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Abstract. Known proposals for key establishment schemes based on
combinatorial group theory are often formulated in a rather informal
manner. Typically, issues like the choice of a session identifier and parallel
protocol executions are not addressed, and no security proof in an estab-
lished model is provided. Successful attacks against proposed parameter
sets for braid groups further decreased the attractivity of combinatorial
group theory as a candidate platform for cryptography.
We present a 2-round group key agreement protocol that can be proven
secure in the random oracle model if a certain group-theoretical problem
is hard. The security proof builds on a framework of Bresson et al.,
and explicitly addresses some issues concerning malicious insiders and
also forward secrecy. While being designed as a tool for basing group
key agreement on non-abelian groups, our framework also yields a 2-
round group key agreement basing on a Computational Diffie-Hellman
assumption.

Keywords: group key establishment, provable security, conjugacy problem,
automorphisms of groups

1 Introduction

While in recent years cryptographic proposals building on combinatorial group
theory, in particular braid groups, proliferated, repeated cryptanalytic success
also diminished the initial optimism on the subject significantly. Dehornoy’s pa-
per [15] gives a good survey on the state of the subject, and evidently significant
research is still needed to reach a definite conclusion on the cryptographic poten-
tial of braid groups. As far as key establishment is concerned, especially an idea
of Anshel et al. [2, 1] received a lot of attention (e. g., [16, 19, 27]). Several further



ideas for deriving a key establishment scheme from combinatorial group theory
have been put forward, including the work in [22, 23, 26, 28, 25]. Unfortunately,
to the best of our knowledge for none of these proposals a modern security anal-
ysis in an established cryptographic framework like [5, 3, 24, 4, 11, 12] has been
carried out. It should be mentioned, however, that the 2-party construction con-
sidered by Catalano et al. in [13] seems suitable for a non-abelian setting, but
no further exploration in this direction is known to us.

One approach to build a key establishment protocol on non-abelian groups
is to prove a scheme secure against passive adversaries, followed by applying
a generic compiler that establishes stronger security guarantees (cf. [21], for
instance). In this contribution we focus on group1 key establishment. So far, the
only known proposals for basing a group key establishment on non-abelian groups
we are aware of are due to Lee et al. [23] and Grigoriev and Ponomarenko [18].
Unfortunately the former builds on ideas from a two-party protocol presented in
[22], so Cheon and Jun’s polynomial time solution to the Braid Diffie-Hellman
conjugacy problem [14] impairs the attractivity of Lee et al.’s scheme. Grigoriev
and Ponomarenko use a different approach to build a group key establishment.
They build on ideas from [2, 1] and make repeated use of a 2-party protocol.

As an intermediate step, we build a key encapsulation mechanism from a
group theoretic problem and then construct a group key establishment protocol
on top. We do not follow the indicated 2-step approach (proving security in the
passive case, followed by, say, applying the compiler of Katz and Yung [21])—
aiming at a 2-round solution, a direct design approach appears to be no less
attractive. While we cannot give a concrete non-abelian instance of our scheme,
a concrete protocol can be derived from a Computational Diffie-Hellman (CDH)
assumption in a cyclic group. In a sense, our approach can be seen in the spirit
of [17], which takes a similar effort to identify requirements on finite non-abelian
groups that allow to implement a provably IND-CCA secure public key encryp-
tion scheme.

Our security proof makes use of an existentially unforgeable signature scheme
and the random oracle, and it is fair to ask whether there is really a need for
another protocol in such a setting. For instance, in terms of communication
complexity Boyd and Nieto’s 1-round protocol from [9] certainly can be seen
as superior to the 2-round proposal below. However, the latter protocol lacks
forward secrecy, and to our knowledge it is not known whether a one-round
protocol achieving forward secrecy can be constructed at all [8]. Moreover, we
aim at a 2-round protocol offering security guarantees in the presence of malicious
insiders. Currently the treatment of malicious insiders in group key establishment
receives increasing attention—including the work in [7, 20, 6]. At the current state
of the art, to design a 2-round protocol with security guarantees against malicious
insiders and offering forward secrecy, a “one step” design strategy building on a
random oracle and a signature scheme still appears to be fair.

