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Abstract

The complexity of a secret sharing scheme is defined as the ratio between the maximum
length of the shares and the length of the secret. The optimization of this parameter for gen-
eral access structures is an important and very difficult open problem in secret sharing. We
explore in this paper the connections of this open problem with matroids and polymatroids.

Matroid ports were introduced by Lehman in 1964. A forbidden minor characterization
of matroid ports was given by Seymour in 1976. These results are previous to the invention
of secret sharing by Shamir in 1979. Important connections between ideal secret sharing
schemes and matroids were discovered by Brickell and Davenport in 1991. Their results can
be restated as follows: every ideal secret sharing scheme defines a matroid, and its access
structure is a port of that matroid. In spite of this, the results by Lehman and Seymour and
other subsequent results on matroid ports have not been noticed until now by the researchers
interested in secret sharing.

Lower bounds on the optimal complexity of access structures can be found by taking into
account that the joint Shannon entropies of a set of random variables define a polymatroid.
We introduce a new parameter, which is denoted by κ, to represent the best lower bound
that can be obtained by this method. We prove that every bound that is obtained by this
technique for an access structure applies to its dual structure as well.

By using the aforementioned result by Seymour we obtain two new characterizations of
matroid ports. The first one refers to the existence of a certain combinatorial configuration
in the access structure, while the second one involves the values of the parameter κ that
is introduced in this paper. Both are related to bounds on the optimal complexity. As
a consequence, we generalize the result by Brickell and Davenport by proving that, if the
length of every share in a secret sharing scheme is less than 3/2 times the length of the secret,
then its access structure is a matroid port. This generalizes and explains a phenomenon that
was observed in several families of access structures.

Finally, we present a construction of linear secret sharing schemes for the ports of the
Vamos matroid and the non-Desargues matroid, which do not admit any ideal secret sharing
scheme. We obtain in this way upper bounds on their optimal complexity. These new bounds
are a contribution on the search of examples of access structures whose optimal complexity
lies between 1 and 3/2.

Key words. Secret sharing, Optimization of secret sharing schemes for general access
structures, Ideal secret sharing schemes, Matroids, Polymatroids.
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1 Introduction

A secret sharing scheme is a method to distribute a secret value into shares in such a way
that only some qualified subsets of participants are able to recover the secret from their shares.
Secret sharing, which was independently introduced by Shamir [41] and Blakley [8] in 1979,
is a very important cryptographic primitive and it is a fundamental building block for many
different kinds of cryptographic protocols.

Only unconditionally secure perfect secret sharing schemes will be considered in this paper.
That is, the shares of the participants in a non-qualified subset must not contain any infor-
mation about the secret value. Because of that, no restriction on the computational power of
the participants is assumed. The reader is referred to Stinson’s Explication of secret sharing
schemes [43] for an excellent introduction to the topic.

The family of the qualified subsets is the access structure of the scheme, which is naturally
supposed to be monotone increasing . That is, every subset containing a qualified subset must
be qualified. Then an access structure is determined by its minimal qualified subsets.

There exists a secret sharing scheme for every access structure. Constructive proofs for this
fact are given in [7, 24]. The schemes that are obtained by these methods are inefficient because
the size of the shares grows exponentially with the number of participants. Nevertheless, the
existence of better general constructions is still unknown. The optimization of secret sharing
schemes for general access structures is one of the main research topics on secret sharing.

The size of the shares, usually in relation to the size of the secret value, is the commonest
way to measure the efficiency of a secret sharing scheme. To this end, we consider here the
complexity of a secret sharing scheme, which is the ratio between the maximum length (in bits)
of the shares and the length of the secret value. This is actually the inverse of the information
rate, a parameter that has been widely considered in the literature. The optimal complexity σ(Γ)
of an access structure Γ is the infimum of the complexities of all secret sharing schemes for Γ.
This paper deals with the open problem of determining the value of this parameter for every
given access structure. Several techniques have been proposed to find bounds on the optimal
complexity of an access structure. Nevertheless, there is a huge gap between the best known
general lower and upper bounds.

A secret sharing scheme is said to be linear if the secret value and the shares are vectors
over some finite field and they are the values of some given linear maps on a random vector.
The infimum complexity of all linear secret sharing schemes for an access structure Γ is denoted
by λ(Γ). Clearly, σ(Γ) ≤ λ(Γ).

In all secret sharing schemes, the length of every share is at least the length of the secret [27].
A secret sharing scheme is said to be ideal if all shares have the same length as the secret. The
access structures of ideal secret sharing schemes are called ideal as well. For example, the
(t, n)-threshold access structure, which consists of all subsets with at least t participants out of
a set of n, is ideal because it can be realized by the ideal scheme proposed by Shamir [41]. The
characterization of the ideal access structures has attracted the attention of many researchers.
Brickell and Davenport [13] discovered strong connections of this open problem with matroid
theory. Specifically, every ideal secret sharing scheme defines a unique matroid, and hence ideal
secret sharing schemes can be seen as representations of matroids that actually include linear
representations because of the construction of ideal linear schemes proposed by Brickell [12].

Surprisingly enough, the authors interested on secret sharing have been unaware until re-
cently that the result by Brickell and Davenport [13] can be stated in terms of matroid ports, a
combinatorial object that was introduced by Lehman [28] in 1964 to solve the Shannon switching
game. Actually, after a small change in the definition of matroid port to adapt it to our topic,
the main result in [13] can be rewritten as follows: every ideal access structure is a matroid port.
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This necessary condition for an access structure to be ideal is not sufficient because there exist
matroids that can not be represented by any ideal secret sharing scheme, and hence there exist
matroid ports that are not ideal access structures. The first example of such a matroid, the
Vamos matroid , was presented by Seymour [40], and other examples, being the non-Desargues
matroid among them, were given by Matúš [33].

Two techniques have been mostly used until now in the search for bounds on the optimal
complexity of access structures. On one hand, upper bounds have been obtained from different
decomposition methods by means of which several linear secret sharing schemes are combined
into a new one [11, 14, 18, 26, 38, 44, 45]. Upper bounds on λ(Γ) are obtained in this way. On
the other hand, lower bounds on the optimal complexity have been derived by combining the
basic inequalities of Shannon entropy with the requirements given by the access structure [9,
10, 15, 26]. Csirmaz [17] simplified and unified the techniques in those works by revealing
the combinatorial nature of the method. More specifically, he pointed out that the previous
lower bounds were solely based on the fact that every secret sharing scheme for a given access
structure defines a polymatroid with certain properties.

