
Verifiable Random Permutations

Yevgeniy Dodis∗ Prashant Puniya†

February 27, 2006

Abstract

Pseudorandom Functions (PRFs), introduced by Goldreich, Goldwasser and Micali [9], allow one
to efficiently simulate the computation of a function which is indistinguishable from a truly random
function. A seemingly stronger primitive is that of a (strong) pseudorandom permutation (PRP) [13],
which allows one to efficiently simulate a truly random permutation (and its inverse). The celebrated
result of Luby and Rackoff [13] shows that these primitives are, in fact, equivalent: four rounds of the
Feistel transform are necessary and sufficient to turn a PRF into a (strong) PRP.

In this paper we study a similar conversion for the verifiable analogs of PRFs and PRPs, called
Verifiable Random Functions (VRFs) and Verifiable Random Permutations (VRPs). VRFs, introduced
by Micali, Rabin and Vadhan [16], extend the notion of a PRF to allow the owner of the secret key for
the VRF to prove to the outside parties that a given VRF value was correctly (and uniquely!) computed.
Yet, such proofs do not violate the pseudorandomness of the remaining, yet “unopened” values. VRPs,
introduced in this paper, similarly extend the notion of PRPs. We notice that the result of Luby and
Rackoff no longer applies to converting VRFs into VRPs, since the VRP proofs must reveal the VRF
outputs (and proofs) of the intermediate rounds. Indeed, we show that even logarithmic (in the security
parameter) number of rounds is not enough for this conversion. Our main result, however, shows that
super-logarithmic number of rounds of the Feistel transform suffice to build a VRP out of an arbitrary
VRF.

As an application, we give a construction of non-interactive zero-knowledge (NIZK) proofs with
efficient provers for any NP language from any VRF. The result is obtained from our VRF→VRP
conversion, by noticing that VRPs easily yield “invariant signatures” of Goldwasser and Ostrovsky [10],
which are known to imply NIZK. (We also notice that the detour through VRPs seems necessary for
this implication, since using VRFs in place of invariant signatures is provably insufficient for the NIZK
construction of [10] to go through.)

∗Department of Computer Science, New York University, 251 Mercer Street, New York, NY 10012, USA. Email:
dodis@cs.nyu.edu

†Department of Computer Science New York University, 251 Mercer Street, New York, NY 10012, USA. Email:
puniya@cs.nyu.edu

1 Introduction

PRFs and PRPs. Pseudorandom Functions (PRFs), introduced by Goldreich, Goldwasser and Micali
[9], form one of the most fundamental primitives of symmetric-key cryptography. They allow one to sample
an efficient function from a small family of functions, such that this function is indistinguishable from a
truly random (exponential size) function, as long as the distinguisher does not know the secret key of the
PRF. However, in some applications, such as CBC-mode encryption, one actually needs to have a random
permutation (with its inverse) and not just a random function. The corresponding efficient primitive, which
allows one to compute both the permutation and its inverse, is called a (strong) pseudorandom permutation
(PRP) [13], or a block cipher, and is also extremely important in symmetric-key cryptography. Upon an
artificial look, a PRP seems to be a much more powerful primitive than a PRF. Indeed, it is trivial to see
that a PRP (on any “non-trivial domain”) is always a PRF, but the converse is clearly false. However, the
celebrated result of Luby and Rackoff [13] shows that this intuition is wrong and that these primitives are,
in fact, equivalent!

The construction proposed by Luby and Rackoff [13] is based on the design of the popular block cipher
DES. DES is basically an iterated construction that involves multiple applications of the Feistel permutation
(aka “Feistel Transform”). The Feistel permutation is a simple construction that when applied to a function
f from n to n bits, gives a permutation on 2n bits: Ψf (xL‖xR) = xR‖(xL ⊕ f(xR)). Luby and Rackoff
[13] then showed that 4 rounds of the Feistel permutation, with independent PRFs used in each round, is
always a (strong) PRP, while 3 rounds or fewer are not enough. Following this, there has been a lot of
work improving on the result of Luby and Rackoff, see [17, 15, 18]. We remark that a crucial reason for
the validity of all these results is that the intermediate Feistel values arising after each round are never
given to the attacker.

VRFs and VRPs. In this paper we study the verifiable analogs of PRFs and PRPs, called Verifiable
Random Functions (VRFs) and Verifiable Random Permutations (VRPs). For concreteness, we concentrate
of PRFs/VRFs first, returning later to PRPs/VRPs. Intuitively, PRFs have a limitation that one must trust
the owner of the secret key that a given PRF value is correctly computed. And even when done so, a party
receiving a correct PRF value cannot later convince some other party that the value is indeed correct (i.e.,
PRFs values are “non-transferable”). In fact, since the function values are supposed to be (pseudo)random,
it seems that such verifiability of outputs of a PRP would contradict its pseudorandomness. The way out of
this apparent contradiction was provided by Micali, Rabin and Vadhan [16], who introduced the notion of
a VRF.1 As with PRFs, the output of a VRF should look indistinguishable from a truly random function.
However, it should also be possible to provide a short proof that this output is computed honestly. More
concretely, a VRF f has a public key PKf and a private key SKf such that,

• Given the private key SKf , it should be possible to evaluate f at any input x and get output f(x).
At the same time, it should also be possible to give a proof proof(x) that f(x) is indeed the output
of evaluating f on x honestly.

• Given only the public key PKf , an input/output pair (x, f(x)) and the corresponding proof proof(x),
it should be possible to tell if f(x) is the output of honestly evaluating f on x.

In terms of security, the public key PKf should commit the “owner” of the VRF to all its values in a unique
way, even if the owner tries to select an “improper” public key. On the other hand, every “unopened” VRF
value (i.e., the one for which no proof was given yet) should look indistinguishable from random, even if

1A similar notion of invariant signatures was suggested earlier by Goldwasser and Ostrovsky [10] in the context of con-
structing non-interactive zero-knowledge proofs. However, there is a crucial difference which we will address later.

1

many other values were “opened” (by giving the proof). Micali et al. [16] also gave a secure construction
of a VRF based on the RSA assumption. Since then, several more efficient constructions of VRFs have
been proposed based on various cryptographic assumptions; see [14, 5, 7].

The notion of a VRP, which we introduce in this paper, adds verifiability to PRPs, in exactly the same
natural way as VRFs do to PRFs. We will describe an application of VRPs later, but now let us see the
relation between VRFs and VRPs. On the one hand, it is again very easy to see that a VRP (on a “non-
trivial domain”) is also a VRF, just like in the PRP/PRF case. On a first look, we might hope that the
converse implication holds as well, by simply applying the Luby-Rackoff result to VRFs in place of PRFs.
However, a moment of reflection shows that this is not the case. Indeed, the proof for the iterated Feistel
construction must include all the VRF values for the intermediate rounds, together with their proofs. Thus,
the attacker can legally obtain all the intermediate round values, for every input/output except for the one
on which he is being challenged. And the technique of Luby-Rackoff [13] (as well as all of the subsequent
papers in the PRF→PRP domain; e.g. [15, 18]) crucially relies on the secrecy of such values. In fact,
we will show that even up to a logarithmic number (in the security parameter) of rounds is never enough
to get a VRP via an iterated Feistel construction, which is very different from the PRF→PRP situation!
Therefore, a fundamentally new proof technique is needed to build VRPs out of VRFs.

Our Main Result. We show that, although logarithmic number of Feistel rounds is not enough to build
VRP from a VRF, any super-logarithmic number of rounds works. More precisely,

Theorem 1.1 A k-round Feistel Transform applied to k = ω(log(λ)) (for security parameter λ) in-
dependent VRFs yields a secure VRP. In particular, against any VRP adversary that makes at most
q = O

(
Fibonacci

(
k
4

))
queries, the exact security of the k-round Feistel Transform with independent VRFs

in each round is

O
(

qk2 ·max

{
εf ,

(q · k)4

2n

})
.

Here εf denotes the exact security of the VRFs used in the construction.

The main idea behind the proof is to argue that, by making at most q = O
(
Fibonacci

(
k
4

))
forward or

inverse VRP queries and observing the intermediate results, any adversary has only a negligible chance of
causing a collision on the intermediate “right” values appearing in round k/2. Once argued, all the values
queried by the adversary, including the challenge value, will likely have distinct values Rk/2,

2 from which
point the corresponding VRP output (or input in case of the inverse query) value should be random by
the pseudorandomness of VRFs (which, at level k/2, is applied to a “fresh” value). The actual proof that
Rk/2 is likely to be always distinct is then done using a delicate inductive argument, which forms the main
technical part of our result. Part of the difficulty also comes from the fact that, unlike PRFs, we cannot “in
one shot” substitute a VRF by a truly random function (since we would not be able to provide proofs for
any of the points). In fact, if a VRF proof is given for some point, which is the case for all the intermediate
results, we cannot replace VRF output by random at all. The way we solve this technical problem is to
settle for a weaker combinatorial condition satisfied by VRFs: it is hard to find a constant (in our case,
4 is enough) number of inputs, whose outputs are XOR-resistant (see section 3). In particular, our main
technical lemma 3.1 shows that this purely combinatorial condition on the round function is enough to
prevent the adversary from causing collisions at level k/2.

Application: Building NIZK proofs. Non-interactive zero-knowledge (NIZK) proofs [2] allow the
prover, who has a witness w for some NP statement x, to prove that x is true by sending a single message to

2This is somewhat akin the Luby-Rackoff argument that all the “right” values of the first and next-to-last rounds are
distinct in the PRF/PRP case.

2

a polynomially bounded verifier. This is achieved in the common reference string model, which is assumed
to be honestly and randomly generated, and is available to the prover and the verifier. Feige et al [8] showed
that NIZK proofs exist for all NP statements in the hidden bit string (HBS) model, and then showed how to
implement the HBS model using trapdoor permutations. Goldwasser and Ostrovsky [10] also implemented
the HBS model using what they call invariant signatures (at the time, they left open the question of
constructing such signatures). In modern terminology, invariant signatures are essentially VRFs but with
one subtle but crucial addition. Namely, the security of VRFs against the prover only assumes that the
VRF must induce a (pseudo)random output distribution, when applied to a truly random input, even if
the secret key owner tries to select an improper public key. Let us call this extra property “balancedness”.

While seemingly a minor property, we show that balancedness is crucial in the implementation of HBS
model in [10]. Namely

(a) Plain VRFs do not have to satisfy this property (and, as far as we can see, there is no trivial way to
enforce it in VRFs; although, our results will imply a non-trivial easy to enforce it).

(b) More severely, there exist secure (and, of course, unbalanced) VRFs for which the transformation of
[10] is completely insecure.

To briefly see point (a), imagine adding a new special public key PK ∗ to any secure VRF, for which the
VRF is defined to be identically zero. It is clear that this again yields a VRF, since the prover is still
committed to a unique function, even for the key PK ∗. (And pseudorandomness holds, since the chances
PK∗ will be selected are negligible.) Yet, the new VRF is obviously unbalanced. In fact, if we use this
new VRF in place of the invariant signature in the construction of [10], we will get a completely insecure
HBS system (thus, showing (b)). Briefly, in the construction of [10] a VRF selected by the prover is applied
to a bunch or random points to define the “hidden random string” (for which the prover can selectively
open some part later). If the prover chooses PK ∗ as his public key, then the hidden random string is all
zero as well, and it is easy to see that NIZK construction of [8] will completely fail with such non-random
HRS (if it didn’t, we could do NIZK without CRS).

