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Abstract. Automated tools such as model checkers and theorem provers for the
analysis of security protocols typically abstract from cryptography by Dolev-Yao
models, i.e., abstract term algebras replace the real cryptographic operations. Re-
cently it was shown that in essence this approach is cryptographically sound for
certain operations like signing and encryption. The strongest results show this
in the sense of blackbox reactive simulatability (BRSIM)/UC with only small
changes to both Dolev-Yao models and natural implementations. This notion es-
sentially means the preservation of arbitrary security properties under active at-
tacks in arbitrary protocol environments.
We show that it is impossible to extend the strong BRSIM/UC results to usual
Dolev-Yao models of hash functions in the general case. These models treat hash
functions as free operators of the term algebra. In contrast, we show that these
models are sound in the same strict sense in the random oraclemodel of cryp-
tography. For the standard model of cryptography, we also discuss several con-
ceivable restrictions to the Dolev-Yao models and classifythem into possible and
impossible cases.

1 Introduction

Tools for proving security protocols typically abstract from cryptography by determin-
istic operations on abstract terms and simple cancellationrules. An example term is
Epkew

(hash(signsksu

(m, N1), N2)), wherem denotes a payload message andN1, N2

two nonces, i.e., representations of fresh random numbers.We wrote the keys as in-
dices only for readability; formally they are normal operands in the term. A typical
cancellation rule isDske(Epke(m)) = m for corresponding keys. The proof tools han-
dle these terms symbolically, i.e., they never evaluate them to bitstrings. In other words,
the tools perform abstract algebraic manipulations on trees consisting of operators and
base messages, using only the cancellation rules, the message-construction rules of a
particular protocol, and abstract models of networks and adversaries. Such abstractions,
although different in details, are collectively called Dolev-Yao models after their first
authors [24].

It is not obvious that a proof in a Dolev-Yao model implies security with respect to
real cryptographic definitions. Recently, this long-standing gap was essentially closed
by proving that an almost normal Dolev-Yao model of several important cryptographic
system types can be implemented with real cryptographic systems secure according to



standard cryptographic definitions in a way that offers blackbox reactive simulatabil-
ity/UC [9]. We abbreviate blackbox reactive simulatability by BRSIM in the following.
This security notion means that one system (here the cryptographic realization) can be
plugged into arbitrary protocols instead of another system(here the Dolev-Yao model)
and retains essentially arbitrary security properties; itis also called UC for its univer-
sal composition properties [38, 39, 17, 23]. In other words,this result shows that the
Dolev-Yao model as such can serve as an ideal functionality that is correctly imple-
mented by a real functionality given by actual cryptographic systems. Extensions of
this simulatability result to more cryptographic primitives were presented in [10, 6],
uses in protocol proofs in [5, 3, 4, 7], stronger links to conventional Dolev-Yao-style
type systems in [31], and an integration into the Isabelle theorem prover in [41]. Earlier
results on relating Dolev-Yao models and real cryptographyconsidered passive attacks
only [2, 1, 29]. Later papers [34, 30, 19] consider to what extent restrictions to weaker
security properties, such as integrity only, and/or less general protocol classes, e.g., a
specific class of key exchange protocols, allow simplifications compared with [9]. A
BRSIM/UC result for a specific protocol class means that simulatability is not shown
for the Dolev-Yao model as such (and thus by the composition theorems for all proto-
cols using it), but only for the specific compositions of the Dolev-Yao model with this
protocol class.1

No paper relating Dolev-Yao models and cryptography considers hashing or one-
way functions although they are important operators in automated proof tools based
on Dolev-Yao models, e.g., [32, 37, 40, 14, 11]. The typical model is thathash is a free
operator in the term algebra, i.e., there is no inverse operator, nor any other cancellation
rule with operators likeE andD. Only a party who knows or guesses a potentially
hashed termt can test whether hashingt equals a given hash termh, at least if the
surrounding formal protocol language contains equality tests.

The goal of our paper is to close this gap, and to study how the soundness results
in the sense of BRSIM/UC can be extended when hash or one-way functions are added
to a Dolev-Yao model and its cryptographic implementation.In the following, we only
speak of hash functions since the standard Dolev-Yao model for the two classes is the
same.

1.1 Our Contributions

It turns out that proving BRSIM/UC for Dolev-Yao models withhash functions is im-
possible in a general way. Note that the question is not whether a hash function is a
good and generally usable cryptographic primitive by itself, but only whether its ideal-
ization as a free operator in a term algebra, or a similar plausible idealization, is sound.
Prior work showed that certain (classes of) ideal functionalities are not securely re-
alizable, e.g., for bit commitments [18], coin tossing, zero knowledge, and oblivious

1 There is also work on formulating syntactic calculi for dealing with probabilism and
polynomial-time considerations and encoding them into proof tools, in particular [35, 36, 28,
22, 15]. This is orthogonal to the work of justifying Dolev-Yao models, which offer a higher
level of abstractions and thus much simpler proofs where applicable, so that proofs of larger
systems can be automated.
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transfer [17], classes of secure multi-party computation [20] and certain game-based
definitions [21]. However, none of these works investigateda Dolev-Yao model. Impos-
sibility of a Dolev-Yao model with XOR was shown in [8]. For our case of hashes, the
reasons for impossibility and thus the proofs are quite different. Furthermore, the proofs
in [8] are all reduction proofs, essentially saying that if an idealization of XOR and other
cryptographic operations is soundly implementable in the sense of BRSIM/UC, it can
be used to compute cryptographic algorithms and is therefore not intuitively Dolev-
Yao. In contrast, we obtain absolute impossibility results. We achieve this by making
stronger definitions on what makes an ideal functionality ofhashing and other crypto-
graphic operations a Dolev-Yao model.

It is important to note that there is so far no rigorous definition of “any Dolev-
Yao model” in the literature that is independent of specific underlying system models
such as CSP,π-calculus, IO automata, or strand spaces. For positive results, this is not
a problem. However, an impossibility result that only holdsfor one of these models
would not be very convincing. To come as close as possible to capturing the desired
generality, we will not prove impossibility for one specificDolev-Yao model, but only
make certain assumptions on the Dolev-Yao model, which we believe are fulfilled by
all such models existing so far. Essentially we only assume that the hash functions are
abstracted as free operators as informally explained above, that they are applicable to
arbitrary terms, and that the model contains some other typical operators and base types.

One reason (but not the only one) for the impossibility in thegeneral case is that
hash functions, at least those with a one-way property, are by nature committing, i.e., if
one first getsh = hash(m) and laterm one can validate whether indeedh = hash(m).
It is well known that such a commitment property often causesproblems in proofs of
BRSIM/UC: If the simulator has to simulate a bitstring forh before knowingm, then
whatever it picks will most likely not matchm. Thus the simulation fails ifm is later
revealed. In some cases, the commitment problem can be circumvented by using non-
standard models of cryptography, e.g., the random oracle model [13] or the common
random string model, cf. [18]. Indeed we can show BRSIM/UC for the standard Dolev-
Yao model of hashes if the cryptographic realization of the hash function is treated as a
random oracle.

For the standard model of cryptography, the next question iswhether certain restric-
tions on the use of hash functions enable a BRSIM/UC soundness result. One option
is to restrict the types of terms that can be hashed, in particular to forbid the hashing
of payloads. By “payload” we mean an application message, e.g., an email text or the
amount and currency of a payment in a payment protocol that uses the cryptographic
functionality. Technically, payloads play a special role (asm in the example of the com-
mitment problem shows) because they are known outside the cryptographic system and
thus can typically not be modified by the simulator, in contrast to nonces, keys, etc. As
to practical usage, this restriction is serious but not unreasonable; e.g., key exchange
protocols typically do not use payloads. However, we still obtain an impossibility re-
sult if excluding payloads is the only restriction on hashable terms. The basic idea in
that case is that by constructing large enough terms, the users of the cryptographic sys-
tem can simulate payloads. Another conceivable restriction is therefore on the size of
hashable terms. Again this restriction seems serious (e.g., general hash chains and trees
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are now excluded) but not unreasonable because many protocols only use rather small
terms, e.g., one-time signature schemes only use hashes of single nonces. In fact, for
the restriction to hashing single nonces, we obtain a positive result.

Another restriction is to give up the ideal secrecy propertyof the hash functions, i.e.,
to give at least the ideal adversary an operator that invertshash. The technical motiva-
tion is that this clearly gets rid of the commitment problem.2 On the application side,
this restriction excludes all protocols where one-waynessis the core property for which
a hash function is used. However, we can use such a model in protocols where shorten-
ing of messages with collision resistance is the core property desired. Note that in the
Dolev-Yao model, we can have collision freeness, i.e., no equality between hashes of
different terms, without secrecy. The realization of such an operator by a real crypto-
graphic function would of course still have to be collision-resistant and thus one-way
if it is sufficiently shortening. Anyway, we still obtain an impossibility result in this
case: No shortening hash function exists that enables a secure realization of a Dolev-
Yao model with hashes even without secrecy. If we combine giving up secrecy with not
hashing payloads and only terms of constant size, then we obtain a positive result.

Of course the restrictions that we considered are not the only conceivable ones; in
particular it may be interesting to find other positive casesin the standard model of
cryptography than the two that we prove.

2 Summary of Reactive Simulatability/UC, also with Random
Oracle

As our results are for the security definitions of BRSIM/UC, we first briefly review this
notion. Reactive simulatability/UC is used for comparing an ideal and a real system with
respect to security. It was first generally defined in [38] andis based on simulatability
definitions for secure (one-step) function evaluation [25,26, 12, 33, 16]. It was extended
in [39, 17] and has since been used in many ways for proving individual cryptographic
systems and general theorems.

We believe that all our following results are independent ofthe small differences
between the definition styles and therefore write “BRSIM/UC” and similar term pairs
like “ideal system/functionality”. However, we have to usea specific formalism for the
actual results, and we use that from [39]. Here one speaks of ideal and real systems (the
functionalities and protocols of UC). The ideal system is often calledTH for “trusted
host”, see Figure 1, and the protocol machines of the real system are often calledMu,
whereu is a user index. The ideal or real system interacts with arbitrary so-called honest
users, often collectively denoted by a machineH; this corresponds to potential protocols
or human users to whom the functionality is offered. Furthermore, the ideal or real
system interacts with an adversary, often denoted byA, who is often given more power
than the honest users; in particular in real systemsA typically controls the network.A
andH can interact; this corresponds to known- and chosen-message attacks etc.

2 Furthermore, hash functions are known not to offer cryptographic secrecy in the same strong
sense as encryption schemes because they are deterministic, but this can be addressed by al-
lowing tests of hash values also in the ideal system.
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Fig. 1. Overview of blackbox reactive simulatability with a real system on the left and an ideal
system on the right, and a potential random oracle. The viewsof H must be indistinguishable.

Reactive simulatability between the real and ideal system essentially means that for
every attack on the real system there exists an equivalent attack on the ideal system.
More specifically, blackbox reactive simulatability (BRSIM) states that there exists a
simulatorSim that can use an arbitrary real adversary as a blackbox, such that arbitrary
honest users cannot distinguish whether they interact withthe real system and the real
adversary, or with the ideal system and the simulator with its blackbox. Indistinguisha-
bility, here applied to the two families of views of the honest users, is the well-known
notion from [42]. We always assume that all parties are polynomial-time.