In this paper we contribute to a better understanding of this combinatorial method. A new
parameter, called κ(Γ), is introduced in Section 3 to represent the best lower bound on the
optimal complexity that can be obtained by using polymatroids. Obviously,

κ(Γ) ≤ σ(Γ) ≤ λ(Γ).

The parameters κ and λ mark the limits of the two aforementioned techniques for the search of
bounds on the optimal complexity. This is due to the fact that the construction of linear secret
sharing schemes for a given access structure by using decomposition methods provides upper
bounds on λ(Γ), and the lower bounds on σ(Γ) that can be derived from the basic inequalities
of Shannon entropy are actually lower bounds on κ(Γ). Therefore, determining the values of
the new parameter κ and finding out the separation between κ and σ are new open problems
that have important implications. Some important results showing a separation between the
parameters σ and λ have been given in [1, 6, 23]. They imply that linear schemes are not among
the optimal schemes for every access structure.

We prove in Theorem 3.9, one of our main results, that κ(Γ) = κ(Γ∗), that is, every lower
bound that is obtained for Γ by using polymatroids applies also to the dual access structure Γ∗.
The use of this result would greatly simplify, for instance, the computation in [26] of the lower
bounds for the access structures on five participants. A similar behavior was known for the
parameter λ(Γ). Specifically, from every linear secret sharing scheme for an access structure Γ, a
linear scheme with the same complexity can be obtained for the dual access structure Γ∗ [20, 25],
and hence λ(Γ) = λ(Γ∗). The relation between σ(Γ) and σ(Γ∗) is still an open problem.

Seymour [39] presented in 1976 a characterization of matroid ports by excluded minors that
is based on a previous characterization of matroid ports due to Lehman [29]. These results,
which were presented before secret sharing was invented, were not noticed by the researchers in
this topic, but they can be very useful for the open problems considered here. One example of
this is our main result, Theorem 4.4, which has important consequences and enhances our un-
derstanding about the connections between secret sharing and matroid theory. Its proof mainly
based on Seymour’s characterization of matroid ports [39]. Theorem 4.4 provides two new char-
acterizations of matroid ports. The first one refers to the existence of independent sequences,
combinatorial configurations in the access structure that provide lower bounds on κ(Γ). The
independent sequence technique was introduced in [11] and it was improved in [37]. It is restated
here in Theorem 3.4. The second one deals with the value of κ(Γ). Namely, an access structure
Γ is a matroid port if and only if κ(Γ) < 3/2. Because of that, our new characterizations of
matroid ports have interesting implications in the open problem that is considered here.
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One of the most remarkable consequences of Theorem 4.4 is related to a repeated phe-
nomenon was observed in several families of access structures as, for instance, the ones defined
by graphs [15], the ones on at most five participants [43, 26], the bipartite access structures [37],
the structures with at most four minimal qualified subsets [31], or the ones with intersection
number equal to one [32]. Namely, in all these families, the optimal complexity of every non-
ideal access structure is at least 3/2. On one hand, this suggested the existence of a general
result, namely, a gap in the values of the optimal complexity σ(Γ). But, on the other hand,
this common property was proved by methods that seemed to be specific to every one of those
families, and hence it was not clear that there existed a common explanation.

Theorem 4.4 generalizes and explains this repeated behavior. Actually, in all those families
the ideal access structures coincide with the matroid ports, and hence σ(Γ) ≥ κ(Γ) ≥ 3/2 if Γ
is a non-ideal access structure. Therefore, our new characterization of matroid ports provides
a unified explanation for the gap in the values of σ(Γ) that was observed in those families.
Our result can be also seen as a generalization of the result by Brickell and Davenport [13],
who proved that all ideal access structures are matroid ports. As a direct consequence of
Theorem 4.4, if the complexity of a secret sharing scheme is less than 3/2, then its access
structure is a matroid port.

The existence of access structures with 1 < σ(Γ) < 3/2 has been an open problem until
recently. As a consequence of our main result, such access structures must be matroid ports.
Actually, Theorem 4.4 implies that such a gap exists on the values of the parameter κ, that is,
there is no access structure Γ with 1 < κ(Γ) < 3/2. We contribute here to the solution of this
open problem by proving in Section 5 that the optimal complexities of the ports of the Vamos
matroid and the non-Desargues matroid are at most 4/3. Those matroid ports are known to
be non-ideal [33, 40], but this does not imply that their optimal complexities are larger than 1.
Nevertheless, it has been proved in [3], a paper that appeared during the preparation of this
work, that the optimal complexities of the ports of the Vamos matroid are actually larger than 1.
Therefore, these are the first known examples of access structures with 1 < σ(Γ) < 3/2.

2 Preliminaries

2.1 On Access Structures Defined from Matroids and Polymatroids

In this section we present some definitions connecting access structures to matroids and poly-
matroids. The relevance of these definitions in secret sharing will be made clear in the following
sections. The reader is referred to [36, 46] for general references on matroid theory. The book
by Welsh [46] contains a chapter about polymatroids.

For a set P , we notate P(P ) for the power set of P . An access structure on P is a monotone
increasing family Γ ⊆ P(P ) of subsets of P , that is, Y ∈ Γ if X ⊆ Y ⊆ P and X ∈ Γ.
The elements in Γ are called the qualified subsets of the access structure. Obviously, an access
structure Γ is determined by the family min Γ of its minimal qualified subsets. A participant
is said to be redundant in an access structure if there is no minimal qualified set containing it.
An access structure is connected if there is not any redundant participant in it. All participants
are redundant in the two trivial access structures ∅,P(P ) ⊆ P(P ).

A polymatroid is a pair S = (Q, h) formed by a finite set Q, called the ground set , and a
rank function h : P(Q)→ R satisfying the following properties.

1. h(∅) = 0.

2. h is monotone increasing : if X ⊆ Y ⊆ Q, then h(X) ≤ h(Y ).
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3. h is submodular : if X,Y ⊆ Q, then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

We say that p0 ∈ Q is an atomic point of the polymatroid S = (Q, h) if, for every X ⊆ Q, either
h(X ∪ {p0}) = h(X) or h(X ∪ {p0}) = h(X) + 1.

