key: If an honest client and an honest service suc-
cessfully canceled the validity of the key sk , both will no longer use the shared key
sk .

D Postponed Proofs
This section contains the proof of Theorem 1.

D.1 Existing Results on Nesting Encryption and Authentication
The security of the scenario crucially relies on a specific combination of public-key encryp-
tion and signatures in the key-exchange phase (respectively, the use of hybrid encryption

22



with signatures), and specific combinations of symmetric encryption and authentication in
the message-sending and termination phase. Before we start with the actual proof of secu-
rity, we briefly review existing security results for these combinations.

The key-exchange phase relies on a sign-then-encrypt construct Enc(Sig(·)), if we ig-
nore the hybrid encryption for the moment. It has been shown by An et al. that the sign-
then-encrypt construct guarantees authenticity and secrecy of the contained message if the
encryption and signature schemes satisfy the security definitions we outlined above, and if
the respective public keys have been exchanged in an authenticated manner [2].

In the message-sending and the termination phase, each message contains an
authenticate-then-encrypt construct Symenc(Mac(·)); the 5. PayloadMessage further-
more contains an encrypt-then-authenticate construct Mac(SymEnc(·)), since body 5 =
SymEnc(PM,m) is contained in the MAC. Both combinations have been extensively stud-
ied in the literature, in particular since they constitute crucial parts of SSL and IPSec. In
particular, Krawczyk has shown that under the security definitions we pointed out before,
the encrypt-then-authenticate construct guarantees both authenticity and secrecy of the con-
tained message, and that the authenticate-then-encrypt approach guarantees the authenticity
of the contained message [39].5 The results rely on the assumption that both parties share se-
cret encryption and authentication keys which are indistinguishable from randomly chosen
keys given the view of the adversary.

D.2 Analysis of the Key-Exchange Phase
Cryptographic Secrecy and Integrity of the Nonces N and N

∗ after Step 2 We first
show that in an execution between an honest client and an honest service, the nonces N
andN∗ exchanged in Step 1 and 2 of the protocol are cryptographically secure immediately
after Step 2, i.e., they are authentically distributed between C and S and indistinguishable
from random bitstrings of the same length, given the view of an arbitrary cryptographic
attacker. In the following, we assume that all nonces be of a length nonce len, which is a
polynomial in the security parameter k.

The security of the nonces essentially follows since we have a hybrid encryp-
tion of signatures with a fresh symmetric key in Step 1 and Step 2, combined with
the results of Section D.1. More precisely, instead of standard hybrid encryption
where each symmetric key is used for exactly one encryption, we have a construct
EncX(k), SymEnck(m′

1), . . . , SymEnck(m′

t) for a constant t. Security nevertheless holds
under our assumptions: k is indistinguishable from a random key given EncX(k), and
symmetric encryption with random keys is known to be secure for multiple encryp-
tions. Hence we can safely replace the hybrid encryption with public-key encryptions
Enc′X(m′

1
), . . . ,Enc′X(m′

t), where Enc′ denotes another secure public-key encryption
scheme.

We now apply this transformation to the first two steps of the key-exchange phase. Next
we exploit the results on the sign-then-encrypt construct, cf. Section D.1. The certificates
CertC and CertS ensure that the respective public keys are exchanged in an authenticated

5 It was also shown there that secrecy is not guaranteed in the authenticate-then-encrypt construct
in general, but that secrecy can be achieved if the construct additionally satisfies the definition of
integrity of ciphertexts; this is the case for, e.g., a standard MAC combined with CBC based on an
arbitrary block cipher.

23



manner, under our assumption that the public key of the certification authority is authenti-
cally distributed toC andS. Now we can deduce that the noncesN andN ∗ are authentically
exchanged in Step 1 and 2 since they are contained in a sign-then-encrypt construct with cor-
rectly distributed public keys. The additional occurrence ofN in SigConf and body 1 and of
N∗ in body2, which are not contained in an sign-then-encrypt construct, are no problem for
authenticity since they only impose additional tests upon message parsing. To establish the
secrecy of N and N∗, note that the sign-then-encrypt construct guarantees that N and N ∗

remain cryptographically secret in header 1 and header 2. However,N andN∗ occur as well
in body

1
and body

2
(and in SigConf , but there only as body

1
again), respectively, so that

we have to show that no information aboutN andN ∗ leaks from these body elements. This
however is an easy consequence of the IND-CCA2 security of the public-key encryption
system as it particularly ensures secrecy if the same key is used polynomially many times.