1 Unfortunately, in this paper the term group has to express two different meanings;
here it refers to a set of principals.
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2 Preliminaries

Giving a general introduction to the existing models for group key establishment
is beyond the scope of this paper, and we refer to the standard reference [10]
for this. Moreover, the background in group theory needed for describing our
protocol is extremely modest. Hence, we restrict to recalling some details of the
cryptographic proof model used for the security proof below. A more detailed
discussion of this model can be found in [4, 11, 7].

2.1 Security model

Participants. A finite set P of probabilistic polynomial time (ppt) Turing ma-
chines Ui models the users that constitute the (potential) protocol participants.
Each user Ui ∈ P may execute a polynomial number of protocol instances in
parallel. We denote the instance s ∈ N of principal Ui ∈ P by Πs

i . Each instance
Πs

i may be taken for a process executed by Ui and has assigned seven variables
states

i , sids
i , pids

i , sks
i , terms

i , useds
i and accs

i :

useds
i is initialized with false and set to true as soon as the instance begins a

protocol run triggered by a call to the Execute-oracle or a call to the Send-
oracle (see below);

states
i stores the state information during the protocol execution;

terms
i is initialized with false and set to true when the execution has terminated;

sids
i holds the (non-secret) session identifier that serves as identifier for the ses-
sion key sks

i and is initialized with a distinguished null value—the adversary
has access to all sids

i -values;
pids

i stores the set of user identities that Πs
i aims at establishing a key with—it

also includes Ui itself;
accs

i is initialized with false and set to true if the protocol execution terminated
successfully (i. e., the principal accepted the session key for use with users
pids

i in session sids
i );

sks
i contains the session key after the execution is accepted by instance Πs

i .
Before acceptance, it stores a distinguished null value.

Initialization. In a one-time initialization phase, before the first execution of
the key establishment protocol, for each user Ui ∈ P a secret key/public key
pair (SKi, PKi) is generated. The secret key SKi is only revealed to Ui, the
corresponding public key PKi is given to all users.2

Communication network. We assume arbitrary point-to-point connections to
be available between the users. However, the connections are insecure and fully
asynchronous, modeled by an active adversary with full control over the network
(cf. the adversarial model below).

2 We assume these keys to be generated and distributed honestly by a trusted party.
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Adversarial model. The adversary A interacts with the user instances via a set
of oracles Execute, Send, Reveal, Corrupt and Test. We call the adversary passive
if no access to the Send- and Corrupt-oracle is granted.

Execute({U1, U2, . . . , Ur}) This query executes a protocol run between unused
instances Πs

i of the specified users and returns a transcript of all messages
sent during the protocol execution.

Send(Ui, s, M) This query sends the message M to instance Πs
i and returns the

reply generated by this instance. A special message M = {U1, . . . , Ur} sent
to an unused instance will set pids

i := M , useds
i := true and provoke Πs

i to
begin with the protocol execution.

Reveal(Ui, s) returns the session key sks
i .

Corrupt(Ui) returns the long-term secret key SKi that Ui holds. We will refer
to a user Ui as honest if no query of the form Corrupt(Ui) was made.

Test(Ui, s) The adversary is allowed to use this query only once. Provided that
sks

i 6= null, a random bit b is drawn and depending on b with probability
1/2 the session key sks

i and with probability 1/2 a uniformly chosen random
session key is returned. The adversary is allowed to query other oracles after
its Test-query, but no query that would repeal the freshness of Πs

i is allowed.

Correctness. To exclude “useless” protocols, we take a group key establishment
protocol P for correct if in the presence of a passive adversary a single execution
of P among arbitrary participants U1, . . . , Ur involves r instances Πs1

1 , . . . , Πsr
r

and ensures that with overwhelming probability all instances accept a matching
session key with a common partner identifier and a common and unique session
identifier. More formally, with overwhelming probability the following conditions
have to hold:

– useds1

1 = · · · = usedsr

r = true;
– accs1

1 = · · · = accsr
r = true;

– sks1

1 = · · · = sksr

r ;
– sids1

1 = · · · = sidsr

r globally unique;
– pids1

1 = pids2

2 = · · · = pidsr

r = {U1, . . . , Ur}.