On the positive side it is easy to see that balanced VRFs, and thus VRPs, trivially work in the HBS
model implementation of [10]. Thus by our main result, this also means that

Theorem 1.2 The existence of VRFs implies the existence of NIZK proofs in the common random string
model.

As one final note, we recall that Micali, Rabin and Vadhan also showed how to construct VRFs from an
even weaker primitive of Verifiable Unpredictable Functions (VUFs). This means that one can construct
VRPs and NIZK proofs from VUFs as well.

Related Work. We have already surveyed most of the related work with respect to VRFs and the Feistel
transform. In terms of NIZK we mention that Canetti et al. [4] improved upon the result of Feige et al.
[8] and showed that a somewhat weaker primitive than trapdoor permutation, namely publicly verifiable
trapdoor predicate, suffices to implement the HBS model and thus give NIZK proofs for any NP statement.
It is easy to see that such predicates can be constructed from balanced VRFs (see above), and thus from
VRPs. However, a straightforward construction from general VRFs is not known.

Finally, we mention a recent work by the authors [6] about showing the equivalence of the ideal cipher
(IC) and the random oracle (RO) models against “honest-but-curious” adversaries. The implication from
RO to the IC model also used super-logarithmic number of Feistel rounds. However, the actual settings
and proof techniques are quite different. For example, in the IC/RO setting one has to build a simulator,
while here we need to do a reductionist proof. Also, in the former setting we conjecture that even 6 Feistel

3

rounds suffice to get the implication, but in this case super-logarithmic number of rounds is shown to be
optimal. Next, in the IC/RO setting we are dealing with truly random functions, that simplifies lots of
details of the proof, while in our setting we already mentioned that we cannot replace a VRF by a truly
random function, and must rely entirely on combinatorics. Finally, in the IC/RO setting all values are
public and there is no secret key, while here only the revealed values are public. To summarize, while some
similarities exist (after all, we are applying the Feistel transform in both cases), the actual details are quite
different.

2 Definitions and Preliminaries

Verifiable Random Functions Let us start by briefly recalling the notion of VRFs. A VRF f(·) :

{0, 1}`(λ) → {0, 1}m(λ) , with security parameter λ, consists of three algorithms

• A probabilistic function generator G that receives as input 1λ, and outputs a public/secret key pair
(PK,SK).

• A deterministic function evaluator F = (F1, F2), that receives the secret key SK and VRF input x
and outputs two binary strings (the function value F1(SK, x) = fSK(x) and the proof F2(SK, x) =
proofSK(x).

• A deterministic function verifier V that takes as input four bit strings (PK, x, v, proof) and outputs
Y ES/NO.

The input and output length functions (resp. `(·) and m(·)) are both polynomial time computable functions.
We will represent by negl(λ) any negligible function of λ. The algorithms (G,F, V) should satisfy three
main properties:

• Complete Provability For all (PK,SK) ← G(1λ), x ∈ {0, 1}`(λ) and (y, proof) ← F (SK, x), it
holds that V (PK, x, y, proof) = Y ES

• Unique Provability For any PK, x, y1, y2, proof1 and proof2 such that y1 6= y2, for either i = 1 or 2,
it holds that V (PK, x, yi, proofi) = NO

• Pseudorandomness For any probabilistic polynomial-time oracle machine A = (A1, A2) that does
not query its oracle on x,

Pr

[
b = b′

∣∣∣∣∣
(PK,SK)← G(1λ); (x, τ)← A

F (SK,·)
1 (PK); y0 ← F1(SK, x);

y1 = {0, 1}m(λ) ; b← {0, 1}; b′ ← A
F (SK,·)
2 (yb, τ)

]
<

1

2
+ negl(λ)

Note that, the unique provability property requires that an incorrect proof should not verify correctly for
any public key PK, and not just the one corresponding to the secret key SK that is used to generate the
correct proof.

Verifiable Random Permutations Along the same lines as VRFs, we can also define the notion of
verifiable random permutations. Similar to VRFs, a VRP π also has a public key PK and a secret key
SK. Given the secret key SK it is easy to evaluate the forward/inverse permutation (π/π−1), as well
as give proofs for either direction. However, given only the public key PK one can verify the proof of
correctness for an input/output pair. Formally speaking, a VRP π(.) : {0, 1}n(λ) → {0, 1}n(λ) consists of
three algorithms (below λ is the security parameter),

4

• A probabilistic permutation generator Gπ that on receiving 1λ outputs a public/secret key pair
(PK,SK).

• A deterministic permutation evaluator Π = (Π1,Π2) that takes as input a bit inv and two binary
strings, the secret key SK and the VRP input x and outputs the forward/inverse permutation
value Π1(inv, SK, x) and a proof Π2(inv, SK, x). If inv = 0 then Π1(inv, SK, x) = πSK(x), else
Π1(inv, SK, x) = π−1

SK(x).

• A deterministic permutation verifier Vπ that takes as inputs PK, x, y and proof , and outputs
Y ES/NO.

The input/output length n(λ) is a polynomial-time computable function of the security parameter λ. And
as before, the algorithms (Gπ,Π, Vπ) should satisfy three properties:

• Complete Provability For all (PK,SK)← Gπ(1λ) and x ∈ {0, 1}n(λ), if (y, proof)← Π(0, SK, x)
or (x, proof)← Π(1, SK, y), then Vπ(PK, x, y, proof) = Y ES

• Unique Provability For any PK, x, y1, y2, proof1 and proof2 such that y1 6= y2, for either i =
1 or 2, it holds that Vπ(PK, x, yi, proofi) = NO. And for the inverse VRP, we have that for
any PK, x1, x2, y, proof1 and proof2 such that x1 6= x2, for either i = 1 or 2, it holds that
Vπ(PK, xi, y, proofi) = NO.

• Pseudorandomness For any probabilistic polynomial-time oracle machine A = (A1, A2) that does
not make a forward/inverse query on the challenge input (i.e. π(x) or π−1(yb)),

Pr

[
b = b′

∣∣∣∣∣
(PK,SK)← Gπ(1λ); (inv′, x, τ)← A

Π(·,SK,·)
1 (PK);

y0 ← Π1(inv′, SK, x); y1 = {0, 1}n(λ); b← {0, 1}; b′ ← A
Π(·,SK,·)
2 (yb, τ)

]
<

1

2
+negl(λ)

2.1 Luby Rackoff Construction

Let f : {0, 1}n → {0, 1}n be a function from n bits to n bits. The Feistel permutation using f is a

permutation Ψf on 2n bits defined as, Ψf (x)
def
= x

R
‖ x

L
⊕ f(x

R
). The symbols x

L
and x

R
denote

the left and right halves of the 2n bit string x, while ‖ and ⊕ denote the concatenation and bit-by-
bit XOR of two binary strings, respectively. Note that the Feistel permutation Ψf is easily invertible
(indeed, Ψ−1

f (y) = y
R
⊕ f(y

L
) ‖ y

L
). We will call a construction with k iterated applications of the Feistel

permutation, a k round LR construction.

A k round LR construction Ψf1...fk
takes inputs of the form (b, x), where b is a bit and x is a binary

string. The bit b indicates if the query is a forward (b = 0) or an inverse (b = 1) query

3 Matrix Representation of LR construction

In this section, we will prove that if the round functions f1 . . . fk (fi : {0, 1}n → {0, 1}n) used in the k
round LR construction Ψf1...fk

are “XOR resistant” (in a sense which we will define below) then Ψf1...fk

satisfies a nice combinatorial property which will prove useful to us in finding secure constructions of VRPs
from VRFs. We will often call the k round LR construction Ψk and the round functions will be understood
from the context.

Consider a sequence of m inputs provided to Ψk, (b1, x1), . . . , (bm, xm) (each of which may be adaptively
chosen). As described above, each of these inputs will be divided into n bit halves and then k rounds of the

5

Feistel permutation are applied to it. Let us denote the round values computed for the ith input, (bi, xi),
as Ri

0, R
i
1 . . . Ri

j . . . Ri
k, R

i
k+1. If b = 0, then Ri

0 ‖ Ri
1 = xi otherwise Ri

k ‖ Ri
k+1 = xi. We store the round

values generated in the computation of Ψk in an m× (k + 2) matrix, Φ, where the ith row corresponds to
the ith input, (bi, xi), and the columns represent the round numbers. We index the columns as 0 . . . k + 1,
corresponding to the convention we use for round values. Thus, round value Ri

j is stored in Φ[i, j]. This
matrix Φ is illustrated below,

Φ =




R1
0 R1

1 . . . R1
k R1

k+1
...

...
...

...
...

Rm
0 Rm

1 . . . Rm
k Rm

k+1




(b1, x1)
...

(bm, xm)

We also maintain a m-vector B in which we store each of the bits bi that indicates whether the ith input is
a forward or an inverse one, that is B[i] = bi. Together, the matrix Φ and the vector B represent the entire
computation performed by the LR construction Ψk on the m inputs it is provided. Indeed, the entry B[i]
indicates whether the ith query was a forward query or an inverse query. If B[i] = 0 then the round values
Φ[i, 0], Φ[i, 1], Φ[i, 2] . . . Φ[i, k + 1] were computed in this order, otherwise these values were computed in
the order Φ[i, k + 1], Φ[i, k], . . . ,Φ[i, 0]. For the remainder of this section, we will use the m × (k + 2)
matrix Φ and m vector B to represent the computation of the LR construction Ψk.

c-XOR resistant round functions We call a round function fj used in the LR construction Ψk a
c-XOR resistant round function if for any sequence of m queries made to Ψk and any new round value
Φ[i, j] generated while responding to these queries, the round function value fj (Φ[i, j]) is not an XOR of
upto c previously defined round values. A round value Φ[i′, j′] is said to be defined before Φ[i, j] if,

• (i′ < i) :- Input number i′ was processed before the ith input.

• (B[i] = 0) ∧ (i′ = i) ∧ (j′ < j) :- Φ[i′, j′] and Φ[i, j] are both part of the same forward query i, but
Φ[i′, j′] comes before Φ[i, j] (i.e. j ′ < j).

• (B[i] = 1) ∧ (i′ = i) ∧ (j′ > j) :- Φ[i′, j′] and Φ[i, j] are both part of the same inverse query i, but
Φ[i′, j′] comes before Φ[i, j] (i.e. j ′ > j).

If fj is a c-XOR resistant round function, then the round function value assigned to a new round value
Φ[i, j] is not equal to an XOR of upto c round values of the above types. As an example, if fj is a truly
random function then it is c-XOR resistant for any constant c with high probability, if the number of
inputs m is polynomial.

