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Abstract. The security and performance of pairing based cryptography
has provoked a large volume of research, in part because of the exciting
new cryptographic schemes that it underpins. We re-examine how one
should implement pairings over ordinary elliptic curves for various prac-
tical levels of security. We conclude, contrary to prior work, that the
Tate pairing is more efficient than the Weil pairing for all such security
levels. This is achieved by using efficient exponentiation techniques in
the cyclotomic subgroup backed by efficient squaring routines within the
same subgroup. 1

1 Introduction

In commercial cryptographic software libraries one typically employs Occam’s
Razor in limiting the number of implemented primitives and schemes to a mini-
mum. The advantages of this approach are threefold: it reduces the programming,
maintainence and security validation workload; it enables one to specialise and
hence highly optimise the core operations; and it reduces the library footprint
and usage of system resources. Around the time it was first proposed, one of the
main criticisms levelled at standard elliptic curve cryptography was that there
were too many options; it was hard for non-experts to decide on and construct
the types of field and curve needed to satisfy performance and security con-
straints. Two decades later, pairing based cryptography is in a similar state in
the sense that there are a huge range of parameterisation options, algorithmic
choices and subtle trade-offs between the two. Hence, there is a real need to
focus on a family of parameters which are flexible but offer efficient arithmetic
and allow one to focus on a limited number of cases.

1 The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability



Generally speaking, a pairing is a non-degenerate bilinear map

t : G1 × G2 −→ GT .

Here we assume this pairing takes the concrete form

t̂ : E(Fp) × E(Fpk/2) −→ F
×

pk

where E is the quadratic twist of an elliptic curve E defined over Fpk/2 . We
restrict our attention to the case of ordinary elliptic curves and assume that
#E(Fp) is divisible by a large prime n which also divides pk − 1 i.e., n is the
order of the subgroups on which the pairing based protocols will be based. We
let the respective subgroups of order n of the three groups involved be denoted
G1G2 and GT as is common in various papers on the subject.

Koblitz and Menezes [10] introduced the concept of pairing friendly fields.
These are Kummer extensions of Fp defined by the polynomial

f(X) = Xk + f0

for a values of p ≡ 1 (mod 12) and k = 2i3j. Generally one assumes that k is
even, which aids in efficiency due to the well known denominator elimination
trick. Following [10] we particularly focus on the cases k = 6, 12 and 24. We
let f(θ) = 0 and define Fpk = Fp[θ]. Many protocols based on pairings perform
arithmetic in the cyclotomic subgroup of F

×

pk , which is the subgroup of order

Φk(p). We denote this subgroup by GΦk(p); the group GT in the pairing above
is contained in GΦk(p). Hence if one is to implement pairing based protocols
efficiently with such fields then one needs to be able to implement arithmetic
efficiently.

The conclusion of [10] is that for high security levels the Weil pairing is to
be preferred over the Tate pairing. The main result of this paper is that by
optimising the exponentiation method used in the Tate pairing calculation one
can in fact conclude the opposite: that in all cases the Tate pairing is the more
efficient algorithm for all practical security levels.

In addition, we also look at efficient arithmetic in the group GΦk(p) which will
speed up both the Tate pairing and various protocols. This is inspired by work
of Lenstra and Stam [14, 15] who introduce such efficient arithmetic in a specific
family of finite fields of degree six, which are different from the pairing friendly
fields. In particular, by restricting to k = 6 Lenstra and Stam present algorithms
for arithmetic in the cyclotomic extension of Fp defined by the polynomial

g(X) = X6 +X3 + 1

when p ≡ 2 or 5 (mod 9). We shall call such constructions cyclotomic fields
of degree 6 in this paper. Lenstra and Stam present efficient squaring routines
both for the finite field Fp6 and for the cyclotomic subgroup GΦ6(p) of order
Φ6(p), again GT is contained in GΦ6(p). We let g(ζ) = 0 and define Fp6 , in this
case, by Fp[ζ]. We shall describe how the use of cyclotomic fields, as opposed



to the pairing friendly fields, can provide more efficient pairing algorithms when
k = 6. We present an analogue of these results for pairing friendly fields which
provides some efficiency improvement, but not as much as that achieved by
Lenstra and Stam for cyclotomic fields of degree six. We leave it as an open
research problem to generalise the results of Lenstra and Stam to cyclotomic
fields of degree different from six. The only generalisation known is for fields of
degree 6 · 5m [8], for which Lenstra and Stam’s technique trivially applies.

