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Abstra
t. Let n = pq be an RSA modulus with unknown prime fa
tors and F any fun
tion

for whi
h there exists an integer u 6= 0 satisfying F (u) � n and pu or qu is 
omputable

from F (u) and n. We show that 
hoosing a publi
 key exponent e for whi
h there exist

positive integers X, Y su
h that jeY �XF (u)j and Y are suitably small, then the system

is inse
ure.

1 Introdu
tion

Let n = pq be an RSA modulus, i.e the produ
t of two large primes p, q of the same

size. Let e and d be the publi
 and se
ret keys satisfying ed � 1 (mod �(n)) where �(n) =

(p� 1)(q� 1) is the Euler totient fun
tion related to n. Sin
e its publi
ation in 1977 [8℄,

the RSA 
ryptosystem has been analyzed for vulnerability by many resear
hers (see [2℄).

Sin
e RSA is 
omputationally expensive, one might be tempted to use short se
ret keys d

in ordre to speed up the de
ryption pro
ess. Unfortunately, in 1990, Wiener [11℄ showed

that RSA is inse
ure if d �

1

3

n

1

4

. In 1999, Boneh and Durfee [3℄ (heuristi
ally) improved

the bound to d � n

0:292

. While Wiener's atta
k uses 
ontinued fra
tions, the Boneh

and Durfee atta
k is based on Coppersmith's method for �nding small roots of modular

polynomial equations [4℄. In 2002, de Weger [10℄ improved these bounds for the RSA

modulus n = pq with small prime di�eren
e jp � qj. Re
ently, Bl�omer and May [1℄

extended both Wiener and de Weger atta
ks for the RSA 
ryptosystems with se
ret keys

having the modular fa
torization d � �xy

�1

(mod �(n)) where x and y are suitably
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2 RSA WITH CONSTRAINED KEYS

small. Morever, they showed that the number of su
h weak keys is at least O

�

n

3=4�"

�

where " is a positive 
onstant.

All the known non-fa
toring atta
ks on RSA exploit the weakness of the publi
 key e

relatively to �(n) fo
using on the information en
oded in e and �(n). The starting point

is the equation

ed� k�(n) = 1;

or, as 
onsidered in [1℄, the more general equation

ex+ y = k�(n);

where x, y, k are suitably small relatively prime integers.

In this paper, we present an atta
k on RSA by exploiting additional information that

may be en
oded in the publi
 key e relatively to spe
ial fun
tions of the primes p and q.

Let F be a fun
tion satisfying the 
onditions

There exists an integer u 6= 0 su
h that F (u) � n: (1)

There exists a transformation relating F (u) to a multiple of p or q: (2)

We now introdu
e the 
on
ept of F -
onstrained publi
 keys. Let us formalize this notion.

De�nition 1.1. Let n be an RSA modulus and F a fun
tion satisfying the 
ondi-

tions (1), (2). A publi
 key e is F -
onstrained if there exists an integer u and two


oprime positive integers X and Y su
h that both Y and jeY �F (u)Xj are suitably small.

The integers X, Y will be formally de�ned in Theorem 3.1. We list below typi
al

examples of fun
tions satisfying the 
onditions (1), (2). Let u

0

6= 0 be a �xed rational

and F a fun
tion de�ned by one of the following expressions

F

1

(u) = p(q � u); 1 � juj < q:

F

0

1

(u) = (p� u)q; 1 � juj < p:

F

2

(u) = n+ u

0

� pu; 1 � juj < q +

u

0

p

:

F

0

2

(u) = n+ u

0

� qu; 1 � juj < p+

u

0

q

:

F

3

(u) = (q � u)

�

p�

u

0

u

�

; 1 � juj < q:

F

0

3

(u) = (p� u)

�

q �

u

0

u

�

; 1 � juj < p:

Observe that when u

0

= 1, we have F

3

(1) = (p � 1)(q � 1) = �(n). This indi
ates that

our method is a natural extension of the atta
k of Bl�omer and May [1℄. In this paper,

we mainly study the 
ryptanalysis of RSA with F

1

-
onstrained keys. More pre
isely, we

show that if e satis�es the equation

eY � F

1

(u)X = Z (3)
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with unknown integers u, X, Y , Z su
h that

1 � Y �

1

2

�

qF

1

(u)

ejuj

�

1

2

and 1 � jZj �

2n

�

3

4

(n� pjuj) eY

F

1

(u)

;

then n 
an be fa
tored in polynomial time. In a radi
ally new way, we will show that the

number of F

1

-
onstrained keys is at least O

�

n

3=4�"

�

.