The Combinatorial Lemma Now we will go on to prove that if all the round functions used in the
k round LR construction Ψk are 4-XOR resistant, then for a polynomial (in k) number of inputs (even

adaptively chosen) there can be no two inputs such that their
(

k
2

)th
round values collide. We formally

state this lemma below:

Lemma 3.1 Let Ψk be a k round LR construction, that uses round functions f1 . . . fk : {0, 1}n → {0, 1}n
each of which is 4-XOR resistant. And let the m×(k+2) matrix Φ and m vector B denote the computation
of Ψk on a sequence of m different inputs provided to it. Then,

(
∃i1, i2 ∈ {1 . . . m} : (i1 6= i2) ∧

(
Φ

[
i1,

k

2

]
= Φ

[
i2,

k

2

]))
=⇒

(
m ≥ Fibonacci

(
k

4

))

Here n, k are both polynomial in the security parameter λ. And Fibonacci(i) denotes the ith Fibonacci
number, which for large i can be approximated as Fibonacci(i) ∼= Θ((

√
5 + 1)/2)i)

6

Note that lemma 3.1 is deterministic and implies impossibility of a collision between two
(

k
2

)th
round

values. We give an informal intuition for the result here, and formal proof in appendix A.

Proof Intuition: As we mentioned above, the lemma under consideration is purely combinatorial and deter-
ministic in nature. The proof of this lemma involves a complicated inductive argument. The combinatorial
structure upon which the induction is carried out is the matrix representation Φ of the inputs given to the
k round LR construction Ψ. The statement of the lemma says that if two different rows of such a matrix

representation Φ collide in the
(

k
2

)th
round value, then either the round functions used in the underlying

LR construction are not 4-XOR resistant, or the number of rows of Φ, i.e. m, is exponential.

The proof considers any such matrix representation Φ, which consists of two rows i and i ′ that are

different but collide in the
(

k
2

)th
round value. And since we cannot say anything about inputs i′ to m,

in the worst case, we assume that i′ = m, i.e. the collision involves the last row of Φ. Next we assume
that Φ does not consist of two identical rows. Note that if two such rows i1, i2(> i1) do exist, then we
can ignore row number i2 without loss of generality. This is because all useful computation for the input
corresponding to these rows is performed in row number i1 (which comes before i2). Thus the matrix Φ is
assumed to be such that for some row number i, Φ

[
i, k

2

]
= Φ

[
m, k

2

]
, and no two rows of Φ are identical.

Note that every input in Φ is either computed in either the forward or the inverse direction, i.e. starting
with Φ[i, 0],Φ[i, 1] and going to Φ[i, k],Φ[i, k+1] or the other way round. Our argument counts the number
of inputs that were necessary in order to get the collision mentioned above. Thus it will change depending
on whether a particular input was computed in a forward or inverse fashion. However, for simplicity of
illustration, we assume at each step of the induction the input under consideration to be a forward input.
As it turns out this will also be the worst case for our argument, i.e. the case where we get the least
number of inputs in Φ.

Corresponding to each round value Φ[i, j], we define a “first occurrence” input number which we represent
as a function p(i, j). This input number is such that Φ[i, j] = Φ[p(i, j), j], and Φ[p(i, j), j] 6= Φ[i ′, j] for any
i′ < p(i, j). That is, the round value Φ[i, j] occurs for the first time in input number p(i, j).

We first show that in order for a collision to have occurred between Φ[m, k] and Φ[i, k] it must have
been the case that all the round values Φ[m, 1] . . . Φ[m, k

2 − 1] were defined already in some input before

the mth input, that is p(m, j) < m for all j = 1 . . . k
2 . This fact is formally proven in claim A.1.

Next we analyze each of these “first occurrence” inputs, i.e. the inputs p(m, j) for j = 1 . . . k
2 , and try to

find an order in which these inputs could have occurred. We show that these inputs could have occurred
only in one of very few special orders. In each of these special orders, there is a j ∈

{
1, k

4

}
such that,

p(m, 1) > . . . > p(m, (j − 1)) > p(m, j) < . . . < p

(
m,

k

2
− 1

)
< p

(
m,

k

2

)

That is, the sequence of inputs p(m, 1), . . . , p
(
m, k

2

)
can be divided into exactly two parts such that the

left part of this sequence of inputs is in strictly decreasing temporal order (i.e. input p(m, 1) comes after
p(m, 2) and so on until p(m, j)), while the right part is in strictly increasing temporal order. This result is
stated in claim A.2.

The next step can be thought of as the inductive step of our argument. We consider an arbitrary input
(say input number i) and consider three consecutive round values of this input which were all defined prior
to this input. That is, we consider round values Φ[i, j], Φ[i, j + 1] and Φ[i, j + 2], where it is the case that
p(i, `)`=j, j+1, j+2 < i. For simplicity, we assume that inputs i, p(i, `)`=j, j+1, j+2 are all forward inputs.
In fact, a similar argument can be carried out irrespective of whether these are forward or inverse inputs.

For such a triple of “first occurrence” inputs, we show that if p(i, j) > p(i, j + 1) > p(i, j + 2) then
there are at least j − 2 inputs that lie strictly between inputs p(i, j) and p(i, j + 1). These are the “first
occurrence” inputs for the round values Φ[p(i, j), `]`=1...j−2. In fact, we also show that these inputs are

7

also in strictly decreasing temporal order. Thus setting ij = p(i, j) and ij+1 = p(i, j + 1), we show that
ij > p(ij , 1) > . . . > p(ij , j − 2) > ij+1.

Hence, we show that the inputs p(ij , 1), . . . , p(ij , j − 2) not only occur in a strictly decreasing temporal
order, but these inputs are also “sandwiched” between the inputs ij and ij+1. This result is stated and
proven formally as claim A.3. We also note that claim A.3 works even for a strictly increasing ordering
of the inputs p(i, `)`=j, j+1, j+2, except that we count the “first occurrence” inputs for the round values of
p(i, j + 2) instead of p(i, j).

The next and last step in the argument is to apply claim A.3 to the inputs p(m, `)`=1,..., k
2
. However,

we only consider one part of this input sequence, i.e. either the left (descending temporally) or the right
(ascending temporally). Note that since there are only two such parts, one of them must necessarily contain
half of the sequence, or k

4 inputs. We take this part and apply claim A.3 to this part. Without loss of

generality, say it is the left part which contains i ≥ k
4 inputs. Clearly, we can divide the inputs p(m, `)`=1,...,i

into (i − 2) such consecutive triples (p(m, 1), p(m, 2), p(m, 3)), . . . , (p (m, (i− 2)) , p (m, (i− 1)) , p (m, i)).
After having done this, we can apply claim A.3 to each of these triples, and then recursively to each of
the further sequence of inputs we get from claim A.3 (which are also in strict temporal order as well as
“sandwiched” between the sequence of inputs p(m, `)`=1,...,i.

Continuing in this fashion, we can effectively count a Fibonacci tree of distinct (because of the “sand-
wiching” property) inputs in the matrix representation Φ. And thus we can deduce that the matrix Φ
consists of at least O

(
Fibonacci

(
k
4

))
rows, and lemma 3.1 follows.

Lemma 3.1 states a purely combinatorial result about the iterated Feistel construction with ω(log(n))
rounds. Note that we do not impose any requirements on the round functions employed in the construction
apart from the fact that they should avoid all XOR dependencies (as described in the statement of lemma
3.1). The proof strategy employed here is similar to the one used in the proof of a similar result in [6].
The main difference between the two is that in [6] the round functions used in the Feistel transform are
ideal random functions, while here they only need to be 4-XOR resistant. It is not hard to see that an
ideal random function is c-XOR resistant for any constant c (and in particular, for c = 4). Thus the
result presented here is strictly stronger than that in [6]. And as we already argued, we crucially need this
strengthening to get our final result.

4 A secure VRP construction

The problem of constructing VRPs using VRFs is analogous to that of constructing pseudorandom permu-
tations using pseudorandom functions. However, as mentioned in the introduction, this problem is much
harder than the PRF to PRP problem. In particular, we will show in section 5 that the 4 round LR
construction used by [13] does not work in constructing VRPs from VRFs. We will show in this section
that if we use ω(log λ) (for security parameter λ) rounds in the LR construction then we can overcome this
problem and the resulting construction (using VRFs as round functions) is a secure VRP construction.
Thus, assume that we are given k independent verifiable random functions {fi = (Gi, Fi, Vi)}1...k

3. Our
construction of a verifiable random permutation is the k round LR construction Ψf1...fk

, which we will refer
to as πLR

(.) : {0, 1}2n → {0, 1}2n. A formal specification of the construction is given below.

Definition 1 (The VRP construction πLR) Let {fi = (Gi, Fi, Vi)}1...k be k independent verifiable ran-
dom functions defined on {0, 1}n → {0, 1}n. The VRP construction πLR = (Gπ,Π, Vπ) using f1 . . . fk is a

3In fact, for small k, it is possible to get k round functions from a single VRF by dividing the key space appropriately

8

permutation on {0, 1}2n defined as follows:

• The permutation generator Gπ(1λ) runs the VRF generators to get (PKi, SKi) ← Gi(1
λ), and

outputs
(PKπ, SKπ) = ((PK1, . . . , PKk), (SK1, . . . , SKk))

• The permutation evaluator Π = (Π1,Π2) takes as input a bit inv, secret key SKπ = (SK1, . . ., SKk)
and the VRP input x and computes,

Π1(inv, SKπ, x) =

{
Ψ

F1(SK1,·),...,Fk(SKk,·)
(x) if inv = 0

Ψ−1
F1(SK1,·),...,Fk(SKk,·)

(x) if inv = 1

Let R0, . . . , Rk+1 denote the round values in the LR construction Ψ
F1(SK1,·),...,Fk(SKk,·)

on the input x.

Then Π2(inv, SKπ, x) essentially outputs all the pairs (Ri, proof
SKi

(Ri)), where proof
SKi

(Ri) is the
proof provided by the VRF fi for the input Ri. Hence

Π2(inv, SKπ , x) =
(
R1, proof

SK1
(R1)

)
, . . . ,

(
Rk, proof

SKk
(Rk)

)

• The permutation verifier Vπ gets as input the VRP public key PKπ = (PK1, . . . , PKk), in-
put x, output y and proofπ(x). It first checks whether proofπ(x) is of the form (R1, proof1), . . . ,
(Rk, proofk). If the proof is of this form then Vπ checks if R1 = x

R
and Rk = y

L
. If so, then it

performs the following verifications:

∀i ∈ {1, k} : (Vfi
(PKi, Ri, Ri+1 ⊕Ri−1, proofi) = Y ES)

If everything goes well, then it outputs Y ES otherwise it outputs NO. Here the round values R0 and
Rk+1 are taken to be x

L
and y

R
, respectively.

The input length n is a polynomial function of the security parameter λ.

4.1 Proof of Security

Recall, a VRP construction needs to satisfy three security properties : Completeness, Soundness (or
unique proofs) and Pseudorandomness. Completeness of the construction πLR is a direct consequence of
completeness of each of the VRFs used as round functions in the LR construction.