A formal representation of random oracles in the UC framework was given in [27].
This can be used one-to-one in the BRSIM terminology. In a real system, each machine
has distinguished connections for querying the random oracle RO, which is the usual
stateful machine from [13] that generates a random string as“hash value” for each
messagem when it is first queried aboutm. In the ideal system with a simulator, these
distinguished connections connect to the simulator, i.e.,the simulator learns every query
to the random oracle and can give arbitrary answers. This is also shown in Figure 1.3

3 Informal Overview of the Impossibility Proofs

In this section, we present our results as proof sketches with a minimum amount of
notation. Later we define more notation and precise assumptions, and then extend the
proof sketches to full proofs.

In the following, messages may occur in several representations, which we distin-
guish by superscripts. We write terms in the Dolev-Yao sensewithout superscipt, e.g.,
h := hash(m) for a hash term. The real cryptographic versions get a superscript r, e.g.,
hr := hashr(mr) for the corresponding real bitstring, computed by applyinga real hash
functionhashr to the real representationmr of m. The users and adversaries may con-
cretely address the terms/bitstrings in yet another way when interacting with the real or
ideal functionality (hopefully indistinguishably, hencewe need only one notation); we
write these representations with superscriptsu for honest useru anda for the adversary.
(Using the actual terms as these representations is a special case.)

In the figures we writeHu for the actual useru, which is a part of the globalH in
Figure 1.

3 Alternatively, one could use a correct random oracle also inthe ideal system and only allow
the simulator to eavesdrop the queries of some or all parties. However, this weakens the power
of the simulator considerably, and most of our impossibility proofs for the standard model of
cryptography would hold for this model with only minor changes.
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3.1 Scenarios with Payloads

Our first scenario in Figure 2 demonstrates that the real hashfunctionhashr must at least
be collision-resistant in order to offer a sound implementation of a Dolev-Yao model
with hashes and payloads. This is not surprising, but we needthe collision resistance
in the next proofs. The proof idea is that otherwise the adversary can find two colliding
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is_hash_of(m*r, hu)
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hr := hashr(mr)

= hashr(m*r)

Fig. 2. Counterexample with payload hashing for not collision-resistant hash function.

payloadsmr andm∗r and send their hashhr to an honest partyu. It also exchangesmr

andm∗r with the useru outside the system. Recall that all BRSIM/UC variants allow
such outside exchanges for chosen-message attacks etc.; wedenote them by dashed
arrows in the interaction figures. Then useru uses the ideal or real functionality to
check whether the message received through the system is thehash of both payloads.
In the real system (on the left in all our interaction figures), the answer istrue both
times by the choice ofhr. However, the ideal collision freeness of the ideal system (on
the right in all our interaction figures) does not allow this;hence the ideal and the real
system are distinguishable.

The major challenge in formalizing this proof sketch is in the treatment of payloads,
because most Dolev-Yao models do not put the actual payloadsinto the terms. Below
we make precise assumptions on this treatment and define the ideal collision freeness,
and then turn this sketch into a proof.

Our second scenario in Figure 3 demonstrates that even with acollision-resistant
functionhashr, a sound implementation of a Dolev-Yao model with hashes andpay-
loads is impossible if the ideal Dolev-Yao functionality offers ideal secrecy. By ideal
secrecy we mean that an adversary who obtains the hash of an otherwise unknown term
cannot do better than comparing this hash with self-made hashes of guessed terms. The
scenario is that an honest partyu selects a random payloadmr of length2k (wherek
is the security parameter), sends it to the adversary outside the system, and sends the
hash of this payload to the adversary through the ideal or real system. From the real
system, the adversary gets the real hashhr := hashr(mr), tests whether this is indeed
the correct hash value of the payload, and tells the result tou outside the system. By the
ideal secrecy, the simulatorSim for the ideal system cannot find out more aboutmr than
excluding polynomially many guesses. Using the collision resistance of the real hash
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function, we show thatSim can consequently only guesshr with negligible probability,
and thus cannot simulate this scenario correctly.
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send(v, hash(m)u)
hr = hashr(mr)?
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hr = hashr(mr)?
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mr randommr random

Fig. 3. Counterexample with payload hashing and ideal secrecy for collision-resistant hash func-
tion.

The technical difficulties with the full proof for this scenario lie in an appropriate
formulation of the ideal secrecy, independent of one specific Dolev-Yao model.

Our third scenario in Figure 4 demonstrates that omitting the ideal secrecy require-
ment does not help as long as the real hash function is shortening as well as collision-
resistant, and thus one-way. Here the real adversary agreeson a random payloadmr

with an honest useru outside the system, and sends its hashhr to u through the system.
The user tests, using the ideal or real functionality, whether the obtained message is
indeed a hash ofmr. In the real system, the output is clearlytrue. The best way for the
simulator to cause the same output from the ideal functionality would be to send the
termh = hash(m) via TH in the first step. However, this would require guessingmr

and thus breaking the one-way property ofhashr.
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huhr := hashr(mr)hu

is_hash_of(mr, hu)

ha hr := hashr(mr)

mrmr

is_hash_of(mr, hu)

ytrue

Fig. 4. Counterexample with payload hashing for shortening hash function.

The difficulty with the full proof for this scenario, besidesthe question of payload
representations as in the first scenario, is thathash(m) is not the only term that causes
the outputtrue. For instance,D(E(hash(m))) orhash(D(E(m))) for en- and decryption
operatorsE andD are other such terms. We therefore have to be careful in how we
can argue that every successful strategy for the simulator really leads to a successful
algorithm that extractsmr and thus breaks the one-way property.
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3.2 Scenarios without Payloads

After showing that payloads and hashes in Dolev-Yao models lead to comprehensive
impossibility results for secure realizations in the senseof BRSIM/UC, we consider
restricted Dolev-Yao models without payloads. However, aslong as this is the only
restriction, we still prove impossibility. The basic proofidea is to let the users and
the adversary simulate payloads by encoding them into the structure of long terms.
Concretely, we use a list of2k nonces and encode a payload as a bit vector~b that selects
a sublist of these nonces. Instead of nonces, any other type can be used of which one
can generate2k instances that are ideally different, e.g., keys.

With a scenario similar to Figure 2, only adding the random choice of the nonces
for the encoding, we show that a hash function must be collision-resistant on these bit
vectors in order to offer a sound implementation of a Dolev-Yao model with hashes and
lists of nonces. Then with a scenario similar to Figure 3, we show that if ideal secrecy
is offered no sound implementation exists at all. With a scenario similar to Figure 4,
we show that even without ideal secrecy, no sufficiently shortening hash function, in
particular one whose output length depends only on the security parameter, yields a
sound implementation.

4 Assumptions on Dolev-Yao Models for our Impossibility Results

As explained in the introduction, we would like to work out the impossibility proofs
sketched in Section 3 not only for one specific Dolev-Yao model, but for all of them.
However, “all Dolev-Yao models” is not a notion that anyone tried to formalize before.
Hence we will now characterize Dolev-Yao models and their realizations by rather weak
rigorous requirements in order to make our impossibility results as strong as possible.

4.1 Minimum Assumptions on a Dolev-Yao Model with Hashes

In this section we describe the functionality that we assumea Dolev-Yao system with
hashes offers. We start with the basic notions of terms, including a hash operator. Re-
call thathash is essentially a free operator in the term algebra of typicalDolev-Yao
models. However, we do not define this strong freeness, but only a weaker property,
ideal collision freeness (both because this makes our results stronger, and because not
all Dolev-Yao models are actually defined as initial models of an equational specifica-
tion).

Definition 1 (Terms of a Dolev-Yao Model with Hashes).We require that we can
derive definitions of the following concepts from a Dolev-Yao model with hashes:

a. A setTerms denoting the overall set of valid terms. We speak ofatomsand op-
eratorsdenoting the potential leaves and inner nodes, respectively, of the terms
considered as trees. The terms, atoms and operators may be typed. There is an
equivalence relation “≡” on Terms . We call(Terms ,≡) the term algebra.4

4 Clearly syntactic term equality “=” implies equivalence. Typically “≡” is constructed from
cancellation rules.
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b. A unary operatorhash, which fulfils ideal collision freeness, i.e., hash(t) ≡
hash(t′)⇒ t ≡ t′ for all t, t′ ∈ Terms .

c. A setHashable Terms ⊆ Terms of the terms that are valid operands of the op-
eratorhash. We speak of a model withunrestricted hashingif Hashable Terms =
Terms .

d. A list operator (possibly implemented by repeated pairing in the original syntax).
Two lists are equivalent iff all their corresponding elements are.

3

Next we define some minimum actions that the users and the adversary can carry
out on the terms, and the results of these actions. In our context, this is the basis for
showing that our impossibility scenarios are at least executable in every Dolev-Yao
model (which probably nobody doubted).

While our notion of term representationstu for individual users is certainly more
general than notions that may be familiar to some readers, and thus can only strengthen
our impossibility results, let us briefly motivate how it relates to such notions: An im-
portant concept in Dolev-Yao models is that of termst constructible for some useru or
the adversary (by applying operators and cancellation rules to previously known mes-
sages); however, the syntax for this concept varies considerably. Some high-level repre-
sentations simply uset itself in the protocol representations (e.g., “hash(m)” even when
someone who does not knowm forwards this term). More detailed representations, e.g.,
in CSP orπ-calculus, typically use the concepts of variables inherent to these calculi,
usually by matching received messages with a pattern describing the expected message
format, and then using the pattern variables in subsequent message constructions. The
syntax explicitly made for BRSIM/UC of the Dolev-Yao-stylemodel in [9] uses local
variables called handles and explicit parsing of received messages. The syntax from all
these models can easily be mapped to that in our following definition.

We do not need a full definition of how a user acquires term representations. How-
ever, we define that terms can be sent and that the ideal adversary controls the network
as usual in Dolev-Yao models. Furthermore we define that users can hash terms and
compare hashes. In some, but not all, Dolev-Yao models this comparison can be made
by using a general equality operator corresponding to the term equivalence≡.

Definition 2 (Actions on a Dolev-Yao Model with Hashes).Users and the ideal ad-
versary can make at least the following inputs into the idealfunctionality of a Dolev-Yao
model with hashes, with the described results.

a. If an honest useru inputssend(v, tu) for a term representationtu, this leads to an
outputreceive(u, v, ta) for the adversary.

b. If the adversary inputssend(u, v, ta) for a term representationta, this leads to an
outputreceive(u, tv) for userv (i.e., the adversary impersonatesu).

c. If a useru (honest or the adversary represented byu = a) has a term represen-
tation tu, then it also has a representation for the termhash(t). (Typically this is
something like the string “hash(tu)”.)

d. An inputis hash of(tu, hu) by a useru (honest ora) leads to a Boolean outputy
for useru with y = true iff h ≡ hash(t).