Our new method works as follows. Assume that e is F (u)-
onstrained for some integer

u where F is a fun
tion satisfying (1), (2). We use the 
ontinued fra
tion algorithm to

�nd X and Y in (3) by repla
ing

e

F (u)

by

e

n

. For every 
onvergent

X

Y

of the expansion, we


ompute the approximation F (u) �

eY

X

and by (2), an approximation

~

P of a multiple of

p or q. We then apply May's extension (Theorem 10 of [7℄) of Coppersmith's method [4℄

to �nd the fa
torization of n.

The remainder of this paper is organized as follows. In Se
tion 2 we review former


ontinued fra
tion atta
ks on RSA with short se
ret exponents. In Se
tion 3, we dis
uss

the possiblity of determining the �rst 
onvergents of the 
ontinued fra
tion expansion of

e

F (u)

using

e

n

if e is F (u)-
onstrained. Re
all that the atta
ker does not know F but he

does know e and n. In Se
tion 4 we show how to fa
tor the RSA modulus n when e is F

1

-


onstrained and give an estimation of the number of su
h keys. We will use te
hniques

from the 
ontinued fra
tion expansion 
ombined with Coppersmith's Theorem [4℄ and

May's extension [7℄. In Se
tion 5, we give a numeri
al example to illustrate our atta
k.

Exploiting the symmetry on the primes p and q in F

1

and F

0

1

, the vulnerablity of an RSA


ryptosystem with a modulus n and an F

0

1

-
onstrained publi
 key e follows.

A key role in our atta
k is played by the following extension of the well-known theorem

of Coppersmith [4℄.

Theorem 1.2. (May, Theorem 10 of [7℄). Let n = pq be an RSA modulus with

q < p. Let u be an (unknown) integer that is not multiple of q. Suppose we know an

approximation

~

P of pu with

jpu�

~

P j � 2n

1

4

:

Then n 
an be fa
torized in time polynomial in logn.

2 Former 
ontinued fra
tion atta
ks on RSA with weak keys

In this se
tion, we present three former atta
ks on RSA based on the 
ontinued fra
-

tions. All the atta
ks exploits the weakness of the publi
 key e relatively to �(n).

2.1 The Wiener atta
k.

The publi
 and private keys are related by the equation ed� k�(n) = 1 rewriting as

e

�(n)

�

k

d

=

1

�(n)d

:



4 RSA WITH CONSTRAINED KEYS

Wiener exploits the fa
t that

e

�(n)

�

e

n

and n = pq for primes p, q of the same bit-size.

Combining the arithmeti
al properties of �(n) with the assumption d <

1

3

n

1

4

, this leads

to

�

�

�

�

e

n

�

k

d

�

�

�

�

<

1

2d

2

:

By Legendre's theorem (see Corollary 2, [1, x 2℄ in [6℄),

k

d

is a 
onvergent of the 
ontinued

fra
tion expansion of

e

n

.

2.2 The de Weger atta
k.

The 
ontinued fra
tion part of the de Weger atta
k [10℄ applies to an RSA modulus

with small di�eren
e between its primes. It exploits the approximation �(n) � n+1�2

p

n

and the weakness of e relatively to �(n) and works as follows. Using ed� k�(n) = 1 and

assuming that �(n) >

3

4

n, n > 8d with

d <

n

3

4

p� q

;

de Weger showed that

�

�

�

�

e

n+ 1� 2

p

n

�

k

d

�

�

�

�

<

1

2d

2

:

Hen
e

k

d

is a 
onvergent of the 
ontinued fra
tion expansion of

e

n+1�2

p

n

.