Freshness. For the security definition, we have to specify which instances are
fresh, i. e., hold a session key that should be unknown to the adversary. As a
first step we define the notion of partnering.

Definition 1 (Partnering). Two instances Πsi

i , Π
sj

j are partnered if sidsi

i =

sid
sj

j , pidsi

i = pid
sj

j and accsi

i = acc
sj

j = true.

Now the freshness of an instance is defined as follows.

Definition 2. We call a user instance Πsi

i that has accepted, i. e., accsi

i = true,
fresh if none of the following two conditions holds:

– For a Uj ∈ pidsi

i a Corrupt(Uj) query was executed before a query of the form
Send(Uℓ, sℓ, M) with Uℓ ∈ pids

i has taken place.
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– A Reveal(Uj , sj) was executed where Πsi

i and Π
sj

j are partnered.

We say that an adversary A was successful if A, after interacting with the
oracles including one Test(Πsi

i ) query for a fresh oracle Πsi

i , outputs a bit d
and it holds that d = b for the bit b used by the Test-oracle. We denote this
probability by Succ and define A’s advantage to be

AdvA := |2 · Succ− 1|.

Definition 3 (Key secrecy/(basic) security). We call the group key estab-
lishment protocol P secure if for all ppt adversaries A the function AdvA =
AdvA(k) is negligible in the security parameter k.

Forward secrecy is addressed in the usual manner:

Definition 4 (Forward secrecy). We say the group key establishment protocol
P fulfills forward secrecy, if the disclosure of the private long-term keys used in
the protocol execution does not compromise earlier derived session keys.

The following extended security properties aim at avoiding further attacks
imposed by malicious participants:

Definition 5 (Strong entity authentication). Strong entity authentication
to an oracle Πsi

i is provided if both accsi

i = true and for all honest Uj ∈ pidsi

i

with overwhelming probability there exists an oracle Π
sj

j with sid
sj

j = sidsi

i and

Ui ∈ pid
sj

j .

Definition 6 (Integrity). We say a correct group key establishment protocol
fulfills integrity if with overwhelming probability all oracles of honest principals
that have accepted with the same session identifier sid

sj

j hold identical session

keys sk
sj

j , and associate this key with the same principals pid
sj

j .

2.2 Assumptions on the underlying group

For the security proof of our protocol, the underlying group G (resp. family
of groups G = G(k), indexed by the security parameter) has to satisfy certain
requirements. In particular, we assume products and inverses of group elements
to be computable by ppt algorithms. For the sake of simplicity, we also assume
that G allows a ppt computable canonical representation of elements, so that
we can identify group elements with their canonical representation. To generate
the group elements needed in a protocol execution, we rely on the existence of
three algorithms, that capture the problem of creating “good instances”:

– DomPar denotes a (stateless) ppt domain parameter generation algorithm
that upon input of the security parameter 1k outputs a finite sequence S of
elements in G. The subgroup 〈S〉 of G spanned by S will be publicly known.
For the special case of applying our framework to a CDH-assumption, S
specifies a public generator of a cyclic group.
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– SamAut denotes a (stateless) ppt automorphism group sampling algorithm
that upon input of the security parameter 1k and a sequence S output by
DomPar returns a description of an automorphism φ on the subgroup 〈S〉, so
that both φ and φ−1 can be evaluated efficiently. E. g., for a cyclic group, φ
could be given as an exponent, or for an inner automorphism the conjugating
group element could be specified.

– SamSub denotes a (stateless) ppt subgroup sampling algorithm that upon
input of the security parameter 1k and a sequence S output by DomPar

returns a word x(S) in the generators S (and their inverses) representing an
element x ∈ 〈S〉. Intuitively, SamSub chooses a random x ∈ 〈S〉, so that it
is hard to recognize x if we know elements of x’s orbit under Aut(G). Our
protocol needs an explicit representation of x in terms of the generators S.

