Limits of the Reactive Simulatability/UC
of Dolev-Yao Models with Hashes

Michael Backes, Birgit Pfitzmann, Michael Waidnet

1 Saarland University, Saarbriicken, Germdragckes @s. uni - sh. de
2 IBM Zurich Research Lab, Switzerlanfpf , wmi }@uri ch. i bm com

Abstract. Automated tools such as model checkers and theorem prawetrsef
analysis of security protocols typically abstract fromptography by Dolev-Yao
models, i.e., abstract term algebras replace the realagsggphic operations. Re-
cently it was shown that in essence this approach is cryapdgcally sound for
certain operations like signing and encryption. The steshgesults show this
in the sense of blackbox reactive simulatability (BRSIMYWith only small
changes to both Dolev-Yao models and natural implememisitidhis notion es-
sentially means the preservation of arbitrary securitypprties under active at-
tacks in arbitrary protocol environments.

We show that it is impossible to extend the strong BRSIM/USuls to usual
Dolev-Yao models of hash functions in the general case.d hexlels treat hash
functions as free operators of the term algebra. In contvesstshow that these
models are sound in the same strict sense in the random onacdlel of cryp-
tography. For the standard model of cryptography, we alsoudis several con-
ceivable restrictions to the Dolev-Yao models and clagbiéyn into possible and
impossible cases.

1 Introduction

Tools for proving security protocols typically abstraair cryptography by determin-
istic operations on abstract terms and simple cancellatites. An example term is
Epke, (hash(signg,, (m, N1), N2)), wherem denotes a payload message aid N
two nonces, i.e., representations of fresh random numidégswrote the keys as in-
dices only for readability; formally they are normal opetarin the term. A typical
cancellation rule i© . (Epre(m)) = m for corresponding keys. The proof tools han-
dle these terms symbolically, i.e., they never evaluatattoebitstrings. In other words,
the tools perform abstract algebraic manipulations orstoeasisting of operators and
base messages, using only the cancellation rules, the geessastruction rules of a
particular protocol, and abstract models of networks aneegries. Such abstractions,
although different in details, are collectively called BelYao models after their first
authors [24].

It is not obvious that a proof in a Dolev-Yao model impliesiggty with respect to
real cryptographic definitions. Recently, this long-siagdyap was essentially closed
by proving that an almost normal Dolev-Yao model of severgdartant cryptographic
system types can be implemented with real cryptographiesyssecure according to

standard cryptographic definitions in a way that offers kitex reactive simulatabil-
ity/UC [9]. We abbreviate blackbox reactive simulatalyility BRSIM in the following.
This security notion means that one system (here the crygbic realization) can be
plugged into arbitrary protocols instead of another sy<teene the Dolev-Yao model)
and retains essentially arbitrary security propertieis &lso called UC for its univer-
sal composition properties [38, 39, 17, 23]. In other wottgs result shows that the
Dolev-Yao model as such can serve as an ideal functiondlétyis correctly imple-
mented by a real functionality given by actual cryptograpyistems. Extensions of
this simulatability result to more cryptographic primés were presented in [10, 6],
uses in protocol proofs in [5, 3,4, 7], stronger links to cemional Dolev-Yao-style
type systems in [31], and an integration into the Isabek®itbm prover in [41]. Earlier
results on relating Dolev-Yao models and real cryptogragunsidered passive attacks
only [2, 1, 29]. Later papers [34, 30, 19] consider to whatektestrictions to weaker
security properties, such as integrity only, and/or lessega protocol classes, e.g., a
specific class of key exchange protocols, allow simplifaadi compared with [9]. A
BRSIM/UC result for a specific protocol class means that ftability is not shown
for the Dolev-Yao model as such (and thus by the compositienrems for all proto-
cols using it), but only for the specific compositions of thel&-Yao model with this
protocol class.

No paper relating Dolev-Yao models and cryptography cansithashing or one-
way functions although they are important operators in mated proof tools based
on Dolev-Yao models, e.g., [32, 37,40, 14, 11]. The typicablel is thathash is a free
operator in the term algebra, i.e., there is no inverse ¢peraor any other cancellation
rule with operators likeE and D. Only a party who knows or guesses a potentially
hashed term can test whether hashirtgequals a given hash terf at least if the
surrounding formal protocol language contains equaliyste

The goal of our paper is to close this gap, and to study howdhadness results
in the sense of BRSIM/UC can be extended when hash or onewmayidns are added
to a Dolev-Yao model and its cryptographic implementatlarthe following, we only
speak of hash functions since the standard Dolev-Yao modéhé two classes is the
same.

1.1 Our Contributions

It turns out that proving BRSIM/UC for Dolev-Yao models witlash functions is im-
possible in a general way. Note that the question is not venegthash function is a
good and generally usable cryptographic primitive by ftd®it only whether its ideal-
ization as a free operator in a term algebra, or a similargiltdelidealization, is sound.
Prior work showed that certain (classes of) ideal funcfiitiea are not securely re-
alizable, e.g., for bit commitments [18], coin tossing,az&nowledge, and oblivious

! There is also work on formulating syntactic calculi for degl with probabilism and
polynomial-time considerations and encoding them intaptools, in particular [35, 36, 28,
22,15]. This is orthogonal to the work of justifying Doleaty models, which offer a higher
level of abstractions and thus much simpler proofs wherdicgipe, so that proofs of larger
systems can be automated.

transfer [17], classes of secure multi-party computatdj pnd certain game-based
definitions [21]. However, none of these works investigat&blev-Yao model. Impos-
sibility of a Dolev-Yao model with XOR was shown in [8]. Forotase of hashes, the
reasons for impossibility and thus the proofs are quiteed#ifit. Furthermore, the proofs
in [8] are all reduction proofs, essentially saying thatiidealization of XOR and other
cryptographic operations is soundly implementable in #rese of BRSIM/UC, it can
be used to compute cryptographic algorithms and is thezafot intuitively Dolev-
Yao. In contrast, we obtain absolute impossibility resilte achieve this by making
stronger definitions on what makes an ideal functionalitha$hing and other crypto-
graphic operations a Dolev-Yao model.

It is important to note that there is so far no rigorous ddbnitof “any Dolev-
Yao model” in the literature that is independent of specifiderlying system models
such as CSRy-calculus, 10 automata, or strand spaces. For positivdtseshis is not
a problem. However, an impossibility result that only holds one of these models
would not be very convincing. To come as close as possiblaptucing the desired
generality, we will not prove impossibility for one specifiolev-Yao model, but only
make certain assumptions on the Dolev-Yao model, which viievgeare fulfilled by
all such models existing so far. Essentially we only assuraethe hash functions are
abstracted as free operators as informally explained allbaethey are applicable to
arbitrary terms, and that the model contains some otheraypperators and base types.

One reason (but not the only one) for the impossibility in ¢femeral case is that
hash functions, at least those with a one-way property,yarature committing, i.e., if
one first gets: = hash(m) and latenn one can validate whether indekd= hash(m).

It is well known that such a commitment property often cayseblems in proofs of
BRSIM/UC: If the simulator has to simulate a bitstring fobefore knowingn, then
whatever it picks will most likely not match. Thus the simulation fails ifn is later
revealed. In some cases, the commitment problem can bevoiented by using non-
standard models of cryptography, e.g., the random oracleti@3] or the common
random string model, cf. [18]. Indeed we can show BRSIM/UCtlie standard Dolev-
Yao model of hashes if the cryptographic realization of thgttfunction is treated as a
random oracle.

For the standard model of cryptography, the next questiaéther certain restric-
tions on the use of hash functions enable a BRSIM/UC soursdmssilt. One option
is to restrict the types of terms that can be hashed, in pdatito forbid the hashing
of payloads. By “payload” we mean an application message, & email text or the
amount and currency of a payment in a payment protocol thest thee cryptographic
functionality. Technically, payloads play a special ra@s in the example of the com-
mitment problem shows) because they are known outside yip¢ographic system and
thus can typically not be modified by the simulator, in cositta nonces, keys, etc. As
to practical usage, this restriction is serious but not asoeable; e.g., key exchange
protocols typically do not use payloads. However, we stifain an impossibility re-
sult if excluding payloads is the only restriction on hadhabrms. The basic idea in
that case is that by constructing large enough terms, tirs n§éhe cryptographic sys-
tem can simulate payloads. Another conceivable restridgidherefore on the size of
hashable terms. Again this restriction seems serious (ggeral hash chains and trees

are now excluded) but not unreasonable because many plotodg use rather small
terms, e.g., one-time signature schemes only use hashagyte#f sonces. In fact, for
the restriction to hashing single nonces, we obtain a pesiésult.

Another restriction is to give up the ideal secrecy propefthe hash functions, i.e.,
to give at least the ideal adversary an operator that intiests The technical motiva-
tion is that this clearly gets rid of the commitment probl&@n the application side,
this restriction excludes all protocols where one-wayiget®e core property for which
a hash function is used. However, we can use such a modeltimcots where shorten-
ing of messages with collision resistance is the core ptgpukssired. Note that in the
Dolev-Yao model, we can have collision freeness, i.e., neabty between hashes of
different terms, without secrecy. The realization of sunloperator by a real crypto-
graphic function would of course still have to be collisimsistant and thus one-way
if it is sufficiently shortening. Anyway, we still obtain ampossibility result in this
case: No shortening hash function exists that enables aesegalization of a Dolev-
Yao model with hashes even without secrecy. If we combiniagiup secrecy with not
hashing payloads and only terms of constant size, then vegodipositive result.

Of course the restrictions that we considered are not the amiceivable ones; in
particular it may be interesting to find other positive cagethe standard model of
cryptography than the two that we prove.

2 Summary of Reactive Simulatability/UC, also with Random
Oracle

As our results are for the security definitions of BRSIM/UG fivst briefly review this
notion. Reactive simulatability/UC is used for comparingdeal and a real system with
respect to security. It was first generally defined in [38] enblased on simulatability
definitions for secure (one-step) function evaluation P12, 33, 16]. It was extended
in [39, 17] and has since been used in many ways for provingithaal cryptographic
systems and general theorems.

We believe that all our following results are independenthef small differences
between the definition styles and therefore write “BRSIM/@d similar term pairs
like “ideal system/functionality”. However, we have to wsspecific formalism for the
actual results, and we use that from [39]. Here one speakieaf and real systems (the
functionalities and protocols of UC). The ideal system igofcalledTH for “trusted
host”, see Figure 1, and the protocol machines of the re&tsyare often called/,,,
whereu is a user index. The ideal or real system interacts withanlyiso-called honest
users, often collectively denoted by a machihehis corresponds to potential protocols
or human users to whom the functionality is offered. Funtiane, the ideal or real
system interacts with an adversary, often denoted byho is often given more power
than the honest users; in particular in real systédntgpically controls the networkA
andH can interact; this corresponds to known- and chosen-mesgtagks etc.

2 Furthermore, hash functions are known not to offer crygiphic secrecy in the same strong
sense as encryption schemes because they are determmistibis can be addressed by al-
lowing tests of hash values also in the ideal system.

H _|RO H

1 M, A TH i A

RO

Fig. 1. Overview of blackbox reactive simulatability with a reaksgm on the left and an ideal
system on the right, and a potential random oracle. The vidwbkmust be indistinguishable.

Reactive simulatability between the real and ideal systesemtially means that for
every attack on the real system there exists an equivalekabn the ideal system.
More specifically, blackbox reactive simulatability (BR®I states that there exists a
simulatorSim that can use an arbitrary real adversary as a blackbox, bathrbitrary
honest users cannot distinguish whether they interactthvéhreal system and the real
adversary, or with the ideal system and the simulator wétlbidckbox. Indistinguisha-
bility, here applied to the two families of views of the hohesers, is the well-known
notion from [42]. We always assume that all parties are paryial-time.

A formal representation of random oracles in the UC framéwaas given in [27].
This can be used one-to-one in the BRSIM terminology. In bagstem, each machine
has distinguished connections for querying the randoml@i0, which is the usual
stateful machine from [13] that generates a random stringhash value” for each
messagen when it is first queried about. In the ideal system with a simulator, these
distinguished connections connect to the simulatorthe.simulator learns every query
to the random oracle and can give arbitrary answers. Thiségsshown in Figure 2.

3 Informal Overview of the Impossibility Proofs

In this section, we present our results as proof sketchds avihinimum amount of
notation. Later we define more notation and precise assomptand then extend the
proof sketches to full proofs.