3
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4.2 Payload Assumptions

All Dolev-Yao models in real proof tools have at least payload messages, nonces, and
keys as atoms. However, as payloads are particularly problematic in simulations, we
define Dolev-Yao models with and without them. A payloadm models an application
message, i.e., its cryptographic realizationmr can be an arbitrary bitstring; examples
are emails, payment messages, and digital pictures. In thissense, our scenarios in Sec-
tion 3 are perfectly natural: The users and the adversary select payloads as arbitrary
bitstrings. However, the internal representation of payloads in the terms in Dolev-Yao
proof tools is usually a constant supply of payload names or anonce-like construction
of fresh names. We therefore assume that the full ideal functionality maintains a trans-
lation table between the real payloads that occur in a systemexecution and their internal
representations.5

Definition 3 (Payloads in Dolev-Yao Models in the BRSIM/UC Setting). A Dolev-
Yao model with payloadsallows us to derive a type (subset)payload in the setTerms .
In every execution, every occurring payload term has a fixed realizationmr, andmr =
m′r impliesm ≡ m′. The range of payload realizationsmr is at least{0, 1}2k. A real
payloadmr can always be used as an input representationmu by every user. 3

We now consider how secret a hashed term is in a Dolev-Yao model when the ad-
versary learns its hash. We only need this in our second scenario, where we want to
show that an adversary receiving a (representation of) a term t = hash(m) containing a
payloadm cannot get significant information about the real payloadmr and thus its real
hash. In normal Dolev-Yao models, the hash operator is free,and thus there is no inverse
operator that the adversary can use to extractm, nor a sequence of such operators. In
addition, in many Dolev-Yao models one would represent the initial situation where the
adversary does not knowm by not giving the adversary any representation ofm, thus
excluding any possibility that the adversary guessesm. With such a strong assumption
the impossibility proof would be easy. However, we allow themore realistic case that
the adversary might guess payloads (as, e.g., in [9]). Furthermore, we only make the
minimum assumption that payloads are secret in hash terms except for this guessing.

Definition 4 (Ideal Secrecy of New Payloads).A Dolev-Yao model with hashes offers
ideal secrecy of new payloadsiff the following holds: If useru inputssend(v, hu) where
h = hash(m) for a newly chosen payloadmr, then the ideal adversary, from its output
receive(u, v, ha) and without further interaction with the useru, cannot obtain more
information aboutmr than by learning forx bitstrings m′r whetherm′r = mr (in
addition to its a-priori information), if it interacts at mostx times with the ideal system
and thus in particular if it runs in timex. 3

5 As an additional motivation for this assumption, recall that we want to compare the Dolev-
Yao model and its cryptographic realization in the sense of BRSIM/UC. Thus they must offer
the same syntactic user interfaces, i.e., in- and output formats. This holds for all definition
variants of BRSIM/UC. In particular, in Figure 1 this is the interface betweenTH or M1, . . . ,
Mn, respectively, and the entirety of honest usersH. In [17], it is the input and output formats
of the ideal and real functionality. Syntactically different user interfaces would either simply
prevent the same users from using alternatively the real or the ideal system, or lead to trivial
distinguishability.
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Finally, we define the weak freeness property of Dolev-Yao hashes that we need for
the third scenario. Essentially this is that without knowing a payloadm or its real repre-
sentationmr one cannot construct a term equivalent tohash(m). Like other definitions
of “knowledge” in cryptography, this is done by defining thatthe capability to construct
such a term implies the capability to find outmr. This reduction is done constructively
by an extractor algorithm.

Definition 5 (Minimum Non-Constructibility of Unknown Payl oad Hashes).A
Dolev-Yao model with hashes offersminimum non-constructibility of unknown pay-
load hashesif there exists a polynomial-time algorithmExt, called extractor, such that
the following holds: If the ideal adversary (for simplicityat the system start) makes a
sequence of inputs and then sends a termt to an honest user such thatt ≡ hash(m) for
a payloadm, then the extractor, given the transcript of the ideal adversary’s in- and
outputs, outputsmr. 3

For Dolev-Yao models with well-defined and constructible normalizations of terms,
the extractor is essentially this normalization: It constructst and the relation of payload
terms and their representations from the transcript (typically the transcript is simply of
the form “send(v, ta)” where payloads inta are in their real representation) and normal-
izest; the result ishash(m), from whichmr can be looked up. This clearly holds for
typical Dolev-Yao models that only have constructors and destructors like encryption
and decryption. It gets more complex in Dolev-Yao models with algebraic operations
like XOR; however, specifically XOR is known not to be realizable in BRSIM/UC [8].

4.3 Nonce List Assumptions

For the case without payloads, our scenarios use lists of nonces. We therefore define
what we assume about nonces (lists are already in Definition 1). The first assumption
is extremely simple and normal, except that some basic Dolev-Yao models only allow
a fixed number of nonces, while we need at least2k (as does every Dolev-Yao model
suitable for arguing about an unbounded number of sessions).

Definition 6 (Nonces in Dolev-Yao Models).A Dolev-Yao model with nonce listsal-
lows us to derive a type (subset)nonce in the setTerms . Every participant can use,
or explicitly generate, at least2k new nonces (we do not need a fixed syntax for this
generation); such nonces are pairwise not equivalent. 3

The next definition extends the ideal secrecy of hashed terms, which we earlier
defined only for new payloads, to new lists of nonces. More precisely, we define that an
ideal hash term does not divulge which of the many potential sublists of a list of nonces
was hashed. (We make these weak special assumptions to strengthen the impossibility
results, and to avoid complex considerations about prior knowledge in the general case.)

Definition 7 (Ideal Secrecy of New Nonce Lists).A Dolev-Yao model with hashes
offers ideal secrecy of new nonce listsiff the following holds: Let useru generate2k
new nonces~n = (n1, . . . , n2k) and potentially send them to the adversary, select a
random bit vector~b = (b1, . . . , b2k) R← {0, 1}2k, and inputsend(v, (hash(~b ⊙ ~n))u)
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where~b ⊙ ~n denotes the sublist consisting of the noncesni with bi = 1. Then the ideal
adversary, from its outputreceive(u, v, ha) and without further interaction with the user
u, cannot obtain more information about~b than by learning forx bit vectors~b′ whether
~b′ = ~b, if it interacts at mostx times with the ideal system and thus in particular if it
runs in timex. 3

Finally, we define that the ideal adversary cannot constructa hash over a sublist of
nonces without knowing which sublist of the nonces it is using.

Definition 8 (Minimum Non-Constructibility of Unknown Nonc e-list Hashes).A
Dolev-Yao model with hashes offersminimum non-constructibility of unknown nonce-
list hashesif there exists a polynomial-time algorithmExt, called extractor, such that
the following holds: If the ideal adversary (for simplicityat the system start) makes a
sequence of inputs and then sends a list~n of 2k pairwise different nonces and a termh
to an honest user such thath ≡ hash(~b⊙ ~n), then the extractor, given the transcript of
the ideal adversary’s in- and outputs, outputs~b. 3

Again, the existence of such an extractor is clear for Dolev-Yao models with a nor-
malization algorithm because the termhash(~b ⊙ ~n) cannot be further reduced and is
thus the normal form of every equivalent term. Given the overall list of nonces~n, which
the ideal adversary sent separately, the selection of nonces in this term and thus~b can
be read off.

4.4 Minimum Assumptions on a Cryptographic Realization

A general characteristics of real systems is that they are distributed. This means that
each participantu has its own machine, here calledMu, and the machines are only
connected by channels that offer well-defined possibilities for observations and manip-
ulations by a real adversary. Specifically for the realization of Dolev-Yao models with
hashes, we make the following (natural) minimum assumptions in the standard model
of cryptography: Real channels are insecure; the input to send a termt leads to actual
sending of a bitstringtr; and hash terms are realized by applying a fixed (hash) function
to the realization of the contained terms.

Definition 9 (Realization of a Dolev-Yao Model with Hashes).In a realization of
a Dolev-Yao model with hashes in the standard model of cryptography, an input
send(v, tu) to a machineMu releases a bitstringtr to the real adversary, such that
within one execution of the systemt ≡ t′ ⇒ tr = t′

r for all termst, t′. There must be a
deterministic, polynomial-time functionhashr such that(hash(t))r = hashr(tr) for all
t ∈ Hashable Terms . An inputis hash of(tu, hu) to a machineMu leads to the output
true iff hashr(tr) = hr.

For nonces, there must be a probabilistic polynomial-time algorithmGn that is used
to generatenr when it is needed for a new noncen, and2k executions ofGn must yield
pairwise different resultsnr

1, . . . ,nr
2k with overwhelming probability. 3

In realizations with type tagging we can consider an original cryptographic hash func-
tion together with the type tag ashashr. Note that we made no assumptions on the
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cryptographic properties ofhashr and only a weak one onGn; we will show that neither
“good” nor “bad” realizations lead to soundness in the senseof BRSIM/UC. 6

5 Details of the Impossibility Proofs

We now present the missing details for the impossibility proof sketches in Section 3,
using the definitions from Section 4.

5.1 Unsoundness of Dolev-Yao Models with Payloads

The first scenario from Section 3.1 becomes the following lemma.

Lemma 1. (Collision Resistance of the Real Hash Function) If a Dolev-Yao model with
hashes and payloads has a realization in the standard model of cryptography that is
secure in the sense of BRSIM/UC, then the hash functionhashr in this realization is
collision-resistant. For simplicity we define here that a collision for security parameter
k consists of two messages of length2k. 2

Proof. We elaborate our first scenario in Figure 2. Assume thathashr is not collision-
resistant. Then an adversaryA can find a collisionmr 6= m∗r with not negligible proba-
bility. By Definitions 2 and 3, the adversary and the user can indeed act as described in
Section 3.1, and by Definition 9, the output forHu in the real system is indeedtrue for
both messages. In the ideal system, by Definition 2 the user will only get these outputs
if h ≡ hash(m) andh ≡ hash(m∗). With the ideal collision freeness (Definition 1) this
impliesm ≡ m∗ and thusmr = m∗r (with Definition 9), in contradiction to the choice
of mr andm∗r.

The second scenario from Section 3.1 together with this lemma gives us the follow-
ing theorem.

Theorem 1. (Unsoundness of Dolev-Yao Models with Hashes and Ideal Secrecy of New
Payloads) No Dolev-Yao model with hashes and ideal secrecy of new payloads has a
realization in the standard model of cryptography that is secure in the sense of BR-
SIM/UC. 2

Proof. Assume that a Dolev-Yao model and a realization as specified in the theorem
exist. By Lemma 1, the hash functionhashr in the realization must be collision-resistant.
Thenδ(k) := maxhr∈{0,1}∗(Pr[hashr(mr) = hr :: mr R← {0, 1}2k]) is negligible (as
a function ofk), because otherwise two random messages of length2k are a collision
with not negligible probability. We elaborate our second scenario in Figure 3: The user
Hu chooses the payload asmr R← {0, 1}2k. By Definitions 2 and 3, the adversary and
the user can indeed act as described in Section 3.1, and by Definition 9, the output

6 In computational considerations abouthash
r we allowhash

r to depend on the security param-
eterk, which is fixed in each system execution. To allow collision-resistance in the sense of
the typical cryptographic definition, it should even dependon a keypk chosen at the beginning
of each system execution; our proofs could easily be adaptedto this case.
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for A in the real system ishashr(mr). In the ideal system, the simulatorSim gets an
outputreceive(u, v, ha) from the Dolev-Yao modelTH and has to produce a stringhr

for the adversary. For indistinguishability, this string must fulfill hr = hashr(mr) with
overwhelming probability.

Definition 4 is applicable and implies thatSim (which acts as the ideal adversary
here), withx calls toTH, cannot obtain more information aboutmr than by learning
for x bitstringsm′r whetherm′r = mr. As mr is uniformly random, the probability
thatSim hits m′r = mr in this process isx/22k, wherex is polynomial becauseSim

is polynomial-time. Thus this probability is negligible. In the other case, the optimal
choice ofhr for Sim is the most likely hash value over the remaining22k − x possible
payloads. The probability that this value is correct is at most δ(k)22k/(22k − x). This
is negligible becausex is polynomial.

Next we consider the case without secrecy of hashed terms, but with the additional
assumption that the output length of the real hash function depends only on the secu-
rity parameter, not on the input length. (Weaker definitionsof significantly shortening
hash functions would also suffice.) The third scenario from Section 3.1 together with
Lemma 1 gives us the following theorem.