Soundness In order to prove the soundness of this construction, consider any two “claimed” outputs y
and y′ for an input x ∈ {0, 1}2n and the corresponding proofs proofπ and proof ′

π. And say there exists a
public key PKπ = (PK1, . . . , PKk) such that

(Vπ(PKπ, x, y, proofπ) = Y ES) ∧
(
Vπ(PKπ, x, y′, proof ′

π) = Y ES
)

Thus the proofs are of the form proofπ = [(Ri, proofi)]i∈{1,k} and proofπ = [(R′
i, proof ′

i)]i∈{1,k}. We also

know that the initial round values in these proofs match (i.e. (R0 ‖ R1) = (R′
0 ‖ R′

1) = x), while the final
round values differ (since y 6= y′). We can deduce that there exists i ∈ 1, . . . , k, such that

(Ri = R′
i) ∧ (Ri−1 ⊕Ri+1 = R′

i−1 ⊕R′
i+1)

And since both proofπ and proof ′
π verify correctly using public key PKπ = (PK1 . . . PKk), we can also

deduce that,

(Vfi
(PKi, Ri, Ri−1 ⊕Ri+1, proofi) = Y ES) ∧

(
Vfi

(
PKi, R

′
i, R

′
i−1 ⊕R′

i+1, proof ′
i

)
= Y ES

)

9

This is a contradiction, since all the VRFs fi are sound. Similar argument works for the inverse query case
as well. Thus, πLR satisfies the soundness condition for VRPs.

Pseudorandomness Now we will prove that when πLR is constructed using k = ω(log λ) round LR
construction, then the construction πLR satisfies the pseudorandomness property for VRPs (see section 2).

Theorem 4.1 Let πLR = (Gπ,Π, Vπ) be the VRP construction using k Feistel rounds. Then for any
probabilistic polynomial time oracle machine A = (A1, A2) that does not query its oracle on x or try to
invert the response to the challenge query and makes at most q = O

(
Fibonacci

(
k
4

))
queries,

∣∣∣∣Pr
[
b = b′

∣∣∣(PKπ, SKπ)← Gπ(1λ); . . . ; b
$← {0, 1}; b′ ← AΠ

2 (. . .)
]
− 1

2

∣∣∣∣ < O
(

qk2 ·max

{
εf ,

(q · k)4

2n

})

Here εf denotes the exact security of the VRFs used.

Note that theorem 4.1 says that the above mentioned exact security holds only if the number of queries
made by the VRP adversary is O(Fibonacci(k/4)). And this makes sense only when k = ω(log λ), since
otherwise Fibonacci(k/4) will only be polynomial in the security parameter. In fact, as we show in the
next section, this bound is “almost” tight in the sense that there exists an adversary that succeeds while
making only a Fibonacci(k) number of queries.

We have divided the proof of theorem 4.1 in three parts:

1. We will first show that, for a polynomial number of queries, a VRF f = (Gf , F, Vf) defined on {0, 1}n
is c-XOR resistant (for any constant c) with high probability when used in the Feistel-based VRP
construction πLR.

2. Then, we will go on to show that if a VRP adversary Aπ succeeds in the pseudorandomness game
(theorem 4.1) with the construction πLR with noticeable probability, then we can construct another
VRP adversary A′

π that succeeds also with noticeable probability but does so only if all the VRFs
used in πLR remain 4-XOR resistant.

3. Next we will prove that if the VRP adversary A′
π constructed above succeeds with noticeable proba-

bility, then we can construct a VRF adversary Af that succeeds in the VRF pseudorandomness game
(see section 2), involving one of the round functions of πLR, with noticeable probability as well.

VRFs are XOR resistant Consider the VRP construction πLR, based on the k round LR construction
with independent VRFs {fj = (Gj , F j , V j)}j∈{1,k} as round functions. Recall that we refer to the inter-

mediate values {Rj}j∈{0,k+1} as round values, and the corresponding VRF outputs {F j
1 (SKj , Rj)}j∈{1,k}

are called the round function values. Now suppose there exists a probabilistic oracle Turing machine Axor

with oracle access to to πLR, that in the process of making queries to πLR forces a new round function
(VRF) value to collide with an XOR of c previously defined round values (Rj) with non-negligible prob-
ability (which we also call the advantage of the adversary Axor in the c XOR attack game). Then using
Axor as a subroutine, we can design another adversary Af that has a non-negligible advantage in the
pseudorandomness game with one of the VRFs used in πLR.

The reason why this holds is that for any new input provided to a verifiable random function, the VRF
output should look completely unpredictable to any adversary that does not hold the secret key for the
VRF. In the context of the construction πLR, the output of a VRF used in πLR on a new input is a new
round function value. Now say this round function value can be represented as an XOR of previously
existing round values, which is what Axor does with non-negligible probability. Then Axor can easily make
a pretty good prediction for this new round function value, since there are only a polynomial number of

10

such XORs of constant round values when the number of queries made by Axor is polynomial. However,
this contradicts the security of the VRF for which such an XOR representation exists. A formal description
of this reduction is given in appendix B. We simply state the result here.

Claim 4.2 If there is an adversary Axor that has a non-negligible advantage εxor in the c-XOR attack
game described above, then there also exists a VRF adversary Af that has a non-negligible advantage εf

in differentiating a VRF output from a random binary string, in the VRF pseudorandomness game. In

particular, εf ≥
(

εxor

2qk −
(qk)c

2n+1

)
.

We can interpret claim 4.2 in reverse and deduce that if the maximum advantage of a VRF adversary is εf ,
then the advantage of any adversary Axor in the c-XOR attack game is at most qk · (2εf + ((qk)c)/(2n)).

Making the VRP adversary “XOR-free” Now we will show that if a VRP adversary Aπ has a
non-negligible advantage in the pseudorandomness game with the VRP construction πLR, then we can
construct another VRP adversary A′

π that has a non-negligible advantage in the pseudorandomness game
with πLR and which attacks πLR only if all the round functions of πLR remain 4-XOR free.

It is intuitively clear that this should be the case, since by claim 4.2 all the VRFs used in the construction
πLR remain 4-XOR free with all but a negligible probability. And if a non-negligible portion of the
advantage of adversary Aπ depends on finding XOR representations of some new round function values
then we develop an XOR adversary that violates claim 4.2. This fact is stated more formally below, while
a proof for the same is in appendix C.

Claim 4.3 If there is an adversary Aπ that has a non-negligible advantage επ in the pseudorandomness
game with πLR, then there also exists an adversary A′

π that also has a non-negligible advantage in the
pseudorandomness game with πLR but that only wins when all round functions used in πLR remain 4-XOR
free. In particular, we have Adv(A′

π) ≥ επ−
(
1− (1− εxor)

k
)
, where εxor is the maximum advantage of an

adversary in the 4-XOR attack game against any of the VRFs used in the LR construction of πLR.

“XOR-free” adversaries cannot win Let πLR be the VRP construction that uses a k round LR
construction with independent VRFs in each round. And let the number of rounds k be super-logarithmic
in the security parameter λ, i.e. k = ω(log(λ)). Now we will prove that if there exists an “4-XOR free”
VRP adversary Aπ that has non-negligible advantage in the VRP pseudorandomness game against πLR,
then we can construct a VRF adversary Af that has non-negligible advantage in the pseudorandomness
game against a secure VRF f . An 4-XOR free VRP adversary is essentially one that does not force the
construction πLR to produce a round function value that can be represented as an XOR of 4 pre-existing
round values. We state this result more formally below,

Claim 4.4 Let Aπ be an “XOR-free” VRP adversary that has advantage επ in the pseudorandomness
game with the VRP construction πLR, and makes at most O

(
Fibonacci

(
k
4

))
queries to πLR (k is the

number of rounds used in πLR). Then there exists a VRF adversary Af that has advantage εf = επ in the
pseudorandomness game with a secure VRF f .

Understanding why this is true involves five main steps:

• The VRF adversary Af plugs the VRF f into a “simulated” construction πLR that the VRP adversary
Aπ is allowed to attack. But plugging f just anywhere in the LR construction does not work. We
get the best results if f is used as the middle round function f k

2
in πLR.

• Af enters the “challenge phase” of its attack, exactly when Aπ sends its challenge query. And the

challenge query of Af is the
(

k
2

)th
round value in the challenge query made by Aπ to πLR.

11

• We need to ensure that the
(

k
2

)th
round value in the challenge query of Aπ is a new one. If not then the

VRF attacker Af attack fails. We get over this problem by making crucial use of the combinatorial
lemma 3.1. Note that we can do this since the VRP adversary makes at most O

(
Fibonacci

(
k
4

))

number of queries to πLR.

• Another important thing to ensure is that if the challenge query for Af is chosen to be random (instead
of the VRF value), then the challenge query that Af gives to Aπ (by computing the “simulated”
construction πLR) is also random. But we essentially get from the properties of the iterated Feistel
construction.

• We also need to show that once the challenge query response is known to Aπ, it cannot force the VRF

adversary Af to provide a proof on the
(

k
2

)th
round value of this query. This is because Af itself

does not know a proof for this round value. This part again makes crucial use of the combinatorial
lemma 3.1.

Now we are ready to prove theorem 4.1. The basic idea is to combine the above claims. Let εf denote the
maximum advantage of a VRF adversary against any of the VRFs used in πLR. And since we assume all
the VRFs used to be secure, the εf below are negligible. We sketch the details of the proof of theorem 4.1
below.

• Say there exists a VRP adversary that has advantage επ in the pseudorandomness game against
construction πLR. Then we can construct an adversary A′

π that has advantage ε′π in the same game
and which is not able to force 4-XOR representations of any round function values in πLR. This can
be done using claim 4.3, and we get ε′π ≥ επ −

(
1− (1− εxor)

k
)
.

• Let εxor is the maximum advantage of an adversary in the XOR attack game against one of the VRFs

used in πLR. And from claim 4.2, we know this to be εxor ≤ qk ·
(
2εf + (qk)4

2n

)

• From claim 4.4, we find that using the “XOR-free” adversary A′
π can be used to construct a VRF

adversary Af that has advantage,

Adv(Af) � επ + qk2 ·
(

2εf +
(qk)4

2n

)

Thus Adv(Af) is non-negligible if επ is non-negligible, εf is negligible and q, n are polynomial in the
security parameter λ. This gives us a contradiction since Adv(Af) ≤ εf .

5 The construction is “tight”

We proved above that if the construction πLR uses an LR construction with super-logarithmic rounds, and
with independent VRFs in each round then it is a secure construction of a VRP. Can we hope to improve
this result? We show that the answer is no. Namely, if the πLR uses an LR construction with O(log λ)
rounds then there is a VRP adversary Aπ that succeeds in the pseudorandomness game with πLR with
overwhelming probability.

Informally speaking, we design a VRP adversary Aπ that only makes O(Fibonacci(k)) forward queries to
the LR construction πLR with k rounds, and generates all the round values corresponding to a new input
(i.e. an input that is not queried upon). This enables Aπ to find the output of πLR on a particular input
without querying upon it. Now it is easy to see that pseudorandomness of the construction πLR is violated,

12

since clearly it should not be possible to invert a random permutation on a new input while making only
a polynomial number (which is the case when k = O(log(λ))) of forward queries!

The basic strategy of Aπ is to make random forward queries, and recover the input X corresponding to
the desired output (say 02n). Since all the queries made by Aπ are random, the probability of one of them
having output 02n is exponentially small. Thus, with overwhelming probability, the challenge query X will
be a new one and Aπ can recognize the construction πLR by comparing the output to 02n.