In the following, messages may occur in several represengtwhich we distin-
guish by superscripts. We write terms in the Dolev-Yao sevifgout superscipt, e.g.,
h := hash(m) for a hash term. The real cryptographic versions get a soppt5 e.g.,
h" := hash"(m") for the corresponding real bitstring, computed by applyngal hash
functionhash' to the real representation” of m. The users and adversaries may con-
cretely address the terms/bitstrings in yet another waynvitteracting with the real or
ideal functionality (hopefully indistinguishably, hene®& need only one notation); we
write these representations with superscripier honest uset. and?® for the adversary.
(Using the actual terms as these representations is a bpas)

In the figures we writéH,, for the actual uset, which is a part of the globall in
Figure 1.

3 Alternatively, one could use a correct random oracle alshénideal system and only allow
the simulator to eavesdrop the queries of some or all paHiesever, this weakens the power
of the simulator considerably, and most of our impossipjitoofs for the standard model of
cryptography would hold for this model with only minor chasg

3.1 Scenarios with Payloads

Our first scenario in Figure 2 demonstrates that the realfuasitionhash” must at least
be collision-resistant in order to offer a sound implemgateof a Dolev-Yao model
with hashes and payloads. This is not surprising, but we tieedollision resistance
in the next proofs. The proof idea is that otherwise the aghrgrcan find two colliding

H, M, A H, TH Sim A
ht At h":=hash"(m") B B A . i
€ =pash’(m™) “«—————— «—— <«—— h"=hash'(m)
' . m = hash'(m*")
“«-—-——- - “«-——————= et
is_hash_of(m", h") is_hash_of(m’, h")
— ——
-— -—
true y
is_hash_of(m™*', h") is_hash_of(m ™", h")
—» —>
- -
true y*

Fig. 2. Counterexample with payload hashing for not collisiorigteét hash function.

payloadsn' andm*" and send their hashi to an honest party. It also exchanges:
andm*" with the usem outside the system. Recall that all BRSIM/UC variants allow
such outside exchanges for chosen-message attacks etdeneée them by dashed
arrows in the interaction figures. Then useuses the ideal or real functionality to
check whether the message received through the system limigheof both payloads.
In the real system (on the left in all our interaction figuréke answer isrue both
times by the choice of". However, the ideal collision freeness of the ideal system (
the right in all our interaction figures) does not allow thignce the ideal and the real
system are distinguishable.

The major challenge in formalizing this proof sketch is ia treatment of payloads,
because most Dolev-Yao models do not put the actual payiotathe terms. Below
we make precise assumptions on this treatment and defindehkdollision freeness,
and then turn this sketch into a proof.

Our second scenario in Figure 3 demonstrates that even wdgthlision-resistant
function hash’, a sound implementation of a Dolev-Yao model with hashespayd
loads is impossible if the ideal Dolev-Yao functionalityferf ideal secrecy. By ideal
secrecy we mean that an adversary who obtains the hash diemvige unknown term
cannot do better than comparing this hash with self-madedsasf guessed terms. The
scenario is that an honest pattyselects a random payload" of length2k (wherek
is the security parameter), sends it to the adversary authiel system, and sends the
hash of this payload to the adversary through the ideal drsgestem. From the real
system, the adversary gets the real hiash= hash"(m"), tests whether this is indeed
the correct hash value of the payload, and tells the resulbiatside the system. By the
ideal secrecy, the simulat6im for the ideal system cannot find out more abetithan
excluding polynomially many guesses. Using the collisiesistance of the real hash

function, we show thaim can consequently only guesswith negligible probability,
and thus cannot simulate this scenario correctly.

H, M, A H, TH Sim A
m" random m" random
m" m"
—————————————— > Bt s 2
send(v, hash(m)") A" send(v, hash(m)") h? h
€-——————______Z NW=hash'(m")? € _I____C > 1" = hash’(m")?

Fig. 3. Counterexample with payload hashing and ideal secrecyolision-resistant hash func-
tion.

The technical difficulties with the full proof for this scemalie in an appropriate
formulation of the ideal secrecy, independent of one spebifilev-Yao model.

Our third scenario in Figure 4 demonstrates that omittimgidieal secrecy require-
ment does not help as long as the real hash function is shgtas well as collision-
resistant, and thus one-way. Here the real adversary agreasandom payloath'
with an honest user outside the system, and sends its hasto « through the system.
The user tests, using the ideal or real functionality, whethe obtained message is
indeed a hash ah'. In the real system, the output is cleathye. The best way for the
simulator to cause the same output from the ideal functignabuld be to send the
termh = hash(m) via TH in the first step. However, this would require guessing
and thus breaking the one-way propertyheh.

H, M, A H, TH Sim A
m" m'

€«-———————————= €«

B jr A= hash’(m") B B jr A= hash’(m")
«— «——— «— —— «——

is_hash_of(m", h*) is_hash_of(m", h“:

—
- -

true y

Fig. 4. Counterexample with payload hashing for shortening hasbtion.

The difficulty with the full proof for this scenario, besidég question of payload
representations as in the first scenario, is taah(m) is not the only term that causes
the outputrue. For instanceD(E(hash(m))) orhash(D(E(m))) for en- and decryption
operatorsE andD are other such terms. We therefore have to be careful in how we
can argue that every successful strategy for the simulatdlyrleads to a successful
algorithm that extracts:” and thus breaks the one-way property.

3.2 Scenarios without Payloads

After showing that payloads and hashes in Dolev-Yao modseld to comprehensive
impossibility results for secure realizations in the seas8RSIM/UC, we consider
restricted Dolev-Yao models without payloads. Howeverloag as this is the only
restriction, we still prove impossibility. The basic pradea is to let the users and
the adversary simulate payloads by encoding them into tetste of long terms.
Concretely, we use a list @k nonces and encode a payload as a bit vectoat selects
a sublist of these nonces. Instead of nonces, any other spée used of which one
can generatek instances that are ideally different, e.g., keys.

With a scenario similar to Figure 2, only adding the randomioch of the nonces
for the encoding, we show that a hash function must be cotlisésistant on these bit
vectors in order to offer a sound implementation of a Dole Yhodel with hashes and
lists of nonces. Then with a scenario similar to Figure 3, v@rsthat if ideal secrecy
is offered no sound implementation exists at all. With a acensimilar to Figure 4,
we show that even without ideal secrecy, no sufficiently &mng hash function, in
particular one whose output length depends only on the ggqarameter, yields a
sound implementation.

4 Assumptions on Dolev-Yao Models for our Impossibility Reslts

As explained in the introduction, we would like to work outtimpossibility proofs
sketched in Section 3 not only for one specific Dolev-Yao nhdalgt for all of them.
However, “all Dolev-Yao models” is not a notion that anyoried to formalize before.
Hence we will now characterize Dolev-Yao models and theilizations by rather weak
rigorous requirements in order to make our impossibilisutes as strong as possible.

4.1 Minimum Assumptions on a Dolev-Yao Model with Hashes

In this section we describe the functionality that we assarbmlev-Yao system with
hashes offers. We start with the basic notions of termsudioh a hash operator. Re-
call thathash is essentially a free operator in the term algebra of typinalev-Yao
models. However, we do not define this strong freeness, dytaoweaker property,
ideal collision freeness (both because this makes ourtsestnbnger, and because not
all Dolev-Yao models are actually defined as initial modélarmequational specifica-
tion).

Definition 1 (Terms of a Dolev-Yao Model with Hashes)We require that we can
derive definitions of the following concepts from a Dolew-Weodel with hashes:

a. A setTerms denoting the overall set of valid terms. We spealatifmsand op-
eratorsdenoting the potential leaves and inner nodes, respegtieélthe terms
considered as trees. The terms, atoms and operators maypbd.tyhere is an
equivalence relation =" on Terms. We call(Terms, =) the term algebrd.

w_n

4 Clearly syntactic term equality “=” implies equivalenceypically “=" is constructed from
cancellation rules.

b. A unary operatorhash, which fulfilsideal collision freenessi.e., hash(t) =
hash(t') =t =¢' for all ¢,¢' € Terms.

c. A setHashable_Terms C Terms of the terms that are valid operands of the op-
erator hash. We speak of a model witimrestricted hashinifj Hashable_Terms =

Terms.
d. A list operator (possibly implemented by repeated pgifimthe original syntax).
Two lists are equivalent iff all their corresponding elertseare. o

Next we define some minimum actions that the users and thesatyecan carry
out on the terms, and the results of these actions. In ouegfrhis is the basis for
showing that our impossibility scenarios are at least etedxte in every Dolev-Yao
model (which probably nobody doubted).

While our notion of term representatiotts for individual users is certainly more
general than notions that may be familiar to some readedsthaurs can only strengthen
our impossibility results, let us briefly motivate how itaigds to such notions: An im-
portant concept in Dolev-Yao models is that of terne@nstructible for some useror
the adversary (by applying operators and cancellatiorsriagreviously known mes-
sages); however, the syntax for this concept varies coraditle Some high-level repre-
sentations simply ugdtself in the protocol representations (e.tash(m)” even when
someone who does not knewforwards this term). More detailed representations, e.g.,
in CSP orr-calculus, typically use the concepts of variables inhetetthese calculi,
usually by matching received messages with a pattern d&sgrihe expected message
format, and then using the pattern variables in subsequessage constructions. The
syntax explicitly made for BRSIM/UC of the Dolev-Yao-styieodel in [9] uses local
variables called handles and explicit parsing of receivedsages. The syntax from all
these models can easily be mapped to that in our followingpitiefa.

We do not need a full definition of how a user acquires termeasgmtations. How-
ever, we define that terms can be sent and that the ideal adyemntrols the network
as usual in Dolev-Yao models. Furthermore we define thatsussan hash terms and
compare hashes. In some, but not all, Dolev-Yao models thigparison can be made
by using a general equality operator corresponding to time éguivalence=.

Definition 2 (Actions on a Dolev-Yao Model with Hashes)Users and the ideal ad-
versary can make at least the following inputs into the idigattionality of a Dolev-Yao
model with hashes, with the described results.

a. If an honest uses inputssend(v, t*) for a term representatiott, this leads to an
outputreceive(u, v, t*) for the adversary.

b. If the adversary inputsend(u, v, t*) for a term representatiof?, this leads to an
outputreceive(u, tV) for userwv (i.e., the adversary impersonates

c. If a useru (honest or the adversary representeddby= a) has a term represen-
tation t“, then it also has a representation for the tehash(¢). (Typically this is
something like the stringhash(¢*)".)

d. An inputis_hash_of (¢*, h*) by a useru (honest ora) leads to a Boolean output
for useru with y = true iff h = hash(t). o

4.2 Payload Assumptions

All Dolev-Yao models in real proof tools have at least pagloaessages, nonces, and
keys as atoms. However, as payloads are particularly pratile in simulations, we
define Dolev-Yao models with and without them. A payloadnodels an application
message, i.e., its cryptographic realizatioh can be an arbitrary bitstring; examples
are emails, payment messages, and digital pictures. lis¢hise, our scenarios in Sec-
tion 3 are perfectly natural: The users and the adversaectsphyloads as arbitrary
bitstrings. However, the internal representation of pagikin the terms in Dolev-Yao
proof tools is usually a constant supply of payload namesrmree-like construction
of fresh names. We therefore assume that the full ideal fmality maintains a trans-
lation table between the real payloads that occur in a syskeution and their internal
representations.

Definition 3 (Payloads in Dolev-Yao Models in the BRSIM/UC Siing). A Dolev-
Yao model with payloadallows us to derive a type (subsetlyload in the setTerms.
In every execution, every occurring payload term has a figaflzationm', andm" =
m'" impliesm = m’. The range of payload realizations’ is at least{0, 1}2*. A real
payloadm' can always be used as an input representatighby every user. O

We now consider how secret a hashed term is in a Dolev-Yao mdun the ad-
versary learns its hash. We only need this in our second Boeméhere we want to
show that an adversary receiving a (representation ofyattes hash(m) containing a
payloadm cannot get significant information about the real payloddnd thus its real
hash. In normal Dolev-Yao models, the hash operator is &rethus there is no inverse
operator that the adversary can use to extrachor a sequence of such operators. In
addition, in many Dolev-Yao models one would representrtital situation where the
adversary does not know by not giving the adversary any representatiomgfthus
excluding any possibility that the adversary guesse¥Vith such a strong assumption
the impossibility proof would be easy. However, we allow there realistic case that
the adversary might guess payloads (as, e.g., in [9]). Eurtbre, we only make the
minimum assumption that payloads are secret in hash terceptfor this guessing.