Theorem 2. (Unsoundness of Dolev-Yao Models with Hashes and Payloads without
Secrecy) No Dolev-Yao model with hashes and payloads, even without ideal secrecy,
has a realization in the standard model of cryptography thatis secure in the sense of
BRSIM/UC and where the real hash function is shortening. Forsimplicity, we require
that the range of a shortening hash function is{0, 1}k. 2

Proof. Assume that a Dolev-Yao model and a realization as specified in the theorem
exist. By Lemma 1, the hash functionhashr in the realization must be collision-resistant.
As hashr is also shortening, it is one-way. (Otherwise the followingalgorithm finds a
collision with not negligible probability: Select a randompayloadmr R← {0, 1}2k, use
the assumed inversion algorithmAowf to find a preimagem′r of hashr(mr), and output
mr andm′r if they are unequal. This holds because all payloads, exceptless than2k

and thus negligibly many, collide with another one. IfAowf succeeds for such a payload
mr, then with probability at least1/2 we havem′r 6= mr.)

We now elaborate our third scenario in Figure 4. By Definitions 2 and 3, the adver-
sary and the user can indeed act as described in Section 3.1, and by Definition 9 the
output forHu in the real system is indeedtrue. By the assumption of the proof, the
simulator can achieve the same result in the ideal system with overwhelming probabil-
ity. Hence it makes an inputsend(v, u, ha) where, by Definition 2,h ≡ hash(m) for
the termm that is realized asmr. Definition 5 is applicable to our scenario and essen-
tially states thatSim, which acts as the ideal adversary, must knowmr for this. More
precisely, we use the postulated extractorExt to extractmr from the transcript ofSim

wheneverSim is successful. This gives us an inversion algorithmAowf for the function
hashr that succeeds with not negligible probability, in contradiction to the one-wayness
of hashr. Concretely,Aowf is the combination ofTH, Sim andExt. This is indeed a non-
interactive algorithm as required in the definition of one-wayness:Sim initially gets
one inputhr andTH has no input so far. ThenSim andTH interact with each other, but
interaction withH or A would be distinguishable from the real system.
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5.2 Unsoundness without Payloads

Now we work out the scenarios for restricted Dolev-Yao models without payloads. As
sketched in Section 3.2, we proceed similar to the scenarioswith payloads, letting the
users and the adversary replace payloads by bit vectors thatselect sublists of nonces.
For this, we first define collision resistance and one-wayness with respect to the bit
vectors.

Definition 10 (Bit-vector Collision Resistance and One-Wayness).Let a Dolev-Yao
model with hashes and a realization in the standard model of cryptography with the
hash functionhashr be given. We say thathashr is bit-vector collision-resistantif every
polynomial-time adversary can only find a list~nr = (nr

1, . . . , n
r
2k) of2k pairwise differ-

ent real nonces and bit vectors~b 6= ~b∗ ∈ {0, 1}2k with hashr(~b⊙ ~nr) = hashr(~b∗ ⊙ ~nr)

with negligible probability, where~b ⊙ ~nr for a bit vector~b = b1, . . . , b2k denotes the
sublist consisting of the noncesnr

i with bi = 1.
We say thathashr is bit-vector one-wayif every polynomial-time algorithmAowf ,

on inputhr := hashr(~b⊙ ~nr) for random~b R← {0, 1}2k and real nonces generated with
Gn, can only output a bit vector~b∗ ∈ {0, 1}2k with hr = hashr(~b∗⊙~nr) with negligible
probability. 3

Lemma 2. (Bit-vector Collision Resistance of the Real Hash Function) If a Dolev-Yao
model with hashes whereHashable Terms contains at least all lists of up to2k nonces
has a realization in the standard model of cryptography thatis secure in the sense
of BRSIM/UC, then the hash functionhashr in this realization is bit-vector collision-
resistant. 2

Proof. Assume thathashr is not bit-vector collision-resistant. We then use the scenario
in Figure 5 (adapted from Figure 2): A real adversaryA can find, with not negligible
probablity, a list~nr of 2k pairwise different nonces and bit vectors~b 6= ~b∗ ∈ {0, 1}2k

with hr := hashr(~b ⊙ ~nr) = hashr(~b∗ ⊙ ~nr). It sends the individual nonces andhr to
userHu through the system, and~b and ~b∗ outside the system. UserHu thus obtains
representations of the nonces and the hash term. It now inputs is hash of(~b ⊙ ~nu, hu),
where~b⊙~nu denotes the representation of the corresponding sublist ofthe nonces, and
is hash of(~b∗⊙~nu, hu). In the real system, the result istrue both times by Definition 9.
In the ideal system, this result would imply~b⊙~n ≡ ~b∗⊙~n with the ideal collision free-
ness (Definitions 1 and 2). However, as the real noncesnr

i are pairwise different, their
term versionsni are pairwise non-equivalent (Definition 9). The selection of sublists
by~b and ~b∗ therefore yields non-equivalent sublists (Definition 1). This is the desired
contradition.

Theorem 3. (Unsoundness of Dolev-Yao Models with Hashes and Ideal Secrecy of New
Nonce Lists) No Dolev-Yao model with hashes and ideal secrecy of new nonce lists
has a realization in the standard model of cryptography thatis secure in the sense of
BRSIM/UC. 2

Proof. We use the scenario in Figure 6. The userHu selects a bit vector~b ← {0, 1}2k

and sends2k new nonces to the adversary via the system. It also sends the hash of the
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Fig. 5. Counterexample with nonce lists for not bit-vector collision-resistant hash function.

sublist of these nonces selected by~b through the system, and~b on an external chan-
nel. Thus in the real system, the adversaryA obtains the real nonces~nr, the hash value
hr := hashr(~b⊙~nr), and~b. It tests whether the receivedhr is correct and tells the result
to the userHu; in the real system this is alwaystrue. Hence in the ideal system, the sim-
ulator has to produce real nonces~nr with an indistinguishable probability distribution
and the hash valuehr := hashr(~b ⊙ ~nr), without initially knowing~b. With overwhelm-
ing probability, it must make the noncesnr

i pairwise different because otherwise the
situation is distinguishable from the real system (Definition 9); we continue with this
case.
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Fig. 6. Counterexample with nonce lists and ideal secrecy for bit-vector collision-resistant hash
function.

By the ideal secrecy (Definition 7),Sim cannot learn more about~b with x interac-
tions withTH than learning forx vectors~b′ whether~b′ = ~b. The probability that it hits
~b′ = ~b in this process is negligible. We now consider the other case.

We first show that it is hard to choose a correcthr without the extra knowledge
about~b: We claim that for every polynomial-time algorithmS, the probability

PS(k) := Pr[hashr(~b⊙ ~nr) = hr ∧ pwd(~nr) :: (~nr, hr)← S(k);~b R← {0, 1}2k]

is negligible, wherepwd denotes the predicate that the elements of a list are pairwise
different. Assume it were not. Then the algorithm(~nr, hr) ← S(k);~b, ~b∗ R← {0, 1}2k
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finds bit-vector collisions with not negligible probability, in contradiction to the bit-
vector collision resistance ofhashr.7 Similar to the proof of Theorem 1, the probability
thatSim succeeds, given that it excludedx bit vectors, is only negligibly larger (by a
factor of at most22k/(22k − x)). This is the desired contradiction.

Theorem 4. (Unsoundness of Dolev-Yao Models with Hashes and Nonce Lists with-
out Secrecy) Let a Dolev-Yao model with hashes be given whosesetHashable Terms

contains at least all lists of up to2k nonces. Then there is no sound cryptographic im-
plementation in the sense of BRSIM/UC in the standard model of cryptography with a
shortening real hash function. 2

Proof. Assume a Dolev-Yao model and a realization as described in the theorem exist,
and lethashr be the real hash function used. Recall that for simplicity wedefined that
the output length of a shortening hash function isk. By Lemma 2,hashr is bit-vector
collision-resistant. We first see thathashr is bit-vector one-way similar to the start of the
proof of Theorem 2: Assume there were a successful inversionalgorithmAowf . Then
we generate a collision with the following algorithm:~nr R← (Gn(k))2k; ~b R← {0, 1}2k;
hr := hashr(~b ⊙ ~nr); ~b∗ ← Aowf(h

r); if ~b∗ 6= ~b output(~b, ~b∗). This succeeds with not
negligible probability by the same arguments as in the proofof Theorem 2.
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Fig. 7. Counterexample with nonce lists for shortening hash function.

Using the bit-vector one-wayness, we argue similar to the main part of the proof of
Theorem 2, see Figure 7: The adversary chooses a random bit vector~b R← {0, 1}2k and
2k nonces~nr with the correct generation algorithmGn. With overwhelming probability
the real nonces are pairwise different, and thus also the corresponding nonce terms
(Definition 9). We continue with this case. It sends the nonces andhr := hashr(~b⊙ ~nr)

to useru through the system and~b on an external channel. The user tests, using the real
or ideal functionality, whether it received the hash of the correct sublist of the nonces.
In the real system the result is alwaystrue by Definition 9. In the ideal system, the
simulatorSim has to enter a commandsend(v, u, ha) such thatHu also obtainsy =

7 This can be seen by considering the setX of pairs(~nr, hr) such that a bit vector~b fits with
probability at leastPS(k)/2. The probability ofX must be at leastPS(k)/2. For a pair
(~nr, hr) ∈ X, the probability that two bit vectors both fit (and thus in particular are a col-
lision) is at leastPS(k)2/4.
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true with overwhelming probability. By Definition 2 this impliesh ≡ hash(~b ⊙ ~n).
Hence the simulator has to construct a representationha of hash(~b ⊙ ~n). Definition 8
is applicable to our scenario and essentially states thatSim, which acts as the ideal
adversary, must know~b for this. More precisely, we use the postulated extractorExt

to extract~b from the transcript ofSim wheneverSim is successful. This gives us a
bit-vector inversion algorithm for the functionhashr that succeeds with not negligible
probability, in contradiction to the bit-vector one-wayness ofhashr.

6 Soundness Results

In this section we show that Dolev-Yao-style hashes can be proven sound in the random
oracle model, and under specific restrictions on the usage ofhash functions or their
properties in the ideal system even in the standard model of cryptography.

6.1 Soundness of Dolev-Yao Models with Hashes in the Random Oracle Setting

The first soundness result states that normal Dolev-Yao models without specific re-
strictions can be proven sound in the random oracle model. Asan overall result for
an operator-rich Dolev-Yao model with hashes, this requires an underlying Dolev-Yao
model with the other usual cryptographic operators and a realization secure in the sense
of BRSIM/UC. Hence we have to use that of [9]. However, what happens specifically
with the hashes can be explained well without specific notation from [9]. We sketch this
in this section, leaving more details to Appendix A.

The Dolev-Yao functionality is that of a free hash operator with unrestricted hashing
and with ideal secrecy in the typical sense that the adversary, upon learning a hash value,
has no deconstruction operator or other ways to obtain information about the contained
term except by the inputis hash of for comparing a message and a potential hash.
The only additional power that the ideal adversary gets compared with honest users
is to make hashes with unknown preimages, i.e., terms that could be writtenhash(?).
The preimages will remain unknown forever; that this works in the realization is a
consequence of the random oracle model.

In the cryptographic realization, the operatorhash is essentially realized by the ran-
dom oracle. The only addition is that the bitstrings are typed, i.e., the actual realization
hash(t)r of a hash term is the pair(‘hash’ , RO(tr)) where ‘hash’ is a fixed string and
RO abbreviates the result of a (in reality stateful) random oracle call.