A matroid is a polymatroid M = (Q, h) such that h(X) ∈ Z and 0 ≤ h(X) ≤ |X| for every
X ⊆ Q. A subset X ⊆ Q is said to be an independent set of the matroid M if h(X) = |X|.
The dependent subsets are those that are not independent. A circuit is a minimally dependent
subset, while a basis is a maximally independent subset. All bases have the same number of
elements, which equals h(Q), the rank of the matroid M.

For a polymatroid S = (Q, h) with an atomic point p0 ∈ Q we define on the set P = Q−{p0}
the access structure

Γ = Γp0(S) = {X ⊆ P : h(X ∪ {p0}) = h(X)}.

We have to check that Γ is monotone increasing. If X ⊆ Y ⊆ P and X ∈ Γ, then the
submodularity of h implies that h(X) +h(Y ) = h(X ∪{p0}) +h(Y ) ≥ h(Y ∪{p0}) +h(X), and
hence Y ∈ Γ.

For an access structure Γ on P = Q − {p0}, a polymatroid S = (Q, h) is said to be a Γ-
polymatroid if p0 is an atomic point of S and Γ = Γp0(S). There exist Γ-polymatroids for every
access structure Γ. Observe that different polymatroids can define the same access structure.

If h({x}) = 0 for every x ∈ Q, then Γp0(S) = P(P ), and Γp0(S) = ∅ if h({p0}) = 1 and
h({x}) = 0 for every x ∈ P . If Γ is non-trivial and S = (Q, h) is a Γ-polymatroid, then
h({p0}) = 1 and h(P ) = h(Q).

If M = (Q, r) is a matroid, then all its points are atomic and we can consider, for every
x ∈ Q, the access structure Γx(M) on the set Q−{x}. This access structure is called the port of
the matroidM at the point x. With a slightly different definition, matroid ports were introduced
in 1964 by Lehman [28] to solve the Shannon switching game. Seymour [39] presented in 1976 a
characterization of matroid ports by excluded minors that is based on a previous characterization
of matroid ports due to Lehman [29]. The minimal sets of a matroid port can be characterized
by

min Γx(M) = {A ⊆ Q− {x} : A ∪ {x} is a circuit of M}.

Actually, matroid ports were defined by Lehman as the families of subsets of this form. We
changed here the definition in order to simplify the presentation.

A matroid M = (Q, r) is said to be connected if, for every two different points x, y ∈ Q,
there exists a circuit C with x, y ∈ C. Clearly, all ports of a connected matroid are connected.
Moreover, as a consequence of [36, Proposition 4.1.2], a matroid is connected if and only if at
least one of its ports is connected. A connected matroid is determined by the circuits that
contain some given point [28]. Therefore, if Γ is a connected matroid port, there exists a unique
connected matroid M with Γ = Γp0(M).

2.2 Secret Sharing Schemes

Several different definitions for secret sharing have been proposed in the literature. We present
here the most general one. Namely, a secret sharing scheme is defined as a set of random
variables satisfying some properties in terms of their joint Shannon entropies. The reader is
referred to [16] for a textbook containing more information about Shannon entropies.

Let Q be a finite set of participants. Consider a finite set E with a probability distribution
on it. For every i ∈ Q, consider a finite set Ei and a map πi : E → Ei. Those maps induce
random variables on the sets Ei. Let H(Ei) denote the Shannon entropy of one of these
random variables. For a subset A = {i1, . . . , ir} ⊆ Q, we write H(EA) for the joint entropy
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H(Ei1 . . . Eir), and a similar convention is used for conditional entropies as, for instance, in
H(Ej |EA) = H(Ej |Ei1 . . . Eir).

Consider a distinguished participant p0 ∈ Q, which is usually called dealer , and an access
structure Γ on the set P = Q − {p0}. We write E0 and π0 for Ep0 and πp0 , respectively. The
maps πi define an unconditionally secure perfect secret sharing scheme Σ with access structure
Γ if the following properties are satisfied.

1. H(E0|EA) = 0 if A ∈ Γ.

2. H(E0|EA) = H(E0) if A /∈ Γ.

In this situation, every random choice of an element x ∈ E, according to the given probability
distribution, results in a distribution of shares ((si)i∈P , s), where si = πi(x) ∈ Ei is the share
of the participant i ∈ P and s = π0(x) ∈ E0 is the shared secret value. Observe that the first
requirement in the definition implies that the qualified subsets can recover the secret value from
their shares and, by the second one, the shares of the participants in an unqualified subset do
not provide any information at all about the secret value. Recall that only unconditionally
secure perfect secret sharing schemes are considered in this paper.

The ratio
σ(Σ) =

maxi∈P H(Ei)
H(E0)

is called the complexity of the scheme Σ, and the optimal complexity σ(Γ) of the access struc-
ture Γ is the infimum of the complexities of all secret sharing schemes for Γ. It is not difficult to
check that H(Ei) ≥ H(E0) for every non-redundant participant i ∈ P , and hence σ(Σ) ≥ 1 for
every secret sharing scheme Σ with non-trivial access structure. Secret sharing schemes with
σ(Σ) = 1 are said to be ideal and their access structures are called ideal as well.

If the sets E and Ei are vector spaces over some finite field K , the maps πi are linear, and
the uniform probability distribution is considered in E, then Σ is said to be a K -linear secret
sharing scheme. The linear schemes in which Ei = K for every non-redundant participant i ∈ P
are ideal and they are called K -vector space secret sharing schemes. Their access structures
are called K -vector space access structures. Observe that there exist ideal linear schemes that
are not vector space secret sharing schemes. In such schemes, dimEi = dimE0 > 1 for every
non-redundant participant i ∈ P . The complexity of a linear secret sharing scheme is

σ(Σ) =
maxi∈P dimEi

dimE0
.

For an access structure Γ on P , we notate λ(Γ) for the infimum of the complexities of the linear
secret sharing schemes for Γ. Obviously, λ(Γ) ≥ σ(Γ) and, of course, every construction of
a linear secret sharing scheme for Γ provides an upper bound for λ(Γ), and hence for σ(Γ).
Efficient constructions can be obtained by using the existing methods to combine some given
linear secret sharing schemes into a new one [14, 18, 26, 38, 44, 45].

