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Abstract

We propose a simple universal (that is, distribution–free) stegano-
graphic system in which covertexts with and without hidden texts are
statistically indistinguishable. Moreover, the proposed steganographic
system has two important properties. First, the rate of transmission
of hidden information approaches the Shannon entropy of the cover-
text source as the size of blocks used for hidden text encoding tends
to infinity. Second, if the size of the alphabet of the covertext source
and its minentropy tend to infinity then the the number of bits of
hidden text per letter of covertext tends to log(n!)/n where n is the
(fixed) size of blocks used for hidden text encoding. The proposed
stegosystem uses randomization.

1 Introduction

The goal of steganography is as follows. Alice and Bob can exchange messages
of a certain kind (called covertexts) over a public channel which is open to
Eve. The covertexts can be, for example, photographic images, videos, text
emails and so on. Alice wants to pass some secret information to Bob so
that Eve can not notice that any hidden information was passed. Thus,
Alice should use the covertexts to hide the secret text. It is supposed that
Alice and Bob share a secret key. A classical illustration from [2] states the
problem in terms of communication in a prison: Alice and Bob are prisoners
who want to concoct an escape plan passing each other messages which can
be read by a ward.
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Perhaps the first formal approach to steganography was taken by Cachin
[1] who proposed a steganographic protocol in which, relying on the fact that
the probability distribution of covertexts is known, covertexts with and with-
out hidden information are statistically indistinguishable. In the same work
a universal (distribution-free) steganographic system was proposed, in which
this property holds only asymptotically with the size of the messages going
to infinity, and which has exponential complexity of coding and decoding.
Distribution-free stegosystems are of particular practical importance, since
in reality covertexts can be graphical images, ICQ or email messages, that
is, sources for which the distribution is not only unknown but perhaps can
not be reasonably approximated. Later a complexity–theoretic approach for
(distribution-free) steganography was developed in [3, 4], where stegosystems
were proposed in which covertexts with and without hidden information are
indistinguishable in polynomial time.

We use the following model for steganography, mainly following [1]. It is
assumed that Alice has an access to an oracle which generates independent
and identically distributed covertexts according to some fixed but unknown
distribution µ. Covertexts belong to some (possibly infinite) alphabet A.
Alice wants to use this source for transmitting hidden messages. A hidden
message is a sequence of letters from B = {0, 1} generated independently
with equal probabilities of 0 and 1. We denote the source of hidden messages
by ω. This is a commonly used model for the source of secret messages since
it is assumed that secret messages are encrypted by Alice using a key shared
only with Bob. If Alice uses the ideal Vernam cipher then the encrypted
messages are indeed generated according to the Bernoulli 1/2 distribution,
whereas if Alice uses modern block or stream ciphers then the encrypted
sequence “looks like” a sequence of random Bernoulli 1/2 trials. Here to
“look like” means to be indistinguishable in polynomial time or that the
likeness is confirmed experimentally by statistical data, known for all widely
used cyphers; see, e.g. [6, 7]. The third party, Eve, is reading all messages
passed from Alice to Bob and is trying to determine whether secret messages
are being passed in the covertexts or not. Observe that if covertexts with
and without hidden information have the same probability distribution (µ)
then it is impossible to distinguish them.

In the universal system proposed in [1] the hiddentext sequence is divided
into blocks of a certain size m each of which corresponds to a block of length
n(m) of covertexts letters from A. The distribution of resulting covertexts
letters tends to the (unknown) distribution µ (of covertexts without hidden
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information) as n tends to infinity. It is important to note that the conver-
gence is not uniform (on the set of all possible distributions µ with A fixed),
and also the memory size of coder and decoder grows exponentially with n.
Thus such stegosystems are not practical.

We propose a simple universal stegosystem for which covertexts with and
without hidden information have the same distribution (and hence are statis-
tically indistinguishable) for any size of the message. Moreover, the proposed
system has two important properties. First, the rate of transmission of hid-
den information approaches the Shannon entropy of the covertext source as
the size n of blocks used for hidden text encoding tends to infinity. Second,
if the size of the alphabet of the covertext source and its minentropy tend
to infinity then the the number of bits of hidden text per letter of covertext
tends to log(n!)/n where n is the (fixed) size of blocks used for hidden text
encoding. The latter property is, in particular, an advantage as compared to
the complexity–theory based stegosystems proposed in [3, 4, 5] for which the
rate of hidden text transmission is no more than a constant per covertext
letter. We note that it is also possible to use the proposed stegosystems for
open-key steganography in a standard way.