Our security claim is that this realization is as secure as this ideal Dolev-Yao-style
system in the sense of BRSIM/UC in the random oracle model; see Section 2.

Theorem 5. (Soundness of a Dolev-Yao Model with Hashes in the Random Oracle
Model) A Dolev-Yao model with unrestricted hashing and secrecy of hashed terms,
defined in detail in Appendix A.1, can be securely implemented by a canonical crypto-
graphic realization, defined in detail in Appendix A.2, in the sense of BRSIM/UC in the
random oracle model. 2
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For proving BRSIM/UC for the underlying Dolev-Yao-style model without hashes and
its realization, a simulatorSim has been defined in [9]. It maintains a table of term
representationsma and corresponding bitstringsmr, reuses old terms or bitstrings when
possible when forwarding messages betweenTH andA, and otherwise constructs a new
correspondence. Essentially, we extend this simulator as follows (details are given in
Appendix A.4): For each hash termha, ourSim also stores the contained termma if it
knows it (i.e., the ideal adversary would know it).

If Sim gets a new hash termha from TH, it constructshr as a new type-tagged
random string.

If Sim gets a new type-tagged hash stringhr from A, it forwards a hash with un-
known preimage toTH, i.e.,h = hash(?). We see later that this only happens whenA

did not constructhr by calling the random oracle (which is simulated bySim); hence
no preimage will ever be found.

If Sim gets a random oracle query for messagemr from A or H, it checks whether
it already has a hash stringhr for mr. For this,Sim constructs the corresponding term
representationma and looks whether it knows a hash representationha with ma as the
contained term. Otherwise, it checks whetherma is the preimage of some hash term
ha for which it did not know the preimage yet (but the ideal functionality TH does),
by inputting is hash of(ma, ha) for all the possible term representationsha. If yes, it
stores this contained-term relation and uses the corresponding real hashhr. Otherwise
it constructshr as a new type-tagged random string, inputs a new termh = hash(m)
into TH, and stores the contained-term relation ofha andma as well ashr.

The correctness of this simulator is proved in Appendix A.5.

6.2 Soundness Results in the Standard Model

Finally, we briefly present two restricted but still practically useful types of Dolev-Yao
models with hashes that have secure realizations even in thestandard model of cryp-
tography. Both models allow the ideal adversary to construct hash terms with unknown
preimages, i.e., termshash(?). In contrast to the model in Section 6.1, the adversary can
later provide a preimage for such a term. Both realizations require a collision-resistant
hash function; in the first case the hash function must also beone-way.

The first type of Dolev-Yao model gives up the ideal secrecy, and can then work
with a significant class of hashable terms. By the size of a term t we mean the number
of nodes in the tree representation oft.

Theorem 6. (Soundness Without Payloads or Secrecy for Constant-SizedTerms) A
Dolev-Yao model without secrecy of hashed terms where termsin Hashable Terms

do not contain payloads and are at most of a constant sizel can be securely realized
in the sense of BRSIM/UC with arbitrary collision-resistant, one-way hash functions in
the standard model of cryptography. 2

We believe that this theorem can be extended to terms that contain payloads, but only
together with fresh nonces that remain secret, but the practical usefulness does not seem
to justify the overhead of such a condition that must be defined over an overall system
execution.
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The second theorem offers the ideal secrecy of typical Dolev-Yao models of hash-
ing, but only individual nonces can be hashed, as for instance in one-time signatures.

Theorem 7. (Soundness With Secrecy for Nonce Hashing) A Dolev-Yao model with
secrecy of hashed terms and where the setHashable Terms contains only individual
nonces can be securely realized in the sense of BRSIM/UC witharbitrary collision-
resistant hash functions in the standard model of cryptography. 2

Sketches of both proofs are postponed to Appendix B. Similarto the random oracle
case, for the precise model we rely on the existing Dolev-Yaomodel of [9] and extend
it with hashes. The detailed models are therefore very similar to Appendix A.1 and A.2.

7 Conclusion

We have investigated whether Dolev-Yao models with hashes or one-way functions can
be realized in the sense of BRSIM/UC, i.e., with the Dolev-Yao model as the ideal func-
tionality. We showed that this is not possible for the standard type of such Dolev-Yao
models. This impossibility result holds for all polynomial-time computable functions in
the role of the real hash function. No such absolute impossibility proof for a Dolev-Yao
model was previously known in the literature – the proofs of impossibility for Dolev-
Yao models with XOR are reductions.

In contrast, we showed that the realization is possible in the random oracle model.
We then considered several restrictions of the Dolev-Yao model or its ideal proper-

ties that have a potential to simplify simulations. For these, we obtained the following
additional impossibility results: First, even if no payloads can be hashed, but only cryp-
tographic terms (in fact, lists of nonces are sufficient), wecan still show impossibility.
Secondly, even if we give up the ideal secrecy property of hashes (retaining the ideal
collision freeness so that the model is still reasonable), we obtain impossibility for all
polynomial-time computable functions with message-independent output length (and
thus all typical hash functions). In particular, this is thefirst impossibility proof for a
Dolev-Yao model that does not assume any ideal secrecy property.

On the positive side, we obtain BRSIM/UC in the standard model of cryptography
for two cases: One includes ideal secrecy, but only allows hashing of single nonces, e.g.,
for the use in one-time signatures. The other gives up ideal secrecy, but allows hashing
of arbitrary cryptographic terms, i.e., terms without payloads, up to an arbitrary but
constant size.
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Appendix

In this appendix, we present the omitted proofs from Section6. We show the soundness
proof of a general Dolev-Yao model in the random oracle modelin detail, and sketch
proofs of the two soundness results for restricted Dolev-Yao models in the standard
model of cryptography.
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A A Sound Dolev-Yao Model with Hashes in the Random Oracle
Setting

This section contains the proof that Dolev-Yao-style hash functions with ideal secrecy
of hashed terms can be proven sound in the random oracle model, as sketched in Sec-
tion 6.1. We first present the additions needed for hashing tothe ideal and real func-
tionality of [9], then additions to the simulator, and finally the new parts of the proof of
correctness of this simulator. To make it credible that we really can add the functionality
we sketched above to the model of [9], we now use the notation from [9].

We first repeat some general notation from [9]. Byx := y++ for integer variables
x, y we meany := y + 1; x := y. The length of a messagem is denoted aslen(m), and
↓ is an error element available as an addition to the domains and ranges of all functions
and algorithms. The elements of a listl := (x1, . . . , xj) are retrievable asl[i], with
l[i] = ↓ if i > j. A databaseD is a set of functions, called entries, each over a finite
domain called attributes. For an entryx ∈ D, the value at an attributeatt is written
x.att . For a predicatepred involving attributes,D[pred ] means the subset of entries
whose attributes fulfillpred . If D[pred ] contains only one element, we use the same
notation for this element. Adding an entryx to D is abbreviatedD :⇐ x.

A.1 Hash Additions to the Ideal Dolev-Yao-style System

The underlying system model is an IO-automata model. Hence the overall Dolev-Yao
model, with its state, is represented as a machineTHH, whereH = {1, . . . , n} denotes
the set of honest users. It has a so-called portinu? for inputs from and a portoutu ! for
outputs to each useru ∈ H and foru = a, denoting the adversary.

The trusted host keeps track of the length of messages (this is needed because this
length leaks to the adversary even in encryptions) using a tuple L of abstract length
functions. One function fromL that we need below ismax len(k), which can be an
arbitrary polynomial denoting the maximum length of processed messages. We extend
L with a functionhash len∗(k) denoting the length of an abstract hashm, i.e., we
assume that the hash length is independent of the message length.

States: Term Database.The main part of the state of the Dolev-Yao-style model, i.e.,
of the machineTHH, is a databaseD of the existing terms. Each term is primarily
given by its type (top-level operator) and top-level argument list, where the non-atomic
arguments are given by pointers to the respective subterms.For this, each term contains
a global index that allows us (not the users) to refer to termsunambiguously. In addition,
THH stores the length of each term and handles that represent local names under which
the different participants know the term. In particular, the handles imply the knowledge
sets known from other Dolev-Yao-style models.

An example is shown in Figure 8, where userH1 sends a hash to userHn. The left
side indicates the main action that has happened so far: a list consisting of a payload
messagem and a nonceN has been hashed. The database contains the payload message
(of typedata), the nonce, the list, and the hash. The figure shows that thismessage has
arrived safely so thatHn has a handle to the hash, but due to the ideal secrecyHu has
not obtained handles to the subterms.
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Fig. 8. Example of the database representation of terms.

In detail, the database attributes ofD are defined as follows; the only differences to
[9] due to adding hashes are an augmented type set.

– ind ∈ INDS, called index, consecutively numbers all entries inD. The set
INDS is isomorphic toN. The index is used as a primary key attribute of the
database, i.e., one can writeD[i] for the selectionD[ind = i].

– type ∈ typeset defines the type of the entry. We add the type ‘hash’ to typeset

from [9].
– arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many valuesai are

indices of other entries inD and thus inINDS ; they are sometimes distinguished
by a superscript “ind”.

– hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles by which a user or adversary
u knows this entry. The value↓ means thatu does not know this entry. The set
HNDS is yet another set isomorphic toN. We always use a superscript “hnd” for
handles.

– len ∈ N0 denotes the “length” of the term, computed using the functions fromL.

Initially, D is empty. As additional state parts,THH has a countersize ∈ INDS for
the current size ofD, and counterscurhndu (current handle) foru ∈ H∪{a}, denoting
the most recent handle number assigned foru. They are all initialized with0. THH

furthermore maintains explicit counters and message bounds for each port in order to
ensure polynomial runtime, cf. [9]; we omit the details.

The algorithmihnd ← ind2hndu(i) (with side effect) denotes thatTHH determines
a handleihnd for useru to an entryD[i]: If ihnd := D[i].hndu 6= ↓, it returns that, else
it sets and returnsihnd := D[i].hndu := curhndu++. On non-handles, it is the identity
function.ind2hnd∗u appliesind2hndu to each element of a list.

Hash-Related Inputs. In this model, users build up terms in the ideal functionality
step by step, and they refer to the terms by the handles definedin Section A.1. The
new commands we have to add to this model are thereforehash for hashing a term
and is hash of. Such cryptographic operations are called basic commands.They are
accepted at each input portinu? and have only local effects, i.e., only an output at
outu? occurs. For such commands we use the notationj ← op(i), and we always use
u as the index of the concerned ports.

The following command definitions look rather complex because type checking is
explicit and so is the test that the resulting term does not exceed the length bound
needed for polynomial time, but in principle they just construct or test the top level of a
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hash term as one would expect. Handle arguments are tacitly required to be inHNDS
and existing, i.e.,≤ curhndu , at the time of execution. By a general convention in [9],
cryptographic operations—here hashing—are only applied to lists.

Definition 11 (Basic Commands for Hashes).The trusted hostTHH extended by
hashes accepts the following additional commands at every port inu?:

– Hashing: hhnd ← hash(lhnd). Let l := D[hndu = lhnd ∧ type = list].ind ,
length := hash len∗(k) and return↓ if l = ↓ or length > max len(k). Let
h := D[type =‘hash’∧arg = (l)].ind . If h 6= ↓ sethhnd := ind2hndu(h), else
set hhnd := curhndu++ and D :⇐ (ind := size++, type := ” hash” , arg :=
(l), hndu := hhnd, len := length).