The paper is organised as follows. In Section 2 we recap on the most efficient
field arithmetic known for the two cases of finite fields mentioned above. In
Section 3 we briefly recap on some standard formulae for the cost of elliptic
curve operations. In Section 4 we recap on the model for estimating the cost
pairings which was proposed by Koblitz and Menezes. Then in Section 5 we
detail the implications of this model for our choice of finite fields.

2 Finite Field Operations

We letm,M,M (resp. s, S, S) denote the time for multiplication (resp. squaring)
in the fields Fp,Fpk/2 and Fpk . In our analysis we shall assume that addition
operations are cheap, however in a practical implementation for certain bit sizes
the operation counts and algorithm choices we give may not be optimal due to
this simplifying assumption.

We first note that if one is computing products (resp. squares) of polynomials
of degree 2i3j−1 over Fp then using the Karatsuba and Toom-Cook methods for
multiplication and squaring this requires v(k) multiplications (resp. squarings)
in the field Fp, where v(k) = 3i5j .

2.1 Pairing Friendly Fields

As before we let k = 2i3j ≥ 6, let p denote a prime congruent to 1 modulo 12
and modulo k and define Fpk via the polynomial f(X) = Xk + f0. We assume
throughout that f0 has been chosen so that multiplication by f0 can be performed
quickly by simple additions rather than a full multiplication. Arithmetic in the
subfield Fpk/2 is performed using the polynomialXk/2+f0, and mapping between
the two representations is relatively straightforward.

The best algorithms for multiplication and squaring in Fpk and Fpk/2 are
the standard ones based on Karatsuba and Toom-Cook. Hence, in this case we
obtain

M = M/3 S = S/3

and
M ≈ v(k)m S ≈ v(k)s

where v(k) = 3i5j.
Inversion in the field Fpk is computed by reduction to inversion in the subfield

Fpk/2 . If we let α =
∑k−1

i=0 aiθ
i ∈ Fpk then we can write

α = α0 + α1θ



where α0, α1 ∈ Fpk/2 and are given by

α0 =

k/2−1
∑

i=0

a2iθ
2i and α1 =

k/2−1
∑

i=0

a2i+1θ
2i.

We can thus compute
∆ = α2

0 − θ2α2
1,

and

α−1 =
α0 − α1θ

∆
.

Inversion in Fpk is therefore accomplished using two squarings, one inversion,
and two multiplications in Fpk/2 . Similarly, using the same idea one can reduce
inversion in a cubic extension to three squarings, eleven multiplications and one
inversion in the base field [9]. Iterating down through the subfields, for pairing-
friendly fields inversion can thus be performed with just one inversion in Fp, and
a handful of multiplications. We summarize these costs, for the extensions which
will interest us,

I2 = 2s+ 2m+ ι, I3 = 3s+ 11m+ ι,
I4 = 8s+ 8m+ ι, I6 = 13s+ 35m+ ι,
I8 = 26s+ 26m+ ι, I12 = 43s+ 51m+ ι,
I24 = 133s+ 141m+ ι.

where It denotes the cost of inversion in Fpt and ι denotes the cost of inversion
in Fp.

The Frobenius operation in pairing friendly fields is also efficiently computed
as follows. If we define Fpk = Fp[θ]/(f(θ)) then the Frobenius operation on the
polynomial generator θ can be easily determined via

θp = θk(p−1)/k+1 = (−f0)
(p−1)/kθ.

