Parsimonious Asynchronous Byzantine-Fault-Tolerant
Atomic Broadcast

HariGovind V. Ramasanty Christian Cachih
August 19, 2005

Abstract

Atomic broadcast is a communication primitive that allowggaup ofn parties to deliver a common
sequence of payload messages despite the failure of somespdve address the problem of asyn-
chronous atomic broadcast when up ta n/3 parties may exhibit Byzantine behavior. We provide
the first protocol with an amortized expected message codtplef O(n) per delivered payload.
The most efficient previous solutions are the BFT protocoClagtro and Liskov and the KS pro-
tocol by Kursawe and Shoup, both of which have message caitypl®(n?). Like the BFT and
KS protocaols, our protocol is optimistic and uses inexpangiechanisms during periods when no
faults occur; when network instability or faults are degel;it switches to a more expensive recovery
mode. The key idea of our solution is to replace reliable thcaat in the KS protocol by consistent
broadcast, which reduces the message complexity &¢nt) to O(n) in the optimistic mode. But
since consistent broadcast provides weaker guaranteesehable broadcast, our recovery mode
incorporates novel techniques to ensure that safety aaddss are always satisfied.

1 Introduction

Atomic broadcast is a fundamental communication primifivethe construction of fault-tolerant dis-
tributed systems. It allows a group afparties to agree on a set of payload messages to deliver and
also on their delivery order, despite the failure of ug fmarties. A fault-tolerant service can be con-
structed using the state machine replication approachb2@gplicating the service on all parties and
propagating the state updates to the replicas using atawaclbast.

In this paper, we present a new message-efficient atomialbast protocol that is suitable for
building highly available and intrusion-tolerant sendda the Internet [4][23]. Since the Internet is an
adversarial environment where an attacker can compromgeampletely take over nodes, we allow
the corrupted parties to deviate arbitrarily from the peotcspecification thereby exhibiting so-called
Byzantine faults We work in an asynchronous system model for two reasonsit (Bst reflects the
loosely synchronized nature of nodes in the Internet, apddRrelying on synchrony assumptions for
correctness also eliminates a potential vulnerabilityhaf $ystem that the adversary can exploit, for
example, through denial-of-service attacks.

Though the problem of Byzantine-fault-tolerant atomicdatoast and the equivalent problem of
Byzantine agreement have been widely studied for over twadies, the applicability of many of the
previous works for our purpose is quite limited. Any asymeious atomic broadcast protocol must use
randomization, since deterministic solutions cannot bergnteed to terminate [10]. Early work fo-
cused on the polynomial-time feasibility of randomizedesgnent [18][7][2] and atomic broadcast [1],
but such solutions are too expensive to use in practice. Npaoipcols have followed an alternative
approach and avoided randomization completely by makimgnger assumptions about the system

*H. V. Ramasamy is with the University of Illinois, Urbana-&hpaign. Emailr amasamnmy@r hc. ui uc. edu.
tC. Cachin is with the IBM Zurich Research Laboratory. Emada@uri ch. i bm com

model, in particular by assuming some degree of synchroky Rampart [21], SecureRing [14], and
ITUA[19]). However, most of these protocols have an unddsé feature that makes them inapplicable
for our purpose: they may violate safety if synchrony asdionp are not met.

Only recently, Cachin et al. proposed practical asynchusragreement [6] and atomic broadcast [5]
protocols that have optimal resilien¢e< n/3. Both protocols rely on a trusted initialization process
and on public-key cryptography. Cachin et al.’s atomic Hoast protocol proceeds in rounds, with
each round involving a randomized Byzantine agreement @sulting in the atomic delivery of some
payload messages.

The BFT protocol by Castro and Liskov [8] and the protocol hy$awe and Shoup [15] (hereafter
referred to as the KS protocol) take an optimistic approactpfoviding more efficient asynchronous
atomic broadcast while never violating safety. The moidvafor such optimistic protocols is the ob-
servation that conditions ar@rmalduring most of a system’s operation. Here, normal condsiti@fer
to a stable network and no intrusions. Both protocols prdéeepochswhere an epoch consists of an
optimistic phasend arecovery phaseand expect to spend most of their time operating in the dgtien
phase, which uses an inexpensive mechanism that is apgepor normal conditions. The protocol
switches to the more expensive recovery phase under uasiablork or certain fault conditions. In
every epoch, a designated party acts &saderfor the optimistic phase, determines the delivery order
of the payloads, and conveys the chosen delivery order totther parties through Bracha’s reliable
broadcast protocol [3], which guarantees delivery of a ticaat payload with the same content at all
correct parties. Bracha’s protocol is deterministic angbives O(n?) protocol messages; it is much
more efficient than the most efficient randomized Byzantgreement protocol [5], which requires ex-
pensive public-key cryptographic operations in additi@onsequently, both the BFT and KS protocols
communicate)(n?) messages per atomically delivered payload under normalitoams, i.e., they have
message complexit9(n?).

No protocol for asynchronous atomic broadcast with messageplexity less thar®(n?) was
known prior to our work. Our protocol for asynchronous atoinioadcast is the first to achieve op-
timal resiliencet < n/3 and O(n) amortized expected message complexity. We call our prbtoco
parsimonioushecause of this significant reduction in message complekityear message complexity
appears to be optimal for atomic broadcast because a ptoteeds to send every payload to each party
at least once and this requiresmessages (assuming that payloads are not propagated tartigss jin
batches). Like the BFT and KS protocols, our protocalpsimisticin the sense that it progresses very
fast during periods when the network is reasonably behamddhgarty acting as designatkgderis
correct. Unlike the BFT protocol (and just like the KS praifc our protocol guarantees bosafety
and livenessin asynchronous networks by relying on randomized agreemé€he reduced message
complexity of our protocol comes at the cost of introducindigital signature computation for every
delivered payload. But in a wide-area network (WAN), thetads public-key operation is small com-
pared to message latency. And since our protocol is targetNs, we expect the advantage of lower
message complexity to outweigh the additional work inalifrg the signature computations.

The key idea in our solution is to replace reliable broadcsstd in the optimistic phase of the
BFT and KS protocols witlconsistent broadcastlso known ascho broadcasf20], the standard
implementation of which needs onf(n) messages. Consistent broadcast is a weaker form of reliable
broadcast that guarantees agreement only among thosetquarées that actually deliver the payload,
but it is possible that some correct parties do not delivgrgayload at all. But the replacement also
complicates the recovery phase, since a corrupted leadght mause the payload to be consistently
delivered at only a single correct party with no way for otberrect parties to learn about this fact. Our
protocol provides mechanisms to address such compliation

Our protocol is related to the reliable broadcast prototdlalkhi et al. [17] in its use of consistent
broadcast as a building block. Their protocol addressébtelbroadcast over a WAN, but provides no
total order.

The rest of the paper is organized as follows. Section 2 iescthe formal system model, the

protocol primitives on which our algorithm relies, and thefidition of atomic broadcast. The protocol
is presented in Section 3 and analyzed in Section 4. Sectiliscisses the practical significance of our
parsimonious protocol and compares it with related workaHy, Section 6 concludes the paper.

2 Preliminaries

2.1 System Model

We consider an asynchronous distributed system model @guivto the one of Cachin et al. [5], in
which there are no bounds on relative processing speeds asshge delays. The system consists of
n parties Py, ..., P, and anadversary Up tot < n/3 parties can be controlled by the adversary. We
call such partiesorrupted the other parties are calledrrect We use ataticcorruption model, which
means that the adversary must pick the parties it corrupte and for all before starting the protocol.
There is also an initialization algorithm that is run by somesteddealerthat performs system setup
before the start of the protocol. All computations by thetipar the adversary, and the trusted dealer
are probabilistic, polynomial-time algorithms. The paedensn andt are given as input to the dealer,
which then generates the state information that is usedttalire each party. Note that after the initial
setup phase, the protocol has no need for the dealer.