– preimage test:b ← is hash of(lhnd, hhnd). Let l := D[hndu = lhnd ∧ type =
list].ind , h := D[hndu = hhnd ∧ type =‘hash’ ].ind and return↓ if l = ↓ or if
h = ↓. If D[h].arg = (l) return b := true elseb := false.

3

As explained in Section 6.1, the ideal adversary is given onecapability that the
honest users do not have: It can construct hash terms with unknown content. This is done
by a so-called local adversary command, only accepted at port ina?. For consistency, we
also have to extend the existing commandadv parse to hashes. This command allows
the adversary to retrieve all information about subterms that is not explicitly required to
be hidden, but for hashes it simply returns the empty list because of the ideal secrecy.

Definition 12 (Local Adversary Commands for Hashes).The trusted hostTHH ex-
tended by hashes accepts the following additional commandsat the portina?.

– Generate unknown hash:hhnd ← unknown hash(). Sethhnd := curhndu++ and
D :⇐ (ind := size++, type := ” hash” , arg := (), hndu := hhnd, len :=
hash len∗(k)).

– Parameter retrieval:(type, arg) ← adv parse(hhnd). This existing command al-
ways setstype := D[hndu = mhnd].type. For hashes, we setarg = ().

3

A.2 Realization of the Dolev-Yao-style System with Hashes

The realization of the Dolev-Yao model follows the overall description in Section 4.4,
i.e., each user has a machineMu, and the machines are connected by insecure
channels. Each machine has one port pairinu? and outu ! and accept the same in-
puts from honest users there as the ideal system. Essentially, Machine Mu con-
tains the projections of the Dolev-Yao-style database to the objects for which user
u has handles, with terms replaced by bitstrings. Figure 9 shows the real situation
for the example from Figure 8. We assume that the random oracle outputs strings
of length hash len(k), polynomial ink. The corresponding ideal length function is
hash len∗(k) := list len(len(‘hash’), hash len(k)).
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Fig. 9. Real situation for the same example as above.

States. Each entryx in the databaseDu of machineMu has the following attributes:

– x.hndu ∈ HNDS consecutively numbers the entries inDu. We use it as a primary
key attribute, i.e., we writeDu[ihnd] for the selectionDu[hndu = ihnd].

– x.word ∈ {0, 1}+ is the real representation ofx.
– x.type ∈ typeset ∪ {null} identifies the type ofx, where the valuenull denotes an

unparsed entry. Recall that we added the type ‘hash’ to typeset .
– x.add arg is a list of (“additional”) arguments. For entries of type ‘hash’ it is al-

ways().

Initially, Du is empty.Mu has a countercurhndu ∈ HNDS for the current size ofDu.
The subroutine(ihnd, Du) :← (i, type, add arg) determines a handle for certain given
parameters inDu: If an entry with the wordi already exists, i.e.,ihnd := Du[word =
i ∧ type 6∈ secrettypes ].hndu 6= ↓,8 it returnsihnd, assigning the input valuestype
andadd arg to the corresponding attributes ofDu[ihnd] only if Du[ihnd].type wasnull.
Else if len(i) > max len(k), it returnsihnd = ↓. Otherwise, it sets and returnsihnd :=
curhndu++, Du :⇐ (ihnd, i, type, add arg).

Similar to the machineTHH, Mu maintains bounds on the length of messages and
number of activations to achieve polynomial runtime. We omit further details.

Hash-Related Inputs. Now we describe howMu evaluates individual new inputs. The
stateful commands in [9] are defined via functional constructors and parsing algorithms
for each cryptographic type. (These stateless algorithms can be reused in the simulator
and the proof, while the stateful parts are different in the simulator.)

Definition 13 (Constructors and Destructors for Hashes).

– Hash constructor:h∗ ← make hash(l), for l ∈ {0, 1}+. Leth ← RO(l) and return
h∗ := (‘hash’ , h).

– Hash parsing:arg ← parse hash(h∗). If h∗ is of the form(‘hash’ , h) with h ∈
{0, 1}hash len(k), return (), else↓.

3

From the underlying model from [9], we use the general parsing algorithm and
stateful parsing routines:

8 The restrictiontype 6∈ secrettypes is included for compatibility to the original library. Similar
statements will occur some more times, but no further knowledge of such types is needed for
understanding the new work.
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– General parsing: (type, arg) ← parse(m). If m is not of the form
(type, m1, . . . , mj) with type ∈ typeset \ secrecttypes and j ≥ 0, returns
(garbage, ()). Else call the type-specific parsing algorithmarg ′ ← parse type(m).
If arg = ↓, thenparse again outputs(garbage, ()), else(type, arg).

– “parsemhnd” means thatMu calls (type, arg) ← parse(Du[mhnd].word), assigns
Du[mhnd].type := type if it was still null, and may then usearg .

– “parse mhnd if necessary” means the same except thatMu does nothing if
Du[mhnd].type 6= null.

We can define how a real machine reacts on the same basic commands as the ideal
Dolev-Yao-style system. They are again local; in the real system this means that they
produce no outputs onto the network.

Definition 14 (Basic Commands for Hashes).

– Hashing:hhnd ← hash(lhnd). Parselhnd if necessary. IfDu[lhnd].type 6= list, re-
turn ↓. Otherwise setl := Du[lhnd].word and h∗ ← make hash(l). If |h∗| >
max len(k), return↓, else(hhnd, Du) :← (h∗, hash, ()).

– Preimage test: b ← is hash of(lhnd, hhnd). If Du[lhnd].type 6= list or
Du[hhnd].type 6=‘hash’, return ↓. Otherwise setl := Du[lhnd].word , h :=
Du[hhnd].word , andh∗ ← make hash(l). If h = h∗ return true, elsefalse.

3

A.3 The Security Theorem

Our security claim is that the Dolev-Yao-style system with hashes defined in Ap-
pendix A.1 is securely implemented by the realization defined in Appendix A.2 in the
sense of BRSIM/UC in the random oracle model, as described inSection 2. We denote
the resulting BRSIM/UC notion by≥ROM.

Let RPar be the set of valid parameter tuples for the real system, consisting of
the numbern ∈ N of participants, a collectionS of cryptographic schemes satisfy-
ing respective security definitions against active attacks, cf. [9, 10, 6], and length func-
tions and boundsL′. (CurrentlyS may contain symmetric and asymmetric encryption
schemes, signature schemes, MACs, and of course nonces.) For (n,S, L′) ∈ RPar , let
Sys

cry Hash,real
n,S,hashr,L′ be the resulting realization. Further, let the corresponding length func-

tions and bounds of the ideal system be formalized by a functionL := R2Ipar(S , L′),
and letSys

cry Hash,id
n,L be the ideal Dolev-Yao-style system with parametersn andL.

Theorem 8. (Soundness of the Dolev-Yao-style System with Hashes in theRandom Or-
acle Model) For all parameters(n,S, hash, L′) ∈ RPar andL := R2Ipar(S, L′), we
have

Sys
cry Hash,real
n,S,hashr,L′ ≥

ROM Sys
cry Hash,id
n,L . 2

A.4 Simulator

For proving Theorem 8 for the underlying sytem without hashes (and without a ran-
dom oracle), a simulatorSimH was defined in [9]. BasicallySimH has to translate real
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messages from the real adversaryA into handles (i.e., term representations) asTHH

expects them at its adversary input portina? and vice versa. In both directions,SimH

has to parse an incoming message completely because it can only construct the other
version (abstract or real) bottom-up. This is done by recursive algorithmsreal2id and
id2real, respectively. The state ofSimH mainly consists of a databaseDa, similar to the
databasesDu, but storing the knowledge of the adversary. Each entry contains a han-
dle, a bitstring, a type, and possible an additional argument add arg. We now define
the extension of the simulator for hash functions, i.e., we consider the case that in the
recursive functionsreal2id andid2real the simulator is confronted with a hash string or
term, respectively. Furthermore, the simulator now has to answer random oracle queries
from A andH.

Inputs from THH. Assume that in the recursion ofid2real, the simulatorSimH ob-
tained a handlehhnd denoting a hash term. It first looks in its database whetherhhnd has
already been assigned a hash stringh; if yes, it outputsh. Otherwise, it chooses a new
random valueh′ and adds the type tag. The main part ofid2real automatically inserts
an entry(hhnd, h,‘hash’ , ()) into Da. The fourth elementadd arg = () means that no
preimage of the hash is known yet. More formally, the simulator does the following:

– Let x := Da[hnd a = hhnd].
– If x 6= ↓, let h := x.word . (We postulate here, and show in the proof, thath 6= ↓

wheneverx 6= ↓.)
– Otherwise let h′ R← {0, 1}hash len(k), h := (‘hash’ , h′) and Da :⇐

(hhnd, h,‘hash’ , ()).

Inputs from A. Now assume that in the recursion ofreal2id, the simulatorSimH has
to translate a hash stringh (recognized by its type tag) into a handlehhnd. It first looks
in its database whetherh is already present. If yes, it outputs the handle stored for that
bitstring. We later show that the only case where no such entry is present is thath was
not correctly generated with a random oracle query; thus nobody “knows” a preimage
of this hash string. Hence the simulator enters a command that generates an unknown
hash term into the ideal system and makes a new entry inDa. More formally:

– Let x := Da[word = h].
– If x 6= ↓, let hhnd := x.hnda. (We postulate here, and show in the proof, that

hhnd 6= ↓ wheneverx 6= ↓.)
– Else enterhhnd ← unknown hash() andDa :⇐ (hhnd, h,‘hash’ , ()).

Random Oracle Queries. If the simulatorSimH gets a random oracle query for a
bitstring m, it first constructs the term corresponding tom using the routinereal2id;
this yields a handlemhnd. It then checks whetherm is the designated preimage of
an already existing hash according to the attributeadd arg of the hash handles in its
database. If yes, it outputs the existing hash string from that hash entry (without the type
tag). Otherwise,SimH checks whethermhnd is the so far undesignated preimage of an
existing hash by applying the commandis hash of to the given message handlemhnd

and the handles of the hash terms it knows. If the result istrue for a hash termz, SimH
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stores thatmhnd is the preimage ofzhnd and outputsz.word . If no such termz exists, it
chooses a new random valueh′, adds the type tag, outputs the result, and makes a new
entry inDa. More formally:

– Call mhnd ← real2id(m).
– Let y := Da[type =‘hash’∧add arg = (preimage, mhnd)]. If y 6= ↓, outputh :=

y.word [2]. (We postulate and later prove that at most one suchy exists, and that
y.word 6= ↓ if y 6= ↓.)

– Otherwise letZ := {z ∈ Da | z.type =‘hash’}. For eachz ∈ Z , call bz ←
is hash of(mhnd, z.hnda).
If bz = true for somez (we postulate that at most one such element exists), set
z.add arg := (preimage, mhnd) and outputz.word .
Otherwise, leth′ R← {0, 1}hash len(k), h := (‘hash’ , h′) call THH with hhnd ←
hash(mhnd), setDa :⇐ (hhnd, h,‘hash’ , (preimage, mhnd)), and outputh′.

A.5 Proof of Correct Simulation

We now prove that the simulatorSimH yields a correct simulation. We start by defining
invariants of the databaseDa of SimH and proving that they hold with overwhelming
probability. In particular, these invariants prove the postulations we made in the con-
struction of the simulator.