With this notation, we can define a computational problem of parallel automor-
phism application, where o ← A(i) denotes that algorithm A outputs o upon
receiving input i:

Definition 7 (Parallel automorphism application). Let r ∈ N>0 be a natu-
ral number. By the problem of r-fold parallel automorphism application (r-PAA)
w. r. t. the quadruple (G, DomPar, SamAut, SamSub) we mean the task of finding
an algorithm A which on input of S, φi(S) := (φi(s))s∈S for i = 1, . . . , r and
φ1(x), . . . , φr(x) outputs the group element x represented by the word x(S), where

– S ← DomGen(1k),
– x(S)← SamSub(1k, S),
– (φi, φ

−1
i )← SamAut(1k, S) (i = 1, . . . , r).

To capture the assumption needed in the security proof below, we also define
the advantage of an adversary in solving the above problem:

Definition 8 (r-PAA advantage). For an algorithm A trying to solve r-PAA,
we denote its advantage as a function in the security parameter k and its runtime
t by Advr−PAA

A = Advr−PAA
A (k, t) =

Pr

(

x← A(S, (φi(S), φi(x))1≤i≤r)

∣

∣

∣

∣

S ← DomGen(1k), x(S)← SamSub(1k, S),
(φi, φ

−1
i )← SamAut(1k, S) (i = 1, . . . , r)

)

.

Our security proof builds on the assumption that for any ppt adversary A the
advantage Advr−PAA

A is negligible. For the case of φ being an inner automor-
phism, r-PAA expresses a kind of parallel conjugacy problem. Note however,
that instead of looking for concrete instances building on a non-abelian group,
we may apply our framework to an “ordinary” Computational Diffie-Hellman
(CDH) setting, too:

Example 1 (Basing on CDH). Let G be a cyclic group and choose for S := (g)
an element g ∈ G of prime order q. Now let SamSub choose uniformly at random
an exponent x ∈ {1, . . . , q}. Similarly, we specify SamAut to choose uniformly
at random an exponent φ ∈ {1, . . . , q − 1}. Then r-PAA is polynomial time
equivalent to the CDH-problem in 〈g〉:
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“CDH solution ⇒ r-PAA solution”: A CDH-oracle allows to find gx from
a single pair (gφ, gxφ) as follows. First compute gφ−1 mod q by using the CDH-

oracle to multiply the exponents of (g, g) with g =
(

gφ
)φ−1

taken for a power
of the group generator gφ. Next we can obtain gx by applying the CDH-oracle
to gφ−1 mod q and gxφ.

“CDH solution ⇐ r-PAA solution”: Given gφ1 , gv (φ1, v ∈ {1, . . . , q− 1}),

we can use an oracle solving r-PAA to compute gvφ
−1

1 : We can interpret v
as having the form v = x · φ1 mod q, and by raising gφ1 and gv to uniformly
at random chosen powers φ−1

1 φi ∈ {1, . . . , q − 1} (i = 2, . . . , r), we obtain

the input needed by an oracle solving r-PAA to compute gx = gvφ
−1

1 . Hence,
given a pair (gu, gv) we can compute guv as follows:

1. Apply the above method to (gu, gv), yielding gvu−1

.

2. Apply the above method to (gv, gvu−1

), yielding gu−1

.

3. Apply the above method to (gu−1

, gv), yielding guv.

2.3 Groundwork of the protocol

The r-PAA assumption is in quintessence a variant of a key encapsulation mech-
anism (KEM). A KEM provides the public key algorithm that is needed for
constructing a hybrid encryption system. In contrast to public key encryption
it is not necessary to be able to encrypt arbitrary messages, but only random
messages, which don’t need to be given as input to the algorithm.

Smart [29] extends KEM to mKEM which captures key encapsulation to
multiple parties. An mKEM consists of Algorithms Gen, Enc and Dec. At this
Gen will take the domain parameters as input and output a public/private key
pair (pk, sk). The algorithm Enc takes as input a list of public keys (pk1, . . . , pkn)
and outputs a pair consisting of a key K and a ciphertext C. Finally, Dec takes
as input a ciphertext C and a private key ski and outputs the key K.

The assumption about the group in Section 2.2 resembles an mKEM. How-
ever, for a KEM, the key space will consist of a finite set, such that K is indistin-
guishable from an element chosen uniformly at random. The value x, sampled by
the algorithm SamSub will generally not offer this property, so a randomness ex-
traction has to be applied on x to build a KEM. We now give the interpretation
of the PAA as an mKEM, using a random oracle H as a randomness extractor.
Note that the protocol in Section 3 will not need the randomness extraction for
an individual x, but only for the collection of the x-values of all participants.