2.3 The Bl�omer-May atta
k.

The atta
k of Bl�omer and May [1℄ 
ombines the 
ontinued fra
tion expansion of

e

n

and Coppersmith's latti
e-based te
hnique for �nding small roots of univariate modular

polynomial equations [4℄. The atta
k applies when the publi
 key e is weak relatively to

�(n) and is based on the existen
e of 
oprime integers x, y, k satisfying ex+ y = k�(n)

with

0 < x �

1

3

n

1

4

and jyj � 
n

�

3

4

ex;

where 
 � 1. Combining with the properties of �(n), they showed that

�

�

�

�

e

n

�

k

x

�

�

�

�

<

1

2x

2

:

Hen
e

k

x

is a 
onvergent of the 
ontinued fra
tion expansion of

e

n

. Next, they applied

Coppermith's method [4℄ to �nd the fa
torization of the modulus n as follows. Using

ex+ y = k(n+ 1� p� q), we have

p+ q = n+ 1�

ex

k

�

y

k

:

Sin
e k and x are known, then s = n+1�

ex

k

is an approximation of p+ q up to an error

term

jyj

k

�

4

3


n

1

4

(see [1℄ for more details). Let t =

p

s

2

� 4n. Then t is an approximation
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of p� q up to an error term bounded by 9n

1

4

. This shows that

s+t

2

is an approximation

of p that 
an be bounded by 6n

1

4

. Applying Coppersmith's algorithm with

s+t

2

gives the

fa
torization of n.

The extension of the 
ontinued fra
tion atta
ks by Verheul and van Tilborg [9℄ and

its modi�
ation by Dujella [5℄ applies to d � n

1

4

+




2

provided exhaustive sear
h on

O(
 log

2

(n)) bits. These extensions are also based on the weakness of e relatively to

�(n).

3 The 
ontinued fra
tion expansion of

e

F (u)

Let F be a fun
tion satisfying (1), (2). Our goal in this se
tion is to guess a part of the


ontinued fra
tion expansion of

e

F (u)

. Re
all that the atta
ker does not know the exa
t

expression of F but he does know that F (u) 
ould be 
lose to n for some unknown u.

Morever, we suppose that 0 < F (u) < 2n so that there exists � with �

1

2

< � <

1

2

su
h

that

jF (u)� nj = n

1

2

+�

: (4)

Theorem 3.1. Let F be a fun
tion satisfying (1), (2) and n = pq an RSA modulus with

p < q. Let u be an integer su
h that jF (u)� nj = n

1

2

+�

; with �

1

2

< � <

1

2

. Let X, Y , Z

be 
oprime integers satisfying eY � F (u)X = Z. If

Y <

1

2

n

1

4

�

�

2

�

F (u)

e

�

1

2

; (5)

and

jZj � n

��

1

2

eY; (6)

then

X

Y

is a 
onvergent among the 
ontinued fra
tion expansion of

e

n

:

Proof. Using eY � F (u)X = Z, we get

�

�

�

�

e

n

�

X

Y

�

�

�

�

�

�

�

�

�

e

n

�

e

F (u)

�

�

�

�

+

�

�

�

�

e

F (u)

�

X

Y

�

�

�

�

=

ejF (u)� nj

nF (u)

+

jeY � F (u)Xj

F (u)Y

=

en

��

1

2

F (u)

+

jZj

F (u)Y

:

Sin
e jZj � n

��

1

2

eY , then

�

�

�

�

e

n

�

X

Y

�

�

�

�

�

en

��

1

2

F (u)

+

en

��

1

2

F (u)

=

2en

��

1

2

F (u)

:
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By assumption, we have

Y <

1

2

n

1

4

�

�

2

�

F (u)

e

�

1=2

;

Hen
e

2en

��

1

2

F (u)

<

1

2Y

2

:

whi
h gives

�

�

�

�

e

n

�

X

Y

�

�

�

�

<

1

2Y

2

:

By Legendre's theorem (Corollary 2, [1, x 2℄ in [6℄),

X

Y

is a 
onvergent of the 
ontinued

fra
tion expansion of

e

n

.

�

Theorem 3.1 relates the unknowns Y , Z in the equation (3). Let us �nd a lower bound

for the quantity X.

Corollary 3.2. With the hypothesis of Theorem 3.1, we have

X �

�

1� n

��

1

2

�

eY

F (u)

: (7)

Proof. Sin
e by assumption �

1

2

< � <

1

2

, then �1 < � �

1

2

< 0. Hen
e 1 � n

��

1

2

> 0.