For later use we let g = (−f0)
(p−1)/k ∈ Fp hence θp = g · θ. Also now note that

powers of the Frobenius operation are also easy to compute via

θpi

= gi · θ.

We also note that since k is even and −f0 is a quadratic non-residue that we
have

gk/2 = (−f0)
(p−1)/2 = −1.

In summary we conclude the operation counts for the various cases are as follows:

Fpk/2 Fpk

k Mul Sqr Mul Sqr
6 5m 5s 15m 15s
12 15m 15s 45m 45s
24 45m 45s 135m 135s



We now turn to the case of arithmetic in the subgroup GΦk(p). For this subgroup
we have that inversion comes for free. Let α ∈ GΦk(p), then since Φk(p) divides

pk/2 + 1 we have that

α−1 = αpk/2

.

This leads to an inversion operation which can be performed using only k/2
negations in Fpk .

We can also improve the performance of squaring in this subgroup using a
trick originally proposed by Lenstra and Stam [14, 15] in the context of finite
extension fields defined by cyclotomic polynomials of degree 6. We first define

α =

k−1
∑

i=0

aiθ
i

where we now think of the coefficients ai as variables. We then compute sym-

bolically αpk/3

and αpk/6

. One can then derive a set of equations defining the
elements of the group GΦk(p) via

αpk/3

· α− αpk/6

=
k−1
∑

i=0

viθ
i.

The variety defined by v0 = v1 = · · · = vk−1 = 0 defines the set of elements of
GΦk(p). This follows since

Φt(X) = Xk/3 −Xk/6 + 1

for all values of k arising in pairing friendly fields. As an example for the case
k = 6 we obtain the set of equations

v0 = −a0 + a0
2 + f0a5a1 − f0a3

2 + f0a2a4,

v1 = g · (−a1 + 2f0a5a2 − f0a3a4 + a0a1) ,

v2 = (1 − g) ·
(

a2 − a1
2 + a0a2 − f0a5a3 + f0a4

2
)

,

v3 = a3 + 2a0a3 − a2a1 + f0a5a4,

v4 = g ·
(

a0a4 + f0a5
2 + a3a1 − a2

2 + a4

)

,

v5 = (1 − g) · (−a5 + a0a5 − 2a4a1 + a3a2) .

Note that for any k × k matrix Γ that

α2 = α2 + b · (Γ · vt),

where b = (1, θ, θ2, . . . , θk−1) and v = (v0, v1, . . . , vk−1). Hence, to find different
forms of the squaring operation we simply need to select a matrix Γ which
produces equations for squaring which are efficient.

A choice for Γ which seems to work well for k = 6, 12 and 24 is to set
Γ = diag(d1, d2, d3, d1, d2, d3, . . . , d1, d2, d3) where

d1 = 2, d2 = 2gk/6 − 2, d3 = −2gk/6.



In this case for k = 6 we obtain the following formulae for squaring, if β =
∑5

i=0 biθ
i = α2,

b0 = −3 f0a3
2 + 3 a0

2 − 2 a0,

b1 = −6 f0a5a2 + 2 a1,

b2 = −3 f0a4
2 + 3 a1

2 − 2 a2,

b3 = 6 a0a3 + 2 a3,

b4 = 3 a2
2 − 3 f0a5

2 − 2 a4,

b5 = 6 a4a1 + 2 a5.

The formulae for k = 12 and k = 24 can be found in the Appendix.
Ignoring multiplication by f0 and by small constants we then derive the

following table detailing the comparative cost of squaring in both Fpk and the
subgroup GΦk(p).

k Fpk GΦk(p)

6 15s 6s+ 3m
12 45s 12s+ 18m
24 135s 24s+ 84m

Hence, we see that we have a significant improvement in the squaring operation
for the subgroup GΦk(p) although this improvement decreases as k increases.

