
The experimental distinguishing attack on RC4 ∗

Sergey Doroshenko† and Boris Ryabko ‡

† Siberian State University of Telecommunications and Computer Science, Russia
‡ Institute of Computational Technologies of Siberian Branch of Russian Academy of Science

Abstract

The output of RC4 was analyzed using the ”book stack” test for randomness
from [7]. It is experimentally shown that the keystream generated from RC4
can be distinguished from random with about 232 output bits.

1 Introduction.

The RC4 has been one of the most popular stream ciphers since it was proposed
by Ron Rivest in 1987. It is required that a keystream of RC4 (and any stream
cipher) should be truly random, i.e., by definition, a generated sequence should be
interpretable as a result of the flips of a ”fair” coin with sides labelled ”0” and ”1”
(for short, it is called a random sequence). There are some papers where it is shown
theoretically that the RC4 keystream is not truly random [2, 3, 4, 5] and a paper
[1] where non-randomness of RC4 was experimentally verified with under 56 trillion
samples (> 255 bits) of RC4 output.

In this paper, we describe some experiments intended to detect non-randomness
of the RC4 keystream. For this purpose the ”book stack” test from [7] was applied to
keystream sequences generated by RC4. It turns out that the keystream sequences are
far from random when their length is about 232 bits. We consider the most popular
version of RC4, in which the number of bits in a single output is 8.

A description of the experiments is given in section 2. The Appendix contains a
brief description of the book stack test and its parameters.

2 Experiments.

The behavior of the RC4 keystream was investigated for 100 randomly chosen keys
by the book stack test from [7]. To apply the test we devided the keystream sequence
into 16-bit words (blocks) and each block was considered as a letter from the alphabet

∗Research was supported by Russian Foundation for Basic Research (grant no. 03-01-00495).

of size 216. According to the test, any alphabet letter (i.e. a 16-bit word) was assigned
an index and the set of all indexes was divided into two subsets A1 = {1, ..., 16} and
A2 = {17, ..., 216} (a brief description of the test is given in Appendix and can be
found in [7, 6]).

We generated files of different lengths for each randomly chosen 256-bit key (see
the tables below) and applied the book stack test to each file with level of significance
0.05. So, if a test is applied to a random bit sequence, on average 5 files from 100
should be recognized as non-random. All results are given in the table, where integers
in the cells are the numbers of files recognized as non-random (out of 100).

Table 1: Number of files generated by RC4 and recognized as non-random (from 100).

Length (bits) 231 232 233 234 233 236 237 238 239

Non-random 6 12 17 23 37 74 95 99 100

Having taken into account that, on average, only 5 files from 100 should be recog-
nized as non-random if sequences are random, we see that the keystream sequences
are far from random when their length is about 232.

3 Appendix.

Here we give a short description of the book stack test from [7].
Let there be given an alphabet A = {a1, ..., aS}, a source, which generates letters

from A, and two following hypotheses: the source is i.i.d. and p(a1) = = p(aS) =
1/S (H0) and H1 = ¬H0. (In the above described experiments S = 216 and A is
the set of all 16-bit words.) One should test the hypotheses basing on a sample
x1x2 ... xn, n ≥ 1 , generated by the source. When the ”book stack” test is applied,
all letters from A are ordered from 1 to S and this order is changed after observing
each letter xt according to the formula

νt+1(a) =


1, if xt = a ;
νt(a) + 1, if νt(a) < νt(xt);
νt(a), if νt(a) > νt(xt) ,

(1)

where νt is the order after observing x1x2 ... xt, t = 1 , , ... , n , ν1 is defined arbitrarily.
(For ex., we can define ν1 = {a1, ..., aS}.) Let us explain (1) informally. Suppose that
the letters of A make a stack, like a stack of books and ν1(a) is a position of a in the
stack. Let the first letter x1 of the word x1x2 ... xn be a. If it takes i1−th position in
the stack (ν1(a) = i1), then take a out of the stack and put it on the top. (It means
that the order is changed according to (1).) Repeat the procedure with the second
letter x2 and the stack obtained, etc.

It can help to understand the main idea of the suggested method if we take into
account that, if H1 is true, then frequent letters from A (as frequently used books)

2

will have relatively small numbers (will spend more time next to the top of the stack).
On the other hand, if H0 is true, the probability to find each letter xi at each position
j is equal to 1/S.