Combining Z = eY � F (u)X and jZj � n

��

1

2

eY , we get

X =

eY � Z

F (u)

�

eY � jZj

F (u)

=

eY

F (u)

�

1�

jZj

eY

�

�

eY

F (u)

�

1� n

��

1

2

�

;

whi
h terminates the proof.

�

4. Vulnerability of RSA using F = F

1

In this se
tion, we will show that using an RSA modulus n = pq with q < p and

an F

1

-
onstrained publi
 key e is inse
ure. Re
all that F

1

(u) = p(q � u). We will also

give an estimation of the number of F

1

(u)-
onstrained keys for a �xed u and derive an

estimation of the number of F

1

-
onstrained keys.

4.1 Cryptanalysis of RSA with F

1

-
onstrained keys.

Theorem 3.1 relates the unknowns Y , Z of the equation (3) and shows that the �rst


onvergents of

e

F

1

(u)

are among the 
onvergents of

e

n

. In the following theorem, we give

a 
ondition relating X and Y and leading to the fa
torization of n.
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Theorem 4.1. Let X, Y be 
oprime positive integers. If there exists an integer u with

1 � juj � q � 1 su
h that jeY � F

1

(u)Xj � 2n

1

4

X, then n 
an be fa
tored in polynomial

time.

Proof. Put Z = eY � F

1

(u)X. Using F

1

(u) = p(q � u), we get

pu = n�

eY

X

+

Z

X

:

Let

~

P = n�

eY

X

. We have

�

�

�

~

P � pu

�

�

�

=

jZj

X

�

2n

1

4

X

X

= 2n

1

4

:

Hen
e

~

P is an approximation of pu with an error term less than 2n

1

4

. We 
on
lude the

proof by applying Theorem 1.2.

�

Let us 
onsider the � term as de�ned in (4). Sin
e q <

p

n < p and F

1

(u) = p(q�u) =

n� pu with 1 � juj � q � 1 we get jF

1

(u)� nj = pjuj = n

1

2

+�

with 0 < � <

1

2

.

We now state our result 
on
erning the vulnerability of RSA using F = F

1

.

Theorem 4.2. Let n = pq be an RSA modulus with q < p and u an integer satisfying

1 � juj � q � 1 and pjuj = n

1

2

+�

. Let X, Y be 
oprime positive integers. If X and Y

satisfy eY � F

1

(u)X = Z, with

Y <

1

2

n

1

4

�

�

2

�

F

1

(u)

e

�

1

2

; (8)

and

jZj �

2n

1

4

�

1� n

��

1

2

�

eY

F

1

(u)

; (9)

then

X

Y

is a 
onvergent of

e

n

and n 
an be fa
tored in polynomial time.

Proof. Let us �rst show that

X

Y

is a 
onvergent of

e

n

. Observe that Y satis�es the

inequality (5) of Theorem 3:1 with F = F

1

. Let Z = eY � F

1

(u)X. Assume that Z

satis�es (9). Sin
e F

1

(u) � n� n

1

2

+�

, we get

jZj �

2n

1

4

�

1� n

��

1

2

�

eY

F

1

(u)

�

2n

1

4

�

1� n

��

1

2

�

eY

n� n

1

2

+�

= 2n

�

3

4

eY � n

��

1

2

eY:

This shows that (6) is also satis�ed. Hen
e, by Theorem 3:1,

X

Y

is a 
onvergent of

e

n

. On

the other hand, 
ombining (7) with F = F

1

and (9), we get

jZj

X

�

jZjF

1

(u)

�

1� n

��

1

2

�

eY

� 2n

1

4

:

Hen
e, by Theorem 4:1, n 
an be fa
tored in polynomial time.

�
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4.2 The number of F

1

(u)-
onstrained keys.

Let u be a �xed integer satisfying 1 � juj � q � 1. We indi
ate below how the 
rypto

designer 
ould build publi
 keys whi
h are F

1

(u)-
onstrained using only very short values

of X, Y . We begin by the following useful lemma. We use the usual notation bx
 for the

integral part of x.