2.2 Cyclotomic Fields of Degree 6

We recap on the techniques of [14, 15] for the finite fields Fp[ζ], with p ≡ 2
(mod 9). Elements in Fp6 are represented in the basis {ζ, ζ2, ζ3, ζ4, ζ5, ζ6}. Using
this representation multiplication in Fp6 can be performed using 15 multiplica-
tions in Fp (note that [14] gives the figure as 18 multiplications as the paper
only considers Karatsuba and not Toom-Cook multiplication).

Squaring can be performed more efficiently using the fact that if we write
α = α0ζ + α1ζ4, where αi are polynomials in ζ of degree at most two, then one
has

α2 = (α0 − α1)(α0 + α1)ζ
2 + (2α0 − α1)α1ζ

5.

Since, the αi are of degree at most two this above formulae requires 10 multipli-
cation in Fp to perform a squaring operation in Fp6 .

Arithmetic in the subfield Fp3 is performed as in [9]. We set ψ = ζ+ ζ−1 and
define Fp3 = Fp[ψ]. As a basis for Fp3 we take {1, ψ, ψ2 − 2}. Via Toom-Cook
multiplication (resp. squaring) requires 5 multiplications (resp. squares) in Fp.
As noted in Section 2.1 inversion in Fp3 can be performed in 11 multiplications
in Fp and one inversion in Fp.

Using this subfield inversion an inversion operation can be defined for Fp6 .This
inversion is carried out, in the language of [9], by mapping our Fp6 element to
the representation F2 and then performing the inversion in that representation



and then mapping back to our representation. The conversion between repre-
sentations requires four Fp multiplications, whilst the inversion in the F2 repre-
sentation requires 4S plus application of the inversion in Fp3 . Hence, requiring
a total of 26 multiplications in Fp and one inversion in Fp.

We now turn to the subgroup GΦ6(p). As before, inversion comes for free
via the operation of the Frobenius map. Multiplication is performed just as for
the full finite field, however squaring can be performed significantly faster using
the equations contained in [14, 15]. If we let α =

∑5
i=0 aiζ

i+1 ∈ GΦ6(p) and set

β =
∑5

i=0 biζ
i+1 = α2 then we have

b0 = 2a1 + 3a4(a4 − 2a1),

b1 = 2a0 + 3(a0 + a3)(a0 − a3),

b2 = −2a5 + 3a5(a5 − 2a2),

b3 = 2(a1 − a4) + 3a1(a1 − 2a4),

b4 = 2(a0 − a3) + 3a3(2a0 − a3),

b5 = −2a2 + 3a2(a2 − 2a5).

Hence, squaring requires six Fp multiplications. The operation counts for the
various cases are as summarised by the following table:

Fp3 Fp6 GΦ6(p)

Mul Sqr Mul Sqr Mul Sqr
5m 5m 15m 10m 15m 6m

2.3 Exponentiation in GΦk(p)

Finally, we address the issue of exponentiation, by an exponent e, of elements
in the cyclotomic subgroup GΦk(p) of F

×

pk which has order divisible by n. Using

Lucas sequences [13] this can be accomplished in time

CLuc(e) = (M + S) log2 e.

However, one could also use exponentiation via standard signed sliding window
methods [4] since inversion is cheap in GΦk(p). If e ≤ p then the best way to
perform the exponentiation, using windows of width at least r, will take time

CSSW(e) = S(1 + log2 e) +M

(

log2 e

r + 2
+ (2r−2 − 1

)

where S denotes the time needed to perform a squaring operation in GΦk(p). We
also need to store 2r−2 elements during the exponentiation algorithm.

When e ≥ p, as is the case in the final powering of the algorithm to compute
the Tate pairing, one uses the fact that we can perform the Frobenius operation
on GΦk(p) for free. Thus we write e in base p, and perform a simultaneous



exponentiation. Using the techniques of Avanzi [1], we can estimate the time
needed to perform such a multi-exponentiation by

CbigSSW(e) = (d+ log2 p)S +

(

d(2r−1 − 1) +
log2 e

r + 2
− 1

)

M

using windows of width r, where d = ⌈log2 e/ log2 p⌉. The precomputation stor-
age can be reduced using techniques described in [2].