Theorem 5.1 For the construction πLR that uses k = O(log λ) round LR construction, there exists a
PPT oracle Turing machine Aπ with a non-negligible advantage in the VRP pseudorandomness game with
πLR. That is, πLR with O(log λ) rounds cannot be a VRP, even with secure and independent VRFs in each
round.

Proof: The VRP adversary Aπ gets oracle access to the construction πLR, and on any query x ∈ {0, 1}2n

it gets all the round values generated in the computation of the LR construction used in πLR (as part of
the VRP proof). The attack we describe is based on the simple idea of constructing the response of πLR

on an input, without explicitly querying the πLR oracle on this input.

We will first describe a recursive subroutine that the attacker Aπ makes use of. Let us refer to the
round functions (VRFs) of the construction πLR as f1 . . . fk (instead of F1(SK1, x) . . . F1(SKk, x)). The
recursive subroutine we describe is a round function value extraction algorithm E(j,X), where j ∈ {1, k}
and X ∈ {0, 1}n. The task of E(j,X) is to simply find out the value fj(X) by making only forward queries
to the permutation evaluator Π (for πLR). We will describe this procedure recursively below:

• E(1,X) : Choose a random R′
0 ← {0, 1}n. And make the query (0, R′

0 ‖ X) to Π. This will give the
value f1(X) as part of the VRP proof.

• E(j,X) , j > 1 : Perform the following steps:

– Choose a random Rj−1 ← {0, 1}n, and call E(j − 1, Rj−1) to get fj−1(Rj−1).

– Compute Rj−2 = X ⊕ fj−1 (Rj−1) and recursively call E(j − 2, Rj−2) to get fj−2(Rj−2).

– Continue this recursively to get (Rj−3, fj−3(Rj−3)) . . . (R1, f1(R1)).

– Now compute R0 = f1(R1)⊕R2 and query (0, R0 ‖ R1) to the Π oracle. This will give us fj(X).

The VRP adversary Aπ makes use of the above recursive procedure to find a VRP input x such that
Π1(0, SKπ, x) = 02n. This is done as follows:

• Call E(k, 0n) to get fk(0
n).

• Let Rk−1 = fk(0
n)⊕ 0n and run E(k − 1, Rk−1) to get fk−1(Rk−1).

• Continue in this fashion to get (Rk−2, fk−2(Rk−2), . . . , (R1, f1(R1).

• At the end, we know that Π1 ((R2 ⊕ f1(R1)) ‖ R1) = 02n. Send this as challenge query and return 1
if and only if the response is response is 02n.

Note that the adversary Aπ can succeed only if it never queries the Π oracle on the challenge query,
i.e. (0, R0 ‖ R1), during the experimentation phase. We will argue that this happens only with negligible
probability. Indeed, this is easily seen to be true since every query made by the procedure E(·, ·) is a
random query to the VRP πLR (at least one half of every query is random). Thus the probability that
the output of any forward query is 02n is negligible

(
≤ 1

2n

)
. If no such query (i.e. one with output 02n) is

made by Aπ, then it has an overwhelming advantage in the VRP attack game
(
O

(
1− 1

2n

))
.

13

We note here that the adversary Aπ is not the most optimal one. Indeed, it only makes use of forward
queries to Π. Thus, it needs to make a Fibonacci(k) number of queries. It is possible to optimize this attack
by using inverse queries to Π as well. While the adversary Aπ constructed round values for the challenge
query in the order Rk−1, Rk−2, . . . , R1, R0. The more optimized adversary constructs R k

2
, R k

2
−1, . . . , R0

using forward queries and R k
2
+1, . . . Rk using inverse queries. This way it only makes O

(
Fibonacci

(
k
2

))

number of queries, and still is able to construct a challenge query without querying upon it.

We note that it is possible to make our VRP attacker much more efficient, so that it makes only
O(Fibonacci(k/2)) queries. This is done by recovering the first k/2 round values of the challenge query
using forward queries, and the last k/2 round values using inverse queries. We describe the purely forward
query based attacker because of its simplicity.

6 Implications for NIZK

NIZK proofs were introduced by Blum et al. [1]. The usual notion of NIZK proofs is in the Common
Reference String model. Feige et al [8] introduced a more relaxed definition of NIZK proofs, i.e. NIZK
proofs in the Hidden Bit String (HBS) model. A formal treatment of both these notions can be found
in [12]. For completeness, we give an informal exposition of these two models below, and give the formal
definitions in appendix F.

An NIZK protocol in the common reference string model assumes that the prover P and the verifier
V have access to the common input x and a uniformly distributed common reference string selected by a
trusted third party. And the NIZK protocol for showing membership in a language L consists of a single
message sent from the prover to the verifier, or the NIZK proof that x ∈ L. The usual definitions of
completeness, soundness and zero-knowledge apply. In the Hidden Bits model, only the prover is given
access to a uniformly distributed random stringR. However, when the prover sends its proof to the verifier,
it can choose to disclose a subset of the hidden random string (RI) to the verifier. Feige et al [8] gave an
unconditionally secure NIZK proof in the HBS model for any NP language. Moreover, they [8] also gave
an implementation of the HBS model in the common reference string model using trapdoor permutations
(TDPs).

Later, Goldwasser et al [10] showed that one can construct NIZK proofs using invariant (or unique)
signatures. In particular, they gave an implementation of the hidden bits model using invariant signatures.
Invariant signatures are quite similar to VRFs, but with one crucial difference. They should induce a
(pseudo)random distribution on the output, when applied to a random input. Thus, we can think of
invariant signatures as “balanced” VRFs. On the other hand, an obvious way to get such signatures from
general VRFs in not known. In particular, VRFs cannot be used directly in the NIZK proofs of [10] or [8].

Claim 6.1 If there exists a VRF (G,F, V), then there also exists a VRF (G′, F ′, V ′) that is not an invariant
signature. In particular, the VRF (G′, F ′, V ′) does not work in the hidden bit string implementation of
[10] or [8].

The definition of the VRF (G′, F ′, V ′) is clear from the discussion in introduction. We give a formal
justification for this claim in appendix G.

From a similar angle, Canetti et al. [4] generalized the result of Feige et al. [8], and gave an implementa-
tion of the hidden bits model using a generalization of TDPs, called publicly verifiable trapdoor predicates.
Informally, a publicly verifiable trapdoor predicate should be efficiently computable for any given pair

14

(x, y). And given y and a trapdoor td, one can efficiently compute x such that (x, y) satisfies the predicate
(of course, the same task is hard without the trapdoor td). Moreover, it should also be possible to sample
valid pairs (x, y) (that satisfy the predicate) in such a way that y is uniformly distributed. It is again easy
to see that balanced VRFs (and thus VRPs) imply such predicates. But an obvious construction of such
predicates from general VRFs is not known.

On the positive side, one can easily see that verifiable random permutations easily give such proofs by
constructing either the invariant signatures of [10] or the publicly verifiable trapdoor predicates of [4]. For
completeness, we show how to implement NIZK proofs for NP languages from the secure HBS model NIZK
proofs of [8] using VRPs.

Claim 6.2 Let (P, V) be a hidden-bit proof system for L, and let π = (Gπ,Π, Vπ) be a verifiable random
permutation on {0, 1}n. If (P, V) is zero-knowledge then one can construct an NIZK proof system (P ′, V ′)
for L using (P, V) and π.

A proof for the above claim can be found in appendix H. Thus using our construction of a VRP from any
VRF, one sees that it is also possible to construct NIZK proofs for NP languages using VRFs.

Acknowledgments

We would like to thank Rafail Ostrovsky for several helpful discussions. In particular, for clarifying the
results of [10].

References

[1] M. Blum, A. De Santis, S. Micali, and G. Persiano, NonInteractive Zero-Knowledge, in SIAM Journal
on Computing, 20(6):1084-1118, 1991.

[2] Manuel Blum, Paul Feldman and Silvio Micali, Non-Interactive Zero-Knowledge and Its Applications
(Extended Abstract) in STOC 1988, 103-112.

[3] Mihir Bellare and Moti Yung, Certifying Permutations: Noninteractive Zero-Knowledge Based on Any
Trapdoor Permutation, in Journal of Cryptology 9(3): 149-166 (1996).

[4] Ran Canetti, Shai Halevi and Jonathan Katz, A forward-secure public-key encryption scheme, in
Advances in Cryptology - EUROCRYPT’03.

[5] Y. Dodis, Efficient construction of (distributed) verifiable random functions, In Proceedings of 6th
International Workshop on Theory and Practice in Public Key Cryptography, pp 1 -17, 2003.

[6] Y. Dodis and P. Puniya, On the relation between Ideal Cipher and Random Oracle Models, to appear
in Theory of Cryptography Conference 2006.

[7] Y. Dodis and A. Yampolskiy, A Verifiable Random Function With Short Proofs and Keys, In Workshop
on Public Key Cryptography (PKC), January 2005.

[8] Uriel Feige, Dror Lapidot and Adi Shamir, Multiple NonInteractive Zero Knowledge Proofs Under
General Assumptions, in SIAM Journal of Computing 29(1): 1-28 (1999).

[9] O. Goldreich, S. Goldwasser and S. Micali, How to Construct Random Functions in Journal of the
ACM, Vol. 33, No. 4, October 1986.

15

[10] Shafi Goldwasser and Rafail Ostrovsky, Invariant Signatures and Non-Interactive Zero-Knowledge
Proofs are Equivalent (Extended Abstract), in CRYPTO 1992: 228-245.

[11] Jens Groth, Rafail Ostrovsky and Amit Sahai, Perfect Non-Interactive Zero Knowledge for NP, in
Electronic Colloquium on Computational Complexity (097), 2005.

[12] Goldreich, O., Foundations of Cryptography Basic Tools, published by Cambridge University Press
(2001).

[13] M. Luby and C. Rackoff, How to construct pseudo-random permutations from pseudo-random func-
tions, in SIAM Journal on Computing, Vol. 17, No. 2, April 1988.

[14] A. Lysyanskaya, Unique Signatures and verifiable random functions from DH-DDH assumption, in
Proceedings of the 22nd Annual International Conference on Advances in Cryptography (CRYPTO),
pp. 597 612, 2002.

[15] Ueli M. Maurer and Krzysztof Pietrzak, The Security of Many-Round Luby-Rackoff Pseudo-Random
Permutations, in EUROCRYPT 2003, 544-561.

[16] S. Micali, M. Rabin and S. Vadhan, Verifiable Random functions, In Proceedings of the 40th IEEE
Symposium on Foundations of Computer Science, pp. 120 -130, 1999.

[17] Moni Naor and Omer Reingold, On the construction of pseudo-random permutations: Luby-Rackoff
revisited, in Journal of Cryptology, vol 12, 1999, pp. 29-66.

[18] Jacques Patarin, Security of Random Feistel Schemes with 5 or More Rounds, in CRYPTO 2004,
106-122.

A Proof of Lemma 3.1

We begin by noting that one of the inputs involved in the
(

k
2

)th
round value collision can be assumed to be

the last (mth) input. If none of the two colliding inputs are the last input, then we can ignore all the inputs
that are processed after the collision and proceed with the remaining matrix representation. Hence let us
assume that, Φ

[
i, k

2

]
= Φ

[
m, k

2

]
. (with i < m). We can also assume that for any i′ < i, Φ

[
i, k

2

]
6= Φ

[
i′, k

2

]
.