Each pair of parties is linked by asuthenticated asynchronous chantleht provides message
integrity (e.g., using message authentication codes.[ZHje adversary determines the scheduling of
messages on all the channels. Timeouts are messages thigt saquals to itself; hence, the adversary
controls the timeouts as well.

We restrict the adversary such that every run of the systewnipletei.e., every message sent by a
correct party and addressed to a correct party is delivemetbdified before the adversary terminates
We refer to this property in liveness conditions when we $@y & message sventuallydelivered or
that a protocol instanceventuallyterminates.

There may be multiple protocol instances that are conctlyrerecuting at each party. A protocol
instance is invoked either by a higher-level protocol ins&aor by the adversary. Every protocol instance
is identified by a unique stringD, called theag, which is chosen by the entity that invokes the instance.
By convention, the tag of a sub-protocol instance contdingdg of the calling instance as a prefix.

A correct party is activated when the adversary delivers ssange to the party; the party then updates
its internal state, performs some computation, and geseeaset of response messages, which are given
to the adversary. There may be several threads of executican diven party, but only one of them is
allowed to be active at any one time. When a party is activaftdhreads are invait states which
specify a condition defined on the received messages cedtairthe input buffer, as well as on some
local variables. In the pseudocode presentation of th@pobtwe specify a wait state using the notation
wait for condition There is a global implicitvait for statement that every protocol instance repeatedly
executes: it matches any of tkenditionsgiven in the clauses of the forimpon condition block If
one or more threads that are in wait states have their condisimultaneously satisfied, one of these
threads is scheduled (arbitrarily), and this thread run# iimeaches another wait state. This process
continues until no more threads are in a wait state whoseitimmds satisfied. Then, the activation of
the party is terminated, and control returns to the adversar

There are three types of messages that appear in the imte¢damur protocols, namely (Ihput
actions which are messages of the foffiD, i n, type,...); (2) output actions which are messages
of the form (D, out , type,...); and (3)protocol messagesvhich are ordinary protocol messages to
be delivered to other parties (of the forffiD, type, . ..)). Note that input actions and output actions
are local events within a party. Before a party starts to ggeamessages that are tagged with

1A more restrictive formalization of liveness conditions fmvironments with a computationally bounded scheduler is
provided by Cachin et al. [5] through the notion mbbabilistically uniformly bounded statisticthis notion can be easily
applied to our protocol with some modifications, but we neffeom using it for the sake of readability.

the instance must beitialized by a special input action of the for(dD, i n,open, type), wheretype
denotes the protocol type and/or its implementation. Sacicsion must precede any other input action
with tag ID. We usually assume that it occurs implicitly with the firgguéar input action.

To analyze a protocol, we use two measures, message cotyeri communication complexity.
The message complexity of a protocol instance withitags defined as the total number of all protocol
messages with the takp or any tag starting withD| ... that correct parties generate. The commu-
nication complexity of a protocol instance with taf) is defined as the total bit length of all protocol
messages with the tald or any tag starting witdD| . .. that correct parties generate.

We make use of a digital signature scheme for our protocolighad signature scheme consists of
algorithms for key generation, signing, and verificatiors gart of the system initialization, the dealer
generates (using the key generation algorithm) the puleljégkivate key pair for each party and gives
every party its private key and the public keys of all partigée assume that the signature scheme is
secure in the sense of the standard security notion for sighachemes of modern cryptography, i.e.,
preventing existential forgery under adaptive chosensamgs attacks [12].

Since we use the formal model of modern cryptography [11]all@v for a negligible probability
of failure in the specification of our protocols.

2.2 Protocol Primitives

Our atomic broadcast protocol relies on a consistent basiqwotocol with special properties and on a
Byzantine agreement protocol.

2.2.1 Strong Consistent Broadcast

We enhance the notion of consistent broadcast found intératiire [5] to develop the notion that we
call strong consistent broadcasDrdinary consistent broadcast provides a way for a det@greender
P; to broadcast a payload to all parties and requires that amgdnrect parties that deliver the payload
agree on its content.

The standard protocol for implementing ordinary consisbeoadcast is Reiterischo broadcagi20];
itinvolvesO(n) messages, has a latency of three message flows, and relieégitalesignature scheme.
The sender starts the protocol by sending the payloa all parties; then it waits for a quorum of
[%’f“} parties to issue a signature on the payload and to “echo”diivad and the signature to the
sender. When the sender has collected and verified enoughtsigs, it composes a final protocol
message containing the signatures and sends it to all partie

With a faulty sender, an ordinary consistent broadcasiopobtpermits executions in which some
parties fail to deliver the payload when others succeedréefbie, a useful enhancement of consistent
broadcast is a transfer mechanism, which allows any paatyhtas delivered the payload to help others
do the same.

For reasons that will be evident later, we introduce anogmérancement and require that when a
correct party terminates a consistent broadcast and delavpayload, there must be a quorum of at
leastn — t parties (instead of only%t“}) who participated in the protocol and approved the deldere
payload. We call consistent broadcast with such a transérhamism and the special quorum rule
strong consistent broadcast

Formally, every broadcast instance is identified by aftBg At the sendetP;, strong consistent
broadcast is invoked by an input action of the faff@, i n, sc- br oadcast,m), with m € {0, 1}*.
When that occurs, we sal/; sc-broadcastsn with tag ID. Only P, executes this action; all other
parties start the protocol only when they initialize ins®riD in their role as receivers. A party
terminates a consistent broadcastnoftagged with/D by generating an output action of the form
(ID,out ,sc-del i ver,m). In that case, we sa¥; sc-deliversm with tag ID.

For the transfer mechanism, a correct party thatdtadeliveredm with tag ID should be able to
output a bit stringV/;p thatcompleteshe sc-broadcasin the following sense: any correct party that has

not yetsc-deliveredn can run avalidation algorithmon M;p (this may involve a public key associated
with the protocol), and if\/;p is determined to bealid, it can alsosc-deliverm from M;p.

Definition 1 (Strong consistent broadcast).A protocol for strong consistent broadcast satisfies the
following conditions except with negligible probability.

Termination: If a correct partysc-broadcastsn with tag ID, then all correct parties eventualbg-
deliver m with tag ID.

Agreement: If two correct parties?; and P; sc-deliverm andm’ with tag ID, respectively, them: =
m'.

Integrity: Every correct partgc-deliversat most one payloath with tag ID. Moreover, if the sender
P, is correct, thenn was previouslysc-broadcasby P, with tag ID.

Transferability: After a correct party hasc-deliveredm with tag ID, it can generate a strindy/;p
such that any correct party that has sotdelivereda message with ta@Dis able tosc-deliver
some message immediately upon processing .

Strong unforgeability: For anyID, it is computationally infeasible to generate a valdethat is ac-
cepted as valid by the validation algorithm for completifigy unlessn — 2t correct parties have
initialized instancelD and actively participated in the protocol.

Note that the termination, agreement, and integrity ptiggeare the same as in ordinary consistent
broadcast [20][5].

Given the above implementation of consistent broadcastcan obtain strong consistent broadcast
with two simple modifications. The completing strifd;p for ensuring transferability consists of the
final protocol message; the attached signatures are soffiitie any other party to complete thse-
broadcast Strong unforgeability is obtained by setting the sigragmorum ton — t.