In order to develop a fully formal exposition, specially when dealing with minors in Sec-
tion 2.4, we consider that σ(Γ) = λ(Γ) = 0 if Γ is a trivial access structure. Clearly, trivial
structures are matroid ports and, in addition, we consider them to be ideal and K-vector space
access structures for every finite field K.

The connection between secret sharing and matroid theory is due to the fact that the joint
entropies of a set of random variables define a polymatroid. Specifically, given the random
variables defined by maps (πi)i∈Q, consider the function h : P(Q) → R defined by h(X) =
αH(EX), where α is a positive real number. Fujishige [22, 21] noticed that, from the basic
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properties of the entropy function, the so-called Shannon inequalities, it follows that the pair
(Q, h) is a polymatroid. This fact is central in our results.

Actually, a secret sharing scheme has been defined as a family of random variables, and
hence it defines a polymatroid. Let Σ be a secret sharing scheme with access structure Γ on
the set P = Q−{p0}. Associated to Σ, we consider the polymatroid S = S(Σ) = (Q, h), where
h(X) = H(EX)/H(E0). Clearly, S(Σ) is a Γ-polymatroid.

2.3 Ideal Secret Sharing Schemes and Matroid Ports

As a consequence of the results by Brickell and Davenport [13], the polymatroid S(Σ) is a
matroid if Σ is an ideal secret sharing scheme. In particular all ideal access structures are
matroid ports. An ideal secret sharing scheme Σ can be seen as a representation of the matroid
M = (Q, h) = S(Σ). The matroids of the form S(Σ) for some ideal secret sharing scheme Σ are
called secret sharing representable or ss-representable for short. Seymour [40] presented the first
example of a matroid that is not ss-representable, the Vamos matroid. Many more examples,
being the non-Desargues matroid among them, were given by Matúš [33].

It is not difficult to check that a matroid is representable over a finite field K (see [36] for the
definition of representable matroid) if and only if it is of the form S(Σ) for some K-vector space
secret sharing scheme Σ. Therefore, all representable matroids are ss-representable, and hence
all ports of representable matroids are ideal access structures. We say that a matroid is linearly
representable if it is represented by an ideal linear secret sharing scheme. All representable
matroids are linearly representable, but there exist linearly representable matroids that are not
representable, being the non-Pappus matroid an example [42]. The existence of ss-representable
matroids that are not linearly representable is an open problem.

2.4 Minors and Duals

We recall some basic facts about dual access structures and dual matroids. The dual of the
access structure Γ on the set P is defined as the access structure Γ∗ = {A ⊆ P : P − A /∈ Γ}.
If M = (Q, r) is a matroid, the map r∗ : P(Q)→ Z defined by r∗(X) = |X| − r(Q) + r(Q−X)
is the rank function of a matroid M∗ = (Q, r∗), which is called the dual of the matroid M.
Since Γp0(M∗) = (Γp0(M))∗, the dual of a matroid port is a matroid port. If Σ is a K-linear
secret sharing scheme with access structure Γ, then there exists a K-linear scheme Σ∗ with
access structure Γ∗ and complexity σ(Σ∗) = σ(Σ) [20, 25]. This implies that λ(Γ∗) = λ(Γ).
Actually, Σ can be seen as a linear code, and the linear scheme Σ∗ is the one constructed from
the dual code. As a consequence, if a matroid is linearly representable, the same applies to the
dual matroid. Nevertheless, it is not known whether the dual of an ss-representable matroid is
ss-representable, and the relation between σ(Γ) and σ(Γ∗) is an open problem too.

Taking minors is another interesting operation on access structures, matroids, and poly-
matroids. Let Γ be an access structure on a set P and take a subset Z ⊆ P . We define the
access structures Γ \ Z and Γ/Z on the set P − Z by Γ \ Z = {A ⊆ P − Z : A ∈ Γ} and
Γ/Z = {A ⊆ P − Z : A ∪ Z ∈ Γ}. Every access structure that can be obtained from Γ by
repeatedly applying the operations \ and / is called a minor of the access structure Γ. If Z1

and Z2 are disjoint subsets then (Γ \ Z1)/Z2 = (Γ/Z2) \ Z1, and (Γ \ Z1) \ Z2 = Γ \ (Z1 ∪ Z2),
and (Γ/Z1)/Z2 = Γ/(Z1 ∪ Z2). Therefore, every minor of Γ is of the form (Γ \ Z1)/Z2 for some
disjoint subsets Z1, Z2 ⊆ P . In addition, (Γ \ Z)∗ = Γ∗/Z and (Γ/Z)∗ = Γ∗ \ Z.

We can consider as well minors of matroids and polymatroids. Let S = (Q, h) be a poly-
matroid. Given a subset Z ⊆ Q, we define the polymatroids S \ Z = (Q − Z, h\Z) and
S/Z = (Q−Z, h/Z), where h\Z(X) = h(X) and h/Z(X) = h(X∪Z)−h(Z) for every X ⊆ Q−Z.
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It is not difficult to prove that, if p0 is an atomic point of S and and Γ = Γp0(S), then for every
Z ⊆ P , the point p0 is atomic in both minors S \Z and S/Z and, moreover, Γ \Z = Γp0(S \Z)
and Γ/Z = Γp0(S/Z). In addition, if M = (Q, r) is a matroid, then M \ Z and M/Z are
matroids as well.

The two operations on access structures that are used to construct minors have a very
natural interpretation in secret sharing. Suppose that the participants in Z ⊆ P are removed
from the scheme. If their shares are not revealed, only the subsets in Γ\Z are able to reconstruct
the secret value, while the subsets that can recover the secret are exactly those in Γ/Z if the
shares of the participants in Z are made public. Having this in mind, from any secret sharing
scheme Σ for the access structure Γ, one can construct secret sharing schemes Σ \ Z and Σ/Z
for Γ \ Z and Γ/Z, respectively, whose complexities are at most the complexity of Σ. Next
proposition is a straightforward consequence of the previous arguments.

Proposition 2.1. The following classes of access structures are closed by minors: the K-vector
space access structures, the ideal ones, and the matroid ports. In addition, if Γ′ is a minor of Γ,
then λ(Γ′) ≤ λ(Γ) and σ(Γ′) ≤ σ(Γ).