Secrecy and Integrity of the Key sk after Step 2 Although we now know that the pair
of N and N∗ has been authentically exchanged and that it is indistinguishable from a
pair of random bitstrings of the same length, we cannot conclude in general that sk :=
Hash(N,N∗) is indistinguishable from a random bitstring of the same length if we only
make normal cryptographic assumptions about the hash function.6 An easy way to show
the desired randomness would be to work in the random oracle model and to treat the
hash function as a random oracle. However, that would introduce a non-justifiable ideal-
ization [20]. Fortunately, we do not need that, but can remain in the standard model of
cryptography: We only require that the hash function, when applied to pairs, be a pseudo-
random function in its first argument. We define that a key sk ψ for the pseudorandom
functions is chosen as a random string of length nonce len(k) and that the pseudorandom
function works on messages of length nonce len(k) and, given a key sk ψ and a message
m, outputs r := Hash(m, sk ψ).

The definition of a pseudo-random function is that an adversary without access to sk ψ,
but given certain pairwise different messages m1, . . . ,mn, cannot distinguish the sequence
of outputs ri := Hash(mi, sk ψ) of this function from a series of random values. In our
case, sk ψ, being the nonce N ∗, is not completely random and secret. However, given the
indistinguishability result of Section D.2, standard cryptographic arguments show that the
pseudo-randomness of the values ri still holds with N∗ as the key, if no other information
becomes known aboutN∗ later. Indeed the nonceN∗ is never reused in Steps 3-9 or outside
this protocol.

The integrity of sk follows directly from that of N and N ∗ because it is the same deter-
ministic function of them for both parties.

D.3 Analysis of the Payload-Sending Phase and the Termination Phase
A similar derivation process as for sk is made for the keys ski = Hash(Ni, sk) for i = 1, 2,
where the same sk may be used for multiple such derivations, each time with new nonces
N1 and N2. In the following, let Keys(sk) denote the set of key-pairs (sk 1, sk2) that C has
derived from sk . Let further Keys(sk)[1] and Keys(sk )[2] denote the set of authentication

6 As an example, let Hash denote a hash function that is one-way and collision-free for a concrete
strong variant, and define Hash∗(m) := 2 · Hash(m). It is easy to show that Hash∗ is secure iff
Hash is secure but the hashes are always even and hence distinguishable from randomly chosen
elements of the same length.

24



keys and the set of encryption keys contained in Keys(sk ), respectively. As we have shown
that sk is indistinguishable from a random value after Steps 1 and 2, and as sk is not used in
Steps 3-9 except in these derivations, the same arguments as in Section D.2 show that each
(sk 1, sk2) ∈ Keys(sk) is indistinguishable from a pair of random values of this length for
the adversary.

Authenticity of these keys is not so easy to show as the client only sends the nonces Ni

in the unprotected message part Session . Assume that an adversary replaces one or both
of them by a different value N∗

i . Then the service obtains a corresponding key sk ∗

i that is
indistinguishable from a random value for the adversary (by the same argument as for the
correct nonce Ni). We first show that if sk∗

1 6∈ Keys(sk)[1] or if sk∗

2 6∈ Keys(sk)[2] the
probability is negligible that decrypting header 3 containing ID sk with key sk ∗

2 and testing
the validity of the resulting plaintext with key sk ∗

1
succeeds for the service.