With signatures of siz& bits, the echo broadcast protocol has communication cotitylé (r(|m|+
nK)) bits, where|m/| denotes the bit length of the payload By replacing the quorum of signatures
with a threshold signature [9], it is possible to reduce t@munication complexity t® (n(|m|+ K))
bits [5], under the reasonable assumption that the lendthgtomeshold signature and a signature share
are also at mosk’ bits [24].

In the rest of the paper, we assume that strong consisteatitast is implemented by applying the
above modifications to the echo broadcast protocol withstiolel signatures. Hence, the length of a
completing string i<0(|m| + K) bits.

2.2.2 Multi-Valued Byzantine Agreement

We use a protocol for multi-valued Byzantine agreement (MYBs defined by Cachin et al. [5], which
allows agreement values from an arbitrary domain instedskirfy restricted to binary values. Unlike
previous multi-valued Byzantine agreement protocolsy fmtocol does not allow the decision to fall
back on adefaultvalue if not all correct parties propose the same value, bes & protocol-external
mechanism instead. This so-callexternal validity conditions specified by a global, polynomial-time
computable predicat®;p, which is known to all parties and is typically determined doy external
application or higher-level protocol. Each party proposeslue that contains certain validation infor-
mation. The protocol ensures that the decision value wasoseal by at least one party, and that the
decision value satisfiggp.

When a partyP; starts an MVBA protocol instance with tad and an input value € {0,1}*
satisfying predicaté) ;p, we say thatP; proposes for multi-valued agreement with tak and predi-
cate);p. Correct parties only propose values that satigfy. WhenP; terminates the MVBA protocol
instance with tagD and outputs a value, we say that idecidesv for ID.

Definition 2 (Multi-valued Byzantine agreement). A protocol for multi-valued Byzantine agreement
with predicate) ;p satisfies the following conditions except with negligiblelpability.

External Validity: Any correct party that decides f@D decidesy such thatQ;p (v) holds.

Agreement: If some correct party decidedfor ID, then any correct party that decides fér decides.

Integrity: If all parties are correct and if some party decidefor /D, then some party proposed
for ID.

Termination: All correct parties eventually decide féD.

The MVBA protocol of Cachin et al. [5] builds upon a protocok fbinary Byzantine agreement
(such as the one of Cachin et al. [6]), which relies on thrieshkighatures and a threshold coin-tossing
protocol (e.g., [6]). The expected message complexity@®MNBA protocol isO(n?) and the expected
communication complexity ié)(n3 +n?(K + L)), whereK is the length of a threshold signature and
L is a bound on the length of the values that can be proposed.

2.3 Definition of Atomic Broadcast

Atomic broadcast provides a “broadcast channel” absta¢1i3], such that all correct parties deliver the
same set of messages broadcast on the channel in the samefopdety P, atomically broadcastgor
a-broadcastsa payloadn with tag /D when an input action of the forf/D,i n,a- br oadcast ,m)
with m € {0,1}* is delivered toF,. Broadcasts are parameterized by the f>o identify their
corresponding broadcast channel. A patgmically deliverqor a-deliverg a payloadm with tag 1D

by generating an output action of the fo(dfD, out ,a- del i ver,m). A party maya-broadcastand
a-deliveran arbitrary number of messages with the same tag.

Definition 3 (Atomic broadcast). A protocol for atomic broadcast satisfies the following pdjes
except with negligible probability.

Validity: If ¢t 4+ 1 correct partiesa-broadcastsome payloadn with tag ID, then some correct party
eventuallya-deliversm with tag ID.

Agreement: If some correct party haa-deliveredm with tag ID, then all correct parties eventually
a-deliverm with tag ID.

Total Order: If two correct parties botla-delivereddistinct payloadsn, andms with tag 1D, then
they havea-deliveredthem in the same order.

Integrity: For any payloadn, a correct party’; a-deliversm with tag ID at most once. Moreover, if
all parties are correct, then was previouslya-broadcastoy some party with tagD.

The above properties are similar to the definitions of Caehal. [5] and of Kursawe and Shoup [15].
We do not formalize theifairnesscondition, which requires that the protocol “makes progtéawards
delivering a payload as soon&s 1 correct parties hava-broadcasit. However, our protocol actually
satisfies an equivalent notion (cf., Lemma 4).

3 The Parsimonious Asynchronous Atomic Broadcast Protocol

3.1 Overview

The starting point for the development of our ProtoBABC is the BFT protocol [8], which can be
seen as the adaptation of Lamport’s Paxos consensus pr{itéteo tolerate Byzantine faults. In the
BFT protocol, a leader determines the delivery order of gagys and conveys the order using reliable
broadcast to other parties. The parties then atomicallyeatethe payloads in the order chosen by the
leader. If the leader appears to be slow or exhibits faultyali®r, a party switches to the recovery
mode. When enough correct parties have switched to recawede, the protocol ensures that all
correct parties eventually start the recovery phase. Théafahe recovery phase is to start the next
epoch in a consistent state and with a new leader. The diffitiels in determining which payloads
have been delivered in the optimistic phase of the past epbieh BFT protocol delegates this task to

the leader of the new epoch. But since the recovery phase Bfi8&lso deterministic, it may be that
the new leader is evicted immediately, before it can do aefulisvork, and the epoch passes without
delivering any payloads. This denial-of-service attachimst the BFT protocol violates liveness but is
unavoidable in asynchronous networks.

The KS protocol [15] prevents this attack by ensuring thaeast one payload is delivered during
the recovery phase. It employs a round of randomized Byzaaijreement to agree on a set of payloads
for atomic delivery, much like the asynchronous atomic doaat protocol of Cachin et al. [5]. During
the optimistic phase, the epoch leader conveys the delivalgr through reliable broadcast as in BFT,
which leads to an amortized message complexit§ 0f?).

Our approach is to replace reliable broadcast in the KS pobtwith strong consistent broadcast;
the replacement directly leads to an amortized messagelegitypof only O(n). But the replacement
also introduces complications in the recovery phase, sirerupted leader may cause the fate of some
payloads to be undefined in the sense that there might be aitgle correct party that has-delivered
a payload, but no way for other correct parties to learn athisifact. We solve this problem by delaying
the atomic delivery of asc-deliveredpayload until more payloads have besmdelivered However,
the delay introduces an additional problem of payloadsrgetstuck” if no further payloads arrive. We
address this by having the leader genedhtmmypayloads when no further payloads arrive within a
certain time window.

The recovery phase in our protocol has a structure similétretbof the KS protocol, but is simpler
and more efficient. At a high level, a first MVBA instance emsuthat all correct parties agree on
a synchronization point. Then, the protocol ensures tHatoatect partiesa-deliver the payloads up
to that point; to implement this step, every party must sttgayloads that were delivered in the
optimistic phase, together with information that proves thct that they were delivered. A second
MVBA instance is used t@-deliver at least one payload, which guarantees that the protocoésnak
progress in every epoch.

3.2 Detalils

We now describe the optimistic and the recovery phases @ild&he line numbers refer to the detailed
protocol description in Figures 1-3.

3.2.1 Optimistic Phase

Every party keeps track of the current epoch numband stores all payloads that it has received to
a-broadcastbut not yeta-deliveredin its initiation queueZ. An elementz can be appended Hby an
operationappend(x,Z), and an element that occurs anywhere ih can be removed by an operation
remove(x,Z). A party also maintains an arrdyg of size B that acts as a buffer for all payloads
to a-deliverin the current epoch. Additionally, a party stores aB®edf all payloads that have been
a-deliveredso far.