Lemma 4.3. Let n = pq be an RSA modulus with q < p and u an integer satisfying

1 � juj � q � 1 and pjuj = n

1

2

+�

. Let X, Y be 
oprime integers with

1 � X � Y <

1

2

n

1

4

�

�

2

:

If e =

�

F

1

(u)

X

Y

�

, then e > n

1

2

��

:

Proof. Let Z = eY � F

1

(u)X. By the de�nition of e, we have

0 � F

1

(u)

X

Y

� e < 1:

Combininig with the inequalities 1 � X < Y <

1

2

n

1

4

�

�

2

, this gives us

e+ 1 > F

1

(u)

X

Y

� (n� pjuj)

1

Y

> 2 (n� pjuj)n

�

2

�

1

4

:

To show that e > n

1

2

��

, it suÆ
es to show that

2 (n� pjuj)n

�

2

�

1

4

> n

1

2

��

+ 1: (10)

Note that pjuj = n

1

2

+�

. Then n

�

= pjujn

�

1

2

and 
onsequently

n

�

2

�

1

4

= p

1

2

juj

1

2

n

�

1

4

n

�

1

4

=

�

juj

q

�

1

2

:

Similarly,

n

1

2

��

= n

1

2

p

�1

juj

�1

n

1

2

=

q

juj

:

Hen
e (10) is equivalent with

2 (n� pjuj)

�

juj

q

�

1

2

>

q

juj

+ 1:

Let

f(u) = 2 (n� pjuj)

�

juj

q

�

1

2

�

q

juj

� 1;

with 1 � juj � q � 1. An arithmeti
al study of the derivatives of f shows that for any

su
h u we have

f(u) � min(f(1); f(q� 1)) = f(q � 1) = 2p

�

q � 1

q

�

1

2

�

q

q � 1

� 1 > 0:

This 
on�rms (10) and 
ompletes the proof.

�
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Corollarly 4.4. Let n = pq be an RSA modulus with q < p and u an integer satisfying

1 � juj � q � 1 and pjuj = n

1

2

+�

. Let X, Y be 
oprime integers with

1 � X � Y <

1

2

n

1

4

�

�

2

:

If e =

�

F

1

(u)

X

Y

�

, then

X

Y

is a 
onvergent of both

e

F

1

(u)

and

e

n

and e is F

1

(u)-
onstrained.

Proof. Let Z = eY � F

1

(u)X. Sin
e 1 � juj � q � 1, p >

p

n and 1 � X � Y <

1

2

n

1

4

�

�

2

,

then

F

1

(u) = n� pu � n� pjuj � n� p(q � 1) = p > n

1

2

> 2Y

2

:

On the other hand, by the de�nition of e, we have

0 � F

1

(u)

X

Y

� e < 1: (11)

Hen
e

�

�

�

�

e

F

1

(u)

�

X

Y

�

�

�

�

<

1

F

1

(u)

<

1

2Y

2

:

This shows that

X

Y

is a 
onvergent of

e

F

1

(u)

. Let us show that

X

Y

is a 
onvergent of

e

n

.

By (11) and Lemma 4.3 we have

jZj = jeY � F

1

(u)Xj < Y < n

��

1

2

eY;

and the inequality (6) of Theorem 3.1 is satis�ed where F = F

1

. Morever, by (11), we

have

F

1

(u)

e

�

Y

X

� 1:

Combining with Y <

1

2

n

1

4

�

�

2

, this gives

Y <

1

2

n

1

4

�

�

2

�

F

1

(u)

e

�

1

2

;

and (5) is also satis�ed with F = F

1

. Hen
e, by Theorem 3.1,

X

Y

is a 
onvergent of

e

n

.

Finally, using (11), we have

jZj

X

=

jeY � F

1

(u)Xj

X

<

Y

X

� Y <

1

2

n

1

4

�

�

2

< 2n

1

4

:

Thus, by Theorem 4:1, e is F

1

(u)-
onstrained whi
h terminates the proof.