If sk∗

1 6∈ Keys(sk)[1] then this would immediately contradict the security of the sym-
metric authentication scheme, which can be shown by an easy reduction where the new
adversary on the pure authentication key chooses its own key sk ∗

1
. If sk∗

2
6∈ Keys(sk)[2]

we construct an adversary A∗ against the pure encryption scheme. It constructs a message
µ as C would do in Step 3 and computes a MAC of µ with a random key sk 1. It hands this
MAC and an equally long string of zeros to the encryption oracle as two messages that it
tries to distinguish. When the encryption oracle returns a ciphertext c of either the MAC or
the zeroes, thenA∗ decrypts c with a random key sk 2. If the resulting plaintext π is a correct
MAC for µ, then A∗ decides that the MAC was decrypted. One can easily see that π is a
correct MAC in this scenario with random keys with essentially the same probability as in
the attack by A if the encryption oracle encrypted the MAC. In contrast, if it were a cor-
rect MAC with not negligible probability if the encryption oracle encrypted the zeroes, one
could again break the MACs. Hence this leads to a not negligible distinguishing probability
for A∗.

Now assume that an honest service S accepts a 5. PayloadMessage with the parame-
ters m (in body

5
), IDSeq , and n, and let C be the client identity seen by the service in

this session. We have shown in the previous step that m was authenticated using a key
sk∗

1
and encrypted with a key sk∗

2
such that sk∗

1
∈ Keys(sk)[1] and sk∗

2
∈ Keys(sk)[2].

Since IDSeq has been freshly generated by the service after Step 3 and since sk ∗

1
is un-

known to the adversary, we conclude that this MAC must have been newly created by
either C or S; otherwise, we could perform a reduction against the message authen-
tication scheme again. Since the service S does not create messages of the format of
5. PayloadMessage, this message must have been created by C and hence after C’s com-
pletion of Step 4. The encryption was performed with the unique key sk ′

2
that satisfies

(sk∗

1, sk
′

2) ∈ Keys(sk). We finally show that sk ′

2 = sk∗

2, i.e., if the message of Step 5
was generated using the key sk ′

2
for a message m, then using the key sk ∗

2
instead must not

give a message m′, i.e., we have to have SymEncsk ′

2

(PM,m) = SymEncsk∗

2

(PM,m′) and
at the same time SymEncsk ′

2

(Macsk∗

1
(ID5, S,PM, (IDseq , n), SymEncsk ′

2

(PM,m))) =

SymEncsk∗

2

(Macsk∗

1
(ID5, S,PM, (IDseq , n), SymEncsk∗

2

(PM,m′)) under the assumption
that IDseq is fresh. This means that two independent random encryption keys behave iden-
tically on large parts of the plaintext unchanged, which gives rise to a straightforward re-
duction against the security of the encryption scheme: The adversary gives the encryption
oracle a message (PM,m) and an equally long string of zeroes. It then decrypts the obtained
ciphertext with a random key sk ∗

2
. If the resulting plaintext π is of the form (PM,m′) for

25



some m′, then the adversary decides that the first message was encrypted. Similar to the
above proof, one can easily see that π is of this format with essentially the same probability
as in the attack byA which hence leads to a not negligible distinguishing probability for the
adversary attacking the encryption scheme.

For authentication, note that body 5 is contained within an authenticate-then-encryptcon-
struct. This guarantees the authenticity of body

5
and hence of m since we already showed

that the keys sk1 and sk2 are shared secretly and authentically between C and S. The addi-
tional occurrence of m in body5 outside of header 5 is no problem for authenticity since it
only imposes additional tests upon message parsing.

For the secrecy of m, we cannot simply argue in the same way since the authenticate-
then-encrypt construct does not necessarily guarantee secrecy. However, there is a nested
encrypt-then-authenticate construct in header 5, since body

5
is contained in the MAC. Al-

though this does not precisely match the standard construct Mac(SymEnc(·)) but looks
like Mac(ID3, S,PM, (IDSeq , n), SymEnc(·)), it is easy to see that this does not violate
the secrecy guarantee for the encrypted message as long as it does not additionally occur
in the MAC outside the encryption. Hence the message m contained in header 5 is secret.
We finally have to consider body

5
, which contains m and which is transmitted outside of

header 5. We have shown that sk 2 is secret from the adversary. Hence the secrecy of m
follows from the security definition of symmetric encryption.

We do not formally address the optional properties of message and key freshness, correct
confirmation, and liveness as defined in Appendix C, but they are easily derivable from the
proofs above or follow exactly the same proof pattern, respectively.

26


