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ABsTRACT. Let n = pgbe an RSA modulus with unknown prime factors and F’ any function
for which there exists an integer u # 0 satisfying F(u) =~ n and pu or qu is computable
from F(u) and n. We show that choosing a public key exponent e for which there exist
positive integers X, Y such that |¢Y — X F(u)| and Y are suitably small, then the system
is insecure.

1 Introduction

Let n = pg be an RSA modulus, i.e the product of two large primes p, ¢ of the same
size. Let e and d be the public and secret keys satisfying ed = 1 (mod ¢(n)) where ¢(n) =
(p—1)(q — 1) is the Euler totient function related to n. Since its publication in 1977 [8],
the RSA cryptosystem has been analyzed for vulnerability by many researchers (see [2]).
Since RSA is computationally expensive, one might be tempted to use short secret keys d
in ordre to speed up the decryption process. Unfortunately, in 1990, Wiener [11] showed
that RSA is insecure if d < %n%. In 1999, Boneh and Durfee [3] (heuristically) improved
the bound to d < n"2%2. While Wiener’s attack uses continued fractions, the Boneh
and Durfee attack is based on Coppersmith’s method for finding small roots of modular
polynomial equations [4]. In 2002, de Weger [10] improved these bounds for the RSA
modulus n = pg with small prime difference |p — ¢|. Recently, Blomer and May [1]
extended both Wiener and de Weger attacks for the RSA cryptosystems with secret keys
having the modular factorization d = —xzy~! (mod ¢(n)) where x and y are suitably
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2 RSA WITH CONSTRAINED KEYS

small. Morever, they showed that the number of such weak keys is at least O (n3/ 4_5)
where € is a positive constant.

All the known non-factoring attacks on RSA exploit the weakness of the public key e
relatively to ¢(n) focusing on the information encoded in e and ¢(n). The starting point
is the equation

ed — kp(n) =1,

or, as considered in [1], the more general equation
ex +y = kp(n),

where x, y, k are suitably small relatively prime integers.

In this paper, we present an attack on RSA by exploiting additional information that
may be encoded in the public key e relatively to special functions of the primes p and q.
Let F' be a function satisfying the conditions

There exists an integer u # 0 such that F'(u) ~ n. (1)

There exists a transformation relating F'(u) to a multiple of p or q. (2)

We now introduce the concept of F-constrained public keys. Let us formalize this notion.

Definition 1.1. Let n be an RSA modulus and F a function satisfying the condi-
tions (1), (2). A public key e is F-constrained if there exists an integer u and two
coprime positive integers X andY such that both' Y and |eY — F(u)X| are suitably small.

The integers X, Y will be formally defined in Theorem 3.1. We list below typical
examples of functions satisfying the conditions (1), (2). Let ug # 0 be a fixed rational
and F' a function defined by one of the following expressions

Fi(u)=plg—u), 1<|u[<q
Fi(u)=(p-ug 1< |ul<p

u
Fs(u) = n+ ug — pu, 1§|u|<q+?0.
/ Uo
F5(u) = n+ ug — qu, 1§|u|<p+?.
u
B(w)=(g-w(p- ). 1<kl<q

’ 2]
Fiw)=@p-uw(¢-=), 1<ul<p.

Observe that when uy = 1, we have F5(1) = (p — 1)(¢ — 1) = ¢(n). This indicates that
our method is a natural extension of the attack of Blomer and May [1]. In this paper,
we mainly study the cryptanalysis of RSA with Fj-constrained keys. More precisely, we
show that if e satisfies the equation

eY —Fi(u X =2 (3)
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with unknown integers uw, X, Y, Z such that

} 3 (n—
1SY§%<qF|1(1|i)> o 1§|Z|§2n i (n—plul) ey
elu

then n can be factored in polynomial time. In a radically new way, we will show that the
number of Fi-constrained keys is at least O (n3/ 4_6).

Our new method works as follows. Assume that e is F'(u)-constrained for some integer
u where F' is a function satisfying (1), (2). We use the continued fraction algorithm to
find X and Y in (3) by replacing % by £. For every convergent % of the expansion, we

compute the approximation F'(u) ~ % and by (2), an approximation P of a multiple of
p or q. We then apply May’s extension (Theorem 10 of [7]) of Coppersmith’s method [4]
to find the factorization of n.