�

Corollary 4.4 indi
ates that every 
ouple (X;Y ) of 
oprime positive integers with

1 � X < Y <

1

2

n

1

4

�

�

2

and every integer u with 1 � juj � q � 1 yield a 
andidate publi


key e for whi
h the RSA 
ryptosystem is inse
ure. We show below that di�erent 
ouples

produ
e di�erent 
andidate publi
 keys.
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Lemma 4.5. Let n = pq be an RSA modulus with q < p and u an integer satisfying

1 � juj � q � 1 and pjuj = n

1

2

+�

. Let X, X

0

, Y and Y

0

be positive integers with

g
d(X;Y ) = g
d(X

0

; Y

0

) = 1 and

1 � X � Y <

1

2

n

1

4

�

�

2

and 1 � X

0

< Y

0

<

1

2

n

1

4

�

�

0

2

:

Let e =

�

F

1

(u)

X

Y

�

and e

0

=

j

F

1

(u)

X

0

Y

0

k

. If e = e

0

, then (X;Y ) = (X

0

; Y

0

).

Proof. Without loss of generality, suppose that

X

Y

�

X

0

Y

0

. By de�nition, e satis�es (11).

Similarly, we have

0 � F

1

(u)

X

0

Y

0

� e

0

< 1: (12)

Combining (11) and (12), we get

�

X

Y

�

X

0

Y

0

�

F

1

(u)� 1 < e� e

0

<

�

X

Y

�

X

0

Y

0

�

F

1

(u) + 1:

From this, we derive

0 �

�

X

Y

�

X

0

Y

0

�

F

1

(u) < e� e

0

+ 1:

By assumption e = e

0

. Then 0 �

�

X

Y

�

X

0

Y

0

�

F

1

(u) < 1 or equivalently,

0 � (XY

0

� Y X

0

)F

1

(u) < Y Y

0

:

Combining the inequalities 1 � Y <

1

2

n

1

4

�

�

2

, 1 � Y

0

<

1

2

n

1

4

�

�

0

2

and F

1

(u) � n� pjuj �

n� p(q � 1) = p > n

1

2

, we get

0 � (XY

0

�X

0

Y ) <

Y Y

0

F

1

(u)

<

1

4

n

1

2

�

�+�

0

2

n

1

2

< 1:

Hen
e XY

0

� X

0

Y = 0 and sin
e g
d(X;Y ) = g
d(X

0

; Y

0

) = 1, we get X = X

0

and

Y = Y

0

.

�

For a �xed integer u satisfying 1 � juj � q � 1, we state below a lower bound for the

number of F

1

(u)-
onstrained publi
 keys.
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Theorem 4.6. Let n = pq be an RSA modulus with q < p and u an integer satisfying

1 � juj � q�1 and pjuj = n

1

2

+�

. The number of F

1

(u)-
onstrained publi
 keys is at least

O

�

n

3

4

���"

�

.

Proof. Let " be a positive 
onstant and u a �xed integer with 1 � juj � q�1. Let X and

Y be 
oprime positive integers satisfying 1 � X � Y <

1

2

n

1

4

�

�

2

�"

. De�ne e =

�

F

1

(u)

X

Y

�

and Z = eY � F

1

(u)X. Using similar arguments as in the proof of Corllarly 4.4, we get

jZj

X

< 2n

1

4

�"

: If g
d(e; �(n)) 6= 1, then e is not a valid publi
 key. Let e

0

= e+ h for some

integer h with g
d(e+ h; �(n)) = 1 and

1 � h � n

1

4

X

Y

:

Let Z

0

= e

0

Y � F

1

(u)X. Sin
e Z < 0, then

jZ

0

j

X

=

j(e+ h)Y � F

1

(u)Xj

X

=

jZ + hY j

X

�

max(jZj; hY )

X

< n

1

4

:

Hen
e, by Theorem 4.1, e

0

is F

1

(u)-
onstrained. This shows that every 
ouple (X;Y )

satisfying g
d(X;Y ) = 1 builds approximately

1

2

n

1

4

X

Y

publi
 keys whi
h are F

1

(u)-


onstrained. Hen
e, the number of su
h keys depends on the number of 
ouples (X;Y )

satisfying g
d(X;Y ) = 1 and 1 � X � Y < n

1

4

�

�

2

�"

. For a �xed Y , there are �(Y )

positive integers X su
h that g
d(X;Y ) = 1 and 1 � X � Y . Let m =

j

1

2

n

1

4

�

�

2

�"

k

.