The paper is organized as follows. In Section 2 a simple stegosystem
which does not use randomization is proposed; for this system the number
of bits of hidden text per letter of covertext tends to 1/2 if the size of the
alphabet of the covertext source and its minentropy tend to infinity. This
system also illustrates the main ideas used in Section 3, where the general
(randomized) stegosystem is proposed which has the mentioned asymptotic
properties of the rates of hidden text transmission. In Section 4 we dis-
cuss possible extensions of the proposed steganographic systems and outline
some potentially interesting open problems. In particular, we discuss is-
sues concerning stegosystems based on a common set of data and open–key
steganography.

2 A simple non-randomized universal

stegosystem

In this section we present a very simple stegosystem which demonstrates the
main ideas used in the general stegosystem which we develop in the next
section and also does not use randomization.
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The notation is as follows. The source µ draws i.i.d. (covertext) letters
from an alphabet A. The source ω draws i.i.d. (hidden, or secret) equiproba-
ble letters from the alphabet B = {0, 1}. Finite groups of (covertext, hidden,
secret) letters are sometimes called (covertext, hidden, secret) words. Ele-
ments of A (B) are usually denoted by x (y).

First consider an example. Consider a situation in which not only the se-
cret letters are drawn (using ω) from a binary alphabet, but also the source of
covertexts µ generates symbols from the alphabet A = {a, b} (not necessarily
with equal probabilities). Suppose that Alice has to transmit the sequence
y∗ = y1y2 . . . generated according to ω and let there be given a covertext
sequence x∗ = x1x2 . . . generated by µ. For example, let

y∗ = 01100 . . . , x∗ = aababaaaabbaaaaabb . . . . (1)

The sequences x∗ and y∗ are encoded in a new sequence X (to be transmitted
to Bob) such that y∗ is uniquely determined by X and the distribution of X
is the same as the distribution of x∗ (that is, µ; in other words, X and x∗

are statistically indistinguishable).
The encoding is carried out in two steps. First let us group all symbols

of x∗ into pairs, and denote

aa = u, bb = u, ab = v0, ba = v1.

In our example, the sequence (1) can be represented as

x∗ = aa ba ba aa ab ba aa aa bb · · · = uv1v1uv0v1uuu . . .

Then X is acquired from x∗ as follows: all pairs corresponding to u are
left unchanged, while all pairs corresponding to vk are transformed to pairs
corresponding to vy1

vy2
vy3

. . . ; in our example

X = aa ab ba aa ba ab aa aa bb....

Decoding is obvious: Bob groups the symbols of X into pairs, ignores all
occurrences of aa and bb and changes ab to 0 and ba to 1.

The properties of the described stegosystem, which we call St2, are sum-
marized in the following (nearly obvious) statement.

Claim 1. Let a source µ be given, which draws i.i.d. random variables taking
values in A = {a, b} and let this source be used for encoding secret messages
consisting of a sequence of i.i.d. equiprobable binary symbols using the method
St2. Then the sequence of symbols output by the stegosystem obeys the same
distribution µ as the input sequence.
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We will not give the (obvious) proof of this claim since it is a simple
corollary of Theorem 1 below.

It is interesting to note that a similar construction was used by von Neu-
mann in his method for extracting a sequence of equiprobable binary symbols
(see [8, 9]). His method, as well as the just described stegosystem, was based
on the fact that the probabilities of ab and ba are equal.

Next we consider the generalisation of the described stegosystem to the
case of any alphabet A (such that |A| > 1). To do this we fix some total
ordering on the set A. As before, Alice has to transmit a sequence y∗ =
y1y2 . . . generated by the source ω of i.i.d. equiprobable binary letters and
let there be given a sequence x∗ = x1x2 . . . of covertext letters generated
i.i.d. according to a distribution µ on A. Again we transform the sequences
y∗ and x∗ into a new sequence X which obeys the same distribution as x∗.
As before we break x∗ into blocks of length 2. If a block x2i−1x2i has the
form aa for some a ∈ A then it is left unchanged. Otherwise let the block
x2i−1x2i be ab for a, b ∈ A and suppose a < b; if the current symbol yk is 0
then the block ab is included in X, and if yk = 1 then ba is included in X.
Denote this stegosystem by St2(A).