Definition 4 (Ideal Secrecy of New Payloads)A Dolev-Yao model with hashes offers
ideal secrecy of new payloaifthe following holds: If uset: inputssend(v, h*) where

h = hash(m) for a newly chosen payload', then the ideal adversary, from its output
receive(u, v, h?) and without further interaction with the user, cannot obtain more
information aboutm' than by learning forz bitstrings m’" whetherm’" = m' (in
addition to its a-priori information), if it interacts at meb times with the ideal system
and thus in particular if it runs in time:. <&

5 As an additional motivation for this assumption, recalltth@ want to compare the Dolev-
Yao model and its cryptographic realization in the senseREBA/UC. Thus they must offer
the same syntactic user interfaces, i.e., in- and outpmdts. This holds for all definition
variants of BRSIM/UC. In particular, in Figure 1 this is thearface betweefiH or M4, ...,
M,,, respectively, and the entirety of honest udérs$n [17], it is the input and output formats
of the ideal and real functionality. Syntactically diffatauser interfaces would either simply
prevent the same users from using alternatively the redierdeal system, or lead to trivial
distinguishability.

10

Finally, we define the weak freeness property of Dolev-Yeaghlea that we need for
the third scenario. Essentially this is that without knogvinpayloadn or its real repre-
sentationm" one cannot construct a term equivalentiash(m). Like other definitions
of “knowledge” in cryptography, this is done by defining tkia capability to construct
such a term implies the capability to find auf. This reduction is done constructively
by an extractor algorithm.

Definition 5 (Minimum Non-Constructibility of Unknown Payl oad Hashes).A
Dolev-Yao model with hashes offersnimum non-constructibility of unknown pay-
load hashe# there exists a polynomial-time algorithBxt, called extractor, such that
the following holds: If the ideal adversary (for simplicity the system start) makes a
sequence of inputs and then sends a tetanan honest user such thats hash(m) for

a payloadm, then the extractor, given the transcript of the ideal adeey’s in- and
outputs, outputsn'. <&

For Dolev-Yao models with well-defined and constructiblemalizations of terms,
the extractor is essentially this normalization: It coustst and the relation of payload
terms and their representations from the transcript (dffyiche transcript is simply of
the form “send(v, t*)” where payloads in® are in their real representation) and normal-
izest; the result ishash(m), from whichm' can be looked up. This clearly holds for
typical Dolev-Yao models that only have constructors anstrdetors like encryption
and decryption. It gets more complex in Dolev-Yao modeldwaitgebraic operations
like XOR; however, specifically XOR is known not to be realifmin BRSIM/UC [8].

4.3 Nonce List Assumptions

For the case without payloads, our scenarios use lists afesotWe therefore define
what we assume about nonces (lists are already in Definijiomte first assumption
is extremely simple and normal, except that some basic Dé&®/models only allow
a fixed number of nonces, while we need at leds{as does every Dolev-Yao model
suitable for arguing about an unbounded number of sessions)

Definition 6 (Nonces in Dolev-Yao Models)A Dolev-Yao model with nonce listal-
lows us to derive a type (subsei)nce in the setTerms. Every participant can use,
or explicitly generate, at leastk new nonces (we do not need a fixed syntax for this
generation); such nonces are pairwise not equivalent. <&

The next definition extends the ideal secrecy of hashed tenmigh we earlier
defined only for new payloads, to new lists of nonces. Moreipaty, we define that an
ideal hash term does not divulge which of the many potentialists of a list of nonces
was hashed. (We make these weak special assumptions tgthrerihe impossibility
results, and to avoid complex considerations about priomkedge in the general case.)

Definition 7 (Ideal Secrecy of New Nonce Lists)A Dolev-Yao model with hashes
offersideal secrecy of new nonce lisfé the following holds: Let uset. generate2k
new noncesi = (n,...,nq;) and potentially send them to the adversary, select a
random bit vectoly = (by,...,ba) < {0,1}2%, and inputsend(v, (hash(b ® 7))*)

11

whereb & ii denotes the sublist consisting of the nonegwith b; = 1. Then the ideal
adversary, from its outputceive(u, v, h?) and without further interaction with the user
u, cannot obtain more information abolithan by learning for: bit vectorss’ whether

Y = b, if it interacts at most: times with the ideal system and thus in particular if it
runsin timex. &

Finally, we define that the ideal adversary cannot constush over a sublist of
nonces without knowing which sublist of the nonces it is gsin

Definition 8 (Minimum Non-Constructibility of Unknown Nonc e-list Hashes).A
Dolev-Yao model with hashes offeninimum non-constructibility of unknown nonce-
list hashesf there exists a polynomial-time algorithBxt, called extractor, such that
the following holds: If the ideal adversary (for simplicity the system start) makes a
sequence of inputs and then sends ailisf 2k pairwise different nonces and a terim
to an honest user such that= hash(5®), then the extractor, given the transcript of

the ideal adversary’s in- and outputs, outpﬁts O

Again, the existence of such an extractor is clear for Ddag-models with a nor-
malization algorithm because the temash(5® 1) cannot be further reduced and is
thus the normal form of every equivalent term. Given the alvéist of noncesi, which
the ideal adversary sent separately, the selection of sdndkis term and thus can
be read off.

4.4 Minimum Assumptions on a Cryptographic Realization

A general characteristics of real systems is that they ateilolited. This means that
each participant: has its own machine, here calléd,, and the machines are only
connected by channels that offer well-defined possibilitie observations and manip-
ulations by a real adversary. Specifically for the realmatf Dolev-Yao models with
hashes, we make the following (natural) minimum assumptinrihe standard model
of cryptography: Real channels are insecure; the inputnd setermt leads to actual
sending of a bitstring; and hash terms are realized by applying a fixed (hash) fumcti
to the realization of the contained terms.

Definition 9 (Realization of a Dolev-Yao Model with Hashes)In a realization of
a Dolev-Yao model with hashes in the standard model of cguafohy an input
send(v,t"*) to a machineM,, releases a bitstring" to the real adversary, such that
within one execution of the systeénx t' = t" = ¢'" for all termst, t'. There must be a
deterministic, polynomial-time functidrash” such that(hash(¢))" = hash"(¢") for all
t € Hashable_Terms. An inputis_hash_of (t*, h*) to a machinéM,, leads to the output
true iff hash"(¢") = h".

For nonces, there must be a probabilistic polynomial-tingweathm G, that is used
to generaten” when it is needed for a new noneeand2k executions o6,, must yield
pairwise different resulta’, ..., n5, with overwhelming probability. &

In realizations with type tagging we can consider an origingptographic hash func-
tion together with the type tag dmsh". Note that we made no assumptions on the

12

cryptographic properties ¢fish” and only a weak one 0@, ; we will show that neither
“good” nor “bad” realizations lead to soundness in the s@fi&RSIM/UC.©

5 Details of the Impossibility Proofs

We now present the missing details for the impossibilitygirsketches in Section 3,
using the definitions from Section 4.

5.1 Unsoundness of Dolev-Yao Models with Payloads
The first scenario from Section 3.1 becomes the followingntem

Lemma 1. (Collision Resistance of the Real Hash Function) If a Dofao-model with
hashes and payloads has a realization in the standard mddatyptography that is
secure in the sense of BRSIM/UC, then the hash funatiel in this realization is
collision-resistant. For simplicity we define here that dlis@n for security parameter
k consists of two messages of lengih]

Proof. We elaborate our first scenario in Figure 2. Assume liksi" is not collision-
resistant. Then an adversakycan find a collisionn” # m*" with not negligible proba-
bility. By Definitions 2 and 3, the adversary and the user caleéd act as described in
Section 3.1, and by Definition 9, the output féy, in the real system is indeeele for
both messages. In the ideal system, by Definition 2 the udkeonly get these outputs
if 1 = hash(m) andh = hash(m*). With the ideal collision freeness (Definition 1) this
impliesm = m* and thusn' = m*" (with Definition 9), in contradiction to the choice
of m" andm*". [

The second scenario from Section 3.1 together with this lamives us the follow-
ing theorem.

Theorem 1. (Unsoundness of Dolev-Yao Models with Hashes and Ideaé&gof New

Payloads) No Dolev-Yao model with hashes and ideal secreogw payloads has a
realization in the standard model of cryptography that iswge in the sense of BR-
SIM/UC. a

Proof. Assume that a Dolev-Yao model and a realization as specifielde theorem
exist. By Lemma 1, the hash functiéash" in the realization must be collision-resistant.
Thend(k) := maxyre(o,13~(Prlhash’(m") = A" :: m" & {0,1}%%]) is negligible (as
a function ofk), because otherwise two random messages of |e2igtre a collision
with not negligible probability. We elaborate our seconerario in Figure 3: The user
H, chooses the payload as* <& {0, 1}%*. By Definitions 2 and 3, the adversary and
the user can indeed act as described in Section 3.1, and bgitioefi9, the output

% In computational considerations abdash” we allowhash” to depend on the security param-
eterk, which is fixed in each system execution. To allow collisiesistance in the sense of
the typical cryptographic definition, it should even dependh keypk chosen at the beginning
of each system execution; our proofs could easily be adapttts case.

13

for A in the real system ikash"(m"). In the ideal system, the simulat6im gets an
outputreceive(u, v, h*) from the Dolev-Yao model'H and has to produce a stririg

for the adversary. For indistinguishability, this stringisa fulfill 2" = hash"(m") with

overwhelming probability.

Definition 4 is applicable and implies th&im (which acts as the ideal adversary
here), withx calls to TH, cannot obtain more information about than by learning
for x bitstringsm/" whetherm’" = m'. As m' is uniformly random, the probability
thatSim hits m’" = m" in this process ir/2%*, wherez is polynomial becausgim
is polynomial-time. Thus this probability is negligiblen the other case, the optimal
choice ofh" for Sim is the most likely hash value over the remainitt§ — = possible
payloads. The probability that this value is correct is astdok)22* /(2% — z). This
is negligible because is polynomial. L]

Next we consider the case without secrecy of hashed terrhgitiuthe additional
assumption that the output length of the real hash functepedds only on the secu-
rity parameter, not on the input length. (Weaker definitiohsignificantly shortening
hash functions would also suffice.) The third scenario fraenti®n 3.1 together with
Lemma 1 gives us the following theorem.

Theorem 2. (Unsoundness of Dolev-Yao Models with Hashes and Paylodtsw
Secrecy) No Dolev-Yao model with hashes and payloads, etleoutvideal secrecy,
has a realization in the standard model of cryptography tkaecure in the sense of
BRSIM/UC and where the real hash function is shortening.dtmplicity, we require
that the range of a shortening hash functiof{s 1}*. m]

Proof. Assume that a Dolev-Yao model and a realization as specifielde theorem
exist. By Lemma 1, the hash functiéash" in the realization must be collision-resistant.
As hash" is also shortening, it is one-way. (Otherwise the followalgorithm finds a
collision with not negligible probability: Select a randgrayloadm' <* {0,1}2*, use
the assumed inversion algorithiy,+ to find a preimagen’” of hash"(m"), and output
m" andm’" if they are unequal. This holds because all payloads, exesptthar2®
and thus negligibly many, collide with another oneAlf,s succeeds for such a payload
m', then with probability at least/2 we haven’" # m".)

We now elaborate our third scenario in Figure 4. By Defingi@and 3, the adver-
sary and the user can indeed act as described in Sectionn8l hyaDefinition 9 the
output forH,, in the real system is indeadue. By the assumption of the proof, the
simulator can achieve the same result in the ideal systemavigrwhelming probabil-
ity. Hence it makes an inpsend(v, u, h?) where, by Definition 2h = hash(m) for
the termm that is realized as:". Definition 5 is applicable to our scenario and essen-
tially states thabim, which acts as the ideal adversary, must knaWwfor this. More
precisely, we use the postulated extradigt to extractm'" from the transcript obim
whenevelSim is successful. This gives us an inversion algorithgps for the function
hash" that succeeds with not negligible probability, in contraidin to the one-wayness
of hash". ConcretelyA,.s is the combination oT H, Sim andExt. This is indeed a non-
interactive algorithm as required in the definition of onaywessSim initially gets
one inputh” andTH has no input so far. TheSim andTH interact with each other, but
interaction withH or A would be distinguishable from the real system. L]

14

5.2 Unsoundness without Payloads

Now we work out the scenarios for restricted Dolev-Yao meddthout payloads. As
sketched in Section 3.2, we proceed similar to the scenaiitbspayloads, letting the
users and the adversary replace payloads by bit vectorselesit sublists of nonces.
For this, we first define collision resistance and one-waymnéth respect to the bit
vectors.