The remainder of this paper is organized as follows. In Section 2 we review former
continued fraction attacks on RSA with short secret exponents. In Section 3, we discuss
the possiblity of determining the first convergents of the continued fraction expansion of
ﬁ using £ if e is F'(u)-constrained. Recall that the attacker does not know F' but he
does know e and n. In Section 4 we show how to factor the RSA modulus n when e is Fi-
constrained and give an estimation of the number of such keys. We will use techniques
from the continued fraction expansion combined with Coppersmith’s Theorem [4] and
May’s extension [7]. In Section 5, we give a numerical example to illustrate our attack.
Exploiting the symmetry on the primes p and ¢ in F; and FY, the vulnerablity of an RSA
cryptosystem with a modulus n and an F{-constrained public key e follows.

A key role in our attack is played by the following extension of the well-known theorem
of Coppersmith [4].

Theorem 1.2. (May, Theorem 10 of [7]). Let n = pq be an RSA modulus with
q < p. Let u be an (unknown) integer that is not multiple of q. Suppose we know an
approzimation P of pu with

lpu — P| < 2n

Then n can be factorized in time polynomial in logn.

2 Former continued fraction attacks on RSA with weak keys

In this section, we present three former attacks on RSA based on the continued frac-
tions. All the attacks exploits the weakness of the public key e relatively to ¢(n).

2.1 The Wiener attack.
The public and private keys are related by the equation ed — k¢(n) = 1 rewriting as
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Wiener exploits the fact that 4)(‘3”) ~ = and n = pq for primes p, q of the same bit-size.

Combining the arithmetical properties of ¢(n) with the assumption d < %n%, this leads

to
e k 1

ﬁ_ﬁ‘<272‘

By Legendre’s theorem (see Corollary 2, [1, § 2] in [6]), £ is a convergent of the continued

d
fraction expansion of =.

2.2 The de Weger attack.

The continued fraction part of the de Weger attack [10] applies to an RSA modulus
with small difference between its primes. It exploits the approximation ¢(n) ~ n+1-2/n
and the weakness of e relatively to ¢(n) and works as follows. Using ed — k¢(n) = 1 and
assuming that ¢(n) > 3n, n > 8d with

de Weger showed that

ntl-2yn d| " 2a

k - . . . e
Hence  is a convergent of the continued fraction expansion of — IR

2.3 The Blomer-May attack.

The attack of Blomer and May [1] combines the continued fraction expansion of £
and Coppersmith’s lattice-based technique for finding small roots of univariate modular
polynomial equations [4]. The attack applies when the public key e is weak relatively to
¢(n) and is based on the existence of coprime integers x, y, k satisfying ex + y = k¢(n)
with

1 3
0<z< -nt and ly| < en~ e,

Wl =

where ¢ < 1. Combining with the properties of ¢(n), they showed that

e k 1
n x 212
Hence g is a convergent of the continued fraction expansion of £. Next, they applied

Coppermith’s method [4] to find the factorization of the modulus n as follows. Using
ex+y=k(n+1—p—q), we have

exT Y
= 1—- = _Z
pP+q=n-+ 2 2

Since k and x are known, then s = n +1 — £ is an approximation of p+ ¢ up to an error
term |—Z| < %cn% (see [1] for more details). Let ¢ = v/s2 — 4n. Then ¢ is an approximation
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of p — q up to an error term bounded by 9ni. This shows that ST‘” is an approximation

s+t

of p that can be bounded by 6n. Applying Coppersmith’s algorithm with =3

factorization of n.

The extension of the continued fraction attacks by Verheul and van Tilborg [9] and
its modification by Dujella [5] applies to d < nits provided exhaustive search on
O(7logy(n)) bits. These extensions are also based on the weakness of e relatively to

¢(n).

gives the

e
3 The continued fraction expansion of ——
F(u)

Let F' be a function satisfying (1), (2). Our goal in this section is to guess a part of the
continued fraction expansion of ﬁ Recall that the attacker does not know the exact

expression of F' but he does know that F'(u) could be close to n for some unknown w.
Morever, we suppose that 0 < F(u) < 2n so that there exists « with —% <a< % such
that

|F(u) — n| =n2te, (4)