3 Lower Bounds from Polymatroids

Most of the known lower bounds on the optimal complexity were obtained by information-
theoretical arguments [9, 10, 15, 26]. Specifically, by using basic properties of the Shannon
entropy function in combination with the requirements that must be satisfied by the random
variables involved in a secret sharing scheme. Csirmaz [17] pointed out that all those results
are based solely on the so-called Shannon inequalities on the joint entropies of a set of random
variables, and hence they can be proved from the fact that every secret sharing scheme with
access structure Γ defines a polymatroid S with Γ = Γp0(S). In order to simplify and clarify
the discussion about the lower bounds on the optimal complexity that are obtained by this
technique, we introduce here a new parameter, which we denote by κ(Γ).

For a polymatroid S = (Q, h) and an atomic point p0 ∈ Q, we define σp0(S) = max{h({x}) :
x ∈ P}, where P = Q − {p0}. Observe that σp0(S) = σ(Σ) if S is the polymatroid associated
to the secret sharing scheme Σ. For every access structure Γ, we consider the value

κ(Γ) = inf{σp0(S) : S is a Γ-polymatroid with Γ = Γp0(S)}.

Clearly, κ(∅) = κ(P(P )) = 0 and κ(Γ) ≥ 1 for every non-trivial access structure Γ. In addition,
σp0(M) ≤ 1 if M is a matroid and κ(Γ) = 1 if Γ ia a non-trivial matroid port.

The next result completes Proposition 2.1. Its proof is straightforward from the definition
of κ and the discussion is Section 2.4.

Proposition 3.1. If Γ′ is a minor of the access structure Γ, then κ(Γ′) ≤ κ(Γ).

The lower bounds on the optimal complexity that can be obtained by using polymatroids
(that is, by using Shannon inequalities) are based on the following proposition.

Proposition 3.2. The optimal complexity of every access structure Γ is lower bounded by
σ(Γ) ≥ κ(Γ).

Proof. Let Σ be a secret sharing scheme with access structure Γ and let S = S(Σ) be its
associated polymatroid. Then σ(Σ) = σp0(S) ≥ κ(Γ).
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Therefore, lower bounds on σ(Γ) can be found by deriving lower bounds on κ(Γ) from
combinatorial properties of the access structure. Of course, κ(Γ) is the best lower bound that
can be obtained by this technique. The best general lower bound that has been found by this
method was given by Csirmaz [17], who presented an infinite family (Γn) of access structures
such that κ(Γn) ≥ n/ log n, where n is the number of participants. This is very far from the
known general upper bounds, which are exponential in n.

Observe that κ(Γ) deals only with the properties of the Γ-polymatroids. Every secret sharing
scheme for Γ determines a Γ-polymatroid, but there exist Γ-polymatroids that are not associated
to any secret sharing scheme for Γ. The Vamos matroid is an example of such a polymatroid,
because its ports do not admit any ideal secret sharing scheme [40]. Because of that, κ(Γ) may
not be in general a tight lower bound for σ(Γ). Another argument in this direction was given
by Csirmaz [17], who realized that, for every access structure Γ on a set P with |P | = n, there
exists a Γ-polymatroid S = (Q, h) such that h(X) = n+ (n− 1) + · · ·+ (n− (k − 1)) for every
X ⊆ P with |X| = k. The next result is a direct consequence of this fact.

Theorem 3.3. If Γ is an access structure on a set of n participants, then κ(Γ) ≤ n.

By taking into account the known methods to construct secret sharing schemes, it is against
intuition to suppose that there can exist, for every access structure, a secret sharing scheme
whose complexity is linear in the number of participants. Therefore, it seems that the optimal
complexity of an access structure will be in general much larger than κ(Γ), the best lower
bound that can be obtained by using polymatroids. Actually, some particular separation results
between the parameters κ and σ have been presented very recently [3]. More details about them
are given in Section 6. Stronger separation results are needed to prove the limitations of the
polymatroid technique to find good asymptotic lower bounds for σ(Γ) in the same way as the
separation results between the parameters λ and σ [1, 6, 23] indicate the limits of the search of
asymptotic upper bounds by constructing linear schemes.

Anyway, the polymatroid technique has proved to be very useful when studying some par-
ticular families of access structures. In some cases the obtained lower bounds are tight or, at
least, close to the best known upper bounds.

As an example of the kind of results that are obtained by using polymatroids, we present
the independent sequence method , which was introduced in [9] and was improved in [37]. Let Γ
be an access structure on a set of participants P . Consider A ⊆ P and an increasing sequence
of subsets B1 ⊆ · · · ⊆ Bm ⊆ P . We say that (B1, . . . , Bm |A) is an independent sequence in
Γ with length m and size s if |A| = s and, for every i = 1, . . . ,m, there exists Xi ⊆ A such
that Bi ∪ Xi ∈ Γ, while Bm /∈ Γ and Bi−1 ∪ Xi /∈ Γ if i ≥ 2. The independent sequence
method is based on Theorem 3.4. We notice that this result was not stated in [9, 37] in terms
of polymatroids, but in terms of the entropy function.

Theorem 3.4 ([9, 37]). Let Γ be an access structure on the set P and let S = (Q, h) be a
Γ-polymatroid. If there exists in Γ an independent sequence (B1, . . . , Bm |A) with length m and
size s, then h(A) ≥ m and consequently κ(Γ) ≥ m/s.

Since κ(Γ) ≤ 1 if Γ is a matroid port, we obtain the following corollary of Theorem 3.4. The
converse of this result will be proved in Section 4.

Corollary 3.5. If an access structure admits an independent sequence with length m and size
s < m, then it is not a matroid port.

In the following we prove another positive result about the polymatroid technique. Namely,
we prove in Theorem 3.9 that the bounds that are obtained by this technique for an access
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structure apply also to its dual. Observe that, since λ(Γ∗) = λ(Γ), this is also the case for the
upper bounds that are derived from the constructions of linear schemes. The existence of a
similar result for the parameter σ is still unknown.

There exist several inequivalent ways to define the dual of a polymatroid [46] and we have
to choose the suitable one to prove our result. Specifically, if S = (Q, h) is a polymatroid, we
consider the dual polymatroid S∗ = (Q, h∗), where h∗ : P(Q)→ R is defined by

h∗(X) =
∑
x∈X

h({x})− h(Q) + h(Q−X).