Using the well known estimation

�(Y ) �

KY

log log(Y )

�

KY

log log(n)

= Y n

�"

0

;

where K is a 
onstant related to the Euler 
onstant, the number of the F

1

(u)-
onstrained

keys is at least

X

1�X�Y�m

1

2

n

1

4

X

Y

�(Y ) �

m

X

X=1

1

2

n

1

4

�"

0

X = n

1

4

�"

0

m(m+ 1)

4

= O

�

n

3

4

���2"�"

0

�

:

Repla
ing 2"+ "

0

by ", this terminates the proof.

�

4.3 The number of F

1

-
onstrained keys.

Theorem 4.6 gives an estimation of the number of F

1

(u)-
onstrained keys for a �xed

u. It remains to give an estimation of the number of F

1

-
onstrained keys. Let u and u

0

be a �xed integers with 1 � juj; ju

0

j � q � 1. We show below that if e is simultaneously


onstrained to F

1

(u) and F

1

(u

0

), then u = u

0

.
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Lemma 4.7. Let n = pq be an RSA modulus with q < p and let u, u

0

be integers

satisfying 1 � juj; ju

0

j � q � 1 and pjuj = n

1

2

+�

, pju

0

j = n

1

2

+�

0

. Let X, Y , X

0

, Y

0

be

positive integers satisfying g
d(X;Y ) = g
d(X

0

; Y

0

) = 1, and

1 � X � Y <

1

2

n

1

4

�

�

2

and 1 � X

0

< Y

0

<

1

2

n

1

4

�

�

0

2

:

Let e =

�

F

1

(u)

X

Y

�

and e

0

=

j

F

1

(u)

X

0

Y

0

k

. If e = e

0

then u = u

0

and (X;Y ) = (X

0

; Y

0

).

Proof. Assume that

e =

�

F

1

(u)

X

Y

�

= e

0

=

�

F

1

(u

0

)

X

0

Y

0

�

:

From this, we get

�

�

�

�

F

1

(u)

X

Y

� F

1

(u

0

)

X

0

Y

0

�

�

�

�

< 1:

Using F

1

(u) = n� pu, F

1

(u

0

) = n� pu

0

, this gives

j(q � u)XY

0

� (q � u

0

)X

0

Y j <

Y Y

0

p

:

Sin
e by assumption 1 � X � Y <

1

2

n

1

4

�

�

2

, 1 � X

0

< Y

0

<

1

2

n

1

4

�

�

0

2

and p >

p

n. Then

j(q � u)XY

0

� (q � u

0

)X

0

Y j <

Y Y

0

p

<

1

4

n

1

4

�

�

2

+

1

4

�

�

0

2

�

1

2

=

1

4

n

�

�+�

0

2

< 1:

Sin
e (q�u)XY

0

�(q�u

0

)X

0

Y is an integer, then (q�u)XY

0

�(q�u

0

)X

0

Y = 0. Further,

g
d(X;Y ) = g
d(X

0

; Y

0

) = 1. From this, it follows that

X = (q � u

0

)X

0

; Y = (q � u)Y

0

; X

0

= (q � u)X; Y

0

= (q � u

0

)Y:

Combining X and X

0

, we get X = (q�u

0

)X

0

= (q�u

0

)(q�u)X and (q�u)(q�u

0

) = 1.

Hen
e q � u = q � u

0

= �1 and u = u

0

. Finally, by Lemma 4.5, (X;Y ) = (X

0

; Y

0

) whi
h

terminates the proof.

�

We now give an estimation for the number of F

1

-
onstrained publi
 keys.

Theorem 4.8. Let n = pq be an RSA modulus with q < p < 2q. The number of

F

1

-
onstrained publi
 keys is at least O

�

n

3

4

�"

�

.

Proof. By Theorem 4.6, for every u with 1 � juj � q � 1 and pjuj = n

1

2

+�

, the number

of the F

1

(u)-
onstrained keys is at least O

�

n

3

4

���"

�

. Hen
e, the number of the F

1

-


onstrained keys is at least

N(F

1

) =

X

0<�<1

n

3

4

���"

:
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Sin
e q < p < 2q, then n < p

2

< 2n and p < 2

1

2

n

1

2

. Combining this with n

�

= n

�

1

2

pjuj,

we get

n

��

= n

1

2

p

�1

juj

�1

> 2

�

1

2

juj

�1

:

It follows that

N(F

1

) = n

3

4

�"

X

�

n

��

> 2

�

1

2

n

3

4

�"

q�1

X

juj=1

juj

�1

:

The sum

P

q�1

juj=1

u

�1

is related to the harmoni
 series

P

1

u=1

u

�1

whi
h diverges. Trivially,

we have

q�1

X

juj=1

u

�1

> 2

and �nally

N(F

1

) � 2

1

2

n

3

4

�"

;

whi
h terminates the proof.