Theorem 3.1. Let F be a function satisfying (1), (2) and n = pq an RSA modulus with

p < q. Let u be an integer such that |F(u) —n| = nzt, with —i<a<i. LtX,Y, Z
be coprime integers satisfying eY — F(u)X = Z. If

-3 (Ffj‘)) (5)

|Z] < n° ey, (6)

=

1
and

then % 1s a convergent among the continued fraction expansion of <.
n

Proof. Using eY — F(u)X = Z, we get

e X e e e X
n Y| |n F(u ‘mm_?
_ e|F(u) —n| |eY — F(u)X|
en®z | Z|

Fla) TPy
Since |Z| < n®~zeY, then

a— a—

N
N
N

en en 2en
Fu) = F(u) — F(u)
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By assumption, we have

e
Hence .
2en® 2 1
F(u) 2Y2
which gives
e X < 1
n Y 2Y2°

By Legendre’s theorem (Corollary 2, [1, § 2] in [6]), % is a convergent of the continued
fraction expansion of =.

Theorem 3.1 relates the unknowns Y, Z in the equation (3). Let us find a lower bound
for the quantity X.

Corollary 3.2. With the hypothesis of Theorem 3.1, we have

[N

eY

X > (1 — o ) . 7

“UT" ) F @)

Proof. Since by assumption —% <a< %, then —1 < a0 — % < 0. Hence 1 —n®"2 > 0.
Combining Z = €Y — F(u)X and |Z| < n®"zeY, we get

S (B A

which terminates the proof.

4. Vulnerability of RSA using F' = F;

In this section, we will show that using an RSA modulus n = pg with ¢ < p and
an Fj-constrained public key e is insecure. Recall that Fy(u) = p(¢ — u). We will also
give an estimation of the number of F}(u)-constrained keys for a fixed w and derive an
estimation of the number of Fi-constrained keys.

4.1 Cryptanalysis of RSA with Fj-constrained keys.

Theorem 3.1 relates the unknowns Y, Z of the equation (3) and shows that the first
convergents of ﬁ(u) are among the convergents of =. In the following theorem, we give
a condition relating X and Y and leading to the factorization of n.
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Theorem 4.1. Let X, Y be coprime positive integers. If there exists an integer u with
1< |u| < q—1 such that |eY — Fy(u)X| < 2ni X, then n can be factored in polynomial
time.

Proof. Put Z =eY — Fy(u)X. Using Fy(u) = p(q — u), we get

6Y+Z
U="n——+ =
p X X
Letf’:n—%. We have
. Z] _ 2niX L
P_ ‘:—< :24
POI= % =7x "

Hence P is an approximation of pu with an error term less than 2n1. We conclude the
proof by applying Theorem 1.2.
[ |

Let us consider the « term as defined in (4). Since ¢ < v/n < p and Fi(u) = p(¢—u) =
n—pu with 1 < |u| < ¢ —1 we get |Fy(u) — n| =plu| =n2t* with 0 < o < 2.

We now state our result concerning the vulnerability of RSA using F' = Fj.
Theorem 4.2. Let n = pq be an RSA modulus with ¢ < p and u an integer satisfying

1< |ul <q—1 and plu| = nite. Let X, Y be coprime positive integers. If X and Y
satisfy eY — Fy(u)X = Z, with

Y <ttt (Fl“”)%, (8)

e
and
2ni <1 — no‘_%> eY
Z| < , 9
2« — )
then % is a convergent of — and n can be factored in polynomial time.
Proof. Let us first show that % is a convergent of =. Observe that Y satisfies the

inequality (5) of Theorem 3.1 with F' = F;. Let Z = eY — Fi(u)X. Assume that Z

satisfies (9). Since Fy(u) > n — nzte, we get

(1—n°‘_%)eY 2n (1—n°‘_%)eY
F; (U) - n — n%"‘o‘

This shows that (6) is also satisfied. Hence, by Theorem 3.1, % is a convergent of ~. On
the other hand, combining (7) with F' = F} and (9), we get

1z _ |2z
X - (l—no‘_%)eY

Hence, by Theorem 4.1, n can be factored in polynomial time.

N
=

2n

|1Z| < = 2n " TeY < n® 7eY.