After having generated domain parameters with DomPar, SamAut produces
the automorphism φ on the subgroup 〈S〉. The images (φi(t))t∈S of the gen-
erators S will act as public key and φ−1

i as private key. This will provide the
algorithm Gen. Given the subgroup generators S, SamSub returns a word x(S)
in the generators S. Then, given any number of public keys φi(S) for the subset
S, the ciphertext φi(x(S)) can be computed. Thus, the combination of SamSub

and application of φi can be seen as providing Enc. Again, Dec is only given
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implicitly, as the application of φ−1 to φi(x(S)) is straightforward.

Domain parameter D : S ← DomGen(1k)

(pk, sk)← Gen(D) : (φ, φ−1)← SamAut(1k, S)
pk = (φ(t))t∈S

sk = φ−1

(K, C)← Enc(pk1, . . . , pkn) : x(S)← SamSub(1k, S)
K = H(x(S))
C = (φ1(x(S)), . . . , φn(x(S)))

K ← Dec(C, ski, (pk1, . . . , pkn)) : K = H(φ−1
i (φi(x(S)))

Security of r-PAA as an mKEM. With the interpretation as above, intuitively
r-PAA is secure as an mKEM. Using the random oracle to derive the key K,
transforms the indistinguishability of keys in the mKEM into the problem to
compute the preimage, as the r-PAA advantage. However, Smart [29] defines an
r out of n security where the adversary is offered n public keys and can chose
a set of r on which he will mount his attack. In this respect, the above r-PAA
problem yields an r out of r secure mKEM. Though, the weaker requirements
for a secure r-PAA might help the construction of concrete instances.

On Burmester-Desmedt style key agreements. The Burmester-Desmedt principle
constructs a group key by arranging the participants in a circle, establishing keys
between neighbors and broadcasting information, that allows anyone who knows
one key in the circle, to compute all other keys. Having in mind the construction
of a 2-round protocol, the key establishment should be possible in one round.
However, forward secrecy requires ephemeral public keys, such that in order to
establish a key, first Ui has to execute Gen and send the result to Uj who has to
execute Enc and return the ciphertext to Ui. As this requires already 2 rounds, we
have chosen a different approach, which is similar to [9] but guarantees forward
secrecy in addition.

Protocol idea. The idea for the protocol is now as follows: In the first round, all
participants will generate an ephemeral key, what will be necessary to achieve
forward secrecy. In the next round, each participant Ui will use the encryption
algorithm of the KEM to obtain a key contribution Ki and a ciphertext C, and
broadcast the ciphertext C. Finally, the participants compute a group key from
the contributions Uj, j = 1, . . . , n.

3 A 2-Round Protocol for Group Key Agreement

To discuss our group key agreement protocol we adopt the common assump-
tion that, from some protocol-external context, the set of protocol participants
U ⊆ P is known to all Ui ∈ U . To simplify notation, w. l. o. g. we assume
U = {U1, . . . , Ur}. Moreover, we assume that an asymmetric signature scheme
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is available that is existentially unforgeable under adaptive chosen message at-
tacks. The respective signing and verification keys are to be fixed and distributed
throughout the initialization phase mentioned in Section 2.1, and we denote a
signature of a protocol participant Ui on a message M by Sigi(M).

3.1 Description of the protocol

Having fixed the security parameter k, first we have to run DomGen(1k) to gener-
ate the public subgroup generators S. Hereafter, for an instance Πsi

i of a protocol
participant Ui a single protocol run can be described as shown in Figure 1. At
this, Broadcast: M means that message M is sent to all other participants Uj ∈ U
over point-to-point connections, i. e., the adversary is allowed to delay, suppress
or modify some or all of the transmitted messages. In contrast to the idea in the
last section, it is possible to separate portions for each participant φi(x(S)) and
instead of broadcasting all ciphertexts, every participant gets only the necessary
part. Moreover, the randomness extraction is only applied on the list x1, . . . , xn,
instead on every xi. Finally, H denotes a cryptographic hash function which will
be modeled as a random oracle.