Definition 10 (Bit-vector Collision Resistance and One-Wangess).Let a Dolev-Yao
model with hashes and a realization in the standard modelhgftography with the
hash functiorhash" be given. We say thatsh" is bit-vector collision-resistant every

polynomial-time adversary can only find a li§t= (nf, ..., n5,) of 2k pairwise differ-
ent real nonces and bit vectobsZ b* € {0, 1}2 with hash"(b ® ") = hash'(b* © ")
with negligible probability, wheré © 7" for a bit vectorb = b4, ..., by, denotes the

sublist consisting of the nonce$with b; = 1.

We say thahash" is bit-vector one-wayif every polynomial-time algorithmA,s,
on inputh’ := hash"(b @ 7i") for randomb < {0, 1}2* and real nonces generated with
Gy, can only output a bit vectdr* € {0, 1}2* with o™ = hash"(b* 7i") with negligible
probability. o

Lemma 2. (Bit-vector Collision Resistance of the Real Hash Fungtliba Dolev-Yao
model with hashes whei#ashable_ Terms contains at least all lists of up % nonces
has a realization in the standard model of cryptography tisasecure in the sense
of BRSIM/UC, then the hash functidash’ in this realization is bit-vector collision-
resistant. m]

Proof. Assume thahash" is not bit-vector collision-resistant. We then use the acien
in Figure 5 (adapted from Figure 2): A real adversArgan find, with not negligible
probablity, a listii" of 2k pairwise different nonces and bit vectd;rsé b* e {0,1}2k
with A" := hash"(b ® ") = hash"(b* ® 7). It sends the individual nonces ahtlto
userH, through the system, andandb* outside the system. Usét, thus obtains
representations of the nonces and the hash term. It nowsiiyphish_of (b ® 7%, %),
whereb ® ii* denotes the representation of the corresponding subliseafonces, and
is_hash_of (b* © 7", k). In the real system, the resulttisie both times by Definition 9.
In the ideal system, this result would imgly i = b* ® 77 with the ideal collision free-
ness (Definitions 1 and 2). However, as the real non¢ese pairwise different, their
term versionsy; are pairwise non-equivalent (Definition 9). The selectidsublists
by b andb* therefore yields non-equivalent sublists (Definition 1hisTis the desired
contradition. L]

Theorem 3. (Unsoundness of Dolev-Yao Models with Hashes and Ideat&gof New
Nonce Lists) No Dolev-Yao model with hashes and ideal seataew nonce lists
has a realization in the standard model of cryptography ilkagecure in the sense of
BRSIM/UC. O

Proof. We use the scenario in Figure 6. The ulgrselects a bit vectdr — {0, 1}2
and send2k new nonces to the adversary via the system. It also sendstiedf the

15

H M A H TH Sim A
- o u - -
h* :=hash'(b On) h* ;= hash(b On)

— - — >
= hash'(b*GOn ") = hash"(b*GOn ")
n u hM n T hl’ E}M hu },7)6 ha ;l)l' hl’
h g ; h h - = N
b, b* b, b*
€“-———— D ettt
iS_haSh_Of(B@l? u ht)? iS_haSh_Of(B@l? u ht)?
_— _—
— «——
true y
> > > >
is_hash_of(b*®n “, h")? is_hash_of(b*@®n “, h*)?
e e e =
4—
true y*

Fig. 5. Counterexample with nonce lists for not bit-vector cofiisiresistant hash function.

sublist of these nonces selected Ho;hrough the system, anidon an external chan-
nel. Thus in the real system, the adversangbtains the real nonces, the hash value
h" := hash"(b ® ii"), andb. It tests whether the received is correct and tells the result
to the useH,,; in the real system this is alwaysie. Hence in the ideal system, the sim-
ulator has to produce real nonc@swith an indistinguishable probability distribution
and the hash valug := hash'(b ® 7i"), without initially knowingb. With overwhelm-
ing probability, it must make the nonce$ pairwise different because otherwise the
situation is distinguishable from the real system (Defimitd); we continue with this
case.

H, M, A H, TH Sim A
B random b random
send(v, 1_1)") n send(v, 71’“) n? n

>
>

A\ 4

»
»

\ 4

>
>

send(v, hash(ﬁ@?z:)“) " send(v, hash(E)GZ)”) n®o "

>
» >

A\ 4

I3 I3
_______________ > - =2 e ettt g -
A" =hash'(b ©n ")? A" = hash'(b ©n")?
<_ _______________ 4_ _____________________
true y

Fig. 6. Counterexample with nonce lists and ideal secrecy for &itar collision-resistant hash
function.

By the ideal secrecy (Definition 73im cannot learn more abotitwith z interac-
tions with TH than learning for: vectorsly whether/ = b. The probability that it hits
¥ = bin this process is negligible. We now consider the other.case

We first show that it is hard to choose a corrgttwithout the extra knowledge
abouth: We claim that for every polynomial-time algorith) the probability

Ps(k) := Prlhash"(b ® @i") = h' A pwd(ii") == (A", h") «— S(k); b <& {0,1}]
is negligible, wherewd denotes the predicate that the elements of a list are pairwis
different. Assume it were not. Then the algorittifif, h") «— S(k); b, b* <& {0,1}2F

16

finds bit-vector collisions with not negligible probabjiitin contradiction to the bit-
vector collision resistance dhsh".” Similar to the proof of Theorem 1, the probability
thatSim succeeds, given that it excludedit vectors, is only negligibly larger (by a
factor of at mose2* /(22% —). This is the desired contradiction. "

Theorem 4. (Unsoundness of Dolev-Yao Models with Hashes and Nonce \it-
out Secrecy) Let a Dolev-Yao model with hashes be given veeb&&ishable_ Terms
contains at least all lists of up t®k nonces. Then there is no sound cryptographic im-
plementation in the sense of BRSIM/UC in the standard mddelptography with a
shortening real hash function.]

Proof. Assume a Dolev-Yao model and a realization as describecithttorem exist,
and lethash” be the real hash function used. Recall that for simplicitydeéned that
the output length of a shortening hash functioiBy Lemma 2,hash" is bit-vector
collision-resistant. We first see thatsh" is bit-vector one-way similar to the start of the
proof of Theorem 2: Assume there were a successful inveedorithmA,,s. Then
we generate a collision with the following algorithat: & (G, (k))2*; b & {0,1}2*;

h" = hash'(b ® @i"); b* — Aqwt(h7); if b* # b output(b, b*). This succeeds with not
negligible probability by the same arguments as in the pobdheorem 2.

H, M, A H, TH Sim A
- -
b random; N b random,; N
h* ==hash'(b On * h* == hash'(b On *
B n u hll ‘*)l", hr () B ‘)Ll, hu ‘r?'l, hd B n r:;,lr ()
b b
4_ ______________ <_ ____________________
is_hash_of(?@l? uhty? is_hash_of(?@?“, h?
- _—
«— «—
true y

Fig. 7. Counterexample with nonce lists for shortening hash foncti

Using the bit-vector one-wayness, we argue similar to thie part of the proof of
Theorem 2, see Figure 7: The adversary chooses a randonctit ve™ {0, 1}2* and
2k noncegi" with the correct generation algorith@p. With overwhelming probability
the real nonces are pairwise different, and thus also theegeonding nonce terms
(Definition 9). We continue with this case. It sends the neraoadh’ := hash'(5® ")
to useru through the system aridon an external channel. The user tests, using the real
or ideal functionality, whether it received the hash of tbherect sublist of the nonces.
In the real system the result is alwapsie by Definition 9. In the ideal system, the
simulatorSim has to enter a commansdnd(v, u, h?) such thatH,, also obtaing =

" This can be seen by considering the &ebf pairs (77", k") such that a bit vectob fits with
probability at leastPs(k)/2. The probability of X must be at leasPs(k)/2. For a pair
(", h") € X, the probability that two bit vectors both fit (and thus intmadar are a col-
lision) is at leastPs (k) /4.

17

true with overwhelming probability. By Definition 2 this impliegs = hash(5®).
Hence the simulator has to construct a representéfiavf hash(5® 7). Definition 8
is applicable to our scenario and essentially statesShat which acts as the ideal
adversary, must know for this. More precisely, we use the postulated extraEtar
to extracth from the transcript oSim wheneverSim is successful. This gives us a
bit-vector inversion algorithm for the functidrash” that succeeds with not negligible
probability, in contradiction to the bit-vector one-wags®fhash’. [

6 Soundness Results

In this section we show that Dolev-Yao-style hashes can &egprsound in the random
oracle model, and under specific restrictions on the usadmsti functions or their
properties in the ideal system even in the standard modeyptagraphy.

6.1 Soundness of Dolev-Yao Models with Hashes in the Randonr&zle Setting

The first soundness result states that normal Dolev-Yao headéhout specific re-
strictions can be proven sound in the random oracle modebrAsverall result for
an operator-rich Dolev-Yao model with hashes, this reguére underlying Dolev-Yao
model with the other usual cryptographic operators andlezegi@mn secure in the sense
of BRSIM/UC. Hence we have to use that of [9]. However, whaigems specifically
with the hashes can be explained well without specific nateftiom [9]. We sketch this
in this section, leaving more details to Appendix A.

The Dolev-Yao functionality is that of a free hash operathwnrestricted hashing
and with ideal secrecy in the typical sense that the adwergaon learning a hash value,
has no deconstruction operator or other ways to obtainnmdtion about the contained
term except by the input_hash_of for comparing a message and a potential hash.
The only additional power that the ideal adversary gets @egpwith honest users
is to make hashes with unknown preimages, i.e., terms thadl d@ writtenhash(?).
The preimages will remain unknown forever; that this wonkghe realization is a
consequence of the random oracle model.

In the cryptographic realization, the operaftesh is essentially realized by the ran-
dom oracle. The only addition is that the bitstrings are type., the actual realization
hash(t)" of a hash term is the paithash’, RO(¢")) where hash’ is a fixed string and
RO abbreviates the result of a (in reality stateful) randontieraall.

Our security claim is that this realization is as secure &sitleal Dolev-Yao-style
system in the sense of BRSIM/UC in the random oracle modelSgetion 2.

Theorem 5. (Soundness of a Dolev-Yao Model with Hashes in the Randoroléra
Model) A Dolev-Yao model with unrestricted hashing and esgcrof hashed terms,
defined in detail in Appendix A.1, can be securely implentelmyea canonical crypto-
graphic realization, defined in detail in Appendix A.2, ie #ense of BRSIM/UC in the
random oracle model. m]

18

For proving BRSIM/UC for the underlying Dolev-Yao-style aed without hashes and
its realization, a simulato$im has been defined in [9]. It maintains a table of term
representations® and corresponding bitstrings", reuses old terms or bitstrings when
possible when forwarding messages betwEHrandA, and otherwise constructs a new
correspondence. Essentially, we extend this simulatoolémafs (details are given in
Appendix A.4): For each hash terkd, ourSim also stores the contained ternt if it
knows it (i.e., the ideal adversary would know it).

If Sim gets a new hash ter® from TH, it constructsh’ as a new type-tagged
random string.

If Sim gets a new type-tagged hash stritigfrom A, it forwards a hash with un-
known preimage td' H, i.e.,h = hash(?). We see later that this only happens when
did not construchk'” by calling the random oracle (which is simulated &iyn); hence
no preimage will ever be found.

If Sim gets a random oracle query for messagefrom A or H, it checks whether
it already has a hash stririg for m". For this,Sim constructs the corresponding term
representatiom® and looks whether it knows a hash representaiifowith m? as the
contained term. Otherwise, it checks whethé is the preimage of some hash term
h? for which it did not know the preimage yet (but the ideal fuootlity TH does),
by inputtingis_hash_of (m?, h?) for all the possible term representatidis If yes, it
stores this contained-term relation and uses the correlgpgreal hast.". Otherwise
it constructsh” as a new type-tagged random string, inputs a new ferm hash(m)
into TH, and stores the contained-term relatiorhdfindm? as well ash'.

The correctness of this simulator is proved in Appendix A.5.