We describe the optimistic phase of ProtoPABC by first detailing the normal protocol operation
when the leader functions properly, and then explainingnileehanisms that ensure that the protocol
switches to the recovery phase when the leader is not furietjgroperly.

Normal Protocol Operation. When a party receives a requestatbroadcasi payloadn, it appends
m toZ and immediately forwards: using ani ni t i at e message to the leadéy of the epoch, where
I = e mod n (lines 12-14). When this happens, we gaynitiatesthe payload.

The leader binds sequence numbers to the payloads thakeiveedni ni t i at e messages, and
conveys the bindings to the other parties through strongistamt broadcast. For this purpose, all parties
execute a loop (lines 15-38) that starts with an instanceaig consistent broadcast (lines 15-26). The
leader acts as the sender of strong consistent broadcasteataly contains the epoetand a sequence
numbers. Here,s starts from 0 in every epoch. The leaderbroadcastdhe next available initiated

Protocol PABC for party P; and tag ID
initialization:
l.e—0 {current epoch
2.7] {initiation queue, list oB-broadcasbut nota-deliveredpayloads
33D~ {set ofa-deliveredpayload$
4: init_epoch()
function init_epoch():
5]« (emodn)+1 {P, is leader of epoch}
6: log — |] {array of sizeB containing payloads committed in current eppch
7: 50 {sequence number of next payload within epoch
8: complained — f al se {indicates if this party already complained ab&u}
9: start_recovery «— f al se {signals the switch to the recovery phase
10: ¢+ 0 {number ofconpl ai n messages received for epoch legder
11: S <D {set ofa-deliveredor alreadysc-broadcaspayloads af’, }

upon (ID,i n,a- br oadcast ,m):

12
13
14

forever:
15

16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:

function
39

40:
41:
42:

:send(ID,initiate,e,m)to P
. append(m,T)
: updates (initiate,m)

{optimistic phasg
. if ~complained then {leaderP; is not suspected
initialize an instance of strong consistent broadcast wigh/D|bi nd.e.s
m«— L
if i = [then
wait for timeout(T') or receipt of a messagéD,i ni ti at e,e,m) suchthatn ¢ S
if timeout(T') then
m «— dunmy
else
S —Su{m}
stop(T)
sc-broadcasthe message: with tag ID|bi nd.e.s
wait for start_recovery or sc-deliveryof somem with tag ID|bi nd.e.s such thatn & D U log
if start_recovery then
recovery()
else
log[s] — m
if s > 2then
update z, (del i ver ,log[s — 2])
deliver(logls — 2])
if ¢ =1 and (log[s] # dunmy or (s > 0 and log[s — 1] # dunmy)) then
start(T)
s—s+1
if s mod B = 0then
recovery()

deliver(m):

. if m # dumy then

remove(m,)

D —DuU{m}

output(ID,out ,a- del i ver ,m)

Figure 1: ProtocolPABC for Atomic Broadcast (Part 1)

function complain():
43: send(ID,conpl ai n,e) to all parties
44: complained — true
upon receiving messag@D, conpl ai n, e) from P; for the first time:

45: c+—c+1

46: if (c =t + 1) and ~complained then
47: complain()

48: else ifc = 2t + 1 then

49: start_recovery < true

let Q;p\wat er mar k.. be the following predicate:

Qpwat er mar k.e([(sl? C1,01),. -, (80, Cn, Un)]) =
(for at leastn — ¢ distinctj, s; # 1) and
(forallj =1,...,n, eithers; = L or
(o; is a valid signature by?; on (ID,conmi tt ed, e, s;,C;) and
(s; = —1 or the valueC'; completes thec-broadcastith tag ID|bi nd.e.sj)))

Let @;p del i ver .. be the following predicate:

Qrpidel | Ver.e([(zl’01)7""In’an)]) = for at leastr — ¢ distinctj,

(Z; D =0 and g, is a valid signature by; on (ID, queue,e, j,Z;))

Figure 2: ProtocolPABC for Atomic Broadcast (Part 11)

payload, and every party waits se-deliversome payloadn. Whenm is sc-delivered P; stores it in
log, but does not yea-deliverit (line 30). At this point in time, we say thdt;, hascommittedsequence
numbers to payloadm in epoche. Then, P; a-deliversthe payload to which it has committed the
sequence number— 2 (if available, lines 31-33). It incremenis(line 36) and returns to the start of
the loop.

Delaying thea-deliveryof the payload committed te until sequence number+ 2 has been com-
mitted is necessary to prevent the above problem of payleduse fate is undefined. However, the
delay results in another problem if no further payloadsséhwith sequence numbers higher tkaare
sc-delivered We solve this problem by instructing the leader to séndiry messages to eject the orig-
inal payload(s) from the buffer. The leader triggers suchuamy message whenever a corresponding
timer T" expires (lines 20-21)7 is activated whenever one of the current or the precedingese
numbers was committed to a ndismy payload (lines 34-35), and is disabled when the leader
sc-broadcasta nondumy payload (line 24). Thus, the leader sends at mostdwary payloads to
eject a nordunmmy payload.

Failure Detection and Switching to the Recovery Phase. There are two conditions under which the
protocol switches to recovery phase: (1) whepayloads have been committed (line 38) and (2) when
the leader is not functioning properly. The first conditismeeded to keep the bufféry bounded and
the second condition is needed to prevent a corrupted Idamharviolating liveness.

To determine if the leader of the epoch performs its job athyeevery party has access to a leader
failure detector#;. For simplicity, Figures 1-3 do not include the pseudocaate/. The protocol
provides an interfaceomplain(), which F; can asynchronously invoke to notify the protocol about its
suspicion that the leader is corrupted. Our protocol sysmabuisly invokes an interfacepdate r, of
J to convey protocol-specific information (during executwfithe update £, call, 7; has access to all
variables of ProtocdPABC).

function recovery():
{Part 1: agree on watermark

50:
51:

52:
53:

54.
55:
56:
57:

compute a signature on (ID,conmmi tt ed,e,s — 1)
send the messadéD,commi tted,e, s — 1,C, o) to all parties, wher€' denotes
the bit string that completes tise-broadcaswith tag /D|bi nd.e.(s — 1)
(SJ'?Cjan)(_(lalal) (1§J§n)
wait for n — ¢ message§/D,commi tt ed, e, s;, C;, ;) from distinct P; such thatC; completes
the sc-broadcasinstancelD|bi nd.e.s; ando; is a valid signature oD, conmi t t ed, e, s;)
W —[(51,C1,01)s -, (Sns Cnyon)]
proposelV for MVBA with tag ID|wat er mar k.e and predicaté) ;, wat er mar k .
wait for MVBA with tag ID|wat er mar k.e to decide somé&V = [(51,C1,51), .-, (5n, Cn, 50)]
w «— max{&1,...,8,} — 1

{Part 2: synchronize up to watermark

58:
59:
60:
61:
62:
63:
64:
65:
66:
67:

68

69:

70:
71:
72:

s —s5—2
while s’ < min{s — 1,w} do
if s/ > 0then
deliver(log[s'])
s —s+1
if s > wthen
forj=1,...,ndo
u «— max{s;,5;}
M — {M,} forv =u,...,w, whereM, completes thec-broadcasinstance/D|bi nd.e.v
send messagdD, conpl et e, M) to P;
while s < w do
wait for a messagélD, conpl et e, M) such thatM, € M completessc-broadcast
with tag ID|bi nd.e.s
useM, to sc-deliversomem with tag ID|bi nd.e.s
deliver(m)
s—s+1

{Part 3: deliver some messades

73:
4.
75:
76:

77:
78:

79:
80:
81:
82:
83:
84:

compute a digital signatureon (ID, queue, e, i,7)
send the messadéD, queue, e, i,Z, o) to all parties
(Zj,05) < (L, 1) (1<j<n)
wait for n — t message§/D, queue, e, j,Z;, 0;) from distinctP; such that
o is a valid signature fron®; andZ; N D = ()
Q—[(T1,01), -, (Zn,00)]
proposel) for MVBA with tag ID|del i ver .c and predicat€);, gel i ver .
wait for MVBA with tag ID|del i ver .e to decide som€) = [(Z1,51), . - -, (Zn, n)]
for m € U;_, Z; \ D, in some deterministic ordeio
deliver (m)
init_epoch()
for m € 7 do
send(/D,initiate,e,m)toP,

Figure 3: ProtocolPABC for Atomic Broadcast (Part 111)

10

An implementation ofF; can check whether the leader is making progress based oreauirand
protocol information as follows. Recall that every partyimtains a queué of initiated but not yet
a-deliveredpayloads. WherP; has initiated somen, it calls update £ (i ni ti at e,m) (line 14); this
starts a timefl'r, unless it is already activated. When a payload-geliveredduring the optimistic
phase, the call tapdate £, (del i ver ,m) (line 32) checks whether treedeliveredpayload is the first
undelivered payload iff, and if it is, disableqr,. WhenTx, expires,F; invokescomplain().

When P; executescomplain(), it sends econpl ai n message to all parties (line 43); it also sets
the complained flag (line 44) and stops participating in tee-broadcastdy not initializing the next
instance. When a correct party receigeés- 1 conpl ai n messages, it enters the recovery phase. There
is a complaint “amplification” mechanism by which a correattg that has receivet+ 1 conpl ai n
messages and has not yet complained itself joins the canmpdigparties by sending its owoonpl ai n
message. Complaint amplification ensures that when somectqrarty enters the recovery phase, all
other correct parties eventually enter it as well.

3.2.2 Recovery Phase

The recovery phase consists of three parts: (1) determaingitermark sequence number, (2) syn-
chronizing all parties up to the watermark, and (3) delivgrsome payloads before entering the next
epoch.

Part 1: Agree on Watermark The first part of the recovery phase determineggermarksequence
numberw with the properties that (a) at least 1 correct parties have committed all sequence numbers
less than or equal t@ in epoche, and (b) no sequence number higher thas 2 has been committed
by a correct party in epoch

Upon entering the recovery phase of epegha party sends out a signesnmi tt ed message
containings — 1, the highest sequence number that it has committed in tlishept justifiess — 1 by
adding the bit string”’ that completes thec-broadcasinstance with tag ands—1 (lines 50-51). Then,

a party receives —t suchcomni t t ed messages with valid signatures and valid completion bitgsr
It collects the receivedonmmi t t ed messages inwatermark proposal vectd” and propose$lV for
MVBA. Once the agreement protocol decides owatermark decision vectoW (lines 52-56), the
watermarkw is set to the maximum of the sequence numbeidiminus 1 (line 57).

Consider the maximal sequence numbgein W and the corresponding’;. It may be thatP; is
corrupted or thaf’; is the only correct party that ever committedin epoche. But the values contain
enough evidence to conclude that at least 2t > ¢ + 1 correct parties contributed to this instance of
strong consistent broadcast. Hence, these parties havieysly committeds; — 1. This ensures the
first property of the watermark above (see also Lemma 2).

Although one or more correct parties may have committedl andw+2, none of them has already
a-deliveredthe corresponding payloads, because this would contréaictefinition ofw. Hence,
these sequence numbers can safely be discarded. The digcalsb ensures the second property of
the watermark above (see Lemma 5). It is precisely for thisoa that we delay tha-deliveryof a
payload to which sequence numbewas committed untik + 2 has been committed. Without it, the
protocol could end up in a situation where upttoorrect partiema-delivereda payload with sequence
numberw + 1 orw + 2, but it would be impossible for all correct parties to leaboat this fact and to
learn thea-deliveredpayload.

Part 2: Synchronize up to Watermark The second part of the recovery phase (lines 58—72) ensures
that all partiesa-deliverthe payloads with sequence numbers less than or equal tbdoes so in a
straightforward way using thteansferability property of strong consistent broadcast.

In particular, every correct parti; that has committed sequence numhbefthere must be at least
t + 1 such correct parties by the definition @) computescompleting stringsV/; for s = 0,...,w

11

that complete thec-broadcastinstance with sequence number It can do so using the information
stored inlog. Potentially, P, has to send\ly, ..., M, to all parties, but one can apply the following
optimization to reduce the communication. Note tiatknows from at least — ¢ parties P; their

highest committed sequence numbei(either directly from econmmi t t ed message or from the wa-
termark decision vector); i; knows nothing from som#;, it has to assume; = 0. ThenP; simply

sends aonpl et e message wittVs, 41, ..., M, to P; for j = 1,...,n. Every party receives these
completing strings until it is able ta-deliverall payloads committed to the sequence numbers ugp to

Part 3: Deliver Some Messages Part 3 of the recovery phase (lines 73—84) ensures that titeqot
makes progress bg-deliveringsome messages before the next epoch starts. In an asyngtnoet
work, implementing this property must rely on randomizeteagient or on a failure detector [10]. This
part uses one round of MVBA and is derived from the atomic ticaat protocol of Cachin et al. [5].

Every partyP; sends a signequeue message with all undelivered payloads in its initiationugie
to all others (lines 73—74), collects a vectprof n — ¢ such messages with valid signatures (lines 75—
77), and propose8 for MVBA. Once the agreement protocol has decided on a vegtfines 78—79),
party P; delivers the payloads i@ according to some deterministic order (lines 80-81).

ThenP; increments the epoch number and starts the next epoch lepndiagi ni t i at e messages
for all remaining payloads in its initiation queue to the rNeader (lines 82—84).

3.3 Optimizations

Both the BFT and KS protocols process multiple sequence atsrib parallel using a sliding window
mechanism. For simplicity, our protocol description doesinclude this optimization and processes
only the highest sequence number during every iteratiohefdop in the optimistic phase. However,
Protocol PABC can easily be adapted to proce3gpayloads concurrently. In that case, upflcsc-
broadcastinstances are active in parallel, and the delay of two sespieombers betweest-delivery
anda-deliveryof a payload is set t@€). In part 1 of the recovery phase, the watermark is set to the
maximum of the sequence numbers in the watermark decisoninus(?, instead of the maximum
minus 1.

In our protocol description, the leadsc-broadcastone initiated payload at a time. However,
ProtocolPABC can be modified to processbatch of payload messages at a time by committing se-
guence numbers to batches of payloads, as opposed to segteags. The leadesc-broadcastsa
batch of payloads in one instance, and all payloads iscadeliveredbatch area-deliveredin some
deterministic order. This optimization has been shown togiase the throughput of the BFT protocol
considerably [8].

Although the leader failure detector described in Sectighl3is sufficient to ensure liveness, it
is possible to enhance it using protocol information asofed. The leader in the optimistic phase
will never have tosc-broadcastmore than twoduntry messages consecutively to evict ramAmy
payloads from the buffer. The failure detector oracle camtaan a counter to keep track of and restrict
the number of successiduntmy payloadssc-broadcasby the leader. Ifn is a nondunty payload,
the call toupdate £, (del i ver ,m) upona-delivery of payloadm resets the counter; otherwise, the
counter is incremented. If the counter ever exceeds 2, Mémokes thecomplain() function.