Round 1: Initialization Set pid
si
i := U , used

si
i := true.

Choose (φsi
i , (φsi

i )−1) ← SamAut(1k), x
si
i (S) ← SamSub(1k, S), and compute

the message m
si
1

(Ui) := (Ui, (φ
si
i (t))t∈S, H(xsi

i )).
Broadcast: m

si
1

(Ui).
Round 2: Key Exchange Set sid

si
i := H (ms1

1
(U1), . . . , m

sr
1

(Ur), pid
si
i ).

Compute and send m
si
2

(Ui, Uj) :=
`

Ui, φ
sj

j (xsi
i ), Sigi(sid

si
i )

´

to each partic-

ipant Uj ∈ pid
si
i , j 6= i. (To compute φ

sj

j (xsi
i ) use the representation of

x
si
i = x

si
i (S) in terms of the generators S.)

Key Generation Compute from φ
si
i (x

sj

j ) the original x
sj

j for all j 6= i by apply-
ing the inverse of φ

si
i .

Compute the common session key K := H (xs1

1
, . . . , xsr

r , pid
si
i ).

Verification Check for all Uj ∈ pid
si
i if Sigj(sid

sj

j ) is a valid signature for sid
si
i

and if for x
sj

j the received hash value H(x
sj

j ) in m
sj

1
(Uj) was correct.

If true, set acc
si
i := term

si
i := true, and sk

si
i := K.

Else set acc
si
i := false, term

si
i := true.

Fig. 1. A 2-round group key agreement protocol basing on r-PAA

At first glance, Round 1 of the protocol may look suspicious: The message is
not signed and hence an attacker may tamper with this message. The underlying
idea here is, that any tampering with the message in Round 1 will result in
a failed signature verification in Round 2, because the session identifier sidsi

i

computed and signed by Πsi

i involves the correct message from Round 1. Further
on, one may wonder whether one shouldn’t simply fix the φsi

i (S)-values and
include them in the public key of user Ui. Effectively, the latter would render
φsi

i a long-term secret and the protocol would no longer achieve forward secrecy.
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Remark 1. Having in mind instances of the protocol in Figure 1 where the φi

are inner automorphisms, it is worth noting that the protocol is symmetric in
the sense that all participants perform the same steps: Differing from Anshel et
al.’s 2-party construction, the key computation for the initiator is the same as
for the other protocol participants.

3.2 Security analysis

Correctness of the protocol in Figure 1 is immediate. To prove its security, we first
observe that the constructed session identifier is with overwhelming probability
globally unique:

Lemma 1. If for all ppt adversaries A the advantage AdvA in solving r-PAA
is negligible, then the session identifier sidsi

i constructed in the above protocol is
with overwhelming probability globally unique.

Proof. The assumption of the lemma implies in particular that the probability
of SamSub outputting twice the same value in a ppt number of executions is
negligible. Thus the collision-freeness of H yields the desired uniqueness of the
session identifier. ⊓⊔

Next, before looking at (basic) security, we note that the above protocol also
offers strong entity authentication and integrity:

Proposition 1. The protocol provides strong entity authentication according to
Definition 5 and integrity according to Definition 6.

Proof. Strong entity authentication. Consider an arbitrary instance Πsi

i of an
uncorrupted participant Ui that has accepted with session identifier sidsi

i . Let
Uj ∈ pidsi

i be some other uncorrupted participant. Instance Πsi

i must have
received a message of Uj with a signature on Uj’s session identifier sid

sj

j . By

unforgeability of the signature scheme, uniqueness of the session identifier sid
sj

j =

sidsi

i , and the collision resistance of the hash function we obtain pid
sj

j = pidsi

i

with overwhelming probability.
Integrity. Consider any two instances Πsi

i and Π
sj

j that both have accepted

with sid = sidsi

i = sid
sj

j and where the participants Ui and Uj are honest. By
unforgeability of the signature scheme, uniqueness of the session identifier sid,
and the collision resistance of the hash function, with overwhelming probability
we get pidsi

i = pid
sj

j and the equivalence of the messages msℓ

1 (Uℓ) they received
in Round 1. Those messages include hash values H(xsℓ

ℓ ) from all protocol par-
ticipants and before accepting, all participants check if the computed values xsℓ