The set of all indexes {1, . . . , S} is divided into r, r ≥ 2, subsets A1 = {1, 2, . . . , k1},
A2 = {k1 + 1, . . . , k2}, . . . , Ar = {kr−1 + 1, . . . , kr}. Then, using x1x2 ... xn, we calcu-
late how many νt(xt), t = 1, ..., n, belong to a subset Ak, k = 1, ..., r. We define this
number as nk (or, more formally, nk = |{t : νt(xt) ∈ Ak, t = 1, . . . , n}|, k = 1, ..., r.)
Obviously, if H0 is true, the probability of the event νt(xt) ∈ Ak is equal to |Aj|/S.

Then, using the chi- square test we test the hypothesis Ĥ0 = P{νt(xt) ∈ Ak} = |Ak|/S
basing on the empirical frequencies n1, . . . , nr, against Ĥ1 = ¬Ĥ0. Let us recall that
the value

x2 =
r∑

i=1

(ni − n(|Ai|/S))2

n(|Ai|/S)
(2)

is calculated, when chi- square test is applied. It is known that x2 asymptotically
follows the χ-square distribution with (r− 1) degrees of freedom (χ2

r−1) if Ĥ0 is true.
If the level of significance (or a Type I error) of the χ2 test is α, α ∈ (0, 1), the
hypothesis Ĥ0 is accepted when x2 from (2) is less than the (1 − α) -value of the
χ2

r−1 distribution.
The authors of [7] do not describe the exact rule how to construct the subsets

{A1, A2, . . . , Ar}, but they recommend to perform some experiments for finding the
parameters, which make the sample size minimal (or, at least, acceptable). The point
is that there are many cryptographic and other applications where it is possible to
implement some experiments for optimizing the parameter values and, then, to test
hypothesis basing on independent data. Thus, in case of testing a stream cipher it is
possible to seek suitable parameters using some keys and then to test the keystream
using different keys.

Consider a simple example. Let A = {a1, . . . , a6}, r = 2, A1 = {a1, a2, a3}, A2 =
{a4, a5, a6}, x1 . . . x8 = a3a6a3a3a6a1a6a1. If ν1 = 1, 2, 3, 4, 5, 6, then ν2 = 3, 1, 2, 4, 5, 6,
ν3 = 6, 3, 1, 2, 4, 5, etc., and n1 = 7, n2 = 1. We can see that the letters a3 and
a6 are quite frequent and the ”book stack” indicates this nonuniformity quite well.
(Indeed, the average values of n1 and n2 equal 4, whereas the real values are 7 and 1,
correspondingly.)

Let us consider the complexity of the algorithm. The “naive” method of trans-
formation according to (1) can take the number of operations proportional to S,
but there exist algorithms, which can perform all operations in (1) using O(log S)
operations.

4 Acknowledgments

The authors wish to thank Viktor Monarev and Alexey Lubkin who independently
repeated experiments described in the part 2 and obtained close results.

References

[1] Crowley P. Small bias in RC4 experimentally verified.
http://www.ciphergoth.org/crypto/rc4/

[2] Dawson E., Gustafson H., Henricksen M., Millan B. Evaluation of RC4 Stream
Cipher, 2002, http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/

[3] Golic J. Dj. Iterative Probabilistic Cryptanalysis of RC4 Keystream Generator.
Australasian Conference on Information Security and Privacy (ACISP), 2000, pp.
220-233

[4] Fluhrer S., McGrew D. Statistical Analysis of the Alleged RC4 Keystream Gen-
erator Source. Lecture Notes In Computer Science; Vol. 1978 (Proceedings of the
7th International Workshop on Fast Software Encryption table of contents. pp.
19 - 30, 2000.

[5] Pudovkina M. Statistical weaknesses in the alleged RC4 keystream generator.
Cryptology ePrint Archive: Report 2002/171 http://eprint.iacr.org/2002/171

[6] Ryabko B., Fionov A. Basics of Contemporary Cryptography for IT Practitioners.
World Scientific Publishing Co., 2005.

[7] Ryabko B., Monarev V., Using Information Theory Approach to Randomness
Testing. Journal of Statistical Planning and Inference, 133(1) pp. 95-110, 2005.

4