Note that for k = 6 one can also use XTR [11, 16] to gain a slight efficiency
advantage over these methods if this is desirable [9], at a cost of altering particu-
lar protocols accordingly since multiplication is not straightforward in this case.
For k = 12 and 24, one can also employ XTR defined over Fp2 and Fp4 respec-
tively [12], however further work is required to determine if arithmetic can be
made as efficient as in the original scheme for cases of interest in pairing-based
cryptography.

3 Elliptic Curve Operations

In pairing based protocols we also need to conduct elliptic curve group opera-
tions. These are either on the main base curve E(Fp), or on the twisted curve
E(Fpk/2). We assume these curves take the form

E(Fp) : Y 2 = X3 − 3X +B

and

E(Fpk/2) : χY 2 = X3 − 3X +B

where χ is a quadratic non-residue in Fpk/2 for which multiplication by χ is for
free. Whether one should use affine or standard Jacobian projective coordinates
are used, depends on the ratio ι/m and on the size of the k/2. It turns out that in
some instances arithmetic in E(Fpk/2) is better performed in affine coordinates.
The various point addition and doubling times are summarized in the following
table.

E(Fp) E(Fpk/2)
Projective Affine

Addition (A) 12m+ 4s 12M + 4S 2M + 1S + Ik/2

Mixed Addition (AM ) 8m+ 3s 8M + 3S -
Doubling (D) 4m+ 4s 4M + 4S 2M + 2S + Ik/2

We assume that exponentiation is performed via a signed sliding window
method and mixed/affine addition

ECSSW(e) = D(1 + log2 e) +AM

(

log2 e

r + 2
+ 2r−2 − 1

)

.

where the exact optimal choice for r depends on the size of e.



In some instances we wish to multiply by a random element in Zn, however
in other instances (for example in the MapToPoint operation within the Boneh–
Franklin encryption scheme [5]) we need to multiply by the cofactor. If we let
log2 p = ρ·log2 n then the quantity 2ρ measures how big the elliptic curve cofactor
is for the curve E(Fp); a similar measure for the twisted curve is (kρ/2−1) log2 n.

4 Application to Pairing Based Cryptography

In this section we wish to investigate the application of our techniques to pair-
ing based cryptography in particular we focus on the case of non-supersingular
curves of embedding degree k ≥ 6. We follow the methodology of Koblitz and
Menezes [10] which we recap on here, however we express our formulae in terms
of total number of Fp operations as opposed to operations per bit. This is be-
cause this enables us to compare our sliding windows method in a more accurate
manner and to also compare how other components of the protocols are affected
by the choice of field.

Following Koblitz and Menezes we look at the cost of computing a Full-Miller
operation or a Miller-Lite operation. The cost of these two operations, assuming
projective coordinates are used, is

CFull = (km+ 4S + 6M + S +M) log2 n

CLite = (4s+ (k + 7)m+ S +M) log2 n.

In some instances one can more easily compute the Full-Miller algorithm by
using affine coordinates in the main loop. In this case the cost is given by

CFull = (2S + 2M + Ik/2 + km+ S +M) log2 n.

In computing the Tate pairing one executes one Miller-Lite operation and
then an exponentiation for an exponent given by Φt(p)/n in the subgroupGΦk(p).
The bit length of Φt(p)/n is estimated by

φ(k) log2 p− log2 n,

which can be expressed as

(φ(k)ρ − 1) log2 n.

Thus a Tate pairing computation requires time

CTate = CLuc(Φt(p)/n) + CLite

or
CTate = CbigSSW(Φt(p)/n) + CLite.

In both of the above formulae for the Tate pairing we have ignored the inversion
needed to take the input of Miller-Lite into the subgroupGΦk(p), this is consistent



with the analysis of Koblitz and Menezes but does slightly underestimate the
cost in both cases.