ℓ

in Round 2 are consistent with the H(xsℓ

ℓ ). Unless a collision of H occurs they
compute the same key. ⊓⊔

For the ease of presentation, in the proof of the basic security property we imag-
ine the protocol without the hash value H(xsi

i ) in Round 1. This simplification
can be justified with a standard random oracle argument as in the proof of
Lemma 3.
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Proposition 2. Denote the maximal number of protocol participants by n = |P|,
and let A be an adversary that is allowed at most qs, qex, qH queries to the Send,
Execute and random oracle H, respectively. Moreover, let Adv(n−1)−PAA resp.
AdvSig be the maximum advantage of a ppt algorithm solving (n− 1)-PAA resp.
achieving an existential forgery in running time t. Then

AdvA = |Succ− 1/2| ≤ n · (qs + qex)
n · qH · Adv(n−1)−PAA + n · AdvSig + negl(k)

where negl(k) is negligible in k.

Proof. Let Succ := (AdvA + 1)/2 be the success probability of adversary A to
win the experiment. Imagine A now to be connected to a simulator Sim that
simulates the oracles. We consider a sequence of games and bound the difference
of the adversary’s success probability between subsequent games.

In Game 0 the simulator Sim simulates the oracles and principals’ instances
faithfully. Thus, there is no difference for the adversary and denoting A’s success
probability in Game i by SuccGame i, we have SuccGame 0 = Succ.

In Game 1 the simulator will keep a list with an entry (i, sidsi

i ) for every session
identifier sidsi

i the simulator signs with the secret key of user Ui and returns
it in a Round 2 message to A following an Execute-query or on a Send-query.
We define the event Forge to occur, if A comes up with a query Send(∗, ∗, M)
where M includes a signature Sig(sidsi

i ), signed by an uncorrupted principal Ui

and (i, sidsi

i ), does not appear in the simulator’s list. In this case we abort the
experiment and count it as success for the adversary. Thus we have:

|SuccGame 1 − SuccGame 0| ≤ Pr(Forge).

Lemma 2. If the signature scheme is existentially unforgeable, the probability
of Forge is negligible. Formally:

Pr(Forge) ≤ n · AdvSig

Proof. The simulator can use an adversary that can reach Forge with a non-
negligible probability as black box to forge a signature from the underlying
signature scheme.

The simulator is given a public key PK and a signing oracle. In the initial-
ization it will uniformly choose one user Ui and assign the key PK as PKi to
Ui. If in the following simulation Sim has to generate a signed message for Ui it
will use the signing oracle to sign the message. If A will send a message (∗, σ),
where σ is a signature of a session identifier sidsi

i that is not in the simulator’s
list, the simulator will return (sidsi

i , σ) as existential forgery. Otherwise the sim-
ulator returns ⊥. As i was chosen uniformly the simulator will succeed with a
probability of 1/n · Pr(Forge), thus Pr(Forge) ≤ n · AdvSig. ⊓⊔
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In Game 2 the simulator will keep a list with entries

(ms1

1 (U1), . . . , m
sn

1 (Un), H(ms1

1 (U1), . . . , m
sn

1 (Un)))

for every computation of a session identifier invoked by an Execute-query or Send-
query and all entries (M, H(M)) where A queried the random oracle directly.
We define the event Collision to occur, if the simulator computes a session identi-
fier H(ms1

1 (U1), . . . , m
sn

1 (Un)) which equals a session identifier that A obtained
previously with non-identical messages. In this case we abort the experiment
and count it as success for the adversary. From H being a random oracle, we
conclude that |SuccGame 2 − SuccGame 1| is negligible.

In Game 3 the simulation of the Test oracle is modified. On a query Test(Ui, si),
the simulator checks if Πsi

i is fresh. If so, then Sim will not query the random
oracle, but return a random value in any case. As now no information about
the Test-oracle’s secret bit b is given to A in Game 3, the success probability is
SuccGame 3 = 1/2.