Clearly, if M = (Q, r) is such that r({x}) = 1 for every x ∈ Q, then the dual matroid of M
coincides with the dual polymatroid. Then this definition generalizes the duality that is usually
considered for matroids. We prove in the next lemma that S∗ is actually a polymatroid, and
we describe in Lemma 3.7 the relation between the dual of a Γ-polymatroid and the dual of the
access structure Γ.

Lemma 3.6. S∗ = (Q, h∗) is a polymatroid.

Proof. Obviously, h∗(∅) = 0. Take a subset X ⊆ Q and a point y /∈ X. Since h({y}) +
h(Q − (X ∪ {y})) ≥ h(Q −X), we get that h∗(X ∪ {y}) ≥ h∗(X). Therefore, h∗ is monotone
increasing. Finally, consider two arbitrary subsets X,Y ⊆ Q. Then from the definition of h∗

and the submodularity of h,

h∗(X) + h∗(Y )− h∗(X ∪ Y )− h∗(X ∩ Y ) =

= h(Q−X) + h(Q− Y )− h(Q− (X ∪ Y ))− h(Q− (X ∩ Y )) ≥ 0.

This proves that h∗ is submodular.

Lemma 3.7. Let Γ be a non-trivial access structure on P = Q− {p0} and let S = (Q, h) be a
Γ-polymatroid. Then S∗ = (Q, h∗) is a Γ∗-polymatroid.

Proof. Since Γ is non-trivial, h({p0}) = 1 and h(P ) = h(Q), and hence h∗({p0}) = 1. For every
X ⊆ P ,

h∗(X ∪ {p0}) = h({p0}) +
∑
x∈X

h({x})− h(Q) + h(P −X).

If X ∈ Γ∗, then P −X /∈ Γ and h(P −X) = h(Q−X)− 1. In this case, h∗(X ∪{p0}) = h∗(X).
Analogously, if X /∈ Γ∗ then h(P −X) = h(Q−X), and hence h∗(X ∪ {p0}) = h∗(X) + 1.

To be precise, the polymatroid S∗ is properly a dual of S, in the sense that S∗∗ = S, if and
only if h(Q − {x}) = h(Q) for every x ∈ Q. The polymatroids satisfying this property will be
said to be normalized . In addition, we need some technical results that are given in the next
lemma, whose proof is an easy exercise.

Lemma 3.8. Let S = (Q, h) be a polymatroid. Then the following properties hold.

1. The polymatroid S∗ = (Q, h∗) is normalized.

2. h∗∗(X) ≤ h(X) for every X ⊆ Q.

3. S is normalized if and only if S∗∗ = S.

4. If S is normalized, then h∗({x}) = h({x}) for every x ∈ Q.
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Theorem 3.9. Let Γ be an access structure and let Γ∗ be its dual. Then κ(Γ∗) = κ(Γ).

Proof. Clearly, κ(Γ) = κ(Γ∗) = 0 if Γ is a trivial access structure. Assume that Γ is non-trivial.
Consider the sets of real numbers

Ω(Γ) = {σp0(S) : S is a Γ-polymatroid}

and
Ω̂(Γ) = {σp0(S) : S is a normalized Γ-polymatroid}.

If S is a Γ-polymatroid, then S∗∗ is a normalized Γ-polymatroid with σ(S∗∗) ≤ σ(S). Therefore,
κ(Γ) = inf Ω(Γ) = inf Ω̂(Γ). The proof is concluded by taking into account that Ω̂(Γ) =
Ω̂(Γ∗).

4 A New Result from an Old Theorem

Our main result, Theorem 4.4, is presented in this section. It consists of two new characteriza-
tions of matroid ports that have interesting consequences in secret sharing. Its proof is based
on the forbidden minor characterization of matroid ports given by Seymour [39] in 1976, before
the invention of secret sharing by Shamir [41] in 1979.

We begin by presenting Seymour’s characterization. First, we define the access structures
that are the forbidden minors of matroid ports. The set of participants of the access structures
Φ and Φ̂ is P = {p1, p2, p3, p4}. The minimal qualified subsets of Φ are {p1, p2}, {p2, p3} and
{p3, p4}, while the minimal qualified subsets Φ̂ are {p1, p2}, {p2, p3}, {p2, p4} and {p3, p4}. For
every s ≥ 3, the set of participants of the access structure Ψs is P = {p1, . . . , ps, ps+1} and its
minimal qualified subsets are {p1, . . . , ps} and {pi, ps+1} for every i = 1, . . . , s. Observe that
Φ∗ ∼= Φ and Ψ∗s = Ψs. The minimal qualified subsets of Φ̂∗ are {p1, p3, p4}, {p2, p3} and {p2, p4}.
At this point, we can state Seymour’s result.

Theorem 4.1 (Seymour [39]). An access structure is a matroid port if and only if it has no
minor isomorphic to Φ, Φ̂, Φ̂∗, or Ψs with s ≥ 3.

We need to introduce two technical results that are used in the proof of Theorem 4.4. First,
independent sequences have a good behavior with respect to minors, and second, all forbidden
minors in Seymour’s characterization admit an independent sequence with length m = 3 and
size s = 2.

Lemma 4.2. Let Γ′ be a minor of an access structure Γ. If there exists in Γ′ an independent
sequence with length m and size s, then the same occurs for Γ.

Proof. Consider disjoint subsets Z1, Z2 ⊆ P such that Γ′ = (Γ \ Z1)/Z2. Suppose that
(B1, . . . , Bm |A) is an independent sequence with length m and size s = |A| in Γ′. Then
(B1 ∪ Z2, . . . , Bm ∪ Z2 |A) is an independent sequence in Γ.

Proposition 4.3. Every one of the access structures Φ, Φ̂, Φ̂∗, and Ψs with s ≥ 3 admits an
independent sequence with length m = 3 and size s = 2.