3.4 Protocol Complexity

In this section, we examine the message and communicatioplegities of our protocol. We assume
that strong consistent broadcast is implemented by the leiaxicast protocol using threshold signa-
tures, and that MVBA is implemented by the protocol of Caddtial. [5], as described in Section 2.2.

For a payloadn that isa-deliveredin the optimistic phase, the message complexit@{s), and the
communication complexity i€ (n(|m|+ K)), where the length of a threshold signature and a signature
share are at mogt bits.

12

The recovery phase incurs higher message and communicaiioplexities because it involves
Byzantine agreement. The MVBA protocol of Cachin et al. [8$lan expected message complexity of
O(n?). Hence, determining the watermark in part 1 of the recovevglives expected(n?) messages.
The corresponding expected communication complexit) (8*(|m| + K)) since the proposal values
containO(n) 3-tuples of the forn{s;, C;, o;), each of lengtfO(|m| + K'). Here,m denotes the longest
payload contained in the proposal.

In part 2 of the recovery phase, up @(n?) conpl et e messages are exchanged. Recall that
aconpl et e message may encompass all payload messages that wereuphgaiaeliveredin the
optimistic phase of the epoch. Each of the< B completing strings in aonpl et e message may be
O(]m| + K) bits long, wheren denotes the longest-deliveredpayload. Hence, the communication
complexity of part 2 of the recovery phased¥n’B(|m| + K)).

Part 3 of the recovery phase is again dominated by the cobed¥itvBA protocol. Hence, the ex-
pected message complexity of part 8lén?) and the expected communication complexit@ig:®|m)|)
since the proposal values in MVBA are of lengftin|m)|).

To summarize, for a payload thatasdeliveredin the recovery phase, the cost is dominated by the
MVBA protocol, resulting in an expected message complesity)(n?) and an expected communica-
tion complexity ofO (n?(n + B)(|m| + K)). Assuming that the protocol stays in the optimistic mode
as long as possible areddelivers B payloads before executing recovery, #mortizedexpected com-
plexities per payload over an epoch &én + "Tf) messages ar(d(%f(]m\ + K)) bits. Itis reasonable
to setB > n, so that we achieve amortized expected message compf@ityas claimed.

4 Analysis

In this section, we prove the following theorem.

Theorem 1. Given a digital signature scheme, a protocol for strong ¢stesit broadcast, and a protocol
for multi-valued Byzantine agreement, ProtoB8IBC provides atomic broadcast for > 3t.

We first establish some technical lemmas that describe tipepies of ProtocdPABC.

Lemma 2. At the point in time when the first correct party has determiitiee watermarko during the
recovery phase of epoeh at leastt + 1 correct parties have committed sequence numbar epoche.

Proof. First note that the lemma holds trivially i = —2, and we may assume > —1 in the rest of
the proof. Letj* denote the index of the largest sequence numaper. ., 5,, contained in the decision
vector W of the agreement with tagD|wat er mar k.e. Note thatw = 35;+ — 1 according to the
protocol. By the predicaté),mwat er mar k.. the stringC;- in W completes the strong consistent
broadcast with tagD |bi nd.e.j*. According to the strong unforgeability property of straransistent
broadcast(;- contains evidence that at least- 2¢ distinct correct parties have participated in e
broadcastinstance with sequence numbgr According to the logic of the optimistic phase, a correct
party initializes an instance of strong consistent brostladgth tag/D |bi nd.e.s only after committing
sequence number— 1. Hence, these — 2¢ > ¢ + 1 correct parties have also committed sequence
number;* — 1 = w. O

Lemma 3. If some correct party has entered the recovery phase of epotien all correct parties
eventually enter epoch-+ 1.

Proof. To establish the above lemma, we prove the following twantai

Claim 1: If some correct party has entered the recovery phase of epdhbn all correct
parties eventually enter the recovery phase of epoch

13

Claim 2: If all correct parties have entered the recovery phase affepathen all correct
parties eventually enter epoeht 1.

By the transitive application of the two claims, the lemmbiiofes.

We first prove Claim 1. Suppose that a correct pdetyenters the recovery phase of epachpP;
does so only after receivingonpl ai n messages frort + 1 distinct parties. At least + 1 of these
messages must have been from correct parties. Hence, eweegtcparty eventually receivest 1
conpl ai n messages and sends its oaonpl ai n message. Thus, every correct party eventually
receivesn — t > 2t 4+ 1 conpl ai n messages and transitions to the recovery phase of epoch

To prove Claim 2, one has to show that a correct party tharetie recovery phase of epoeh
eventually completes all three parts of the recovery andestw epocle + 1.

A correct party completes part 1 of the recovery becauseitterally receives—t validcomi t t ed
messages from all correct parties and because all corragpaventually decide in the MVBA proto-
col, according to its termination property.

Part 2 of the recovery phase is concerned with ensuring thedraect partiesa-deliverthe set of
nondumy payloads to which sequence numbers less than or equaltere committed. Completion
of part 2 by a correct party is guaranteed by the transfétybpiloperty of strong consistent broadcast as
follows. A correct partyP; that has committed sequence numibdirst a-deliversnon-dunmy payloads
committed to sequence numbess— 1 andw (if it has not already done so). Then it sends a message
with a set of completing string&V/,| 0 < s < w} to all other parties and moves to part 3 of the recovery
phase. Here); is the string that completes tlse-broadcasinstance with sequence numbgmhich
can be computed from the information storediéan. A correct partyP; that has not committed all
sequence numbers less tharwaits to receive the corresponding completing stringsis guaranteed
to receive them eventually, since, by Lemma 2, there aresttle- 1 correct parties that have committed
sequence numbes. P; thena-deliversall nondunmy payloads with sequence numbers uptt@nd
moves to part 3 of the recovery phase.

Analogous to part 1, completion of part 3 of the recovery iargateed by the fact that— ¢ queue
messages will eventually be received and by the termingtioperty of MVBA. O

Lemma 4. Suppose* is the largest epoch number at any correct party at the pairitrhe whent + 1
correct parties have-broadcassome payloadn, and assume that some correct party did aateliver
m before entering epocki*. Then some correct party; a-deliversm before entering epock + 1.

Proof. The lemma is trivially satisfied if’; a-deliversm during the optimistic phase of epoeh. Oth-
erwise,m is still present in the initiation queug of at leastt + 1 correct parties. Since the initiation
queues oh — t parties are included in the decision vector of MVBA in partf3h® recovery phase, at
least one of these queues also containsnd the lemma follows. O

Lemma 5. Let w be the watermark of epoch No correct party commits a sequence number larger
thanw + 2 in epoche, and no correct partya-deliversa payload to which a sequence number larger
thanw has been committed in epoelbefore reaching part 3 of the recovery phase.

Proof. The proof is by contradiction. Suppose that some corredly pdr has committed sequence
numberw’ = w + 3. Then, P, has previouslysc-deliveredsomem with tag ID|bi nd.e.w’, and the
strong unforgeability property of strong consistent bizest implies that at leagt— 2t > ¢ + 1 correct
parties have participated in thég-broadcasinstance. Since correct parties initialize $ebroadcast
instance with tag/D|bi nd.e.w’ only after committing the previous sequence number, theg ladso
committed sequence numbef — 1.

Therefore, these + 1 correct parties have also sent a sigraghi t t ed message containing
sequence numbear’ — 1 during recovery. Hence, the decision vect®r with n — ¢ entries signed
by distinct parties contained a trip(@;+, C;j~, 5;+) signed by one of those+ 1 correct parties with
5;+ = w’ — 1. By the agreement property of MVBA, every correct party nhaste computed the same

14

W and setw to the maximum among the values contained ifiV minus 1, i.eaw = 5, — 1 = w' — 2.
But this contradicts our assumption thelt= w + 3.