That is, we consider the first such collision. We also assume that the matrix representation Φ, storing the
inputs provided to the construction Ψk, does not contain any duplicate rows. In case such rows exist, we
ignore all but the first such row and remove the others from Φ. This is because all useful computation is
performed in this row itself.

We define a “first occurrence” function for each round value, p : {1,m} × {0, k + 1} → {1,m}. For any
round value Φ[i, j], p(i, j) is the least input number such that Φ[p(i, j), j] = Φ[i, j]. Thus p(i, j) essentially
denotes the input where fj (Φ[i, j]) was defined for the first time.

Assume for now, that the mth input provided to Ψk is a forward input, i.e. B[m] = 0. In case it is
an inverse input, then a symmetric argument can be carried out. As a first step, we prove that all of the
inputs p(m, 1), . . . , p

(
m, k

2

)
were provided to Ψk strictly before input number m. That is all the round

values Φ[m, 1] . . . Φ
[
m, k

2

]
were defined strictly before input number m.

Claim A.1 If Φ
[
m, k

2

]
= Φ

[
i, k

2

]
then each of the round values Φ[m, 1] . . . Φ

[
m, k

2 − 1
]
were defined before

the mth input was processed. That is,

∀j ∈
{

1,
k

2

}
: p(m, j) < m

16

proof of claim A.1: We will use induction on the round number j to show that p(m, j) < m. However,
we will start the induction with j = k

2 and go down to j = 1.

For j = k
2 , we already know that p(m, j) = i from the statement of the claim. Now say the same holds

for all j = k
2 . . . c (for c ≤ k/2), then we will show that the same holds for j = c − 1. Say, for the sake of

contradiction, that Φ[m, c − 1] is a new round value in input number m (i.e. p(m, c − 1) = m). Then we
claim that the round values Φ[p(m, c), c] and Φ[m, (c − 2)] were defined before Φ[m, (c − 1)]. The former
is true from the induction hypothesis. The latter is true because the mth input is a forward input, and so
even if p(m, (c− 2)) is a new round value it is defined before Φ[m, (c− 1)]. Also from the LR construction
property, we know that

fc−1 (Φ[m, (c− 1)]) = Φ[m, (c− 2)]⊕ Φ[m, c]

= Φ[m, (c− 2)]⊕ Φ[p(m, c), c]

But from the statement of lemma 3.1, fj is a 4-XOR resistant function. Hence p(m, (c − 1)) < m.

Thus, we know that all the round values Φ[m, 1] . . . Φ
[
m, k

2

]
were defined strictly before input number m.

Our next step would be to find exactly the orders in which the inputs p(m, 1) . . . p
(
m, k

2

)
could occur in

Φ. As it turns out, there are only a few special orders in which these inputs could have occurred.

Claim A.2 For some j ∈
{
1, k

2

}
, it holds that,

p(m, 1) > . . . > p(m, (j − 1)) > p(m, j)

p(m, j) < . . . < p
(
m, k

2 − 1
)

< p
(
m, k

2

)

That is the round value Φ[m, j] was the first one to be defined amongst the first k
2 round values. All round

values Φ[m, j ′] for j′ = 1 . . . j were defined in strictly decreasing temporal order, Φ[m, 1] being the last one
to be defined among these j round values. And all round values Φ[m, j ′] for j′ = j . . . k

2 were defined in

strictly increasing temporal order, Φ
[
m, k

2

]
being the last one to be defined among these k

2 − j + 1 round
values.

proof of claim A.2: We will first prove that for any three consecutive round values Φ[m, (i− 1)],Φ[m, i]
and Φ[m, (i + 1)] (where i ∈

{
2, k

2 − 1
}
), it holds that,

[p(m, (i − 1)) > p(m, i)] ∨ [p(m, i) < p(m, (i + 1))]

The claim will follow as a straightforward consequence of this.

Assume to the contrary that p(m, (i− 1)) ≤ p(m, i) and p(m, i) ≥ p(m, (i + 1)) for some i ∈
{
2, k

2 − 1
}
.

If p(m, (i − 1)) = p(m, i) (or p(m, i) = p(m, (i + 1)) resp.) then it is easy to verify that rows p(m, i) and
m in Φ are identical, which is not possible since we started with a matrix Φ with distinct rows.

Thus, we have the case that p(m, (i− 1)) < p(m, i) and p(m, i) > p(m, (i + 1)). That is, both the round
values Φ[m, (i−1)] and Φ[m, (i+1)] were defined prior to the definition of Φ[m, i]. But we also know that,

fi (Φ[m, i]) = Φ[m, (i− 1)]⊕ Φ[m, (i + 1)]
⇒ fi (Φ[p(m, i), i]) = Φ[m, (i− 1)]⊕ Φ[m, (i + 1)]
⇒ fi (Φ[p(m, i), i]) = Φ[p(m, (i− 1)), (i − 1)]⊕ Φ[p(m, (i + 1)), (i + 1)]

But the function fi is 4-XOR resistant, and both round values Φ[p(m, (i − 1)), (i − 1)] and Φ[p(m, (i +
1)), (i + 1)] were defined prior to Φ[p(m, i), i]. We get a contradiction, and deduce that

∀i ∈
{

2,
k

2
− 1

}
: [p(m, (i− 1)) > p(m, i)] ∨ [p(m, i) < p(m, (i + 1))]

17

Now it is a straightforward task to verify that the only temporal orders of inputs p(m, 1), . . . , p
(
m, k

2

)
that

are consistent with this constraint are the ones in the statement of claim A.2.

From claim A.2, we can deduce that there exist at least k
4 consecutive round values in the mth row of Φ,

whose “first occurrences” are in strictly increasing/decreasing temporal order. Without loss of generality,
we will assume that p(m, 1) > . . . > p

(
m, k

4

)
. Our argument, henceforth, can be easily modified to fit any

other strict ordering of “first occurrences” as well. As it turns out, the case we are considering gives the
“lowest lower bound” on m and is the worst case.

Thus we have the case that m > p(m, 1) > . . . > p
(
m, k

4

)
. Our next step will be to prove a general

property of such monotonic sequences of fresh round values, which we will apply recursively later. Thus
consider any three “first occurrence inputs” ij = p(i′, j), ij+1 = p(i′, (j + 1)) and ij+2p(i′, (j + 2)) that are
ordered as ij > ij+1 > ij+2. Next say that input number ij is a forward input (a symmetric argument can
be applied if it is an inverse input). Then we show that all the round values Φ[ij , 1] . . . Φ[ij , (j − 2)] have
their first occurrence strictly in between ij and ij+1, and in strictly decreasing order (i.e. Φ[ij , 1] the last
to be defined). This fact is stated formally in the following claim.

Claim A.3 Consider the inputs numbered p(i′, j), p(i′, j +1) and p(i′, j +2) in the matrix Φ, which are the
“first occurrence” inputs corresponding to three consecutive round values Φ[i ′, j],Φ[i′, j+1] and Φ[i′, j+2] in
the i′th input. Moreover, say that p(i′, j) > p(i′, j +1) > p(i′, j +2). Denoting p(i′, j) by ij and p(i′, (j +1))
by ij+1, we claim that if input number ij is a forward input then,

ij > p(ij , 1) > p(ij , 2) > . . . > p(ij , j − 2) > ij+1

That is all the inputs p(ij , 1), p(ij , 2), . . . , p(ij , j − 2) are in strictly decreasing temporal order. Moreover,
all these inputs are “sandwiched” between the inputs ij = p(i′, j) and p(i′, j + 1).

proof of claim A.3: We will first define a little notation before moving along. Let ij = p(i′, j), ij+1 =
p(i′, (j + 1)) and ij+2 = p(i′, (j + 2)). Let us now analyze the round values Φ[ij , 1] . . . Φ[ij , (j − 1)] since
these round values come before Φ[ij, j] in the ij

th input, which we have assumed to be a forward input.

To start with, we know that fj+1 (Φ[i′, (j + 1)]) = Φ[i′, j]⊕ Φ[i′, (j + 2)]. Thus we can deduce that,

fj+1 (Φ[ij+1, (j + 1)]) = Φ[ij , j]⊕ Φ[ij+2, (j + 2)] (1)

Looking at the ij
th input, we know that

fj−1 (Φ[ij , (j − 1)]) = Φ[ij , (j − 2)]⊕ Φ[ij , j] (2)

From equations (1) and (2), we can deduce that p(ij , (j − 1)) < ij . Since otherwise, combining these two
equations will give,

fj−1 (Φ[ij , (j − 1)]) = Φ[ij , (j − 2)]⊕ Φ[ij+2, (j + 2)] ⊕ fj+1 (Φ[ij+1, (j + 1)])

= Φ[ij , (j − 2)]⊕ Φ[ij+2, (j + 2)] ⊕Φ[ij+1, j] ⊕ Φ[ij+1, (j + 2)]

If p(ij , (j − 1)) = ij then it would mean that Φ[ij , (j − 1)] is a new round value in input ij. But this is
impossible since fj−1 is 4-XOR resistant, and all the 4 round values on RHS of the above equation were
defined before Φ[ij, (j−1)] if it is a new round value. Thus, we can deduce that p(ij , (j−1)) < ij . Similarly,
we can also deduce that p(ij , (j − 2)) < ij because fj−2 is also 4-XOR resistant and

fj−2(Φ[ij , (j − 2)]) = Φ[ij , (j − 3)]⊕ Φ[ij, (j − 1)]

= Φ[ij , (j − 3)]⊕ Φ[p(ij , (j − 1)), (j − 1)]

18

conclusion 1: Applying the same method repeatedly, we can conclude this ∀` ∈ {1, j − 1} : p(ij , `) < ij .

For now we will concentrate on finding possible orders of the input numbers p(ij , (j − 2)), p(ij , (j − 1))
and ij+1, all of which come before input number ij . We start by noting that if input number ij+1 is a
forward input then,

[p(ij , (j − 2)) > p(ij , (j − 1))] ∨ [ij+1 ≥ p(ij , (j − 1))] (3)

We know that p(ij , (j − 2)) 6= p(ij , (j − 1)), since this would imply two identical inputs in the matrix Φ.
Thus if relation 3 is false, it must be the case that [p(ij , (j − 2)) < p(ij , (j − 1))] ∧ [ij+1 < p(ij , (j − 1))].
That is, both inputs p(ij , (j − 2)) and ij+1 were computed before p(ij , (j − 1)). And we know from above
that

fj−1 (Φ[ij , (j − 1)]) = Φ[p(ij , (j − 2)), (j − 2)]⊕ Φ[ij+2, (j + 2)]⊕ Φ[ij+1, j] ⊕ Φ[ij+1, (j + 2)]

This is impossible since fj−1 is a 4-XOR resistant round function, and hence relation (3) holds. Next we
note that if input number ij+1 is a forward input then,

[p(ij , (j − 2)) > ij+1] ∨ [p(ij , (j − 1)) > ij+1] (4)

Say to the contrary, [p(ij , (j − 2)) ≤ ij+1]∧[p(ij , (j − 1)) ≤ ij+1]. Then it would mean that both Φ[ij, (j−2)]
and Φ[ij , (j − 1)] were defined prior to the round value Φ[ij+1, j + 1]. But we know that

fj+1 (Φ[ij+1, (j + 1)]) = Φ[ij, (j − 2)]⊕ Φ[ij+2, (j + 2)] ⊕ fj−1 (Φ[ij , j − 1])

= Φ[ij, (j − 2)]⊕ Φ[ij+2, (j + 2)] ⊕ Φ[p(ij , (j − 1)), (j − 2)]⊕ Φ[p(ij , (j − 1)), j]

And since fj+1 is also a 4-XOR resistant round function, we get a contradiction. Hence relation (4) holds
as well.
conclusion 2: Since both relations (3) and (4) to hold, we can deduce that

[Φ(ij, (j − 2)) > ij+1] ∧ [Φ(ij , (j − 2)) > Φ(ij , (j − 1))] (5)

That is, the first occurrence of round value Φ[ij, (j−2)] is before that of both Φ[ij , (j−1)] and Φ[ij+1, (j+1)].
Even though we assumed above that input ij+1 is a forward input, we will come to the same conclusion
even if input number ij+1 was an inverse input, by slightly modifying the relations (3) and (4).