W=

< 2n1,
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4.2 The number of F;(u)-constrained keys.

Let u be a fixed integer satisfying 1 < |u| < ¢ — 1. We indicate below how the crypto
designer could build public keys which are Fj(u)-constrained using only very short values
of X, Y. We begin by the following useful lemma. We use the usual notation |z| for the
integral part of x.

Lemma 4.3. Let n = pg be an RSA modulus with ¢ < p and u an integer satisfying
1 <|ul <q—1 and plu| = nite. Let X, Y be coprime integers with

]_ 1 e

1<SX <Y <oni™f
Ife=|Fi(u)E], then e > nz=e,
Proof. Let Z = eY — Fy(u)X. By the definition of e, we have

X

0< Fl(u)? —e<Ll.
Combininig with the inequalities 1 < X <Y < %n%_%, this gives us
%_

1
4 -

X 1
e+1> Fl(u)? > (n —p|u|)? > 2(n—plu|)n

To show that e > n%_o‘, it suffices to show that
2(n—plu))n®~1 >nr"* 41, (10)

Note that plu| = n2t® Then n® = p|u|n_% and consequently

1
_ phulintnt = <M>

wlR

AN

n
q

Similarly,

[N
()

nIT® = n%p_1|u|_1n

Hence (10) is equivalent with

2 (n — plul) (%') > ﬁ-l—l
Let
) =20l (1) - L,

with 1 < |u| < ¢ — 1. An arithmetical study of the derivatives of f shows that for any
such u we have

F(w) > min(f(1), flg— 1)) = f(g— 1) = 2 (%) i 10

This confirms (10) and completes the proof.
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Corollarly 4.4. Let n = pq be an RSA modulus with ¢ < p and u an integer satisfying
1< |u|<q—1 and plu| =nzT®. Let X, Y be coprime integers with

—_&
2

AN

1

Ife = |Fi(u)3 |, then % is a convergent of both TGy and & and e is Fy(u)-constrained.
Proof. Let Z =eY — Fi(u)X. Since 1 < |u|<g—1,p>nand 1 <X <Y < %n%_%v

then .
Fi(u)=n—pu>n—plu| >n—plg—1)=p>n2 >2Y>

On the other hand, by the definition of ¢, we have

X
0< Fi(u)— —e<L1. (11)
Y
Hence
e X < 1 < 1
Fl (’LL) Y F1 (’LL) 2Y2 '
This shows that % is a convergent of ﬁ(u) Let us show that % is a convergent of =.

By (11) and Lemma 4.3 we have
1Z| = |eY — Fy(u)X| <Y < n® 7eY,

and the inequality (6) of Theorem 3.1 is satisfied where F' = Fj. Morever, by (11), we

have
Fy(u)

e

> > 1.

|

Combining with Y < %n%_%, this gives

1
]_ 1 @ F 2
Y < -—ni2 < I(U)> 3

2 e

and (5) is also satisfied with F' = Fy. Hence, by Theorem 3.1, & is a convergent of £.
Finally, using (11), we have

1Z|  |eY — Fi(u)X]| _ Y
X X X

Thus, by Theorem 4.1, e is F;(u)-constrained which terminates the proof.

PN

1
<Y < -
> 2”

Corollary 4.4 indicates that every couple (X,Y) of coprime positive integers with
1<X<Y< %n%_% and every integer u with 1 < |u| < g — 1 yield a candidate public
key e for which the RSA cryptosystem is insecure. We show below that different couples
produce different candidate public keys.
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Lemma 4.5. Let n = pq be an RSA modulus with ¢ < p and u an integer satisfying
1 < |ul <qg—1 and plu| = nzte. Let X, X', Y and Y’ be positive integers with
ged(X,Y) = ged(X',Y') =1 and

al

1
and 1§X'<Y’<§n%_7.

N
wlR

1

Lete = |Fi(u)3| and ' = {Fl(u)%J Ife=¢€, then (X,Y) = (X"Y").

Proof. Without loss of generality, suppose that % > i,(—,’ By definition, e satisfies (11).

Similarly, we have
!/
OSFl(u)?—e’< 1. (12)

Combining (11) and (12), we get

X X X X
<?—?>F1(u)—1<e—e'< <?_F>FI(“)+1'

From this, we derive

0<

X X
<?—?> F]_(U)<€—el+]..