To prove the second part of the lemma, recall thatattdeliveryof the payload to which sequence
numbers — 2 has been committed is delayed until after sequence numbas been committed. But
since no correct party commits a sequence number largenthar?, as shown in the first part of the
lemma, no correct partg-deliversany payload to which a sequence number larger thamas been
committed in the optimistic phase of epoehAfter the watermark in part 1 of the recovery phase has
been determined, as can be seen from the checks in lines 588amart 2 ensures that payloads are
a-deliveredonly up to the watermark; sequence numhers 1 andw + 2 are simply discarded. [

Lemma 6. Suppose the watermark of epoelsatisfiesw > —1. Then all correct parties eventually
a-deliverall non-dunmmy payloads to which any correct party has committed a sequanogber less
than or equal taw in epoche.

Proof. By the agreement and termination properties of MVBA, a airparty P, eventually determines
the watermarkw of epoche. During the optimistic phase, it hasdeliveredall nondunmy payloads
with sequence numbers less than 2.

When P; moves to part 2 of the recovery phase, the code in lines 59a6@res thatP; also a-
deliversthose hordummy payloads to which sequence numbers 2 ands — 1 have been committed.

Note thatw may be smaller or larger than— 1, the highest committed sequence numbew K s
and P; has already committed, then by the logic of the optimistic phase and the loop indiB8—62,
P; eventuallya-deliversall non-duntry payloads to which a sequence number less than or equal to
has been committed.

On the other hand, ifv > s and P, has not yet committedb, it waits to receive a string M, }
that completes thec-broadcasinstance with sequence numbérfor s’ < w. Party P; is guaranteed
to receive all of them eventually, since there are at leastl correct parties that have committed all
sequence numbers updoby Lemma 2.P; thena-deliversall nondummy payloads to which sequence
numbers betweenandw have been committed in epoeh O

Lemma 7. In every epocla, there exists a sequen@eof payloads such that any correct pagydelivers
all payloads in epocta in the order ofS.

Proof. We first define a sequenc® for every correctP;, and show that the sequences computed by
distinct correct parties are equal.

S! is defined as follows. During the optimistic phase, all pag® thatP; sc-deliversare appended
to S} in the order of their delivery. Suppog® has entered the recovery phase and has computed the
watermarkw; note thatS; containss elements. Ifs > w + 1, thenS! is truncated to the firsb + 1
elements; ifs < w, thenS! is extended tav + 1 elements by the payloads that aedeliveredwith
tags/D|bi nd.e.v for v = s, ..., w through theconpl et e messages in lines 68—72. During part 3 of
the recovery phase, all payloadsugi:jj \ D are appended 8, according to the given deterministic
order, according to line 80.

It is easy to see that, except with negligible probability,— S;- for any two correct partie®; and
P; from the consistency property of strong consistent brostdaad from the agreement property of
MVBA. Hence, one may think of a global sequerge= S for all P,.

Note that every party-deliversall nondunmmy payloads inS; during epoche. Hence, the se-
guencesS is equal taS’ with all dunmy payloads removed. O

Proof of Theorem 1We have to show that ProtocBABC satisfies the validity, agreement, total order,
and integrity properties of atomic broadcast.

Validity follows directly from Lemma 4. In fact, Lemma 4 proves a sgenversion of the validity
property stated in Section 2.3. The reason is that while #tidity property specifies only an “eventual

15

a-delivery for a payloadm that has been-broadcastby ¢ + 1 correct parties, Lemma 4 shows that
will be delivered relatively quickly.

To showAgreementsuppose that a correct pamy hasa-deliveredsomem in epoche. We have to
show that eventually all correct partiasdeliverm.

We first distinguish two cases. In the first case, suppédesa-deliveredm before entering part 3
of the recovery phase in epoeh Then, Lemma 5 proves that a sequence number less than dr equa
to the watermarko of epoche has been committed to. Lemma 6 shows that all correct parties
eventuallya-deliverall nondumry payloads to which a sequence number less than or equahts
been committed, includingr. This proves that the agreement property holds for the fase.c

In the second case; wasa-deliveredduring part 3 of the recovery phase, afféerhad terminated
the MVBA protocol. Then the agreement and termination pirigeof MVBA guarantee that all correct
parties eventually terminate the MVBA protocol aadieliverthe same sequence of payloads.

Hence, we have proved that/ a-deliversm in epoche, all correct parties in epocheventually
a-deliverm. Extending the proof to the definition of agreement now oelguires us to show that all
correct parties eventually reach epachLemma 3 implies exactly that. Hence, by induction on the
epoch, it can be easily seen that ProtdeaBC satisfies agreement.

Thetotal order property for a particular epochis proved by Lemma 7. Hence, by induction on the
epoch number, it can be easily seen that ProtBé@C satisfies total order.

For integrity, we first show that a payload: is a-deliveredat most once by a correct parfy;.
Suppose thaP; a-deliversm in epoche. Then, there are two possibilities, depending on whether th
a-deliveryhappened before or after part 3 of epethrecovery phase was entered. In the former case
(a-deliverybefore part 3 is entered), some sequence number less thajualrte w must have been
committed tom. The check in line 26 ensures that a sequence number is ctedrtutpayloadn only
if m & D. In the latter caseaftdeliveryin part 3 of the recovery phase), payloadmust have been a
part of the decision vectap. The check in line 80 ensures that only payload€)ithat are not irD
area-deliveredin a deterministic order. Hence, it is clear that a payloat a-deliveredat most once
by P,. Even if corrupted partiea-broadcastpayloads that have already beglelivered they are not
a-deliveredagain.

The second part of the integrity property, i.e., that outgeol only a-deliverspayloads that were
previouslya-broadcasty some party if all parties are correct, is trivially sassfiby the protocol. [J

5 Discussion

In this section, we discuss the practical significance ofomtimistic protocol and compare it with other
efficient atomic broadcast protocols.

5.1 Practical Significance

In our formal system model, the adversary controls the adivegl of messages and hence the time-
outs; thus, the adversary can cause parties to complairt almmurectly functioning leader resulting in
unnecessary transitions from the optimistic phase to tbevery phase.

Unlike the adversary in our formal model, the network in d-vearld setting will not always behave
in the worst possible manner. The motivation for Protd®BC — or any optimistic protocol such as
the BFT and KS protocols for that matter — is the hope thatrtg@ssumptions based on stable network
conditions have a high likelihood of being accurate. Suchpehs realistic since practical observations
show that network behavior alternates between long pexbdsable conditions and relatively short
periods of instability; this indicates that unstable nekveonditions are the exception rather than the
norm. During periods of stability and when no new intrusians detected, the optimistic assumption
will be satisfied and our protocol will make fast progresshia tptimistic phase. However, both safety

16

Table 1: Comparison of Efficient Byzantine-Fault-Toleratdmic Broadcast Protocols

Protocol Synchrony for Syr_mchrony for Publicjkey Message Complexity
Safety? Liveness? Operations?| Normal Cond. | Worst-case
Rampart [21] yes yes yes O(n) unbounded
SecureRing [14] yes yes yes O(n) unbounded
ITUA [19] yes yes yes O(n) unbounded

Cachin et al. [5] no no yes expected)(n?) | expected)(n?)

BFT [8] no yes no O(n?) unbounded

KS [15] no no yes O(n?) expected)(n?)
ProtocolPABC no no yes O(n) expected)(n?)

and liveness are still guaranteed even if the network isabiestas long as no more thar: n/3 parties
are actively misbehaving.