Lemma 3 (Invariants of Da in SimH for Hashes).The following statements are in-
variants ofSimH, i.e., they hold for all traces whenSimH is run withTHH and arbitrary
(even computationally unbounded) user and adversary machines, up to a negligible er-
ror probability in k.

a. For everyx ∈ Da with x.type =‘hash’, we havex.hnd a 6= ↓ andx.word 6= ↓.
b. For every x ∈ Da with x.type =‘hash’, we have x.add arg ∈ {()} ∪
{(preimage, mhnd) | ∃y ∈ Da \ {x} : y.hnda = mhnd}.

c. For everyx ∈ Da with x.type =‘hash’, if x.add arg = (preimage, mhnd) then
Da[hnda = mhnd].word 6= ↓.

d. If h was the output of an oracle querym, then there existx, y ∈ Da with x.word =
m, y.word [2] = h, y.type =‘hash’, and y.add arg = (preimage, x.hnd a). 2

Proof. Parts a. to c. can be easily proved by inspection of the commands of SimH.
For Part d., leth denote the output of the oracle query on messagem. Within this
oracle query,SimH calls mhnd ← real2id(m). This ensures that the claimed entryx
exists and thatx.hnd a = mhnd. Then it setsy := Da[type =‘hash’∧add arg =
(preimage, mhnd)]. If y 6= ↓, we haveh = y.word [2] by construction. Ify = ↓, an
assignmentDa :⇐ (hhnd, h′′,‘hash’ , (preimage, mhnd)) with h = h′′[2] immediately
preceeds the output ofh.

The correctness of the simulator in [9] was proven using acryptographic bisimula-
tion, which is a probabilistic bisimulation with reduction proofs and static information-
flow analysis. In our case, the invariants ofDa and the use of a random oracle signifi-
cantly simplify the extension of this bisimulation to hashes.

In the following, we denote the look-up table of the random oracleRO in the real
system byDRO, ranging over attributesquery andhash .
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Definition of the Combined System.The cryptographic bisimulation makes use of a
combined system which essentially contains the joint information of the databases of
the ideal and real system. We briefly define this combined system. Possible ambiguities
will disappear below, where we compare the effects of the hash-related inputs in the
three systems.

The main part ofCH is a databaseD∗ structured likeD in THH. An entryx may
have the following additional attributes:

– x.word ∈ {0, 1}∗ is always defined and contains real data as inMH or SimH

under the same handle(s). Forx.type ∈ {sks, ske}, it is ǫ for adversary keys, i.e., if
owner(x) = a else a real secret key. For all other types, the word is non-empty.

– x.parsedu ∈ {true, false} for u ∈ H is ↓ if x.hndu = ↓; otherwisetrue indicates
that the entry would be parsed inDu, andfalse that it would still be of typenull.

– x.query for hashes is(l) if x.word was the output of a previous random oracle
queryl; otherwise it is(). Note that by definition of the random oracle,x.query =
y.query = (l) for some entriesx, y and stringl impliesx = y up to a negligible
error probability.

– x.queried by env for hashes istrue if x.word was the output of at least one pre-
vious random oracle query by the user or by the adversary (the“environment”);
otherwise it isfalse.

– x.owner for ciphertexts with honest-user keys isadv if the ciphertext was received
from the adversary, otherwisehonest. For other ciphertexts it is↓.

– x.ec for secret encryption keys corresponds to the encryption counter inciphers of
the encryption machines.

When evaluating inputs,CH acts on theD-part of its databaseD∗, the variables
size andcurhndu , and the ideal secure channels treated exactly likeTHH. An entry
whose first handlex.hndu is for u ∈ H gets the word thatMu would contain under this
handle; an entry whose first handle is for the adversary gets the word fromSimH. Thus,
essentially, entries created due to basic commands fromH get the words thatMu would
construct (possibly by querying the random oracle), while words received in network
inputs fromA as well as random oracle queries byH andA are entered as bySimH.

Derivations. We now define the derivations of the original systems from thecombined
system. They are the mappings that we will show to be bisimulations. We now assume
that a state ofCH is given and define derived states corresponding to the original sys-
tems.

THH: D: This is the restriction ofD∗ to all attributes exceptword andparsedu .
MH

∗: D∗
u: (For everyu ∈ H.) We deriveD∗

u as follows, starting with an empty
database: For everyxhnd ≤ curhndu , let x := D∗[hndu = xhnd].ind ,
type := D∗[x].type, andm := D∗[x].word . Then

– If D∗[x].parsedu = false, thenD∗
u :⇐ (xhnd, m, null, ()).

– Else if type =‘hash’, thenD∗
u :⇐ (xhnd, m, type, ()).

SimH
∗: D∗

a : We deriveD∗
a as follows, starting with an empty database: For allxhnd ≤

curhnda, let x := D∗[hnda = xhnd].ind , type := D∗[x].type, andm :=
D∗[x].word .
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– If type =‘hash’ and D∗[x].queried by env = false, then D∗
a :⇐

(xhnd, m,‘hash’ , ()).
– If type =‘hash’, D∗[x].queried by env = true, andD∗[x].query =

(l), then let lhnd
a := D∗[word = l].hnda and D∗

a :⇐
(xhnd, m,‘hash’ , (preimage, lhnd

a )).
RO: DRO: We deriveDRO as follows, starting with an empty database: For everyx ≤

size with m := D∗[x].word :
– If type =‘hash’, D∗[x].query = (l), andm = (‘hash’ , m′) for some

m′ ∈ {0, 1}hash len(k), let DRO :⇐ (l, m′)

Invariants in the Combined SystemCH and RO. For the bisimulation, we need
invariants about the combined systemCH andRO.

– Correct arguments.For all i ≤ size, the real messagem := D∗[i].word and the
abstract type and arguments,type id := D∗[i].type andarg ind := D∗[i].arg, are
compatible. More precisely, letarg real := ω∗(arg ind). Then we require:
• If type id 6∈ {sks, ske}, let (type, argparse) := parse(m). Thentype = type id,

and:
∗ If type =‘hash’ thenD∗[i].query = arg real.

– Strongly correct arguments ifa 6∈ owners(D∗[i]) or D∗[i].owner = honest. Let
type := D∗[i].type, arg ind := D∗[i].arg andarg real := ω∗(arg ind). Thentype 6=
garbage andm := D∗[i].word has the following probability distribution:9

• If type =‘hash’, thenm← make hash(arg real).

In the rest of the proof, we show that all input types from the usersH and the
adversaryA retain the invariants and lead to the same outputs in the different systems.

Input hhnd
← hash(lhnd) by u ∈ U . Let l ind := D∗[hndu = lhnd ∧ type =

list].ind . THH returns↓ if l ind = ↓ while Mu outputs↓ if Du[lhnd].type 6= list. This
is equivalent by “correct derivation”.THH furthermore outputs↓ if hash len∗(k) ≥
max len(k). Else it setsh ind := D∗[type =‘hash’∧arg = (l ind)].ind . If h ind 6= ↓, it
setshhnd := ind2hndu(h ind); otherwise it setshhnd := curhndu++ andD∗ :⇐ (ind :=
size++, type :=‘hash’ , arg := (l ind), hndu := hhnd, len := hash len∗(k)).

Mu setsl := Du[lhnd].word and h∗ ← make hash(l), i.e., h∗ := (‘hash’ , h′)
for h′ := RO(l) ∈ {0, 1}hash len(k). If |h∗| ≥ max len(k), it outputs ↓. This
length test equals that inTHH since by definition ofhash len∗ we have|h∗| =
list len(|‘hash’ |, hash len(k)) = hash len∗(k). If h ind 6= ↓ bothTHH andMu together
with the random oracle produce a consistent output by “correct derivation” without
changing their state. Hence either all three of them do not change their state, or all
make the prescribed state updates. OtherwiseMu setshhnd := curhnd++ and makes an
entryDu :⇐ (hhnd, h∗,‘hash’ , ()).

Now we consider the new hash entry: “Correct derivation” is clear. If “word unique-
ness” is not fulfilled, i.e., ifh′ within h∗ equals an old value in the same place in

9 Here one sees that the bisimulation is probabilistic, i.e.,we actually consider distributions of
states before and after a transition. This invariant says that in such a state distribution, and
given the mentioned arguments,m is distributed as described independent of other state parts.
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a word, we put the run into a so-called error setNonce Coll , which contained runs
where collisions of randomly chosen strings (such ash′) occured. One later easily
shows that the joint probabilities of runs in this set is negligible, cf. [9]. “Correct ar-
guments” follows immediately sinceD∗[h ind].query = (l) = (D∗[l ind].word) with
D∗[h ind].arg = (l ind). “Strongly correct arguments” holds by construction.

Input is hash of(lhnd, hhnd) by u ∈ U . Let l ind := D∗[hndu = lhnd ∧ type =
list].ind andh ind := D∗[hndu = hhnd ∧ type =‘hash’ ].ind . THH returns↓ if l ind = ↓
or h ind = ↓ while Mu outputs↓ if Du[lhnd].type 6= list or Du[hhnd].type 6= hash. This
is equivalent by “correct derivation”.

THH outputstrue iff D∗[h ind].arg = (l ind), and false otherwise.Mu setsl :=
Du[lhnd].word , h := Du[hhnd].word , andh∗ := (‘hash’ , h′) ← make hash(l). It out-
putstrue if h∗ = h, andfalse otherwise.

First assume thatD∗[h ind].query = (). “Correct arguments forD∗[h ind] implies
that ω∗(D∗[h ind].arg) = (), and henceD∗[h ind].arg = (). ThusTH outputsfalse in
this case.D∗[h ind].query = () furthermore implies that there was no previous ora-
cle query with resulting outputh, i.e., we in particular have(l, h) 6∈ DRO. If there
exists(l, h′′) ∈ DRO for someh′′ 6= h′, the random oracle outputsh′′ and this we
haveh∗ 6= h, yielding an outputfalse by Mu. If (l, h′′) 6∈ DRO for all h′′, thenh′ is
chosen ash′ R← {0, 1}hash len(k) by the random oracle. Thush∗ = h only holds with
exponentially small probability, henceMu will also outputfalse with overwhelming
probability. (More formally, runs in whichh∗ = h holds would again be put in the error
setNonce Coll which then later can be shown to have negligible probability.)

Now assume thatD∗[h ind].query = (i) for somei, and leti ind := D∗[word =
i].ind . Then “correct derivation” forD∗[h ind] implies(i, j) ∈ DRO wherej is defined
by (‘hash’ , j) := h. “Correct arguments” furthermore impliesω∗(D∗[h ind].arg) = (i).
Thus “word uniqueness” impliesD∗[h ind].arg = (i ind). HenceTHH outputstrue iff
i ind = l ind. If i ind = l ind, then(l, h′) ∈ DRO, thush∗ = h andMu also outputstrue. If
i ind 6= l ind, then “correct derivation” implies that(l, h′) 6∈ DRO up to an exponentially
small error probability that a randomly chosenh′ satisfies(‘hash’ , h′) = i, cf. the pre-
vious case. ThusMu also outputsfalse with overwhelming probability. The invariants
are clearly retained.

Inputs from TH. We now consider the simulation of real hash strings based on re-
ceived hash terms, i.e., the simulator receives a handlehhnd to a hash termh ind from
u ∈ H in the routineid2real and has to constructs a suitable hash string for it. Intuitively,
this part shows that the adversary does not get any information in the real system that it
cannot get in the ideal system, because any real informationcan be simulated indistin-
guishably given only the outputs ofTHH.