Now we have to determine the difference in the adversary’s success proba-
bility between Game 2 and Game 3. For A, a random value and the random
oracle’s answer are indistinguishable as long as A does not know the actual
query to the random oracle. The success probabilities can only differ, if A queries
H(xs1

1 , . . . ,xsr
r , pidsi

i ) to the random oracle. Denoting this event by Random, we
have

|SuccGame 3 − SuccGame 2| ≤ Pr(Random).

Lemma 3. The probability Pr(Random) of the event Random to occur is negli-

gible if n is constant and Adv(n−1)−PAA is negligible.

Proof. The simulator is given an instance (S, (φi(S), φi(x))1≤i≤n−1)) of the (n−
1)-PAA problem. In the initialization phase, the simulator will give S as parame-
ter to A and uniformly choose n random numbers αi ∈ {1, qs+qex} (i = 1, . . . , n)
to point to the instances Παi

i . The simulator will choose uniformly at random
β ∈ {1, . . . , n} to select one distinguished instance Π

αβ

β among them.
When the simulator has to process Round 1 for one instance Παi

i , i = 1, . . . , n,
i 6= β, Sim will use the given φi(S) instead of computing a new φi with SamAut.
For instance Π

αβ

β the simulator will use the given x(S). If instance Π
αβ

β does not
only get messages containing φi(S), (i = 1, . . . , n, i 6= β) the simulator aborts and
outputs ⊥. Also, if the simulator ever has to apply a φ−1

i it aborts and outputs
⊥ (this will only happen from a Reveal-query).

Because Π
αβ

β is uniformly selected out of a set of n · (qs + qex) potential

instances, it will be used in the Test-query with a probability of (n · (qs +qex))
−1.

To be able to apply the Test-query the adversary has to let Π
αβ

β accept. All

Ui ∈ pid
αβ

β have to be uncorrupted. Then by uniqueness of the session identifier

(Lemma 1) the messages Π
αβ

β must have got in Round 1 were generated by the

same instances as the messages Π
αβ

β received in Round 2. These have to be the

distinguished oracles Παi

i for Ui ∈ pid
αβ

β . For the principals Uj /∈ pid
αβ

β , Π
αj

j

12



must be an oracle that was not revealed. There must be at least one potential
instance that is not used for each Uj /∈ pid

αβ

β . Consequently, with a probability
of 1/n · (qs + qex)

n the principals are distributed as needed.
If A halts, the simulator chooses uniformly one of the at most qH queries to

the random oracle, extracts xβ (assuming it is of the form H(xs1

1 , . . . , xsr
r , pidsi

i ))
and answers this to the (n−1)-PAA challenge. The probability to pick the correct
query is 1/qH · Pr(Random). With a probability of at least

Pr((n− 1)−PAAsolved) ≥
1

n · (qs + qex)n · qH

· Pr(Random)

the simulator solves the challenge. ⊓⊔

Putting it all together we see that AdvA = |Succ− 1/2| is smaller or equal than

n · (qs + qex)
n · qH · Adv(n−1)−PAA + n · AdvSig + negl(k) .

⊓⊔

Remark 2. If instead of a constant number n of potential protocol participants,
we want to allow a size P of polynomial size, the bound in Proposition 2 is
in general no longer negligible. However, if we base on a CDH-assumption as
in Example 1, we can allow for a set P of polynomial size: With the argument
given in Example 1 we see that in this case solving 1-PAA is equivalent to solving
r-PAA for an arbitrary r of polynomial size. In the security proof, this reduction
allows us to replace the exponent n by the constant 2.

Also, an r-PAA that is secure even if the adversary can choose the r public
keys out of a polynomial sized set will help. Because the definition of an mKEM
takes such a choice into account, the protocol allows a polynomial sized set of
users, if it bases on such an mKEM.

Finally, forward secrecy follows with the standard argument that the long-
term keys are used for message authentication exclusively, and we obtain:

Proposition 3. The protocol in Figure 1 fulfills forward secrecy in the sense of
Definition 4.

4 Conclusion

In this contribution we have described a 2-round group key agreement and
showed it to be secure under the assumption that certain group-theoretical tools
are available. In addition to the “standard” security requirement, the proposed
protocol also offers strong entity authentication and integrity. While our frame-
work is primarily geared towards building a provably secure group key agreement
on non-abelian groups, it also allows to derive a 2-round group key agreement
from a CDH assumption.
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