The Weil pairing as pointed out by Koblitz and Menezes, could be more
efficient, as it does not require an exponentiation by a large number. It requires
time

CWeil = CLite + CFull + S.

We shall show in all cases of cryptographic relevance that the Weil pairing is
always slower than the Tate pairing.

5 Results

In what follows we make the simplifying assumption that m ≈ s. We wish
to investigate what happens to pairing based protocols as the security level
increases. We fix on the following parameter sizes to demonstrate the application
of our model

Case Security k log2 n log2 p
A 80 6 160 160
B 128 6 256 512
C 128 12 256 256
D 192 6 384 1365
E 192 12 384 683
F 256 6 512 2560
G 256 12 512 1280
H 256 24 512 640

We do not discuss how such curves are generated, nor do we make use of special
properties of the curves. For example when k = 12 with current technology one
can only achieve n ≈ p by using the method of Barreto and Naehrig [3]. This
results in curves with complex multiplication by D = −3, our analysis takes no
account of the special optimizations which can be applied to such curves.

For each case we first present the operation counts, in terms of multiplica-
tions in Fp, for the operations which do not appear to depend on the exact finite
field we choose to use, namely the elliptic curve operations. We denote by (r)
the size of the windows which produces the smallest operation count, the column
n corresponds to exponentiation by a random integer of size n, whilst c corre-
sponds to multiplication by the relevant cofactor. We limit window sizes to at
most 9 bits, as otherwise the required look up table is likely to be prohibitively
expensive. So as to get some idea about the relative merits of projective vs affine
coordinates we made the assumption that ι/m ≈ 10 and in the table if the best
performance for a given parameter set was using affine coordinates with give the
multiplication count for this curve and denote this by an (A). We see that when
k ≥ 12 that it may make sense to use affine coordinates for the arithmetic in G2.



E(Fp) E(Fpk/2)
Case n c n c
A 1614 (4) - 8071 (4) 15739 (5)
B 2535 (5) 2535 (5) 12676 (5) 60767 (8)
C 2535 (5) - 34813 (5)(A) 169000 (7)(A)
D 3760 (6) 9369 (6) 18802 (5) 172356 (8)
E 3760 (5) 2946 (5) 51801 (5)(A) 483113 (8)(A)
F 4973 (6) 19236 (7) 24865 (6) 329585 (9)
G 4973 (6) 7373 (6) 68671 (6)(A) 926142 (9)(A)
H 4973 (6) 1229 (4) 164573 (6)(A) 2.2 ·106 (9)(A)

We now turn to the operations which depend on the field representation, i.e.
whether we use a pairing friendly or a cyclotomic field extension. There are two
operations which are important, the pairing computation itself and exponentia-
tion in GΦk(p) by an element of Zn. The pairing computation can itself either be
computed by the Weil or Tate pairings. The results, in terms of estimated multi-
plications in Fp, are presented in the following table. The (r) in the Tate column
denotes the window size in the final exponentiation step, if Lucas sequences are
faster we denote this by (L) and the operation count is for the application of
Lucas sequences. In all cases using the Weil pairing method which used affine
coordinates in the Full-Miller operation loop was the most efficient.

Pairing Friendly Cyclotomic Field
Pairing Exp in Pairing Exp in

Case Weil Tate GΦk(p) Weil Tate GΦk(p)

A 19855 9120 (L) 1411 (4) 18250 8247 (3) 1411 (4)
B 31759 18738 (5) 2195 (5) 29194 15916 (5) 2195 (5)
C 83757 43703 (4) 3502 (5) - - -
D 47631 34664 (6) 3237 (5) 43786 29643 (6) 3237 (5)
E 125613 81751 (5) 5093 (5) - - -
F 63503 56677 (6) 4263 (6) 58378 46431 (6) 4263 (6)
G 167469 127831 (6) 6633 (6) - - -
H 446087 331078 (5) 13743 (6) - - -

We see that for all fields the Tate pairing is always more efficient than the Weil
pairing, at least for the security sizes that are likely to be used in practice. This
is more due to the use of the efficient exponentiation algorithm as compared to
the efficient squaring algorithm for GΦk(p). In addition Lucas sequences are only
more efficient than the signed sliding window method for very small security
parameters.