�

5. A numeri
al example using F = F

1

Let n = pq be an RSA modulus with q < p. Let e be a publi
 exponent. In this

se
tion, we give an algorithm to fa
tor the modulus n if e is F

1

(u)-
onstrained for some

unknown u where F

1

(u) = p(q � u).

The algorithm.

INPUT: a) The RSA modulus n = pq with unknown prime fa
tors.

b) The publi
 key e su
h that eY � F (u)X = Z for some unknown integers

u, X, Y and Z satisfying (8) and (9).

1. Compute the 
ontinued fra
tion expansion of

e

n

.

2. For every 
onvergent

X

Y

su
h that Y <

1

2

n

1

4

:

i) Compute

~

P = n�

eX

Y

:

ii) Apply Coppersmith's algorithm with

~

P and output a value N .

iii) Compute g = g
d(N;n). If g 6= n then stop.

OUTPUT: p = g, q =

n

p

, u =

N

p

.

Let us now 
onsider the 48 digit example.

n = 941096252089784462564816358283310787682673275523;

e = 31562534055617334057122389124448605297040382267:

The �rst 24 partial quotients of the 
ontinued fra
tion expansion of

e

n

are

[0; 29; 1; 4; 2; 5; 1; 7 1; 12; 14; 2; 1; 1; 1; 1; 1; 1; 1; 5; 2; 3020; 1; 1; :::℄:



14 RSA WITH CONSTRAINED KEYS

The 21th 
onvergent is

X

Y

=

78754791

2348222057

. With

~

P = n �

eY

X

, Coppersmith's algo-

rithm outputs N = �1684416133919688132169065675. This gives p = g
d(N;n) =

1321110693270343633073777, u =

N

p

= �1271, q =

n

p

= 712352308465649934350899,

and the fa
torization of n is a
hieved.

We are now able to analyze our atta
k and the the Bl�omer-May atta
k. The atta
k

of Bl�omer and May gives the fa
torization of n if the prime fa
tors p and q satisfy

jn+ 1�

ex

k

� p � qj < n

1

4

for some 
onvergent

k

x

of

e

n

or

e

n+1�2

p

n

. No su
h 
onvergent

exists whi
h explains why Bl�omer-May's atta
k fails. Our atta
k su

eeds sin
e there

exist an integer u = �1271 and a 
onvergent

X

Y

=

78754791

2348222057

of

e

n

su
h that (8) and (9)

are satis�ed.

Note that the se
ret key is d = 565214697101365558758015289139548803045295395763

and satisfy d � n

0:995���

>

1

3

n

1

4

whi
h explains why the original atta
k of Wiener [11℄

fails. Similarly, we have d >

n

3=4

p�q

, whi
h explains why the 
ontinued fra
tion atta
k of

de Weger [10℄ also fails.

6. Con
lusion

Using methods based on 
ontinued fra
tions and May's extension of Coppersmith's

Theorem, we showed that an RSA 
ryptosystem with modulus n = pq and a publi
 key

e is inse
ure if there exist an integer u su
h that n� pu � n and a 
onvergent

X

Y

of

e

n

for

whi
h both jeY � (n� pu)Xj and Y are relatively small. Morever we showed that there

are at least O

�

n

3

4

�"

�

publi
 keys making the 
ryptosystem inse
ure.

We analysed the se
urity of RSA using the fun
tion F

1

where F

1

(u) = p(q � u). The

situation is similar with the symmetri
 fun
tion F

0

1

where F

0

1

(u) = q(p�u). As mentioned

in the introdu
tion, RSA 
ould be inse
ure if the publi
 key e is 
onstrained with other

sort of fun
tions satisfying similar 
onditions. Our results show that one should be very


autious when using an RSA modulus with a 
onstrained key.
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