6.2 Soundness Results in the Standard Model

Finally, we briefly present two restricted but still praetiiy useful types of Dolev-Yao
models with hashes that have secure realizations even istéinelard model of cryp-
tography. Both models allow the ideal adversary to constrash terms with unknown
preimages, i.e., terntmsh(?). In contrast to the model in Section 6.1, the adversary can
later provide a preimage for such a term. Both realizatieqgsiire a collision-resistant
hash function; in the first case the hash function must alsmieeway.

The first type of Dolev-Yao model gives up the ideal secreng ean then work
with a significant class of hashable terms. By the size ofra tewe mean the number
of nodes in the tree representation of

Theorem 6. (Soundness Without Payloads or Secrecy for Constant-Sizeds) A
Dolev-Yao model without secrecy of hashed terms where termi&ishable_ Terms
do not contain payloads and are at most of a constant stz be securely realized
in the sense of BRSIM/UC with arbitrary collision-resistasme-way hash functions in
the standard model of cryptography.]

We believe that this theorem can be extended to terms th#éhiogmayloads, but only
together with fresh nonces that remain secret, but theipehasefulness does not seem
to justify the overhead of such a condition that must be ddfter an overall system
execution.

19

The second theorem offers the ideal secrecy of typical D¥bey models of hash-
ing, but only individual nonces can be hashed, as for ingtémone-time signatures.

Theorem 7. (Soundness With Secrecy for Nonce Hashing) A Dolev-Yao lmdithe
secrecy of hashed terms and where theieihable_Terms contains only individual
nonces can be securely realized in the sense of BRSIM/UCankitrary collision-
resistant hash functions in the standard model of cryptpbya |

Sketches of both proofs are postponed to Appendix B. Sinhdlahe random oracle
case, for the precise model we rely on the existing Dolev+viadel of [9] and extend
it with hashes. The detailed models are therefore very airtol Appendix A.1 and A.2.

7 Conclusion

We have investigated whether Dolev-Yao models with hashes@way functions can
be realized in the sense of BRSIM/UC, i.e., with the Dolew ¥zodel as the ideal func-
tionality. We showed that this is not possible for the staddgpe of such Dolev-Yao
models. This impossibility result holds for all polynomithe computable functions in
the role of the real hash function. No such absolute impaggiproof for a Dolev-Yao
model was previously known in the literature — the proofsngpossibility for Dolev-
Yao models with XOR are reductions.

In contrast, we showed that the realization is possibleérréimdom oracle model.

We then considered several restrictions of the Dolev-Yadehor its ideal proper-
ties that have a potential to simplify simulations. For thege obtained the following
additional impossibility results: First, even if no paytisacan be hashed, but only cryp-
tographic terms (in fact, lists of nonces are sufficient),oaa still show impossibility.
Secondly, even if we give up the ideal secrecy property ohéagretaining the ideal
collision freeness so that the model is still reasonable)phtain impossibility for all
polynomial-time computable functions with message-iradefent output length (and
thus all typical hash functions). In particular, this is firet impossibility proof for a
Dolev-Yao model that does not assume any ideal secrecy giyope

On the positive side, we obtain BRSIM/UC in the standard rhofleryptography
for two cases: One includes ideal secrecy, but only allowhimg of single nonces, e.g.,
for the use in one-time signatures. The other gives up id=aksy, but allows hashing
of arbitrary cryptographic terms, i.e., terms without meads, up to an arbitrary but
constant size.

References

1. M. Abadi and J. Jurjens. Formal eavesdropping and itpatational interpretation. IRroc.
4th TACSpages 82-94, 2001.

2. M. Abadi and P. Rogaway. Reconciling two views of crypagty: The computational
soundness of formal encryption. Rroc. 1st IFIP TCSvolume 1872 oL NCS pages 3-22.
Springer, 2000.

3. M. Backes. A cryptographically sound Dolev-Yao stylewség proof of the Otway-Rees
protocol. InProc. 9th ESORICS/olume 3193 ofNCS pages 89-108. Springer, 2004.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Backes and M. Diirmuth. A cryptographically sound De¥ao style security proof of
an electronic payment system. Pnoc. 18th IEEE CSF\W\pages 78-93, 2005.

. M. Backes and B. Pfitzmann. A cryptographically sound sgcproof of the Needham-

Schroeder-Lowe public-key protocol.Journal on Selected Areas in Communications
22(10):2075-2086, 2004.

. M. Backes and B. Pfitzmann. Symmetric encryption in a sitalle Dolev-Yao style cryp-

tographic library. InProc. 17th IEEE CSF\W\pages 204—-218, 2004.

. M. Backes and B. Pfitzmann. Cryptographic key secrecyettrengthened Yahalom pro-

tocol via a symbolic security proof. Research Report 36BM Research, 2005.

. M. Backes and B. Pfitzmann. Limits of the cryptographidizasion of Dolev-Yao-style

XOR. InProc. 10th ESORICSolume 3679 oLNCS pages 178-196. Springer, 2005.

. M. Backes, B. Pfitzmann, and M. Waidner. A composable ogatphic library with nested

operations (extended abstract).Aroc. 10th ACM CCSpages 220-230, 2003.

M. Backes, B. Pfitzmann, and M. Waidner. Symmetric autbetion within a simulat-
able cryptographic library. IProc. 8th ESORICSsolume 2808 oLLNCS pages 271-290.
Springer, 2003.

D. Basin, S. Modersheim, and L. Vigano. OFMC: A symbaliodel checker for security
protocols.International Journal of Information Securit2004.

D. Beaver. Secure multiparty protocols and zero knogéqaroof systems tolerating a faulty
minority. Journal of Cryptology4(2):75-122, 1991.

M. Bellare and P. Rogaway. Random oracles are pracfigaradigm for designing efficient
protocols. InProc. 1st ACM CCages 62—73, 1993.

B. Blanchet. An efficient cryptographic protocol verifiased on Prolog rules. IRroc.
14th IEEE CSFWpages 82-96, 2001.

B. Blanchet. A computationally sound mechanized préeesecurity protocols. IrProc.
27th IEEE Symposium on Security & Priva@p06. To appear.

R. Canetti. Security and composition of multiparty ¢ogwaphic protocols.Journal of
Cryptology 3(1):143—-202, 2000.

R. Canetti. Universally composable security: A new daya for cryptographic protocols.
In Proc. 42nd IEEE FOCSrages 136-145, 2001.

R. Canetti and M. Fischlin. Universally composable camants. InProc. CRYPTO 20Q1
volume 2139 oLNCS pages 19-40. Springer, 2001.

R. Canetti and J. Herzog. Universally composable syimbolalysis of mutual authentica-
tion and key exchange protocols. Broc. 3rd Theory of Cryptography Conference (TCC)
Springer, 2006. To appear.

R. Canetti and H. Krawczyk. Universally composable awtiof key exchange and secure
channels. InProc. EUROCRYPT 20020lume 2332 ofLNCS pages 337-351. Springer,
2002.

A. Datta, A. Derek, J. Mitchell, A. Ramanathan, and A.doe. Games and the impossibil-
ity of realizable ideal functionality. IRroc. 3rd Theory of Cryptography Conference (TCC)
Springer, 2006. To appear.

A. Datta, A. Derek, J. Mitchell, V. Shmatikov, and M. Tani. Probabilistic polynomial-time
semantics for a protocol security logic.Pmoc. 32nd International Colloquium on Automata,
Languages and Programming (ICALRplume 3580 of NCS pages 16—29. Springer, 2005.
A. Datta, R. Kusters, J. C. Mitchell, and A. Ramanath@n.the relationships between no-
tions of simulation-based security. Rroc. 2nd Theory of Cryptography Conference (TCC)
volume 3378 oLNCS pages 476—494. Springer, 2005.

D. Dolev and A. C. Yao. On the security of public key pratigsc IEEE Transactions on
Information Theory29(2):198-208, 1983.

21

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

O. Goldreich, S. Micali, and A. Wigderson. How to play angntal game — or — a complete-
ness theorem for protocols with honest majorityPhoc. 19th ACM STOpages 218-229,
1987.

S. Goldwasser and L. Levin. Fair computation of genenattions in presence of immoral
majority. InProc. CRYPTO "90volume 537 oLNCS pages 77-93. Springer, 1990.

D. Hofheinz and J. Miller-Quade. Universally compdsaibmmitments using random
oracles. InProc. 1st Theory of Cryptography Conference (TC@)Jume 2951 ofLNCS
pages 58-76. Springer, 2004.

R. Impagliazzo and B. M. Kapron. Logics for reasoningutlaoyptographic constructions.
In Proc. 44th IEEE Symposium on Foundations of Computer Sei@A©CS) pages 372—
381, 2003.

P. Laud. Semantics and program analysis of computdiifosecure information flow. In
Proc. 10th ESOPpages 77-91, 2001.

P. Laud. Symmetric encryption in automatic analysesdorfidentiality against active ad-
versaries. IrProc. 25th IEEE Symposium on Security & Privapgsges 71-85, 2004.

P. Laud. Secrecy types for a simulatable cryptograpbiarly. InProc. 12th ACM CCS
2005.

M. Merritt. Cryptographic ProtocolsPhD thesis, Georgia Institute of Technology, 1983.
S. Micali and P. Rogaway. Secure computatioriPrioc. CRYPTO '9volume 576 oL NCS
pages 392-404. Springer, 1991.

D. Micciancio and B. Warinschi. Soundness of formal gpiiton in the presence of active
adversaries. IProc. 1st Theory of Cryptography Conference (TG@Jume 2951 ot NCS
pages 133-151. Springer, 2004.

J. Mitchell, M. Mitchell, and A. Scedrov. A linguistic ahacterization of bounded oracle
computation and probabilistic polynomial time. Pnoc. 39th IEEE Symposium on Founda-
tions of Computer Science (FOG8pages 725-733, 1998.

J. Mitchell, M. Mitchell, A. Scedrov, and V. Teague. A pabilistic polynominal-time pro-
cess calculus for analysis of cryptographic protocolslipieary report). Electronic Notes
in Theoretical Computer Sciencé7:1-31, 2001.

L. Paulson. The inductive approach to verifying crypamipic protocols.Journal of Cryp-
tology, 6(1):85-128, 1998.

B. Pfitzmann and M. Waidner. Composition and integritgysprvation of secure reactive
systems. IrProc. 7th ACM CCspages 245-254, 2000.

B. Pfitzmann and M. Waidner. A model for asynchronoustieasystems and its application
to secure message transmission. Phoc. 22nd IEEE Symposium on Security & Privacy
pages 184-200, 2001.

P. Ryan and S. Schneidefhe Modelling and Analysis of Security Protocols: The CSP
Approach Addison-Wesley, 2001.

C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. WaidCryptographically sound
theorem proving. Submitted to CSFW 2006.

A. C. Yao. Theory and applications of trapdoor functidmsProc. 23rd IEEE FOCSpages
80-91, 1982.

Appendix

In this appendix, we present the omitted proofs from Sedidffe show the soundness
proof of a general Dolev-Yao model in the random oracle madeletail, and sketch
proofs of the two soundness results for restricted Dolev-Yepdels in the standard
model of cryptography.

22

A A Sound Dolev-Yao Model with Hashes in the Random Oracle
Setting

This section contains the proof that Dolev-Yao-style hasicfions with ideal secrecy
of hashed terms can be proven sound in the random oracle nasdeitetched in Sec-
tion 6.1. We first present the additions needed for hashirtgeadeal and real func-
tionality of [9], then additions to the simulator, and firyathe new parts of the proof of
correctness of this simulator. To make it credible that vedlyeean add the functionality
we sketched above to the model of [9], we now use the notatton {9].

We first repeat some general notation from [9]. By= y++ for integer variables
x,y we meary := y + 1; 2 := y. The length of a message is denoted akn(m), and
| is an error element available as an addition to the domaithsaarges of all functions
and algorithms. The elements of a list= (z1,...,z;) are retrievable a§i], with
I[i) = [if i > j. A databaseD is a set of functions, called entries, each over a finite
domain called attributes. For an entrye D, the value at an attributett is written
x.att. For a predicatered involving attributes,D[pred] means the subset of entries
whose attributes fulfilbred. If D[pred] contains only one element, we use the same
notation for this element. Adding an entryto D is abbreviated : < x.

A.1 Hash Additions to the Ideal Dolev-Yao-style System

The underlying system model is an 10-automata model. Heme®verall Dolev-Yao
model, with its state, is represented as a machidg, where = {1,...,n} denotes
the set of honest users. It has a so-called gyt for inputs from and a powut,,! for
outputs to each user € H and foru = a, denoting the adversary.