To compare the different values of k we need to estimate the relative differ-
ence in time needed to compute a multiplication in Fp, for the different sizes of
p. If we assume that each finite field multiplication is performed using a stan-
dard interleaved Montgomery multiplication then the total number of 32-bit
by 32-bit multiplication instructions which are needed to be performed per Fp

multiplication is given by
2 · t · (t+ 1),



where t = log2 p/32. This leads us to the following table, where we present the
number of 32-bit by 32-bit multiplication instructions needed for the various
operations.

Curve Operations Pairing Friendly Cyclotomic Field
E(Fp) E(Fpk/2) Exp in Pairing Exp in

Case n c n c Pairing GΦk(p) Pairing GΦk(p)

A 9.7 · 104 - 4.8 · 105 9.4 · 104 5.4 · 105 8.5 · 104 4.9 · 105 8.4 · 105

B 1.3 · 106 1.3 · 106 6.8 · 106 3.3 · 107 1.0 · 107 1.1 · 106 8.6 · 106 1.2 · 106

C 3.6 · 105 - 5.0 · 106 2.4 · 107 6.2 · 106 1.1 · 106 - -
D 1.4 · 107 3.4 · 107 7.0 · 107 6.4 · 108 1.3 · 108 1.2 · 107 1.1 · 108 1.2 · 107

E 3.6 · 106 2.8 · 106 4.9 · 107 4.6 · 108 7.8 · 107 4.8 · 106 - -
F 6.4 · 107 2.5 · 108 3.2 · 108 4.3 · 109 7.3 · 108 5.5 · 107 6.0 · 108 5.5 · 107

G 1.6 · 107 2.4 · 107 2.2 · 108 3.0 · 109 4.2 · 108 2.2 · 107 - -
H 4.0 · 106 1.0 · 106 1.4 · 108 1.8 · 109 2.8 · 108 1.1 · 107 - -

From the table one can see that the main advantage in using values of k which
are larger than 6 is in the basic elliptic curve operations over Fp, rather than in
the pairing computation. For the pairing computation one gains some advantage
for using large values of k, but this is not as pronounced as for the elliptic curve
operations.

However, elliptic curve operations are relatively cheap in comparison to pair-
ing calculation and so the performance improvement will not be so pronounced.
Except, for protocols in which one party only needs to perform elliptic curve
operations in Fp, such as the encryptor in the Sakai–Kasahara KEM [7]. It does
however imply that for pairing based protocols one should not neglect selecting
parameter values which speed up the elliptic curve operations and not just the
pairing calculation.

However, our estimates are on the conservative side for arithmetic in cyclo-
tomic fields at high security levels. This is for a number of reasons. The overhead
in not having to deal with different values of k and f0 means that the library over-
head in using cyclotomic fields of degree six will be less than for pairing friendly
fields. Recall, we have not given accurate cycle counts, but simply estimated the
number of multiplication instructions needed.

One should also bear in mind that larger values of k mean that one can shrink
the bandwidth required in communication if one is communicating elements in
E(Fp), since a larger value of k corresponds to a smaller value of p.
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A Squaring formulae for GΦk(p) for pairing friendly fields

and k = 12 and k = 24

A.1 k = 12

b0 = 3 a0
2 − 6 f0a3a9 − 3 f0a6

2 − 2 a0,

b1 = −6 f0a11a2 − 6 f0a5a8 + 2 a1,

b2 = 3 a1
2 − 6 f0a4a10 − 3 f0a7

2 − 2 a2,

b3 = −6 f0a6a9 + 6 a0a3 + 2 a3,

b4 = −3 f0a8
2 − 6 f0a11a5 + 3 a2

2 − 2 a4,

b5 = −6 f0a7a10 + 6 a4a1 + 2 a5,

b6 = −3 f0a9
2 + 6 a0a6 + 3 a3

2 − 2 a6,

b7 = 6 a5a2 − 6 f0a11a8 + 2 a7,

b8 = −3 f0a10
2 + 3 a4

2 + 6 a7a1 − 2 a8,

b9 = 6 a6a3 + 6 a0a9 + 2 a9,

b10 = −3 f0a11
2 + 3 a5

2 + 6 a8a2 − 2 a10,

b11 = 6 a10a1 + 6 a7a4 + 2 a11.