Theorem 1. Let a source µ be given, which generates i.i.d. random variables
taking values in some alphabet A. Let this source be used for encoding secret
messages consisting in a consisting sequence of i.i.d. equiprobable binary
symbols, using the method St2(A). Then the sequence of symbols output
by the stegosystem obeys the same distribution µ as the input sequence and
the number of letters of hidden text transmitted per letter of covertext is
1

2
(1 −

∑

a∈A µ(a)2).

Proof. Fix some α, β ∈ A and k ∈ N. We will show that

p(X2k−1X2k = αβ) = µ(αβ),

where p is the probability distribution of the output sequence. Suppose
α < β. Decomposing the probability on the left we get

p(X2k−1X2k = αβ) = ω(yk = 0)(µ(αβ) + µ(βα))

=
1

2
(µ(αβ) + µ(αβ)) = µ(αβ).

The case β < α is analogous, and the case β = α is trivial. The second
statement is obtained by calculating the probability of that letters in the
block coincide.
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Note that in practice when the covertexts are, for example, graphical
files, each covertext is practically unique (the alphabet A is potentially in-
finite) so that the number of covertext letters (files) per one hidden bit is
approximately 2.

3 The general construction of a universal

stegosystem

In this section we consider the general construction of universal stegosys-
tem which has the desired asymptotic properties. As before, Alice needs to
transmit a sequence y∗ = y1y2 . . . of secret binary messages drawn by an i.i.d.
source ω with equal probabilities of 0 and 1, and let there be given a sequence
of covertexts x∗ = x1x2 . . . drawn i.i.d. by a source µ from an alphabet A.
First we break the sequence x∗ into blocks of n symbols each, where n > 1
is a parameter. Each block will be used to transmit several symbols from y∗

(for example, in the previously constructed stegosystem St2(A) each block
was used to transmit 1 or 0 symbols). However, in the general case a problem
arises which was not present in the construction of St2(A). Namely, we have
to align the lengths of the blocks of symbols from x∗ and from y∗, and for
this we will need randomization. The problem is that the probabilities of
blocks from y∗ are divisible by powers of 2, which is not necessarily the case
with blocks from x∗.

We now present a formal description. Let u denote the first n symbols of
x∗: u = x1 . . . xn, and let νu(a) be the number of occurrences of the symbol
a in u. Define the set Su as consisting of all words of length n in which the
frequency of each letter a ∈ A is the same as in u:

Su = {v ∈ An : ∀a ∈ A νv(a) = νu(a)}.

Observe that the µ-probabilities of all members of Su are equal. Let there
be given some ordering on the set Su (for example, lexicographical) which is
known to both Alice and Bob (and to anyone else) and let Su = {s1, s2, . . .
, s|s|−1} with this ordering.

Denote m = ⌊log2|Su|⌋, where ⌊y⌋ stands for the largest integer not
greater than y. Consider the binary expansion of |Su|:

|Su| = (αm, αm−1, . . . , α0),

6



where αm = 1, αj ∈ {0, 1} , m > j ≥ 0. In other words,

|Su| = 2m + αm−12
m−1 + αm−22

m−2 + ... + α0.

Define a random variable ∆ as taking each value i ∈ {0, 1, . . . , m} with
probability αi2

m−i/|Su| :

p(∆ = i) = αi2
m−i/|Su|. (2)

Alice, having read u, generates a value of the random variable ∆, say d, and
then reads m−d symbols from y∗. Consider the word r∗ represented by these
symbols as an integer which we denote by r. Then we encode the word r∗

(that is, m − d bits of y∗) by the word sτ from the set Su, where

τ =
m
∑

l=m−d+1

αl2
l + r.

(In other words, the word sτ is being output by the coder.)
Then Alice reads the next n–bit word, and so on. Denote the constructed

stegosystem by Stn(A).
To decode the received sequence Bob breaks it into blocks of length n and

repeats all the steps in the reversed order: by the current word u he obtains
Su and τ , then d (clearly d is uniquely defined by τ) and then r and r∗; that
is, he finds |r∗| next symbols of the secret sequence y∗.