Proof. We are going to consider independent sequences with length m = 3 and size s = 2 that
will be denoted by (B1, B2, B3 | a1, a2), where B1 ⊆ B2 ⊆ B3 ⊆ P and a1, a2 ∈ P are such that
the subsets B1 ∪ {a1, a2}, B2 ∪ {a1} and B3 ∪ {a2} are in Γ while B1 ∪ {a1}, B2 ∪ {a2} and B3

are not in Γ. The sequence (∅, {p1}, {p1, p4} | p2, p3) is independent for both Φ and Φ̂, while an
independent sequence for Φ̂∗ is (∅, {p4}, {p1, p4} | p2, p3). Finally, (∅, {ps}, {p2, . . . , ps} | ps+1, p1)
is an independent sequence in Ψs.
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We can now prove our main result. It provides new characterizations of matroid ports in
terms of independent sequences and in terms of the parameter κ.

Theorem 4.4. Let Γ be a non-trivial access structure. Then the following statements are
equivalent.

1. Γ is a matroid port.

2. There does not exist in Γ any independent sequence with length m and size s < m.

3. There does not exist in Γ any independent sequence with length m = 3 and size s = 2.

4. κ(Γ) = 1.

5. κ(Γ) < 3/2.

Proof. If Γ is a matroid port, then κ(Γ) = 1 and, by Corollary 3.5, there does not exist in Γ
any independent sequence with length m and size s < m. In addition, by Theorem 3.4, there
does not exist in Γ any independent sequence with length m = 3 and size s = 2 if κ(Γ) < 3/2.
Finally, if Γ is not a matroid port, then there exists a minor Γ′ of Γ that is isomorphic to one of
the forbidden minors in Theorem 4.1. From Proposition 4.3, Γ′ admits an independent sequence
with length m = 3 and size s = 2 and, by Lemma 4.2, the same occurs with Γ.

One of the applications of Theorem 4.4 to secret sharing is an interesting generalization of
the important result by Brickell and Davenport [13], who proved that the access structure of
every ideal secret sharing scheme is a matroid port.

Corollary 4.5. Let Σ be a secret sharing scheme with complexity σ(Σ) < 3/2. Then the access
structure of Σ is a matroid port.

In particular, our result implies a gap in the values of κ(Γ). Namely, there does not exist
any access structure Γ with 1 < κ(Γ) < 3/2. This gap provides a common explanation for a
phenomenon that was separately observed in several particular families of access structures, in
which the optimal complexity of every non-ideal access structure is at least 3/2. Actually, since
all matroid ports in those families are ideal access structures, the gap observed in the values of
σ is a direct consequence of our result. Nevertheless, this gap does not hold in general. The
existence of non-ideal matroid ports with 1 < σ(Γ) < 3/2 has been proved recently [3].

5 On Non-Ideal Matroid Ports

Since there exist matroids that are not ss-representable, there are matroid ports that are not
ideal. Very little is known about the optimal complexity of these access structures. We cannot
find lower bounds by the techniques in Section 3 because κ(Γ) = 1 if Γ is a matroid port. We
present here some upper bounds on the optimal complexity of the ports of the Vamos matroid
and the non-Desargues matroid. They are obtained by using the decomposition technique
introduced by Stinson in [45]. Specifically, we use the following proposition, which is a corollary
of [45, Theorem 2.1].

Proposition 5.1. Let Γ be an access structure on a set P of participants, and let (Γ1, . . . ,Γm)
be a collection of substructures of Γ (that is, Γi ⊆ Γ) such that Γ =

⋃m
i=1 Γi. For every

i = 1, . . . ,m, consider the set Pi ⊆ P of participants that appear in some minimal qualified
subset of the substructure Γi, and, for every x ∈ P , consider w(x) = |{i : x ∈ Pi}| and
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take w = maxx∈P w(x). For every minimal qualified subset A ∈ min Γ, consider γ(A) = |{i :
A ∈ Γi}| and take γ = minA∈min Γ γ(A). Assume that there exists a finite field K such that all
substructures Γi are K -vector space access structures. Then, there exists for the access structure
Γ a K -linear secret sharing scheme with set of secrets E0 = Kγ whose complexity is equal to
w/γ.

The Vamos matroid V is the matroid on the set Q1 = {v1, . . . , v8} such that its bases are all
sets with cardinality 4 except the following five: {v1, v2, v3, v4}, {v1, v2, v5, v6}, {v3, v4, v5, v6},
{v3, v4, v7, v8} and {v5, v6, v7, v8}. The Vamos matroid is not ss-representable [40], and hence,
its ports are not ideal.

The non-Desargues matroid N is the matroid with rank 3 on a set with 10 points determined
by a non-Desargues configuration on a projective plane. That is, take three different lines L1,
L2, L3 that meet in a point p and, on the line Li, two different points qi, ri 6= p0. Finally,
consider the points s1, s2, and s3, where sk is the intersection of the lines qiqj and rirj if
{i, j, k} = {1, 2, 3}. If such a configuration has been taken on a projective plane over a field, the
points s1, s2 and s3 must be collinear by the Desargues’ Theorem. The non-Desargues matroid
is defined by this configuration but considering that the three points si are not collinear. That
is, the ground set of N is Q2 = {p, q1, q2, q3, r1, r2, r3, s1, s2, s3}, and the bases are all subsets
with three points that are not supposed to be collinear. As a consequence of the Desargues’
Theorem, this matroid is not representable over any field [36]. Moreover, Matúš [33] proved
that it is not ss-representable.

Let B be the family of bases of the Vamos matroid V. On the same ground set Q1 =
{v1, . . . , v8} as the Vamos matroid, consider, for i = 1, . . . , 4, the matroid Mi with family of
bases Bi, where

• B1 = B ∪ {{v1, v2, v3, v4}},

• B2 = B ∪ {{v3, v4, v5, v6}},

• B3 = B ∪ {{v3, v4, v7, v8}}, and

• B4 = B − {{v1, v2, v7, v8}}.

Lemma 5.2. Each one of the matroids M1, . . . ,M4 is representable over every large enough
finite field.