The trusted host keeps track of the length of messages ¢thisdded because this
length leaks to the adversary even in encryptions) usingke t of abstract length
functions. One function frond that we need below imax_len(k), which can be an
arbitrary polynomial denoting the maximum length of prassgbmessages. We extend
L with a functionhash_len*(k) denoting the length of an abstract hash i.e., we
assume that the hash length is independent of the messayge.len

States: Term Database.The main part of the state of the Dolev-Yao-style model, i.e.
of the machineTHy, is a databas® of the existing terms. Each term is primarily
given by its type (top-level operator) and top-level argaiist, where the non-atomic
arguments are given by pointers to the respective subt&mwnshis, each term contains
a global index that allows us (not the users) to refer to temasnbiguously. In addition,
TH, stores the length of each term and handles that represahhi@mes under which
the different participants know the term. In particulag ttandles imply the knowledge
sets known from other Dolev-Yao-style models.

An example is shown in Figure 8, where usfrsends a hash to usHr,. The left
side indicates the main action that has happened so fatt eolisisting of a payload
messagen and a noncéV has been hashed. The database contains the payload message
(of typedata), the nonce, the list, and the hash. The figure shows thattbssage has
arrived safely so thatl,, has a handle to the hash, but due to the ideal se¢tgdyas
not obtained handles to the subterms.

23

H,— H,: hash ind type arg hnd, ... hnd len

list 1 data (m) 1 N 1000

2 nonce () 2 N 128

3 list (12 3 ¢ 1156

data nonce 4 hash (3) 4 1 160

m

Fig. 8. Example of the database representation of terms.

In detail, the database attributesiofare defined as follows; the only differences to
[9] due to adding hashes are an augmented type set.

—ind € INDS, called index, consecutively numbers all entriesiin The set
INDS is isomorphic toN. The index is used as a primary key attribute of the
database, i.e., one can writd:] for the selectiorD[ind = i].

— type € typeset defines the type of the entry. We add the typash’ to typeset
from [9].

— arg = (a1,aq,...,a;)is a possibly empty list of arguments. Many valugsare
indices of other entries i and thus iIZ A'DS;; they are sometimes distinguished
by a superscriptihd”.

— hnd, € HNDS U {|} foru € H U {a} are handles by which a user or adversary
u knows this entry. The valu¢ means that: does not know this entry. The set
HNDS is yet another set isomorphic B We always use a superscriird” for
handles.

— len € Ny denotes the “length” of the term, computed using the fumstipom L.

Initially, D is empty. As additional state parfBH has a countesize € ZN'DS for
the current size oD, and countersurhnd,, (currenthandle) forn € HU{a}, denoting
the most recent handle number assignedufolhey are all initialized with). THy,
furthermore maintains explicit counters and message koftorceach port in order to
ensure polynomial runtime, cf. [9]; we omit the details.

The algorithmi"™ « ind2hnd,, (i) (with side effect) denotes thatH,, determines
a handle"™ for useru to an entryD[i]: If i"™ := D[i].hnd, # |, it returns that, else
it sets and returnd™ := D[i].hnd, := curhnd,++. On non-handles, it is the identity
function.ind2hnd;, appliesind2hnd,, to each element of a list.

Hash-Related Inputs. In this model, users build up terms in the ideal functioyalit
step by step, and they refer to the terms by the handles ddfin8dction A.1. The
new commands we have to add to this model are therdfaie for hashing a term
andis_hash_of. Such cryptographic operations are called basic commarids; are
accepted at each input part,? and have only local effects, i.e., only an output at
out, ? occurs. For such commands we use the notatien op(i), and we always use
u as the index of the concerned ports.

The following command definitions look rather complex bessatype checking is
explicit and so is the test that the resulting term does noted the length bound
needed for polynomial time, but in principle they just caoust or test the top level of a

24

hash term as one would expect. Handle arguments are tasgflyred to be irHA DS
and existing, i.e.< curhnd,, at the time of execution. By a general convention in [9],
cryptographic operations—here hashing—are only apptidigts.

Definition 11 (Basic Commands for Hashes)The trusted hosTH;, extended by
hashes accepts the following additional commands at eentyin, ?:

— Hashing: A"« hash(i"). Let! := D[hnd, = " A type = list].ind,
length := hash_len*(k) and return| if [= | or length > max_len(k). Let
h = Dltype ='hash’Aarg = (I)].ind. If b # | seth"™™ := ind2hnd, (h), else
setht = curhnd,++ and D :< (ind := size++, type := "hash” arg :=
(1), hnd,, := ht"d len := length).

— preimage testh « is_hash_of (I"™ AMd). Letl := D[hnd, = I A type =
list].ind, h := D[hnd, = h"™4 A type ='hash’].ind and return| if [= | or if
h = |.1f D[h].arg = (1) return b := true elseb := false. o

As explained in Section 6.1, the ideal adversary is given ecapability that the
honest users do not have: It can construct hash terms witiowrkcontent. This is done
by a so-called local adversary command, only accepted airpdr For consistency, we
also have to extend the existing commaide_parse to hashes. This command allows
the adversary to retrieve all information about subterrasignot explicitly required to
be hidden, but for hashes it simply returns the empty lisahee of the ideal secrecy.

Definition 12 (Local Adversary Commands for Hashes)The trusted hostHy; ex-
tended by hashes accepts the following additional commatithe portin,?.

— Generate unknown hast™? « unknown_hash(). Seth™¢ := curhnd,++ and
D :<= (ind = size++, type := "hash” arg := (),hnd, := h" len :=
hash_len*(k)).

— Parameter retrieval:(type, arg) « adv_parse(h'"). This existing command al-

ways setsype := D[hnd, = m""].type. For hashes, we setrg = (). o

A.2 Realization of the Dolev-Yao-style System with Hashes

The realization of the Dolev-Yao model follows the overadkdription in Section 4.4,
i.e., each user has a machihg,, and the machines are connected by insecure
channels. Each machine has one port paj? and out,! and accept the same in-
puts from honest users there as the ideal system. Essgniiédichine M,, con-
tains the projections of the Dolev-Yao-style database & dhjects for which user

u has handles, with terms replaced by bitstrings. Figure Qushibe real situation
for the example from Figure 8. We assume that the random emaiputs strings

of length hash_len(k), polynomial ink. The corresponding ideal length function is
hash_len* (k) := list_len(len(*hash’), hash_len(k)).

25

M1 Mn

hnd, type word add_arg hnd, type word add_arg
1 data (data,m) 0 1 hash (hash,h516eb1...) ()
2 nonce (nonce,afe752...) ()

3 list (list,(data,m), (nonce,afe752...)) ()

4 hash (hash,h516eb1...) ()

Fig. 9. Real situation for the same example as above.

States. Each entry in the databas®,, of machineM,, has the following attributes:

— x.hnd, € HNDS consecutively numbers the entriesdiy. We use it as a primary
key attribute, i.e., we writd,,[i""] for the selectiorD,, [hnd,, = i"™].

— z.word € {0,1}" is the real representation of

— x.type € typeset U {null} identifies the type of, where the valueull denotes an
unparsed entry. Recall that we added the tyjaeh’ to typeset.

— z.add_arg is a list of (“additional”) arguments. For entries of tygesh’ it is al-
ways().

Initially, D,, is empty.M,, has a counteturhnd, € HNDS for the current size ab,,.
The subroutingi"™™, D,,) :« (i, type, add_arg) determines a handle for certain given
parameters irD,,: If an entry with the word already exists, i.ei := D, [word =
i A type € secrettypes|.hnd, # |.B it returnsi"™, assigning the input valuegpe
andadd_arg to the corresponding attributes BX, [i"™] only if D,,[i"™].type wasnull.
Else iflen(i) > max_len(k), it returnsi"™d = |. Otherwise, it sets and returif§? .=
curhnd,++, D, <= (i"9 i, type, add_arg).

Similar to the machind H4,, M,, maintains bounds on the length of messages and
number of activations to achieve polynomial runtime. Wetdmither details.

Hash-Related Inputs. Now we describe howl,, evaluates individual new inputs. The
stateful commands in [9] are defined via functional constmscand parsing algorithms
for each cryptographic type. (These stateless algorittande reused in the simulator
and the proof, while the stateful parts are different in tiheutator.)

Definition 13 (Constructors and Destructors for Hashes).

— Hash constructors* < make_hash(l), forl € {0,1}*. Leth «+ RO(l) and return
h* := (‘hash’, h).

— Hash parsing:arg <« parse_hash(h*). If h* is of the form(‘hash’, h) with h €
{0, 1}hashten(®) "return (), else] . o

From the underlying model from [9], we use the general parsilgorithm and
stateful parsing routines:

8 The restrictiontype ¢ secrettypes is included for compatibility to the original library. Sitar
statements will occur some more times, but no further kndgdeof such types is needed for
understanding the new work.

26

— General parsing: (type,arg) <« parse(m). If m is not of the form
(type,m1,...,m;) with type € typeset \ secrecttypes and j > 0, returns
(garbage, ()). Else call the type-specific parsing algorithy’ — parse_type(m).
If arg = |, thenparse again output$garbage, ()), else(type, arg).

— “parsem™™d” means thaM,, calls (type, arg) « parse(D, [m"9].word), assigns
D, [mM4].type := type if it was still null, and may then userg.

— “parse m"™ if necessary” means the same except that does nothing if
D, [mhd].type # null.

We can define how a real machine reacts on the same basic caln@sthe ideal
Dolev-Yao-style system. They are again local; in the reatesy this means that they
produce no outputs onto the network.

Definition 14 (Basic Commands for Hashes).

— Hashing: A" « hash(i"d). Parsel"™ if necessary. 1D, [IM9].type # list, re-
turn |. Otherwise sefl := D,[i"].word and h* « make_hash(l). If |h*| >
max_len(k), return |, else(h™4, D,,) 1< (h*, hash, ()).

— Preimage test:b <« is_hash_of({"™ AMd), If D,[i"].type # list or
D, [h"d]).type #'hash’, return |. Otherwise set := D,[I"].word, h :=
D, [h"].word, andh* « make_hash(l). If h = h* returntrue, elsefalse. o

A.3 The Security Theorem

Our security claim is that the Dolev-Yao-style system withslhes defined in Ap-
pendix A.1 is securely implemented by the realization defineAppendix A.2 in the
sense of BRSIM/UC in the random oracle model, as describ8edation 2. We denote
the resulting BRSIM/UC notion by ROM,

Let RPar be the set of valid parameter tuples for the real system,istimg of
the numbem € N of participants, a collectio$ of cryptographic schemes satisfy-
ing respective security definitions against active attackg9, 10, 6], and length func-
tions and bound£’. (CurrentlyS may contain symmetric and asymmetric encryption
schemes, signature schemes, MACs, and of course nonce$n),® L’) € RPar, let
Syscrhashreal he the resulting realization. Further, let the correspogdiength func-
tions and bounds of the ideal system be formalized by a fondti:= R2Ipar(S, L’),

and letSys<";"**™ be the ideal Dolev-Yao-style system with parameteasid L.

Theorem 8. (Soundness of the Dolev-Yao-style System with HashesRatiaom Or-
acle Model) For all parametersn, S, hash, L) € RPar and L := R2lpar(S, L’), we

have
cry_Hash,real ROM cry_Hash,id
SYS 1.5 hashr, L/ = Sys,’L .]

A.4 Simulator

For proving Theorem 8 for the underlying sytem without hasfand without a ran-
dom oracle), a simulatd&im,; was defined in [9]. Basicall§ims has to translate real

27

messages from the real adversarynto handles (i.e., term representations)Tas;,
expects them at its adversary input pott? and vice versa. In both directionSimy
has to parse an incoming message completely because it banamstruct the other
version (abstract or real) bottom-up. This is done by reearalgorithmsreal2id and
id2real, respectively. The state 6fm4, mainly consists of a databa#g, similar to the
database®,,, but storing the knowledge of the adversary. Each entryatosta han-
dle, a bitstring, a type, and possible an additional arguméi_arg. We now define
the extension of the simulator for hash functions, i.e., wesider the case that in the
recursive functiongeal2id andid2real the simulator is confronted with a hash string or
term, respectively. Furthermore, the simulator now hasitwar random oracle queries
from A andH.