Consider an example which illustrates all the steps of the calculation. Let
A = {a, b, c}, n = 3, u = bac. Then Su = {abc, acb, bac, bca, cab, cba}, |Su| =
6, m = 2, α2 = 1, α1 = 1, α0 = 0. Let the sequence of secret messages be
0110..., that is, y∗ = 0110... . Suppose the value of ∆ generated by Alice is 1.
Then she reads one symbol of y∗ (in this case 0) and calculates r = 0, r∗ =
0, τ = 22 + 0 = 4 and finds the codeblock s4 = cab. To decode the message,
Bob from the block cab calculates τ = 4, r = 0, r∗ = 0 and finds the next
symbol of the secret sequence — 0.

Theorem 2. Let a source µ be given, which generates i.i.d. random variables
taking values in some alphabet A. Let this source be used for encoding secret
messages consisting of a sequence of i.i.d. equiprobable binary symbols using
the described method Stn(A) with n > 1. Then

(i) the sequence of symbols output by the stegosystem obeys the same dis-
tribution µ as the input sequence,
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(ii) the average number of secret symbols per covertext (Ln) satisfies the
following inequality

Ln ≥
1

n

(

∑

u∈An

µ(u) log
n!

∏

a∈A νu(a)!
− 2

)

, (3)

where µ(u) is the µ-probability of the word u and νu(a) is the number
of occurrences of the letter a in the word u.

Proof. To prove the first statement it is sufficient to show that for any cover-
text word u of length n its probability of occurrence in the output sequence is
1/|Su|. This follows from (2) and the fact that letters in y∗ are independent
and equiprobable.

The second statement can be obtained by direct calculation of the average
number of symbols from y∗ encoded by one block.

Let us now consider the asymptotic behaviour of Ln when n → ∞.

Corollary 1. If the alphabet A is finite then the average number of hidden
symbols per letter Ln goes to the Shannon entropy h(µ) of the source µ as n
goes to infinity; here by definition h(µ) = −

∑

a∈A µ(a) log µ(a).

Proof. This statement follows from a well-known fact of Information Theory
which states that for each δ > 0 and n → ∞ the following inequality holds
with probability 1

h(µ) − δ < log |Su|/n < h(µ) + δ,

see, e.g. [10].

In many real stegosystems the alphabet A is huge (it can consist, for
example, of all possible digital photographs of given file format, or of all
possible e-mail messages). In such a case it is interesting to consider the
asymptotic behaviour of Ln with fixed n when the alphabet size |A| goes to
infinity. For this we need to define so-called the min-entropy of the source µ:

H∞(µ) = min
a∈A

{− log µ(a)} . (4)

Corollary 2. Assume the conditions of Theorem 2 and fix the block length
n > 1. If |A| → ∞ so that H∞(µ) → ∞ then Ln tends to (log(n!)+O(1))/n.
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This statement can be easily derived from the fact that the number of
different permutations of n elements in n!.

Next we briefly consider the resource complexity of the stegosystem Stn(A).
To store all possible words from the set Su would require memory of order
2n log |A| bits, which is practically unacceptable for large n. However, if we
use the algorithm for fast enumeration from [11], then we can find the index
of a block sτ given τ (encoding) and vice versa (decoding) using O(logconst n)
operations per symbol and O(n log3 n) bits of memory.

4 Discussion

We have proposed two stegosystems (with and without randomization) for
which the output sequence of covertexts with hidden information is statisti-
cally indistinguishable from a sequence of covertexts without hidden infor-
mation. The main idea that was used is that for any block of covertexts it
is possible to find several other blocks which have the same probability as
the original one; then hidden information can be encoded in the number of
a block in this group. This idea has several possible extensions which we
discuss here.

First of all, observe that the proposed stegosystems rely heavily on the
assumption that the oracle generates independent and identically distributed
covertexts. This is perhaps a reasonable assumptions if covertexts are graph-
ical images of a certain kind, but if, for example, we want to use just one
image to transmit (a large portion of) a secret text then our covertexts are
parts of the image, which are clearly not i.i.d. How to extend the ideas de-
veloped in this work to the case of non-i.i.d. covertexts is perhaps the main
open question.

The idea to use the number of a covertext in a known group to encode
information can also be used in the following situation. Suppose that Alice
and Bob share a database of covertexts (say, graphical images or list of
mottos). Then by sending one covertext from the database (or a reference to
it) to Bob, Alice can transmit log N bits of information, where N is the size
of the database. If the database was generated using an oracle generating
i.i.d. covertexts then the fact of secret communication is not statistically
recognisable. Similar ideas can also be used if the database is any public
collection of objects available for indexing.
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