5.2 Comparison

Table 1 compares the synchrony assumptions, cryptograghicrements, and message complexity of
Protocol PABC with the other recent Byzantine-fault-tolerant atomicadustcast protocols mentioned
in the introduction. We devote the rest of this section to aem@aborate comparison with the two
protocols closest to ours, namely the BFT protocol and thei®col.

Under stable network conditions and with a correct leadethigee protocols operate in their opti-
mistic phases. These conditions are likely to apply durimgtof the running time of the system. In this
case, the linear message and communication complexitisoddcolPABC compare favorably with
the quadratic complexities of the BFT and KS protocols.

Under unstable network conditions, the deterministic BFdiqrol can generate a potentially un-
bounded number of protocol messages by repeatedly switdhiimn one epoch to another without
making progress. This represents a violation of livenegsdgprevented in the KS protocol and in Pro-
tocol PABC, since their recovery phases rely on randomized agreemerd-deliver some payloads.
Naturally, using Byzantine agreement makes our recoveags@hmore expensive than the one of the
BFT protocol.

The recovery phase of Protod@ABC is slightly more efficient than that of the KS protocol. The
KS protocol requires four iterations of Byzantine agreenmeaddition to one iteration for each concur-
rently handled reliable broadcast instance. The recovieage of our protocol uses only two iterations
of Byzantine agreement, irrespective of the number of gtroonsistent broadcast instances that are
concurrently handled.

6 Conclusion

We described a protocol that, for the first time, achievesespnous atomic broadcast with(n)
amortized expected messages per payload message. Thaugrbest solutions usédl(n?) messages.
Despite intrusions and instability, our protocol guarastboth safety and liveness as long as no more
thant < n/3 parties are corrupted by the adversary. Our use of strongjstent broadcast, instead of
reliable broadcast as in the BFT and KS protocols, introslaceadditional digital signature computation
at each party for every delivered payload. However, thenoid deployment environments for our
protocol are WANs, where message latency typically excdleegime to perform digital signature
computations; hence, we expect our protocol to be significamore efficient than previous protocols
in this case.

17

Acknowledgments

This work was supported in part by NSF under Grant No. CN5080. We are grateful to Bill Sanders
for support, interesting discussions, and comments ondvig the quality of the paper. We also thank
Jenny Applequist for her editorial comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

P. Berman and A. A. Bharali, “Quick Atomic Broadcast,”oc. 7th International Workshop on
Distributed Algorithms (WDAG)vol. 725 of Lecture Notes in Computer Sciengm. 189-203,
Springer, 1993.

P. Berman and J. A. Garay, “Randomized Distributed Agreet Revisited,” inProc. 23th Inter-
national Symposium on Fault-Tolerant Computing (FTCS-gB) 412—-419, 1993.

G. Bracha, “An Asynchronougn — 1) /3]-Resilient Consensus Protocol,”froc. 3rd ACM Sym-
posium on Principles of Distributed Computing (POD@p. 154-162, 1984.

C. Cachin, “Distributing Trust on the Internet,” Proc. International Conference on Dependable
Systems and Networks (DSN-2004). 183—-192, June 2001.

C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Securé Efficient Asynchronous Broad-
cast Protocols (Extended Abstract),” Amvances in Cryptology: CRYPTO 20QL Kilian, ed.),
vol. 2139 ofLecture Notes in Computer Sciengp. 524-541, Springer, 2001.

C. Cachin, K. Kursawe, and V. Shoup, “Random Oracles imsEantinople: Practical Asyn-
chronous Byzantine Agreement using Cryptograp8ggirnal of Cryptologyvol. 18, no. 3, 2005.

R. Canetti and T. Rabin, “Fast Asynchronous Byzantinege®gent with Optimal Resilience,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (§TapC42-51, 1993.

M. Castro and B. Liskov, “Practical Byzantine Fault Tidlace and Proactive RecovenACM
Transactions on Computer Systems (TQ@®8) 20, pp. 398—-461, Nov. 2002.

Y. Desmedt, “Society and Group Oriented CryptographyNéw Concept,” inAdvances in Cryp-
tology: CRYPTO '87C. Pomerance, ed.), vol. 293loécture Notes in Computer Scienpg. 120—
127, Springer, 1988.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impoa#jbof Distributed Consensus with One
Faulty ProcessJournal of the ACMvol. 32, pp. 372-382, Apr. 1985.

0. Goldreich Foundations of Cryptographyol. | & Il. Cambridge University Press, 2001-2004.

S. Goldwasser, S. Micali, and R. L. Rivest, “A DigitalgBiature Scheme Secure Against Adaptive
Chosen-Message Attacks§1AM Journal on Computingrol. 17, no. 2, pp. 281-308, 1988.

V. Hadzilacos and S. Toueg, “Fault-Tolerant Broadseastd Related ProblemdJistributed Sys-
tems (2nd Ed,)pp. 97-145, 1993.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, KiE SecureRing Protocols for Securing
Group Communication,” ifProc. 31st Annual Hawaii International Conference on Systeci-
ences (HICSSpp. 317-326, Jan. 1998.

18

[15] K. Kursawe and V. Shoup, “Optimistic Asynchronous AforBroadcast,” inProc. 32nd Interna-
tional Colloquium on Automata, Languages and ProgrammIi@#\[LP) (L. Caires, G. F. Italiano,
L. Monteiro, et al,, eds.), vol. 3580 ofecture Notes in Computer Sciengp. 204-215, Springer,
2005.

[16] L. Lamport, “The Part-Time ParliamentACM Transactions on Computer Systemsl. 16,
pp. 133-169, May 1998.

[17] D.Malkhi, M. Merritt, and O. Rodeh, “Secure Reliable Mcast Protocols in a WAN Distributed
Computing vol. 13, pp. 19-28, Jan. 2000.

[18] M. O. Rabin, “Randomized Byzantine Generals,Hroc. 24th IEEE Symposium on Foundations
of Computer Science (FOG®)p. 403-409, 1983.

[19] H.V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W.athdgrs, “Quantifying the Cost of Pro-
viding Intrusion Tolerance in Group Communication SystgmnsProc. International Conference
on Dependable Systems and Networks (DSN-2@@R)229-238, June 2002.

[20] M. Reiter, “Secure Agreement Protocols: Reliable aridndic Group Multicast in Rampart,” in
Proc. 2nd ACM Conference on Computer and CommunicationsriBeqp. 68-80, 1994.

[21] M. K. Reiter, “The Rampart Toolkit for Building High-tegrity Services,” inTheory and Practice
in Distributed Systemsvol. 938 of Lecture Notes in Computer Scienge. 99-110, Springer,
1995.

[22] F. B. Schneider, “Implementing Fault-Tolerant Seedausing the State Machine Approach: A
Tutorial,” ACM Computing Surveysol. 22, pp. 299-319, Dec. 1990.

[23] F. B. Schneider and L. Zhou, “Distributed Trust. Sugpay Fault-Tolerance and Attack-
Tolerance,” Tech. Rep. TR 2004-1924, Cornell Computerr®@eiddepartment, Jan. 2004.

[24] V. Shoup, “Practical Threshold Signatures,” Advances in Cryptology: EUROCRYPT 2000
(B. Preneel, ed.), vol. 1087 afecture Notes in Computer Scienpp. 207-220, Springer, 2000.

[25] S. A. Vanstone, P. C. van Oorschot, and A. Menektmdbook of Applied CryptographyCRC
Press, 1996.

19