Inputs from TH4. Assume that in the recursion @f2real, the simulatoiSim4, ob-
tained a handlé"“ denoting a hash term. It first looks in its database wheiférhas
already been assigned a hash stringf yes, it outputsh. Otherwise, it chooses a new
random valué)’ and adds the type tag. The main paridifreal automatically inserts
an entry(h™4, h,*hash’, ()) into D,. The fourth elementdd_arg = () means that no
preimage of the hash is known yet. More formally, the simarldbes the following:

— Letx := D,[hnd, = h""d].

—If x £ |, leth := x.word. (We postulate here, and show in the proof, that |
whenever: # |.)

— Otherwise leth’ & {0,1}heshlen(t) .= (‘hash’,h’) and D, :<
(W, B, hash’, ().

Inputs from A. Now assume that in the recursionmeél2id, the simulatoiSimy has
to translate a hash stririg(recognized by its type tag) into a handi®“. It first looks
in its database whethéris already present. If yes, it outputs the handle storedhfatr t
bitstring. We later show that the only case where no sucly épresent is that was
not correctly generated with a random oracle query; thusdgbknows” a preimage
of this hash string. Hence the simulator enters a commandytrerates an unknown
hash term into the ideal system and makes a new entbyiMore formally:

— Letz := D,[word = h).

—If z # |, leth™ = x.hnd,. (We postulate here, and show in the proof, that
hhnd £ | whenever: # |.)

— Else enteh™d « unknown_hash() andD, :<= (h" b ‘hash’, ()).

Random Oracle Queries. If the simulatorSims;, gets a random oracle query for a
bitstring m, it first constructs the term correspondingrtousing the routineeal2id;
this yields a handlen™. It then checks whether is the designated preimage of
an already existing hash according to the attributé_arg of the hash handles in its
database. If yes, it outputs the existing hash string frahithsh entry (without the type
tag). OtherwiseSims, checks whethem" is the so far undesignated preimage of an
existing hash by applying the commaischash_of to the given message hanaie
and the handles of the hash terms it knows. If the restittisfor a hash termy, Simy

28

stores thatn""? is the preimage of"? and outputs.word. If no such terne exists, it
chooses a new random valtie adds the type tag, outputs the result, and makes a new
entry in D,. More formally:

— Callmhnd « real2id(m).

— Lety := D,[type ='hash’ Aadd_arg = (preimage, m""%)]. If y # |, outputh :=
y.word|[2]. (We postulate and later prove that at most one suehists, and that
y.word # | if y #£ |.)

— Otherwise letZ := {z € D, | z.type =‘hash’}. For eachz € Z, callb, «—
is_hash_of (m""d, z.hnd,).

If b, = true for somez (we postulate that at most one such element exists), set
z.add_arg := (preimage, m"™4) and output.word.

Otherwise, leth’ & {0,1}"ashden(®) " .= (“hash’, h/) call THy with A"
hash(mMd), setD, :<= (h™4 h,'hash’, (preimage, m"™)), and output’.

A.5 Proof of Correct Simulation

We now prove that the simulat6im4, yields a correct simulation. We start by defining
invariants of the databade, of Sims, and proving that they hold with overwhelming
probability. In particular, these invariants prove thetptsions we made in the con-

struction of the simulator.

Lemma 3 (Invariants of D, in Simy for Hashes).The following statements are in-
variants ofSim, i.e., they hold for all traces whefim4, is run withTH,; and arbitrary
(even computationally unbounded) user and adversary mashup to a negligible er-
ror probability in k.

a. Foreveryr € D, with x.type ='hash’, we haver.hnd, # | andxz.word # |.

b. For everyx € D, with x.type ='hash’, we havez.add_arg € {()} U
{(preimage, m"") | Iy € D, \ {z}: y.hnd, = m""}.

c. For everyr € D, with x.type ='hash’, if x.add_arg = (preimage, m"") then
D,[hnd, = m"d].word # |.

d. If h was the output of an oracle queny, then there exist, y € D, with x.word =
m, y.word[2] = h, y.type ="hash’, andy.add_arg = (preimage, x.hnd,). O

Proof. Parts a. to c. can be easily proved by inspection of the cordmahSim;.
For Part d., leth denote the output of the oracle query on messagaVithin this
oracle querySimy, callsm"™™ « real2id(m). This ensures that the claimed entry
exists and thatr.hnd, = m". Then it setsy := D,[type ='hash’Aadd_arg =
(preimage, m")]. If y # |, we haveh = y.word[2] by construction. Ify = |, an
assignmentD, :< (h" R ‘hash’, (preimage, m"™)) with h = h”[2] immediately
preceeds the output af L]

The correctness of the simulator in [9] was proven usiegyatographic bisimula-
tion, which is a probabilistic bisimulation with reduction pfe@nd static information-
flow analysis. In our case, the invariantsiof and the use of a random oracle signifi-
cantly simplify the extension of this bisimulation to hashe

In the following, we denote the look-up table of the randomateRO in the real
system byDgo, ranging over attributeguery andhash.

29

Definition of the Combined System. The cryptographic bisimulation makes use of a
combined system which essentially contains the joint imi@tion of the databases of
the ideal and real system. We briefly define this combineaaysPossible ambiguities
will disappear below, where we compare the effects of thémakted inputs in the
three systems.

The main part ofCy is a databas®* structured likeD in THy. An entryz may
have the following additional attributes:

— z.word € {0,1}* is always defined and contains real data adlig or Simy
under the same handle(s). Fotype € {sks, ske}, it is e for adversary keys, i.e., if
owner(z) = a else areal secret key. For all other types, the word is noptem

— x.parsed, € {true,false} foru € His | if x.hnd, = |; otherwisetrue indicates
that the entry would be parsed in,, andfalse that it would still be of typenull.

— z.query for hashes igl) if z.word was the output of a previous random oracle
queryl; otherwise it is(). Note that by definition of the random oracleguery =
y.query = (1) for some entries, y and string! impliesz = y up to a negligible
error probability.

— x.queried_by_env for hashes igrue if x.word was the output of at least one pre-
vious random oracle query by the user or by the adversary‘é@maronment”);
otherwise it isfalse.

— x.owner for ciphertexts with honest-user keysaidv if the ciphertext was received
from the adversary, otherwisenest. For other ciphertexts it i§.

— x.ec for secret encryption keys corresponds to the encryptioni&s inciphers of
the encryption machines.

When evaluating input<;;; acts on theD-part of its databas®*, the variables
size and curhnd,,, and the ideal secure channels treated exactlyTikg,. An entry
whose first handle.hnd,, is foru € H gets the word thatl,, would contain under this
handle; an entry whose first handle is for the adversary getaord fromSim4,. Thus,
essentially, entries created due to basic commandsHrget the words thatl,, would
construct (possibly by querying the random oracle), whiteds received in network
inputs fromA as well as random oracle queriestByandA are entered as yimy.

Derivations. We now define the derivations of the original systems fronctimabined
system. They are the mappings that we will show to be bisitiwnla. We now assume
that a state o€, is given and define derived states corresponding to thenaligys-
tems.

TH: D: This is the restriction oD* to all attributes excepbord andparsed, .

My *: Df: (For everyu € 'H.) We deriveD? as follows, starting with an empty
database: For every"™ < curhnd,, let z := D*[hnd, = x"9].ind,
type := D*[z].type, andm := D*[z].word. Then

— If D*[x].parsed, = false, thenD;; :<= (29, m, null, ().
— Else if type ='hash’, then D} :<= (24 m, type, ()).

Simy*: Di: We deriveD; as follows, starting with an empty database: For:&f
curhnd,, let x := D*[hnd, = z"™].ind, type := D*[x].type, andm
D*[x].word.

A

30

— If type ='hash’ and D*[z].queried_by_env = false, then D} :«<
(x""d m, hash’, ().

— If type =‘hash’, D*[x].queried_by_env = true, and D*[z].query =
(), then let I’ = D*[word = I.hnd, and Di &
(x4 m,‘hash’, (preimage, [7"9)).

RO: Dro: We deriveDgo as follows, starting with an empty database: For every
size with m := D*[z].word:

— If type ='hash’, D*[z].query = (I), andm = (‘hash’,m’) for some

m' € {0,1}rashden(®) ‘let Dro <= (I, m/)

Invariants in the Combined SystemC4, and RO. For the bisimulation, we need
invariants about the combined systé€m andRO.

— Correct argumentsFor all i < size, the real message := D*[i].word and the
abstract type and argumentgpe'® := D*[i].type and arg™ := D*[i].arg, are
compatible. More precisely, letrg™' := w*(arg™™). Then we require:

o If type'd & {sks,skel, let (type, argP®™®) := parse(m). Thentype = type'd,
and:
* If type ="hash’ then D*[i].query = arg™.

— Strongly correct arguments i ¢ owners(D*[i]) or D*[i].owner = honest. Let
type == D*[i].type, arg™ := D*[i].arg andarg™ := w*(arg™™). Thentype #
garbage andm := D*[i].word has the following probability distributiof:

o If type ="hash’, thenm « make_hash(arg™).

In the rest of the proof, we show that all input types from tlsersH and the
adversanA retain the invariants and lead to the same outputs in therdift systems.

Input A" «— hash(i"9) by w € U. Let ™ := D*[hnd, = ™ A type =
list].ind. THy returns| if " = | while M,, outputs| if D,,[I"4].type # list. This
is equivalent by “correct derivationTHy; furthermore outputg if hash_len*(k) >
max_len(k). Else it setshi™ := D*[type =‘hash’ Aarg = (I")].ind. If hind £ |, it
setsh"™™ := ind2hnd,, (h'"?); otherwise it set&"™ := curhnd,++ andD* <= (ind :=
size++, type :="hash’, arg := ("), hnd,, := h"9, len := hash_len*(k)).

M, setsl := D,[I"].word and h* « make_hash(l), i.e., h* := (‘hash’, 1)
for b’ := RO() € {0,1}"ashden(k) If |p*| > maxlen(k), it outputs |. This
length test equals that ifH,, since by definition ofhash_len* we have|h*| =
list_len(|*hash’ |, hash_len(k)) = hash_len*(k). If hi"d £ | both THs, andM,, together
with the random oracle produce a consistent output by “corderivation” without
changing their state. Hence either all three of them do nanhgh their state, or all
make the prescribed state updates. Otheriisesetsh'? := curhnd++ and makes an
entry D,, :<= (h"d h* *hash’, ().

Now we consider the new hash entry: “Correct derivation’lésc If “word unique-
ness” is not fulfilled, i.e., ifh’ within A* equals an old value in the same place in

9 Here one sees that the bisimulation is probabilistic, we. actually consider distributions of
states before and after a transition. This invariant sagsithsuch a state distribution, and
given the mentioned arguments, is distributed as described independent of other stats.part

31

a word, we put the run into a so-called error 3&tnce_Coll, which contained runs
where collisions of randomly chosen strings (suchgsoccured. One later easily
shows that the joint probabilities of runs in this set is iggble, cf. [9]. “Correct ar-
guments” follows immediately sinc®* [hi"d].query = (1) = (D*[I"].word) with
D*[hi"].arg = (1). “Strongly correct arguments” holds by construction.

Input is_hash_of (1", phnd) by o € U. Let ™ := D*[hnd, = 1™ A type =
list].ind andh™ := D*[hnd,, = h"d A type ='hash’].ind. THy, returns| if /" = |
or hind = | while M,, outputs| if D,[I"™].type # list or D, [h'"].type # hash. This
is equivalent by “correct derivation”.

THy, outputstrue iff D*[A"].arg = (I"!), andfalse otherwise.M,, setsl :=
D, [I").word, h := D, [h"].word, andh* := (‘hash’, h’) « make_hash(l). It out-
putstrue if h* = h, andfalse otherwise.