Proof. We prove first that, for every large enough finite field K, there exists a matrix of the
form

M1 =


x1 x2 x3 x4 0 0 0 0
1 1 0 0 x5 x6 0 0
x1 x2 0 0 0 0 x7 x8

1 1 1 1 1 1 1 1


that is K-representation of M1. It is easy to check that, for each one of the four circuits of
M1 with four points, the corresponding columns of M1 are linearly dependent. In addition, for
every basis B ⊆ Q of M1, the determinant det(MB) of the corresponding submatrix of M1 is
a nonzero polynomial over K on the variables x1, . . . , x8. Therefore, if K is large enough, there
exist a point in K8 that is not a zero of the polynomial∏

B∈B1

det(MB).
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By substituting the variables x1, . . . , x8 by the coordinates of this point, we obtain a matrix
M1 that represents M1 over K . A similar argument applies for the matroids M2 and M4 by
considering, respectively, the matrices

M2 =


0 0 0 0 x5 x6 x7 x8

x1 x2 0 0 1− x5 1− x6 0 0
1− x1 1− x2 x3 x4 0 0 0 0

1 1 1 1 1 1 1 1


and

M4 =


x1 x2 0 0 0 0 x7 x8

0 0 x3 x4 0 0 x7 x8

0 0 0 0 x5 x6 x7 x8

1 1 1 1 1 1 1 1

 .

Finally, observe that M3 is isomorphic to M1.

Lemma 5.3. For every x ∈ Q2, the matroid N \ {x} is representable over every large enough
finite field.

Proof. If the finite field K has enough elements, it is possible to find 9 points in the projective
plane over K that are in the configuration corresponding to the matroid N \ {x}.

Theorem 5.4. If an access structure Γ is a port of the Vamos matroid or the non-Desargues
matroid, then λ(Γ) ≤ 4/3.

Proof. Consider the access structures Γ = Γv3(V) and Γi = Γv3(Mi), where i = 1, . . . , 4. Then

• min Γ1 = min Γ− {{v1, v2, v4}},

• min Γ2 = min Γ− {{v4, v5, v6}},

• min Γ3 = min Γ− {{v4, v7, v8}}, and

• min Γ4 = min Γ− {{v1, v2, v7, v8}}.

Since by Lemma 5.2 the matroidsMi are representable over every large enough finite field, there
exists a finite field K such that all access structures Γi are K-vector space access structures.
By applying Proposition 5.1 to the collection (Γ1, . . . ,Γ4), we obtain a K-linear secret sharing
scheme for Γ with complexity w/γ = 4/3. Every port Γvi(V) of the Vamos matroid is isomorphic
to Γv3(V) or to Γv1(V). In addition, Γv1(V) is isomorphic to (Γv3(V))∗. Therefore, for every
vi ∈ Q1, there exists a linear secret sharing scheme with access structure Γvi(V) and complexity
equal to 4/3.

Let p0 ∈ Q2 be an arbitrary point in the ground set of the non-Desargues matroid N and
consider the access structure Γ = Γp0(N ) on the set P2 = Q2 − {p0} of participants. By
Lemma 5.3, there exists a finite field K such that the matroid N \ {x} is K -representable for
every x ∈ P2, and hence Γ \ {x} is a K -vector space access structure. Therefore, we can apply
Proposition 5.1 to the collection formed by the nine access structures (Γ \ {x})x∈P2 . Clearly
w = 8 and, since every minimal qualified subset of Γ has at most three participants, γ = 6.
Therefore, a linear secret sharing scheme for Γ with complexity equal to w/γ = 8/6 = 4/3 is
obtained.
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6 New Techniques Are Needed

The open problem that is studied in this paper is very far from being solved. There is a huge
gap between the best known general lower and upper bounds on the optimal complexity σ(Γ),
and almost nothing is known about the asymptotic behavior, in relation to the number of
participants, of this parameter. The main methods that have been using until now to derive
those bounds have been discussed in this paper. Recall that they can be described in terms of
the parameters κ and λ from the fact that the inequalities

κ(Γ) ≤ σ(Γ) ≤ λ(Γ)

hold for every access structure Γ. Lower bounds on κ(Γ) can be obtained from combinatorial
properties of Γ, while constructions of linear secret sharing schemes provide upper bounds
for λ(Γ).

Of course, better bounds on those parameters can be found, but it is clear that new tech-
niques are needed in order to significatively advance in our knowledge about the open problem
considered here. For instance, Beimel and Weinreb [6] presented and infinite family (Γn) of
access structures for which σ(Γn) is polynomial on the number of participants while λ(Γn) is
superpolynomial. Therefore, this separation result between the parameters σ and λ implies that
new methods to construct efficient nonlinear schemes are needed.

On the other hand, Theorem 3.3 seems to indicate the limitations of the combinatorial
method to obtain lower bounds on the optimal complexity. Nevertheless, no strong separation
results between the parameters κ and σ are known. The first examples of access structures
for which κ(Γ) < σ(Γ) have been presented recently in [3], a paper that appeared during the
preparation of this work. A slight improvement on the results in [3] is given in [35]. The results
in those recent works, combined with the upper bounds in Section 5, can be summarized as
follows. For the access structures Γ1 = Γv1(V) and Γ3 = Γv3(V), the two non-isomorphic ports
of the Vamos matroid, the following inequalities are satisfied.

• κ(Γ1) = 1 < 21/19 ≤ σ(Γ1) ≤ λ(Γ1) ≤ 4/3.

• κ(Γ3) = 1 < 19/17 ≤ σ(Γ3) ≤ λ(Γ3) ≤ 4/3.

• 6/5 ≤ λ(Γ1) = λ(Γ3) ≤ 4/3.

In addition to providing the first example of a separation between the parameters κ and σ,
the ports of the Vamos matroid are as well the first known examples of access structures with
1 < σ(Γ) < 3/2. Of course, the above lower bounds on σ(Γi) have not been derived from
lower bounds on κ(Γ), which are obtained by using only the basic Shannon inequalities on
the entropy. Nevertheless, there exist several inequalities for the entropies of a set of random
variables that cannot be deduced from the basic ones. These are the so-called non-Shannon
information inequalities. The first examples of such inequalities were given by Zhang and
Yeung [47], and other examples have been presented subsequently in [19, 30, 34] and other
works. The results in [3] are obtained by combining a non-Shannon inequality in [47] with
results from [2]. By using other non-Shannon inequalities from [19], the bounds in [3] have been
improved in [35]. Even though non-Shannon inequalities can provide better lower bounds on
σ(Γ), their limitations have been discussed very recently by Beimel and Orlov [4]. They proved
that, from all known non-Shannon inequalities, only lower bounds on σ(Γ) that are linear in
the number of participants can be obtained. Therefore, these inequalities cannot improve our
knowledge on the asymptotic behavior of σ(Γ).
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