Now we will look at the order of all the inputs p(ij , `) for ` ∈ {1, j − 1}. From conclusion 1 above, we
know that

∀` ∈ {1, j − 1} : p(ij , `) < ij

And from conclusion 2, we know that

p(ij , (j − 1)) < p(ij , (j − 2))

Now we will show that if for any ` ∈ {1, j − 3} if p(ij , (` + 1)) > p(ij , (` + 2)) then p(ij , `) > p(ij , (` + 1)).
This is not hard to see because,

f`+1 (Φ[ij , ` + 1]) = Φ[ij , `]⊕Φ[ij , ` + 2]
⇒ f`+1 (Φ [p(ij , (` + 1)), (` + 1)]) = Φ [p(ij , `), `] ⊕Φ [p(ij , (` + 2)), (` + 2)]

And since f`+1 is 4-XOR resistant and p(ij , `) 6= p(ij , (` + 1)) (o/w the inputs ij and p(ij , `) are same), we
can deduce that,

p(ij , `) > p(ij , (` + 1)) > p(ij , (` + 2))

19

Now we can apply this inductively to ` = (j − 3) . . . 1. Then we can use conclusions 1 and 2 and deduce
that,

ij > p(ij , 1) > p(ij , 2) > . . . > p(ij , (j − 2)) > ij+1

Let us briefly recall what we have achieved so far. In claim A.1, we saw that all the inputs Φ[m, 1] . . . Φ[m, k
2]

have their “first occurrences” before input number m. Then in claim A.2, we established the temporal
orderings of these “first occurrence” inputs as being one of very few special orders. In addition, we also
deduced that each of these orderings gives us a sequence of k

4 first occurrence inputs that are monotonically
ordered. Then we went onto claim A.3, where we proved a general property of any triple of strictly ordered
first occurrence inputs. Now the next step would be to combine these steps to deduce the underlying
structure of inputs in Φ that we wish to make explicit.

Without loss of generality, say that p(m, 1) > p(m, 2) > . . . > p
(
m, k

4

)
. In this sequence of inputs, we

can find k
4 − 2 strictly ordered triples of first occurrence inputs, namely

(p(m, 1), p(m, 2), p(m, 3)) , . . . ,

(
p(m, (

k

4
− 2)), p(m, (

k

4
− 1)), p(m,

k

4
)

)

The next step will be to apply claim A.3 to each of these triples. Having done so, we find another set of
“first occurrence” input sequences that are in strict decreasing temporal order (for a forward input) and
are sandwiched between the inputs at this level.

Since each of these next level sequences of inputs are also in strictly decreasing temporal order, we can
apply claim A.3 to each of these as well. And because of the sandwiching property that claim A.3 gives,
none of these sequences of inputs overlap. Hence all inputs in different sequences are distinct. We will now
the number of inputs we get by applying claim A.3 to p(m, 1) . . . p

(
m, k

4

)
. We will denote by Q(j) the

number of inputs we get by applying claim A.3 to a sequence of “first occurrence” inputs p(i, 1) . . . p(i, j)
that are in strictly decreasing temporal order. There is no ambiguity of notation since the number Q(j) is
independent of the query number i that the sequence p(i, 1) . . . p(i, j) corresponds to. Thus we get,

Q

(
k

4

)
=

k
4
−2∑

j=1

Q(i)

= Q

(
k

4
− 1

)
+ Q

(
k

4
− 2

)

Now this expression is the familiar recursion corresponding to the expression for the
(

k
4

)th
Fibonacci

number. Hence we get that

Q
(

k
4

)
= Fibonacci

(
k
4

)

=⇒ m ≥ Fibonacci
(

k
4

)

=⇒ m = Ω

((√
5+1
2

) k
4

)

Thus if the round functions used in a k-round LR construction are all 4-XOR resistant, and the number
of rounds k is super-logarithmic in the security parameter, then the number of rows m in the matrix
representation Φ (for this construction) is super-polynomial in the security parameter if there is a collision

in the
(

k
4

)th
round of two inputs.

20

B XOR-freeness of VRFs

Let us denote the k VRFs used in the construction πLR = (Gπ,Π, Vπ) by {fj = (Gj , F j , V j}j=1...k. And let
{invi, Xi}i=1...q be q queries made by the adversary Axor to the VRP evaluator Π, then we will denote by
{Ri

0, R
i
1, . . . , R

i
k, Ri

k+1}i=1...q the round values computed for these queries. We also know that for a round
value Ri

j , the round values from any of the previous queries (1 . . . i− 1) are defined before Ri
j. In addition,

all round values Ri
0 . . . Ri

j−1 (resp. Ri
j+1 . . . Ri

k+1) are defined before Ri
j if the ith query is a forward (resp.

inverse) query. For an adversary Axor that makes q queries to the Π oracle, its advantage in the c-XOR
attack game is defined to be the probability with which at least one new round function value (in its
queries) can be represented as an XOR of c round values defined before it. Thus,

Advc(Axor) = Pr


F j

1 (SKj , R
i
j) = ⊕

`=1...c
Z`

∣∣∣∣∣∣

(PKπ, SKπ)← Gπ(1λ); (inv1, X1) . . .
(invq, Xq) are queries made by AΠ

xor; i ∈ {1, q},
j ∈ {1, k}; {Z`}`=1...c are round values defined before Ri

j




The target round value Ri
j above, should be a new round value. We restate claim 4.2 here, which essentially

states that secure VRFs resist attacks from all such adversaries Axor.

Claim B.1 If there is an adversary Axor that has a non-negligible advantage εxor in the c-XOR attack
game described above, then there also exists a VRF adversary Af that has a non-negligible advantage εf

in differentiating a VRF output from a random binary string, in the VRF pseudorandomness game. In
particular,

εf ≥
(

εxor

2qk
− (qk)c

2n+1

)

proof of claim B.1: The VRF adversary Af is given access to the function evaluator F (SK, ·) for the VRF
f , and also gets the corresponding public key PK. It simply uses the XOR attack adversary Axor as a sub-
routine by simulating the construction πLR for Axor. To do this, Af first chooses a random round number
j ← {1, k} and plugs in the VRF f as the j th round function. Then Af generates k− 1 independent round
function keys, {PK`, SK`}`∈1...j−1,j+1...k, and sends the public key PK1 . . . PKj−1, PK, PKj+1 . . . PKk to
Axor as the public key for construction πLR. Then Af chooses a random query number i ← {1, q}. It
honestly evaluates the LR construction for queries 1 . . . i−1, querying its oracle F (SK, ·) for the j th round
function in every query. For query number i made by Axor, it honestly evaluates the LR construction upto
the jth round value Ri

j . If Ri
j is a previously defined value then Af exits with failure, otherwise it sends

the round value Ri
j as its query to the challenge VRF oracle. On getting the challenge oracle response

Y , Af compares it with all XORs of upto c previously defined round values. If there is a match then it
outputs 1 indicating that Y = F (SK,Ri

j) otherwise it outputs 0 indicating that it is a random value. The
advantage of Af can be computed as follows,

Adv(Af) = Pr[(Af outputs 1) ∧ (Y = F (SK,Ri
j))] + Pr[(Af outputs 0) ∧ (Y is random)]− 1

2

Here we assume, without loss of generality, that the above advantage is positive. If εxor is the advantage
of Axor in the XOR attack game then these probabilities can be computed as,

Pr
[
(Af outputs 1) ∧ (Y = F (SK,Ri

j))
]

= Pr
[
(Af outputs 1)

∣∣(Y = F (SK,Ri
j))

]
· Pr

[
Y = F (SK,Ri

j)
]

≥ εxor

qk
· 1
2

=
εxor

2qk

21

Similarly,

Pr [(Af outputs 0) ∧ (Y is random)] = Pr [(Af outputs 0) |(Y is random)] · Pr [Y is random]

≥
[
1− (qk)c

2n

]
· 1
2

Thus, we can compute the advantage of Af to be,

Adv(Af) ≥
(

εxor

2qk
− (qk)c

2n+1

)

C Proof of claim 4.3

Let us denote the round functions used in πLR by {fj = (Gi, F i, V i}j=1...k. And when we say that the
round function fj is 4-XOR resistant, it means that for a polynomial number (q) of queries made to πLR,
none of the new round function values outputted by fj are XORs of previously defined round values. Let
XORfj

denote the event that the round function fj is not 4-XOR resistant, i.e. the VRP adversary is
able to force an XOR dependency involving round function fj. From above, we know that if the maximum
advantage of a VRF adversary in a pseudorandomness game with fj is εfj

, then

Pr[XORfj
] ≤ qk ·

(
2εfj

+
(qk)4

2n

)

For simplicity, we will take the maximum advantage of a XOR attack against any of the round functions
used in πLR to be εxor. Now say there exists a VRP adversary Aπ that has a non-negligible distinguishing
advantage επ in the pseudorandomness game with πLR. Our “XOR-free” VRP adversary A′

π simply runs
Aπ and rejects if Aπ finds a round function value that is an XOR of upto 4 previously existing round
values. If no such XORs occur, then A′

π simply outputs the prediction of Aπ. Thus,

Adv(Aπ) =
(∑k

j=1 Pr
[
XORfj

∧
(∧j−1

j′=1 XORfj′

)])
+ Pr

[
Aπ wins ∧

(∧k
j=1 XORfj

)]

=
(∑k

j=1 Pr
[
XORfj

∧
(∧j−1

j′=1 XORfj′

)])
+ Adv(A′

π)

=⇒ Adv(A′
π) ≥ επ −

∑k−1
j=0 εxor(1− εxor)

j

= επ −
(
1− (1− εxor)

k
)

Thus if επ (advantage of the VRP adversary Aπ) is non-negligible and εxor is negligible, then the advantage
of the XOR free adversary A′

π is also non-negligible.

D Proof of claim 4.4

Understanding why this is true involves five main steps:

• The VRF adversary Af plugs the VRF f into a “simulated” construction πLR that the VRP adversary
Aπ is allowed to attack. But plugging f just anywhere in the LR construction does not work. We
get the best results if f is used as the middle round function f k

2
in πLR.