Let h ind := D∗[hndu = hhnd].ind . Now Mu always outputsh := D∗[h ind].word .
An inductive proof is used that the overall translating routine id2real from ideal terms
to concrete strings retains all invariants and produces theright outputs.id2real starts
with three steps that are essentially independent of the type of the considered entry (up
to domain checks which are fulfilled by construction when interacting withTHH). The
fourth step proceeds depending on thetype of the term. Each of these variants ends
with an assignment toh, which is then output, andDa :⇐ (hhnd, h, type, add arg) for
certain argumentsadd arg.
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In [9], it has been proven (in Lemma 7.6) that it is sufficient to show:

– a correct resulth = h∗, whereh∗ is the word theMu produces, i.e.,h∗ :=
D∗[h ind].word . We further can assume “strongly correct arguments” forh∗.

– “correct derivation” ofadd arg in the new entry;
– “word secrecy” forh, i.e., no flow of secret information intoh, where arguments

hi are not secret information. This invariant is used to later show that the adversary
cannot guess any information about, e.g., nonces that it hasnot learned “ideally”
yet, i.e., that it does not have a handle for.

For our new hash type, these conditions are also sufficient. This can be proven analo-
gously to the original proof. Since the proof mainly relies on a thorough investigation
of the first three steps ofid2real, we omit the details here.

For type ‘hash’, the subroutine ofid2real sets h′ R← {0, 1}hash len(k), h :=
(‘hash’ , h′), andadd arg = (). “Strongly correct arguments” forh∗ means thath∗

has the probability distributionm∗ ← make type(arg real), wherearg real is defined for
D∗[h ind] as in “strongly correct arguments”. By definition of the random oracle,h∗ is
distributed ash′′ R← {0, 1}hash len(k) andh∗ := (‘hash’ , h′′). Thus derivation ofD∗

a

gives the same distribution as we get inDa. “Word secrecy” clearly holds forh hashes
since each generation of a new hash does not depend on prior information.

Inputs from A. We now consider the simulation of ideal hash terms based on received
hash strings in the routinereal2id, i.e., the simulator receives a stringh and has to con-
structs a termhhnd. An inductive proof is again used that the overall translating routine
real2id from concrete strings to ideal terms retains all invariantsand produces the right
outputs. Using a lemma from [9], we only have to show the following properties of each
call hhnd

a ← real2id(h) with 0 < |h| ≤ max len(k):

– At the end,D∗[hnda = hhnd
a ].word = h and D∗[hnda = hhnd

a ].type 6∈
secrettypes .

– “Correct derivation” ofDa andcurhnda.
– The invariants withinD∗ are retained, where “strongly correct arguments” is al-

ready clear and “word secrecy” need only be shown for the outermost call (without
subcalls) if more entries thanD∗[hnda = hhnd

a ] are made or updated there.

The lemma carries over to our new type ‘hash’ with marginal extensions of the proof.
If there is already a handlehhnd with Da[h

hnd].word = h, real2id returns that. The
postulated output condition is fulfilled by “correct derivation”, and the others because
no state changes are made. Otherwise, the wordh is not yet present inDa. Thenid2real

sets(type, arg) := parse(h). This yieldstype ∈ typeset \ secrettypes. As parse is
a functional algorithm, no invariants are affected. Thenid2real calls an type-specific
subroutineadd arg ← real2id type(h, arg) with side-effects. Finally it setshhnd :=
curhnda++ andDa :⇐ (hhnd, h, add arg).

We therefore have to show the postulated properties for our new type-specific algo-
rithms together with those last two assignments.

For type ‘hash’, the subroutinereal2id hash(h, ()) callshhnd ← unknown hash()
at ina! and setsadd arg := (). HenceTHH makes a new entry withhhnd :=
curhnda++. Together with the new entry inDa, this results inD∗ :⇐ (ind :=
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size++, type :=‘hash’ , arg := (), hnd a := hhnd, len := hash len∗(k),word :=
h, query = (), queried by env = false). It fulfills the postulated output condition.
“Correct derivation” is clear, and “word secrecy” is clear as no other entries are in-
volved. For “word uniqueness”, assume there is a prior entryx ∈ D∗ with x.word = h.
We then put this run in an error setNonce Guess , which contains those runs in which
the adversary guessed a random string that he had no information about. One can later
show that this error set has negligible probability by exploiting the invariant “word
secrecy” to show that indeed no information in the Shannon sense has flowed from
variables that the adversary knows into the considered random strings, cf. [9].

Answering Oracle Queries. Finally assume that a useru or A asks the random oracle
to hash a messagel.

If there exists(l, h) ∈ DRO in the real system for someh, then the random oracle
outputsh; otherwise, it choosesh R← {0, 1}hash len(k), setsDRO :⇐ (l, h) and outputs
h. Let l ind := D∗[word = l].ind , h ind := D∗[word = (‘hash’ , h)].ind , andhhnd

a :=
D∗[h ind].hnda. The simulator callslhnd

a := algoreal2id(l).
Assume first that there exists(l, h) ∈ DRO. Then D∗[h ind].query = (l). If

D∗[h ind].queried by env = true “correct derivation” impliesD∗
a [h ind].arg =

(preimage, lhnd
a ). There is no state change in this case andSimH out-

puts D∗
a [h ind].word [2] while the random oracle outputsh. This is equiva-

lent by “correct derivation”. If D∗[h ind].queried by env = false, we have
Da[type =‘hash’∧add arg = (preimage, lhnd

a )].ind = ↓ by “correct deriva-
tion”. Let Z := {z ∈ Da | z.type =‘hash’} and bz ← is hash of(lhnd

a , z.hnda)
for z ∈ Z . If there is onez with bz = true, the simulator outputsz.word .
“Correct arguments” impliesD∗[h ind].arg = (l ind), thus there is onez with
bz = true iff hhnd

a := D∗[h ind].hnda 6= ↓. If hhnd
a 6= ↓, the simulator

outputs z.word which is correct by “correct derivation”. Ifhhnd
a = ↓ SimH

sets h′ R← {0, 1}hash len(k) and h∗ := (‘hash’ , h′), calls hhnd ← hash(lhnd
a ),

Da :⇐ (hhnd, h∗,‘hash’ , (preimage, lhnd
a )), and outputs h′. Because of

D∗[h ind].arg = (l ind), we havehhnd = hhnd
a , i.e., there is no state change in

THH except for setting the handlehnda. The stringh that the random oracle computes
has the same probability distribution ash′ by “strongly correct arguments” for the
entry D∗[h ind], yielding a correctly distributed output. We finally consider the new
hash entry: “Correct derivation” is clear. If “word uniqueness” is not fulfilled, i.e.,
if h or h∗ equal an existing word, we put the run into the error setNonce Coll ,
which can later shown to occur with negligible probability only. “Correct arguments”
follows immediately sinceD∗[h ind].query = (l) = (D∗[l ind].word). “Strongly correct
arguments” holds by construction.

Now assume that(l, h) 6∈ DRO for all h. SimH calls lhnd ← real2id(l). Let Z :=
{z ∈ Da | z.type =‘hash’} andbz ← is hash of(lhnd, z.hnda) for z ∈ Z . Now (l, h) 6∈
DRO for all h implies D∗[h ind].query 6= (l) for all h ind, thusD∗[h ind].arg 6= (l ind)
for all h ind by “correct arguments” and “word uniqueness’. This impliesbz = false

for all z ∈ Z . HenceSimH setsh′ R← {0, 1}hash len(k) andh∗ := (‘hash’ , h′), calls
hhnd ← hash(lhnd

a ) andDa :⇐ (hhnd, h∗,‘hash’ , (preimage, lhnd
a )), and outputs. The

stringh that the random oracle computes has the same probability distribution ash′ by
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definition of the random oracle, yielding a correctly distributed output. The invariants
for the new hash entry can be shown as in the previous case.

B Proof Sketches of Soundness in the Standard Model

We only briefly sketch the proofs of Theorems 6 and 7. Hence we mainly retain the
notation from the main part of this paper, instead of switching to the notation of [9] as
in Appendix A.

Both proofs require extending the simulatorSim from [9] to cope with hash terms
and hash strings, similar to the more detailed proof in the random oracle model. In
particular, recall that the simulator maintains a table (database) of corresponding term
representations (handles) and bitstrings, as well as the preimages of the hash term rep-
resentations where it knows them.

Proof (Theorem 6, Sketch).In the Dolev-Yao model without secrecy of hashed terms,
the ideal adversary can derive (a representation of) the contained termt whenever it
learns the hashhash(t). Hence the simulator can translate every ideal termhash(t) to
a bitstringhashr(tr) in a straightforward (recursive) manner by first constructing tr and
then applying the hash function.

Translating a real hash stringhr into an ideal hash termh is simulated as follows.
First, the simulator constructs the setTl of all terms of size at mostl using the available
operators over the terms in its current table of term representations. In the underlying
model of [9], terms are immediately normalized, hence each term in Tl can be con-
structed with at mostl operator applications. SinceTl is of polynomial size, this takes
polynomial time. The simulator then checks for every termt ∈ Tl whether hashing the
corresponding stringtr obtained or computed from the table equals the given stringhr.
Let I ⊆ Tl denote the set of terms that pass this test. We distinguish three cases:

1. If I = {t} for some termt, the simulator setsh := hash(t) and enters this into the
ideal system as well as its own table.

2. If |I | = ∅, the simulator enters an unknown hashh, i.e., a hash with unknown
preimage, into the ideal system and its table.

3. If |I | ≥ 2, the simulator gives up the simulation. (A collision of the functionhashr

has been found, because in this Dolev-Yao model and realization unequal terms
have unequal realizations with overwhelming probability.)

Whenever the simulator receives a new stringmr of arbitrary type and produces
a corresponding termm, it additionally checks for each unknown hashh whether the
contained term has now become known. For this, it constructsall termst of size at most
l containingm using the available operators over the terms in its current table of term
representations, and checks whetherhashr(tr) = hr. Let Th be the set of terms that
pass this test. IfTh = {t} for a termt, the simulator enterst as a preimage ofh into
its table, as well as into the ideal system using the special input for providing initially
unknown preimages later. IfTh = ∅, the simulator does nothing, and if|Th| ≥ 2, it
gives up the simulation. (A collision of the functionhashr has been found.)
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Clearly, the simulatorSim only gives up with negligible probability, as otherwise
the combination ofSim, TH, A andH is an algorithm that contradicts the collision
resistance ofhashr. For the other cases one can see, ultimately again by a cryptographic
bisimulation, that the ideal system with the simulator is indistinguishable from the real
system.

Proof (Theorem 7, Sketch).The simulator for this case can translate real hash strings
into ideal terms as a simpler case of the procedure in the proof of Theorem 6, since
individual nonces are a special case of terms of at most constant size.

As we allow hashing of individual nonces only, we can apply a similar technique for
translating an ideal hash termh to a real hash stringhr although ideal secrecy of hashed
terms is required: The simulator checks for all already known nonce termsn whether
is hash of(na, ha) = true. Since the number of known nonces is polynomial, this takes
polynomial time. If such a nonce termn exists, the simulator setshr := hashr(nr)
for the corresponding real noncenr in its table. At most one such term exists since
preimages are unique on the term level. If no suchn exists, the simulator chooses a new
noncen∗r with the algorithmGn and setshr := hashr(n∗r). It storesn∗r and its relation
to the termh. Furthermore, whenever the simulator receives a new nonce termn, it first
checks whetheris hash of(na, ha) = true for some hash termh that it knows, but for
which it does not yet know a preimage on the term level. (Againthere is at most one.)
If such a termh exists, thenSim outputs the stored real noncen∗r and stores in its table
thatn∗r is now the realization ofn. This simulation of the construction of nonces and
their hashes is always correct.
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