By assumption e = ¢’. Then 0 < (% - %) Fi(u) < 1 or equivalently,
0< (XY~ YX)Ei(u) <YY'

Combining the inequalities 1 <Y < %n%_%, 1<Y' <
n—p(g—1) =p>n2, we get

YY'  ipi=%3
0< (XY - X'Y) < < i
Fi(u) nz

Hence XY’ — X'Y = 0 and since ged(X,Y) = ged(X',Y') = 1, we get X = X’ and
Yy =Y.
|

For a fixed integer u satisfying 1 < |u| < g — 1, we state below a lower bound for the
number of Fj(u)-constrained public keys.
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Theorem 4.6. Let n = pqg be an RSA modulus with ¢ < p and u an integer satisfying
1< |u| < q—1 and plu| = nz+*. The number of Fy(u)-constrained public keys is at least

O (n%_o‘_s).

Proof. Let e be a positive constant and u a fixed integer with 1 < |u| < ¢—1. Let X and
Y be coprime positive integers satisfying 1 < X <Y < %n%_%_g. Define e = | Fy (u) |
and Z = eY — Fy(u)X. Using similar arguments as in the proof of Corllarly 4.4, we get
% < 2n17¢. If ged(e, p(n)) # 1, then e is not a valid public key. Let ¢/ = e+ h for some
integer h with ged(e + h, ¢(n)) =1 and

NI

~| <

1<h<n

Let Z' = €'Y — F1(u)X. Since Z < 0, then

Z'|  |(e+h)Y —Fi(u)X| |Z+hY| < max(|Z]|,hY)

1
X X X = X < nE

Hence, by Theorem 4.1, ¢’ is Fy(u)-constrained. This shows that every couple (X,Y)
satisfying ged(X,Y) = 1 builds approximately %nié public keys which are Fy(u)-
constrained. Hence, the number of such keys depends on the number of couples (X,Y)

satisfying ged(X,Y) = 1land 1 < X <Y < ni~%~¢, For a fixed Y, there are ¢(Y)

1_o_

positive integers X such that ged(X,Y) =1land 1 < X <Y. Let m = an 2 EJ.

Using the well known estimation

KY KY '
Y)> > =Yn"¢
oY) 2 loglog(Y) ~— loglog(n) "

where K is a constant related to the Euler constant, the number of the F} (u)-constrained
keys is at least

1 1 X 1 1_ .t 1_ m(m + 1) 2 _a—2e—¢’
1<X<Y<m X=1

Replacing 2e + €’ by ¢, this terminates the proof.
[ |

4.3 The number of Fi-constrained keys.

Theorem 4.6 gives an estimation of the number of Fj(u)-constrained keys for a fixed
u. It remains to give an estimation of the number of Fj-constrained keys. Let u and v’
be a fixed integers with 1 < |ul, |u/| < ¢ — 1. We show below that if e is simultaneously
constrained to Fy(u) and Fy(u'), then u = u'.
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Lemma 4.7. Let n = pq be an RSA modulus with ¢ < p and let u, u' be integers
satisfying 1 < |u|,|v'| < ¢ — 1 and plu| = n2*, plu/| = n2t®". Let X, Y, X', Y’ be
positive integers satisfying ged(X,Y) = ged(X',Y') =1, and

Oé’

1
and 1§X’<Y’<§n%_7.

AN
wlR

1

Lete = |Fi(u)3| and ' = {Fl(u)%J Ife=¢€ thenu=u" and (X,Y)=(X",Y’).

e = Lm(u)% — e = LFl(u’)é:J |

Proof. Assume that

From this, we get

X X'
= _F(u)=—
y — )

S| <L

AW

Using Fi(u) = n — pu, Fi(u') =n — pu/, this gives

YY'
(g—w)XY' — (¢—u)X'Y| < .

al

Since by assumption 1 < X <Y < %n%_%, 1<X'<Y'< %n%_T and p > /n. Then

YY’
(g —uw)XY' — (¢ —u)X'Y| <

=~ <L
4’”

Since (¢—u)XY'—(¢—u')X'Y is an integer, then (¢—u) XY’ —(¢—u')X'Y = 0. Further,
ged(X,Y) = ged(X',Y') = 1. From this, it follows that

X=@-uv)X, Y=(q-wY, X =(@g-uX, Y =(@g-u)Y.