First assume thaD*[h™].query = (). “Correct arguments foD*[hi"d] implies
thatw* (D*[h"].arg) = (), and henceD*[hi"].arg = (). ThusTH outputsfalse in
this case.D*[h"].query = () furthermore implies that there was no previous ora-
cle query with resulting output, i.e., we in particular hav€l,h) ¢ Dgo. If there
exists(l,h'") € Dgro for someh” # 1’, the random oracle outputs’ and this we
haveh* # h, yielding an outpufalse by M,,. If (I,h”) & Dgo for all h”, thenh/' is
chosen ag’ & {0, 1}rashten(k) by the random oracle. Thus = & only holds with
exponentially small probability, hendd,, will also outputfalse with overwhelming
probability. (More formally, runs in which* = h holds would again be putin the error
setNonce_Coll which then later can be shown to have negligible probability

Now assume thaD*[h"].query = (i) for somei, and leti™ := D*[word =
i].ind. Then “correct derivation” fo* [hi"d] implies (i, j) € Dro Wherej is defined
by (‘hash’, j) := h. “Correct arguments” furthermore implies (D*[h""].arg) = (4).
Thus “word uniqueness” implieB* [h"].arg = (i""!). HenceTH;; outputstrue iff
jind = [ind |f jind = [ind ‘then(l, h') € Dro, thush* = h andM,, also outputsrue. If
ind = [ind then “correct derivation” implies thdt, ') ¢ Dgro up to an exponentially
small error probability that a randomly chosehsatisfies(‘ hash’, ') = i, cf. the pre-
vious case. ThuM, also outputgalse with overwhelming probability. The invariants
are clearly retained.

Inputs from TH. We now consider the simulation of real hash strings basecon r
ceived hash terms, i.e., the simulator receives a haiftifeto a hash ternk™™ from
u € Hinthe routindd2real and has to constructs a suitable hash string for it. Intlitjv
this part shows that the adversary does not get any infoomatithe real system that it
cannot get in the ideal system, because any real informetinrbe simulated indistin-
guishably given only the outputs @iH,.

Let " := D*[hnd, = h"™d].ind. Now M,, always outputd := D*[hi"].word.
An inductive proof is used that the overall translating nogiid2real from ideal terms
to concrete strings retains all invariants and producesigte outputs.id2real starts
with three steps that are essentially independent of theedythe considered entry (up
to domain checks which are fulfilled by construction wheeiatting withTH,;). The
fourth step proceeds depending on thyge of the term. Each of these variants ends
with an assignment th, which is then output, an®, :<= (k™. h, type, add_arg) for
certain argumentsdd_arg.

32

In [9], it has been proven (in Lemma 7.6) that it is sufficiemshow:

— a correct resulth, = h*, whereh* is the word theM,, produces, i.e.hx =
D*[h"].word. We further can assume “strongly correct argumentshfor

— “correct derivation” ofadd-arg in the new entry;

— “word secrecy” forh, i.e., no flow of secret information intb, where arguments
h; are not secret information. This invariant is used to labemsthat the adversary
cannot guess any information about, e.g., nonces that inbkearned “ideally”
yet, i.e., that it does not have a handle for.

For our new hash type, these conditions are also sufficidns. @an be proven analo-
gously to the original proof. Since the proof mainly reliesathorough investigation
of the first three steps adi2real, we omit the details here.

For type hash’, the subroutine ofid2real setsh’ & {0, 1}hashlen(®) p .=
(‘hash’, '), and add_arg = (). “Strongly correct arguments” fat* means that*
has the probability distributiom* « make_type(arg™"), wherearg™ is defined for
D*[hn"] as in “strongly correct arguments”. By definition of the randoracle s * is
distributed ash” & {0, 1}"ashlen(k) and h* := (‘hash’,). Thus derivation ofD*
gives the same distribution as we getlly. “Word secrecy” clearly holds fok hashes
since each generation of a new hash does not depend on gaonation.

Inputs from A. We now consider the simulation of ideal hash terms basedamived
hash strings in the routineal2id, i.e., the simulator receives a strihgand has to con-
structs a termk"?. An inductive proof is again used that the overall transttioutine
real2id from concrete strings to ideal terms retains all invariams produces the right
outputs. Using a lemma from [9], we only have to show the fwifg properties of each
call R « real2id(h) with 0 < |h| < max_len(k):

— At the end, D*[hnd, = h"|.word = h and D*[hnd, = h"].type ¢
secrettypes.

— “Correct derivation” ofD, and curhnd,.

— The invariants withinD* are retained, where “strongly correct arguments” is al-
ready clear and “word secrecy” need only be shown for thermast call (without
subcalls) if more entries thab* [hnd, = h"!] are made or updated there.

The lemma carries over to our new typesh’ with marginal extensions of the proof.

If there is already a handke"™ with D,[h"4].word = h, real2id returns that. The
postulated output condition is fulfilled by “correct deftiean”, and the others because
no state changes are made. Otherwise, the wasahot yet present ith,. Thenid2real
sets(type, arg) := parse(h). This yieldstype € typeset \ secrettypes. As parse is
a functional algorithm, no invariants are affected. Tld2veal calls an type-specific
subroutineadd_arg «+ real2id_type(h, arg) with side-effects. Finally it seta"™ :=
curhnd,++ andD, <= (h™4 h, add_arg).

We therefore have to show the postulated properties for ewrtppe-specific algo-
rithms together with those last two assignments.

For type hash’, the subroutingeal2id_hash(h, ()) calls h" « unknown_hash()
at in,! and setsadd_arg := (). Hence THx, makes a new entry witth"™d :=
curhnd,++. Together with the new entry iD,, this results inD* :< (ind :=

33

size++, type :=‘hash’,arg := (),hnd, := h™9 len := hash_len*(k), word :=

h, query = (), queried_by_env = false). It fulfills the postulated output condition.
“Correct derivation” is clear, and “word secrecy” is clear r@o other entries are in-
volved. For “word uniqueness”, assume there is a prior enteyD* with z.word = h.
We then put this run in an error s&bnce_Guess, which contains those runs in which
the adversary guessed a random string that he had no infomadtout. One can later
show that this error set has negligible probability by eitpig the invariant “word
secrecy” to show that indeed no information in the Shannaisesdas flowed from
variables that the adversary knows into the considerecbrargdrings, cf. [9].

Answering Oracle Queries. Finally assume that a useror A asks the random oracle
to hash a message

If there exists(l, h) € Dro in the real system for somie then the random oracle
outputsh; otherwise, it chooses & {0, 1}"ash-en(k) setsDgo :<= (I, k) and outputs
h. Let ™ := D*[word = l].ind, hi™ := D*[word = (‘hash’, h)].ind, andhi™d =
D*[hi"].hnd,. The simulator callg!" := algoreal2id(l).

Assume first that there existd,h) € Dro. Then D*[h™].query = (I). If
D*[hi"].queried_by_env = true “correct derivation” implies D} [h"].arg =
(preimage, (™). There is no state change in this case aBiny out-
puts D:[hi"].word[2] while the random oracle outputé. This is equiva-
lent by “correct derivation”. If D*[h"].queried_by_env = false, we have
D,[type ='hash’Aadd_arg = (preimage,!’"!)].ind = | by “correct deriva-
tion”. Let Z := {z € D, | z.type ='hash’} andb, « is_hash_of ("4 z.hnd,)
for = € Z. If there is onez with b, = true, the simulator outputs.word.
“Correct arguments” impliesD*[h"™].arg = (1), thus there is one: with
b, = true iff R = D*[A").hnd, # |. If A" #£ |, the simulator
outputs z.word which is correct by “correct derivation”. Ifhi"d = | Simy
setsh’ & {0, 1}hashden(k) and h* := (‘*hash’,h’), calls " « hash(Ii"d),
D, <= (h"d h* ‘hash’, (preimage,if™d)), and outputs h’. Because of
D*[h"].arg = (I™!), we haveh"™ = hh"d je., there is no state change in
THy; except for setting the handlexd,. The stringh that the random oracle computes
has the same probability distribution &5 by “strongly correct arguments” for the
entry D*[h"d], yielding a correctly distributed output. We finally considhe new
hash entry: “Correct derivation” is clear. If “word uniquess” is not fulfilled, i.e.,
if h or h* equal an existing word, we put the run into the error Aetice_Coll,
which can later shown to occur with negligible probabilitylyp “Correct arguments”
follows immediately sinceD* [h"].query = (1) = (D*[I"™].word). “Strongly correct
arguments” holds by construction.

Now assume thatl, h) € Dgo for all h. Simy calls/™d « real2id(l). Let Z :=
{2 € D, | z.type ="hash’} andb,, « is_hash_of (I"4, 2.hnd,) for z € Z. Now (I, h) &
Dro for all » implies D*[h™].query # (1) for all A", thus D*[A"].arg # (")
for all K" by “correct arguments” and “word uniqueness’. This impligs= false
for all z € Z. HenceSimy, setsh’ <& {0, 1}Mashlen(k) andp* := (*hash’, h’), calls
Rt hash(Ih") and D, :<= (h"", h* ‘hash’, (preimage, ('"¥)), and outputs. The
string h that the random oracle computes has the same probabilitibdison ash’ by

34

definition of the random oracle, yielding a correctly distited output. The invariants
for the new hash entry can be shown as in the previous case.

B Proof Sketches of Soundness in the Standard Model

We only briefly sketch the proofs of Theorems 6 and 7. Hence wmlgnretain the
notation from the main part of this paper, instead of switgtb the notation of [9] as
in Appendix A.

Both proofs require extending the simulafm from [9] to cope with hash terms
and hash strings, similar to the more detailed proof in threloan oracle model. In
particular, recall that the simulator maintains a tablégdase) of corresponding term
representations (handles) and bitstrings, as well as #impges of the hash term rep-
resentations where it knows them.

Proof (Theorem 6, Sketchn the Dolev-Yao model without secrecy of hashed terms,
the ideal adversary can derive (a representation of) theaowd termt whenever it
learns the hashash(t). Hence the simulator can translate every ideal teagh(¢) to
a bitstringhash (") in a straightforward (recursive) manner by first constngt! and
then applying the hash function.

Translating a real hash stririg into an ideal hash terrh is simulated as follows.
First, the simulator constructs the sgtof all terms of size at mogtusing the available
operators over the terms in its current table of term repitasiens. In the underlying
model of [9], terms are immediately normalized, hence eacmtin 7; can be con-
structed with at mostoperator applications. Sincg is of polynomial size, this takes
polynomial time. The simulator then checks for every térm T; whether hashing the
corresponding string obtained or computed from the table equals the given string
Let I C T; denote the set of terms that pass this test. We distinguisk ttases:

1. If I = {t} for some termt, the simulator setd := hash(¢) and enters this into the
ideal system as well as its own table.

2. If |I| = 0, the simulator enters an unknown hdshi.e., a hash with unknown
preimage, into the ideal system and its table.

3. If |I] > 2, the simulator gives up the simulation. (A collision of thm€tionhash”
has been found, because in this Dolev-Yao model and realizahequal terms
have unequal realizations with overwhelming probabllity.

Whenever the simulator receives a new stringof arbitrary type and produces
a corresponding termn, it additionally checks for each unknown hashvhether the
contained term has now become known. For this, it constalidisrmst of size at most
[containingm using the available operators over the terms in its curaietof term
representations, and checks whethash"(t") = h'. Let T}, be the set of terms that
pass this test. T}, = {t} for a term¢, the simulator entersas a preimage of into
its table, as well as into the ideal system using the spagmitifor providing initially
unknown preimages later. If;, =), the simulator does nothing, and|if},| > 2, it
gives up the simulation. (A collision of the functibash” has been found.)

35

Clearly, the simulatofim only gives up with negligible probability, as otherwise
the combination oim, TH, A andH is an algorithm that contradicts the collision
resistance ofiash’. For the other cases one can see, ultimately again by a grggtbic
bisimulation, that the ideal system with the simulator @isgtinguishable from the real
system. [

Proof (Theorem 7, SketchJhe simulator for this case can translate real hash strings
into ideal terms as a simpler case of the procedure in thef mfobheorem 6, since
individual nonces are a special case of terms of at most aohsize.

As we allow hashing of individual nonces only, we can applinglar technique for
translating an ideal hash terrto a real hash string" although ideal secrecy of hashed
terms is required: The simulator checks for all already kmownce terms whether
is_hash_of (n?, h?) = true. Since the number of known nonces is polynomial, this takes
polynomial time. If such a nonce term exists, the simulator sets’ := hash'(n")
for the corresponding real noneé in its table. At most one such term exists since
preimages are unique on the term level. If no su@xists, the simulator chooses a new
noncen*" with the algorithmG, and sets" := hash"(n*"). It storesn*" and its relation
to the termh. Furthermore, whenever the simulator receives a new nenaget, it first
checks whetheis_hash_of (n?, h?) = true for some hash terrh that it knows, but for
which it does not yet know a preimage on the term level. (Adglaéme is at most one.)

If such a term exists, thersim outputs the stored real nongé" and stores in its table
thatn*" is now the realization of.. This simulation of the construction of nonces and
their hashes is always correct. [

36