A.2 k = 24

b0 = −2 a0 + 3 a0
2 − 3 f0a12

2 − 6 f0a3a21 − 6 f0a6a18 − 6 f0a9a15,

b1 = 2 a1 − 6 f0a2a23 − 6 f0a5a20 − 6 f0a8a17 − 6 f0a11a14,

b2 = −2 a2 − 6 f0a4a22 − 6 f0a10a16 − 3 f0a13
2 − 6 f0a7a19 + 3 a1

2,

b3 = 2 a3 − 6 f0a9a18 + 6 a0a3 − 6 f0a6a21 − 6 f0a12a15,

b4 = −2 a4 − 3 f0a14
2 − 6 f0a5a23 − 6 f0a8a20 − 6 f0a11a17 + 3 a2

2,

b5 = 2 a5 − 6 f0a13a16 − 6 f0a10a19 + 6 a4a1 − 6 f0a7a22,

b6 = −2 a6 + 6 a0a6 − 3 f0a15
2 − 6 f0a12a18 − 6 f0a9a21 + 3 a3

2,

b7 = 2 a7 − 6 f0a14a17 − 6 f0a11a20 − 6 f0a8a23 + 6 a2a5,

b8 = −2 a8 − 6 f0a10a22 − 6 f0a13a19 + 3 a4
2 + 6 a7a1 − 3 f0a16

2,

b9 = 2 a9 + 6 a0a9 − 6 f0a12a21 − 6 f0a15a18 + 6 a6a3,

b10 = −2 a10 − 3 f0a17
2 − 6 f0a11a23 − 6 f0a14a20 + 6 a2a8 + 3 a5

2,

b11 = 2 a11 − 6 f0a13a22 − 6 f0a16a19 + 6 a10a1 + 6 a7a4,

b12 = −2 a12 + 6 a0a12 + 6 a9a3 − 3 f0a18
2 − 6 f0a15a21 + 3 a6

2,

b13 = 2 a13 − 6 f0a17a20 − 6 f0a14a23 + 6 a5a8 + 6 a2a11,

b14 = −2 a14 + 6 a13a1 + 6 a10a4 − 3 f0a19
2 − 6 f0a16a22 + 3 a7

2,

b15 = 2 a15 + 6 a0a15 + 6 a12a3 + 6 a9a6 − 6 f0a18a21,

b16 = −2 a16 − 3 f0a20
2 − 6 f0a17a23 + 6 a5a11 + 6 a2a14 + 3 a8

2,

b17 = 2 a17 − 6 f0a19a22 + 6 a13a4 + 6 a10a7 + 6 a16a1,

b18 = −2 a18 + 6 a0a18 + 6 a15a3 + 6 a12a6 − 3 f0a21
2 + 3 a9

2,

b19 = 2 a19 − 6 f0a20a23 + 6 a5a14 + 6 a8a11 + 6 a2a17,

b20 = −2 a20 − 3 f0a22
2 + 6 a19a1 + 6 a16a4 + 6 a13a7 + 3 a10

2,

b21 = 2 a21 + 6 a0a21 + 6 a18a3 + 6 a15a6 + 6 a12a9,

b22 = −2 a22 − 3 f0a23
2 + 6 a5a17 + 6 a8a14 + 6 a2a20 + 3 a11

2,

b23 = 6 a16a7 + 6 a13a10 + 6 a19a4 + 6 a22a1 + 2 a23.