Combining X and X', we get X = (¢ —u/) X' = (¢—u')(¢—u)X and (¢ —u)(¢g—u') = 1.
Hence ¢ —u=¢q — v/ = £1 and u = «/. Finally, by Lemma 4.5, (X,Y) = (X', Y’) which
terminates the proof.

[ |

We now give an estimation for the number of Fj-constrained public keys.

Theorem 4.8. Let n = pq be an RSA modulus with ¢ < p < 2q. The number of
F-constrained public keys is at least O (n%_5>.

Proof. By Theorem 4.6, for every u with 1 < |u| < ¢ — 1 and plu| = n2+%, the number
of the Fy(u)-constrained keys is at least O (n1~2~¢). Hence, the number of the Fi-

constrained keys is at least
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Since ¢ < p < 2q, then n < p? < 2n and p < 22nz. Combining this with n® = n_%p|u|,
we get
1 1
n~=n2p |7t > 277 ||
It follows that

q—1
N(F) =ni=2) o7 >2750i 7% Y Jul ™
« |lu|=1

The sum Zmil u~1 is related to the harmonic series Yo~ u~* which diverges. Trivially,

we have
qg—1

Zu_1>2

|u|=1

and finally

which terminates the proof.

5. A numerical example using F' = F}

Let n = pq be an RSA modulus with ¢ < p. Let e be a public exponent. In this
section, we give an algorithm to factor the modulus n if e is Fj(u)-constrained for some
unknown u where Fy(u) = p(q — w).

The algorithm.

INPUT: a) The RSA modulus n = pg with unknown prime factors.
b) The public key e such that eY — F(u)X = Z for some unknown integers
u, X, Y and Z satisfying (8) and (9).
1. Compute the continued fraction expansion of =.
2. For every convergent % such that ¥ < %n% :
eX

i) Compute P =n — &

ii) Apply Coppersmith’s algorithm with P and output a value N.

iii) Compute g = ged(N, n). If g # n then stop.
OoOuTPUT:p=g,q= %, U= %.
Let us now consider the 48 digit example.

n = 94109625208978446256481635828331078 7682673275523,
e = 31562534055617334057122389124448605297040382267.

The first 24 partial quotients of the continued fraction expansion of £ are

0,29, 1,4,2 5 1, 71,12, 14, 2, 1,1, 1, 1, 1, 1, 1, 5, 2, 3020, 1,1, ...].
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The 21th convergent is % = %‘gg;. With P = n — %, Coppersmith’s algo-
rithm outputs N = —1684416133919688132169065675. This gives p = ged(N,n) =

1321110693270343633073777, u = % = —1271, q = % = 712352308465649934350899,
and the factorization of n is achieved.

We are now able to analyze our attack and the the Blomer-May attack. The attack
of Blomer and May gives the factorization of n if the prime factors p and ¢ satisfy
n+1-<—p—q| < n for some convergent % of = or m No such convergent
exists which explains why Blomer-May’s attack fails. Our attack succeeds since there
exist an integer u = —1271 and a convergent & = 5519ML of £ guch that (8) and (9)
are satisfied.

Note that the secret key is d = 565214697101365558758015289139548803045295395763

and satisfy d ~ n?9% > %n% which explains why the original attack of Wiener [11]

fails. Similarly, we have d > ’;ST/;, which explains why the continued fraction attack of
de Weger [10] also fails.

6. Conclusion

Using methods based on continued fractions and May’s extension of Coppersmith’s

Theorem, we showed that an RSA cryptosystem with modulus n = pg and a public key

e is insecure if there exist an integer u such that n —pu =~ n and a convergent % of £ for

which both |eY — (n — pu)X| and Y are relatively small. Morever we showed that there

€

are at least O (ni~ public keys making the cryptosystem insecure.

We analysed the security of RSA using the function F; where Fi(u) = p(¢ —u). The
situation is similar with the symmetric function F| where F](u) = g(p—u). As mentioned
in the introduction, RSA could be insecure if the public key e is constrained with other
sort, of functions satisfying similar conditions. Our results show that one should be very
cautious when using an RSA modulus with a constrained key.
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