22

• Af enters the “challenge phase” of its attack, exactly when Aπ sends its challenge query. And the

challenge query of Af is the
(

k
2

)th
round value in the challenge query made by Aπ to πLR.

• We need to ensure that the
(

k
2

)th
round value in Aπ is a new round value. If not then it implies that

Af has already queried the VRF f on this query and its attack fails. Here we make crucial use of
the combinatorial lemma 3.1.

• Another important thing to ensure is that if the challenge query for Af is chosen to be random (instead
of the VRF value), then the challenge query that Af gives to Aπ (by computing the “simulated”
construction πLR) is also random. But we essentially get from the properties of the iterated Feistel
construction.

• We also need to show that once the challenge query response is known to Aπ, it cannot force the

VRF adversary Af to provide a proof on the
(

k
2

)th
round value of this query. This is because Af

itself does not know a proof for this round value. This part again makes use of the combinatorial
lemma 3.1.

The VRF adversary is given access to the function evaluator F for the VRF f . It honestly initializes k− 1
independent VRFs f1, . . . , f k

2
−1, f k

2
+1, . . . fk using the corresponding VRF generators. And simulates the

VRP construction πLR using the LR construction Ψf1,...,f k
2 −1

,f,f k
2 +1

,...fk
, and gives the VRP adversary Aπ

oracle access to this VRP construction. When Aπ makes a (forward or inverse) query to the VRP oracle,
then Af honestly evaluates Ψf1,...,fk

(using the VRF oracle for f to compute the middle round function).

Let us denote the queries made by Aπ before the challenge phase as (bi, xi)i∈{1,q1−1}, the challenge
query of Aπ as (bq1 , xq1) and the queries after the challenge phase as (bi, xi)i∈{q1+1,q}. And denote the
corresponding round values for these queries as {Ri

0, . . . , R
i
k+1}i∈{1,q}. For the challenge query (bq1 , xq1),

the VRF adversary again computes the construction πLR honestly except the round function value f(R k
2
).

Af sends this round value as its challenge query in the VRF game it plays with f . Without loss of
generality, say the challenge query made by Aπ is a forward query, i.e. bq1 = 0. Then Af sends Rq1

k ‖ Rq1

k+1

as the challenge response to Aπ.

Problems could occur if round value Rq1
k
2

collides with a round value Ri
k
2

, for i < q
2 . But then we can

construct a q1× (k +2) matrix Φ using the round values {Ri
0, . . . , R

i
k+1}i∈{1,q1}. And since, by assumption,

Aπ remains “4-XOR free”, the matrix Φ is a matrix representation for an LR construction with 4-XOR
resistant round functions. By lemma 3.1, we can deduce that the number of rows in this matrix, i.e.
q1, is at least Fibonacci

(
k
4

)
. This is super-polynomial in the security parameter λ if k = ω(log(λ)), and

contradicts the fact that Aπ makes a polynomial number of queries.

Thus the round value Rq1
k
2

is a new one, and hence the corresponding round function value looks random

irrespective of the choice of the VRF challenge oracle (i.e. random value or VRF value). Similarly all
the round values R k

2
+1 . . . Rk+1 are new round values with very high probability, since the converse would

imply a collision for one of the VRFs f k
2
+1 . . . fk. And such a collision will also imply that the colliding

round function value can be represented as an XOR of previously existing round values. Thus, we can
deduce that the last two round values (Rk, Rk+1) (i.e. the response given to Aπ for its challenge query)
look random if the VRF challenge response is a random value. A similar argument can be carried out if
the challenge query made by Aπ is an inverse query.

If, following the challenge phase, the VRP adversary Aπ forces Af to give a proof for the round value Rq1
k
2

then it would mean that for some i′ > q1 the round value R
k
2

i′ collides with Rq1
k
2

. But then we can construct

23

an i′ × (k + 2) matrix Φ using the round values {Ri
0, . . . , R

i
k+1}i∈{1,i′}. This is a matrix representation for

the LR construction of πLR, whose round functions are 4-XOR resistant by assumption. And by lemma
3.1, we deduce that the number of rows in Φ (i.e. i′) is at least Fibonacci

(
k
4

)
. This implies the number of

queries made by Aπ is super-polynomial in λ, if k = ω(log(λ)).

Thus, in conclusion, if the VRP adversary Aπ (that is 4-XOR free) has advantage επ in the VRP attack
game with the construction πLR then there is a VRF adversary that has an advantage εf = επ in the VRF
attack game with one of the (secure) VRFs used in the construction πLR, provided Aπ makes a polynomial
number of queries.

E NIZK and Hidden Bits Model proofs

We essentially follow the definitions of NIZK and hidden bits model given in [12]. For completeness, we
give the definitions here,

Definition 2 (Non-iteractive Zero-Knowledge Proofs) A pair of probabilistic machines (P, V) is
called a non-interactive zero-knowledge proof system for a language L if V is polynomial time and the
following conditions hold,

• Completeness: For every x ∈ L,

Pr [V (x,R, P (x,R)) = 1] ≥ 2

3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

• Soundness: For every x /∈ L and every algorithm B,

Pr [V (x,R,B(x,R)) = 1] ≤ 1

3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

• Zero-Knowledge: There exists a polynomial p and a probabilistic polynomial-time algorithm M such
that the ensembles

{
(x,Up(|x|), P (x,Up(|x|)))

}
x∈L

and {M(x)}x∈L are computationally indistinguish-
able, where Um is a random variable uniformly distributed over {0, 1}m.

The random string R above is called the common reference string.

Now let us give the definition of Hidden Bits Model proofs.

Definition 3 (Hidden Bits Model Proofs) A pair of probabilistic algorithms (P, V) is called a hidden
bits proof system for L if V is polynomial time and the following two conditions hold:

• Completeness: For every x ∈ L,

Pr [V (x,RI , I, π) = 1] ≥ 2

3

where (I, π)
def
= P (x,R), R is a random variable uniformly distributed over {0, 1}poly(|x|), and RI is

a sub-string of R at positions I ⊆ {1, 2, . . . , poly(|x|)}. That is RI = ri1 . . . rit , where R = r1 . . . rt

and I = (i1, . . . , it).

24

• Soundness: For every x /∈ L and every algorithm B,

Pr [V (x,RI , I, π) = 1] ≤ 1

3

where (I, π)
def
= P (x,R), R is a random variable uniformly distributed over {0, 1}poly(|x|), and RI is

a sub-string of R at positions I ⊆ {1, 2, . . . , poly(|x|)}.

In both cases, I is called the set of revealed bits and π is called the certificate. Zero-Knowledge is defined
as in the case of NIZK proofs with the exception that we need to simulate (x,RI , P (x,R)) = (x,RI , I, π)
rather than (x,R, P (x,R)).

F Proof of claim 6.1

Given the VRF (G,F, V), we add a special key pair (PK ′, SK ′) to the public key space of this VRF. And
we modify the VRF to get a new VRF (G′, F ′, V ′) as follows:

• The VRF generator G′ either runs G or returns the special key pair (PK ′, SK ′) (with negligible
probability).

• The VRF evaluator F ′ checks to see if it gets the special secret key SK ′. If so, then it outputs the
all zero string for any input. Else, it simply runs the original VRF evaluator F .

• The VRF verification algorithm V ′ also checks if the public key provided is the special public key
PK ′. If so, then it accepts if the output is the all zero string. Otherwise, it runs the original
verification algorithm V .

It is not hard to see that the new VRF (G′, F ′, V ′) is secure if the original VRF is secure. This is because
the VRF generator G′ outputs the special key pair only with a negligible probability. Indeed, if this VRF
is used in the NIZK proof of [10], then a malicious prover can cheat by choosing this special public key to
generate its proofs.

G Proof of claim 6.2

We will start by describing the NIZK proof system (P ′, V ′) for the language L. Let (P, V) be the hidden-
bits proof system for L and π = (Gπ,Π, Vπ) is a VRP on {0, 1}n. We will denote by b1 : {0, 1}n → {0, 1},
the predicate that returns the first bit of its input. Now let the common input for (P ′, V ′) be x ∈ {0, 1}n
and the common reference string be s = (s1, . . . , sm), where each si ∈ {0, 1}n.

• NIZK prover P ′:

1. Generate a VRP public/secret key pair (PK,SK)← G(1λ).

2. Compute ri ← b1(Π1(0, SK, si)) for i = 1 . . . m.

3. Invoke the HBS prover P to get (I, τ)← P (x, r1, . . . , rm).

4. Output (PK, I, τ, yI , proofI), where for I = (i1, . . . , it), yI
def
= (Π1(0, SK, si1), . . . ,Π1(0, SK, sit))

and proofI
def
= (Π2(0, SK, si1), . . . ,Π2(0, SK, sit))

25

• NIZK verifier V ′: Given the output (PK, I, τ, yI , proofI) of the prover, the verifier performs the
following operations:

1. Perform the sequence of verifications Vπ(PK, sij , yj , proofj), for each ij ∈ I. If any of the
verifications return NO, exit with failure.

2. Compute ri = b1(yi) for i = 1 . . . t, and let r = r1, . . . , rt.

3. Invoke V on (x, r, I, τ) and accept if and only if V accepts.

Completeness of the proof system (P ′, V ′) is implied directly from the completeness of the HBS proof
system (P, V), since for the honest prover P ′ the hidden bits ri = b1(Π1(0, SK, si)) will be uniformly
random and V ′ accepts if and only if V accepts.

Soundness of the proof system (P ′, V ′) is again implied from the soundness of (P, V). Although we

need to make sure that a malicious prover cannot cheat by choosing a fake public key P̃K for the VRP π.
However, note that for any public key (even a maliciously chosen one) the VRP π still gives a permutation.
This will in turn imply that each bit of the hidden bit string is random and unbiased. This is sufficient for
the proof of Feige et al [8] to go through, except that in this case we have several possible permutations
(one for each possible key) in comparison to [8] where only a unique permutation is considered. But this
problem can be resolved easily by applying a union bound over all the possible public keys of the VRP π
and amplifying the error probability by making the CRS sufficiently (although still polynomially) longer.

In order to show that the proof system (P ′, V ′) is zero knowledge, we will design a simulator S ′ for P ′

using the simulator S for hidden-bits model prover P . The simulator S ′ simulates the view of the verifier
V ′ as follows:

1. Generate a public/secret key pair (PK,SK)← G(1λ).

2. Run the hidden-bits model simulator S to get a simulated output (x, rI , I, τ), where (I, τ) is the
simulated output of P ,rI denotes the revealed bits of the hidden-bit string and x is the common
input.

3. For each bit rj revealed by S, generate a uniformly random n bit string yj such that rj = b1(yj).
And set the corresponding n bit block in the CRS as sij = Π1(1, SK, yj) (i.e. π−1

S K(yj)). Set the
remaining n-bit blocks in the CRS at random.

4. Output (x, s, PK, I, yI , τ, proofI), where proofi = Π2(1, SK, yj) for all i ∈ I.

It is not hard to see that if a distinguisher has a non-negligible advantage in distinguishing the view of
the verifier in the proof system (P ′, V ′) and the output of S ′ then we can also use it to design a similar
distinguisher for the corresponding hidden-bits model simulator S that also succeeds with non-negligible
probability.

26

